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Abstract

Database designers often point out that eager,
update everywhere replication suffers from
high deadlock rates, message overhead and
poor response times. In this paper, we show
that these limitations can be circumvented
by using a combination of known and novel
techniques. Moreover, we show how the pro-
posed solution can be incorporated into a real
database system. The paper discusses the new
protocols and their implementation in Post-
greSQL. Tt also provides experimental results
proving that many of the dangers and limita-
tions of replication can be avoided by using
the appropriate techniques.

1 Introduction

Existing replication protocols can be divided into eager
and lazy schemes [GHOS96]. Eager protocols ensure
that changes to copies happen within the transaction
boundaries. That is, when a transaction commits, all
copies have the same value. Lazy replication protocols
propagate changes only after the transaction commits,
thereby allowing copies to have different values. While
eager replication emphasizes consistency, lazy replica-
tion pays more attention to efficiency.

Among database designers, there is the widespread be-
lief that eager replication is not practical. The “dan-
gers” of eager replication have been analyzed by Gray
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et al. [GHOS96] and, since the publication of those re-
sults, the research focus has shifted towards lazy repli-
cation [CRR96, PMS99, ABKW98, BKRt99]. The
drawback of lazy replication is that, if consistency is
necessary, many non trivial problems arise. Namely, in
the case of update everywhere (each copy can be up-
dated), maintaining consistency is usually left to the
user. If only a primary copy can be updated, consis-
tency is achieved at the price of introducing a bottle-
neck and a single point of failure. In addition, recent
results prove that consistency can only be guaranteed
when the system configuration is severely restricted.

We see these as serious limitations. The thesis de-
fended in this paper is that if the goal is to achieve
consistency and the computing environment allows it,
then eager replication should be used. In spite of
what is commonly assumed, eager replication is per-
fectly feasible in many environments. A good example
are the computer clusters which can be found behind
many Internet sites. However, in order to circumvent
the limitations of traditional solutions, it is necessary
to rethink the way transaction and replica manage-
ment is done. In this paper, we demonstrate how ea-
ger replication can be implemented in practice. Some
of the techniques we use include executing the trans-
action first locally on shadow copies and postponing
the propagation of updates to the end of the trans-
action, using group communication primitives for pre-
ordering transactions, and acquiring all locks a trans-
action needs in an atomic step. To prove the feasi-
bility of these ideas, we have implemented them in
Postgres-R, an extension of PostgreSQL [Pos98] and
tested them extensively. The results prove that eager
replication is feasible in clusters of computers and can
scale to a relatively large number of nodes.

The paper is organized as follows. Section 2 discusses
related work. Section 3 explains the principle tech-
niques of our approach and presents a basic protocol.
Section 4 discusses the architecture and implementa-
tion of Postgres-R. Section 5 presents performance re-
sults. Section 6 discusses configuration management
and partial replication. Section 7 concludes the paper.



2 Related Work
2.1 The dangers of replication ...

Text book eager replication protocols use update ev-
erywhere (e.g., read-one/write-all-available) and quo-
rums to minimize overhead [BHGS87]. With very few
exceptions, these protocols have never been used in
practice and Gray et al. [GHOS96] have pointed out
why. These protocols coordinate each operation indi-
vidually, using distributed locking and 2-phase com-
mit. As a result, when the number of nodes increases,
transaction response times, conflict probability and
deadlock rates grow significantly. From these results,
Gray et al. concluded that eager replication was not
practical and suggested to use lazy approaches instead.
Indeed, only few commercial systems implement ea-
ger replication. Oracle Advanced Replication provides
an eager protocol which first executes an update lo-
cally and then “after row” triggers are used to syn-
chronously propagate the changes and to lock the cor-
responding remote copies. Most other solutions mainly
focus on availability and represent highly specialized
solutions (e.g., Tandem’s RDF or Informix’s HDR).
In general, commercial systems clearly favor lazy ap-
proaches [Sta94]. For instance, Sybase provides an
extended publish-and-subscribe scheme which tries to
minimize the time copies are inconsistent. As another
example, IBM Data Replicator uses a pull strategy
whereby a client will not see its own updates unless it
requests them.

2.2 ... lazy solutions ...

On the research side, lazy replication has been
studied using very different approaches like weak
consistency models [PL91, KB91, GN95], economic
paradigms [SAST96] or epidemic strategies [AES9T7].
More recent work has explored lazy strategies that
still provide consistency. Thus, Chundi et al. [CRR96]
have shown that in lazy primary copy schemes, ser-
ializability cannot be guaranteed without restricting
the placement of primary and secondary copies in the
system. Recent work by Pacitti et al. [PMS99] and
Breitbart et al. [BKR199] has attempted to minimize
this limitation. As a major drawback, all these ap-
proaches are primary copy. Furthermore, transactions
cannot update data items whose primary copies reside
on different sites and, in real applications (specially in
clusters), the complexities and limitations on replica
placement are likely to be a significant liability.

Another way to provide consistency has been to com-
bine eager and lazy approaches. Anderson et al.
[ABKW98] have proposed a system that is eager in the
sense that the serialization order is determined within
the transactional boundaries but updates are propa-
gated only after the commit of the transaction. This

approach does not restrict replica placement but is still
primary copy and forbids transactions to access data
items with primary copies on different sites.

2.3 ... and eager solutions

Parallel to this work, several suggestions [AAES97,
PGS97] have been made to implement eager replica-
tion using group communication systems such as Tran-
sis, Totem or Horus [ea96] and initial efforts have been
made to optimize the integration of transaction pro-
cessing and communication management [KPAS99].
In some cases [AAES97, HAA99], the protocols are
quite simplistic and suffer from high abort rates. In
other cases, the protocols can be quite difficult to im-
plement in a real database [PGS97]. In all cases, the
work is simulation based and little effort has been
made to tackle the practical aspects of a real im-
plementation. To address these limitations, we have
proposed a suite of replication protocols [KA98, KA]
where different degrees of isolation are combined with
different message delivery guarantees in order to pro-
vide a more complete solution that takes into account
abort rates, failures and how databases relax consis-
tency. The results presented in this paper are based
on this work. In what follows, we discuss how these
ideas can be implemented in a database management
system and show that the performance reached favor-
ably compares with that of traditional protocols.

3 Replication Model

Our approach is based on a number of techniques and
optimizations which we briefly present in this section.
For more details see [KA].

3.1 Reducing message and synchronization
overhead

Traditional eager replication protocols [BHG87] coor-
dinate copies one operation at a time. In a system
with n nodes and where each transaction consists of
m operations, a throughput of & transactions per sec-
ond requires k - m - n messages per second. Such an
approach can never scale. One way to avoid this prob-
lem is to bundle writes into a single write set mes-
sage [AAES97, ABKW98]. In lazy replication this is
somewhat easier since updates are propagated after
the transaction commits. One novel aspect of our ap-
proach is to apply this technique in eager replication.
We use shadow copies [BHG8T] to perform updates:
write operations are executed on private copies in or-
der to check consistency constraints, capture write-
read dependencies and fire triggers. These changes to
the shadow copies are propagated to the other sites
at commit time, thereby greatly reducing the message
overhead and the conflict profile of transactions.



3.2 Localizing read operations

Early replication protocols like read-one/write-
all [BHGS87] already recognized the importance of
keeping read operations local. This implies that read
operations are executed only at one site and that
no information about them is exchanged among the
sites. As a result, read operations have no message
costs and no overhead at remote sites, and queries can
be kept completely local. This is very desirable but
it introduces some complexity regarding read/write
conflicts since reads are only seen at the local site.

3.3 Pre-ordering transactions

We use a group communication primitive providing to-
tal order semantics to multicast the write set and to
determine the serialization order of the transactions.
The total order guarantees that all sites receive the
write sets in exactly the same order. Note that a site
sends a message also to itself in order to be able to
determine the final total order of a transaction. Each
transaction manager uses this order to acquire locks.
It requests all write locks for a transaction in a single
atomic operation, and then proceeds with the execu-
tion of the transaction. By granting the locks in the
order in which the transactions arrive, it is guaran-
teed that all sites perform conflicting updates in the
same order. Additionally, transactions never get into
a deadlock. Note that this does not imply serial exe-
cution since non-conflicting transactions are executed
in parallel. Only the access to the lock table is serial.
With this approach, we also avoid that transaction
response time is determined by the slowest machine.
The local site can commit a transaction whenever the
global serialization order has been determined and
does not wait for the other sites to have executed the
transaction. Instead it relies on the fact that the other
sites will serialize the transaction in the same way.
Group communication primitives provide a variety of
execution semantics. These semantics can be used to
optimize the protocols as long as the recovery mecha-
nisms are properly adjusted. In this paper we assume
reliable delivery, which guarantees consistency on all
non-faulty sites [KA].

3.4 An eager replication protocol

The replication protocol we use in this paper executes

a transaction in four phases:

|. Local Read Phase: Perform all read operations locally.
Execute write operations on shadow copies. Acquire
the appropriate lock before executing the operation.

Il. Send Phase: If T; is read-only, then commit. Else
bundle all writes into write set W.S; and multicast it
to all sites including the sending site (same delivery
order at all sites).

I1l. Lock Phase: Upon delivery of W.S;, request all locks
for WS, in an atomic step:

1. For each operation w;(X) on item X in W5;:

a. Perform a conflict test: if a local transaction
T; has a granted lock on X and 7T} is still in
its read or send phase, abort 7. If T; is in its
send phase, then multicast the decision message
abort (decision messages are not ordered).

b. If there is no lock on X, grant the lock to T;.
Otherwise enqueue the lock request directly af-
ter all locks from transactions that are beyond
their lock phase.

2. If T} is a local transaction, multicast the decision
message commit (no order requirement).

IV. Write Phase: Whenever a write lock is granted ap-
ply the corresponding update. A local transaction can
commit and release all locks once all updates have
been applied to the database. A remote transaction
must wait until the decision message arrives and ter-
minates accordingly.

In this protocol, the total order is used to serialize
write/write conflicts at all sites. The scheduler has to
guarantee that waiting locks are granted in the order in
which they appear in the lock queue. Read/write con-
flicts are also detected during the lock phase (I11.1.a).
Since read operations are only seen at the local site, we
use a straightforward solution and abort local readers
when a conflicting writer arrives. This avoids dead-
locks and inconsistent executions. The abort is only
necessary when the reading transaction is in its read
or send phase. In later phases the transaction cannot
be involved in a deadlock (see [IKA] for details). When
a transaction is aborted during the read phase, it is
still completely local and no message needs to be sent.
When a transaction is aborted during its send phase,
the local site must inform the other sites via an abort
message. Thus, this protocol requires that the local
site sends two messages per transaction, one with the
write set and another to confirm that the transaction
will commit or abort (this is not a 2PC). The decision
messages do not require any ordering semantics. They
may be delivered in any order at the different sites and
might even arrive before the corresponding write set.
Obviously, to abort readers when a writer arrives is
problematic. There exist several alternatives [KA],
specially using different degrees of isolation like cur-
sor stability or snapshot isolation. For simplicity, we
only analyze the presented protocol in this paper.

4 Postgres-R Architecture

Postgres-R has been implemented as an extension
to PostgreSQL [Pos98], version 6.4.2, a single node
database that supports an extended subset of SQL and
uses 2-phase-locking for concurrency control with re-
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Figure 1: Architecture of Postgres-R

lation level locking. With respect to group communi-
cation, we use Ensemble [Hay98], the follow up system
to Horus [ea96]. The functionality available in Post-
greSQL is still available in Postgres-R but now with
replication as an additional feature. All the interfaces
provided by PostgreSQL are also available in Postgres-
R: embedded SQL, ODBC, etc. The replication fea-
tures of Postgres-R are usable through SQL, both for
data manipulation and data definition. For simplicity,
in what follows we assume full replication. In section
6, we discuss how to implement partial replication.

4.1 Basic modules

As shown in Figure 1, a replicated database comprises
several nodes (servers), each one of them running an
instance of Postgres-R. In the figure, all clear shapes
represent original PostgreSQL modules, the shadowed
shapes are Postgres-R specific. PostgreSQL is process-
based. When clients want to access the database they
send a request to a listener process, called postmas-
ter. For each client, the postmaster creates a backend
process and from then on communication takes place
between backend and client. Clients can submit an
arbitrary number of transactions (one at a time) un-
til they disconnect. PostgreSQL allows to limit the
maximum number of parallel backends. When a given
threshold is reached no new clients are admitted.

To implement replication, additional modules are
needed to take care of the communication and to deal
with remote transactions. In Postgres-R, clients may
connect to any server. The transactions of a client are
called local at the server where the client connects. For
each client, the postmaster creates a local backend pro-
cess. To handle remote transactions, each Postgres-R
server keeps a pool of remote backend processes. This

pool is created at system startup (with an adjustable
startup pool size). When a message of a remote trans-
action arrives, it is handed over to one of these remote
backends. When all existing remote backends are busy
and their number has not reached a given threshold
(maximum pool size), a new remote backend is started,
otherwise the transaction must wait.

Control of the replication protocol takes place at the
replication manager. The replication manager is a
message handling process. It receives messages from
the backends (local and remote) and forwards them to
the other sites. It also receives the messages delivered
by the communication system and forwards them to
the corresponding backends.

4.2 Execution of transactions

For local transactions, as long as they are in their read
phase, they remain within their corresponding local
backend. Once the local backend finishes the execu-
tion (over shadow copies), it sends the write set to
the replication manager and the transaction enters its
send phase. The replication manager then broadcasts
the write set to all sites. When a write set arrives at a
site, its replication manager checks whether the write
set corresponds to a local or to a remote transaction.
This is done using the host name and a transaction
identifier included in the write set message. For write
sets of local transactions, the replication manager no-
tifies the corresponding local backend and the transac-
tion enters its lock phase. In order to perform the lock
phase atomically, the local backend acquires a latch
on the lock table and keeps it until all locks are en-
queued in the lock table. Additionally, the replication
manager stops accepting write sets from the commu-
nication system until the backend sends a confirma-
tion that all necessary locks have been requested. This
guarantees that the lock phases of concurrent transac-
tions are executed in the same order in which the write
sets have been delivered. When the replication man-
ager receives the confirmation from the backend that
the locks have been requested, it broadcast a commit
message. The transaction then enters its write phase
and whenever a lock is granted the shadow copies be-
come the valid versions of the items.

Up to the time point at which a local transaction T has
acquired the latch on the lock table to start the lock
phase, it can be aborted due to a read/write conflict.
This happens when another transaction 7" tries to set
a write lock (during its lock phase) and finds a read
lock from 7. In this case, 1" sets an abort flag for
T. Local transactions check their abort flags regularly
during their read and send phases and abort if they
are set. If a transaction is in its send phase, it sends
an abort message to the replication manager which
broadcasts it to the other sites.



For remote transactions, write and decision messages
might arrive in any order. If the write set arrives first,
the replication manager passes it to an idle remote
backend and proceeds like with local write sets. The
remote backend will acquire the locks, confirm this to
the replication manager, and apply the updates. How-
ever, it will wait to terminate the transaction until the
replication manager receives the decision message from
the local site and forwards it to the remote backend.
Once a remote backend finishes executing a transac-
tion, it sends a readynotification to the replication
manager, which will add it to the pool of available re-
mote backends. If the decision message arrives first,
the replication manager registers this fact and simply
proceeds accordingly when the write set arrives.

To implement these procedures, the PostgreSQL lock
table had to be modified. Usually, a transaction re-
quests a lock and performs an operation before it re-
quests the next lock. In between the two lock requests,
other transactions can also acquire locks. In Postgres-
R, it is possible to request all write locks in a single
step. As a consequence a transaction can have more
than one lock waiting and more than one lock granted
without the corresponding operation being executed.
Additionally, the backend coordination of PostgreSQL
needed to be adjusted, but the actual data manipula-
tion and commit actions could be reused.

4.3 Shadow copies

In Postgres-R, updates are executed on a shadow copy
during the read phase. This is crucial for several rea-
sons. First, a transaction is able to read what it has
previously written by reading the shadow copies. Sec-
ond, constraints can be checked to assure that the
write operation is indeed possible. And finally, trig-
gers can be fired that possibly generate further up-
dates (which are then also performed on shadow copies
within the scope of the transaction).

PostgreSQL supports shadow copies quite well since it
is a tuple-based multiversion system. In PostgreSQL
each update invalidates the current physical version
of a tuple and creates a new version. To determine
the valid version, each tuple has two additional fields
which contain the identifiers of the creating and the in-
validating transaction. A version is visible to a trans-
action T; if T; itself has created it or the creating trans-
action T; has already committed. Furthermore, for the
tuple to be visible, the field for the invalidating trans-
action must be empty or the invalidating transaction
is either still running or aborted. Thus, a transaction
sees its own updates but not the updates of concur-
rent transactions. Updates trigger the creation of new
entries in all relevant indices. To control the table
size, PostgreSQL provides a special garbage collector
to physically delete all invisible tuples. Thus, the inte-

gration of the shadow copy approach into PostgreSQL
has been rather straightforward. It should be equally
feasible in any multiversion database (e.g., Oracle).

4.4 Locking

PostgreSQL uses logical locking at the relation level.
For efficiency reasons, however, it is desirable to have
tuple level locking. Thus, we have implemented a sim-
ple tuple level locking scheme based on key values.
Using shadow copies greatly helps to accomplish this.
During the read phase, a local site actually executes
the transaction and, therefore, can determine the pri-
mary key values of all items that have been modified.
Including these key values in the write set allows for
logical tuple level locking during the lock phase.
Although shadow copies are not visible until com-
mit time, they require a sophisticated handling of
locks to avoid update/update, delete/update and
insert/insert conflicts. Assume write operations on
shadow copies would not acquire locks and there are
two transactions 77 and T5:

T1:update ATABLE set A1=A1+1 where A-ID=5
T2:update ATABLE set A1=A1+2 where A-ID=5
Both might be on the same site or on different sites
and they perform the updates concurrently on shadow
copies. Now assume, both send their write sets and
T\’s write set is delivered before T5’s write set. Since
neither 71 nor 75 have locks set on the data during the
read phase, first 71’s and then T5’s updates will be ap-
plied. This results in a non-serializable execution. The
problem here is that both operations contain implicit
reads. For delete/update conflicts, the problem is in-
compatible writes. Assume 77 deleting a tuple and T3
concurrently updating the tuple and T7’s write set is
delivered before T5’s write set. While T3 could locally
update the tuple during the read phase the write phase
will fail because T} has deleted the tuple. A similar
problem arises with two concurrent inserts.

To avoid these problems, we use a similar approach
as the multiversion 2-phase-locking scheme proposed
in [BHG87]. The approach is also related to update
mode locks [GR93]. The idea is to obtain a read-
intention-write (RIW) for all write operations during
the read phase. A RIW lock conflicts with other RIW
locks and with write locks but not with read locks. As
a result, a transaction can perform a write operation
on a shadow copy while concurrent transactions can
still read the (old) version of the tuple. By using this
mechanism, the problems described above are either
avoided or are made visible. Conflicts between two lo-
cal transactions are handled by allowing at most one
RIW lock on a data item. Conflicts between local and
remote transactions are detected during the lock phase
of the remote transactions. In this case RIW locks be-
have like read locks. If a transaction in its lock phase



wants to set a write lock on a data item, it will abort
all local transactions in their read or send phases with
conflicting read or RIW locks.

The only problem with RIW locks is that they rein-
troduce deadlocks. Assume transaction 77 updates
data item x and T3 updates data item y both hold-
ing RIW. If now Tj wants to set a RIW lock on y and
T, wants to set a RIW lock on z, a deadlock will en-
sue. However, such a deadlock only occurs among local
transactions in their read phases and therefore can be
handled locally. Note that, once a transaction is in
its send phase, it will not be involved in a deadlock
anymore because write locks have precedence over any
other type of locks and conflicting transactions will be
aborted.

4.5 Index locking

Locks on index structures need further consideration.
Most of these locks are usually short locks not follow-
ing 2-phase-locking and hence, they can be acquired at
any time even during the write phase of a transaction.
In B-trees, for instance, while searching for an entry to
be updated, PostgreSQL searches along a path in the
B-tree, locking and unlocking (short read locks) indi-
vidual pages until the entry is found. When the entry
is found, the short read lock is upgraded to a write
lock. Two transactions can follow this procedure at
the same time and deadlock when they try to upgrade
the lock. In PostgreSQL, such deadlocks occur fre-
quently because each update operation creates a new
entry in the primary key index. These deadlocks would
not be a problem if they involved only local transac-
tions in their read phase. However, since indices are
also used during the write phase, remote transactions
could also be involved in such deadlocks. To avoid it,
Postgres-R immediately acquires write locks on index
pages in the case of update operations.

4.6 The write set

Creating, sending and processing the write set plays
a crucial role in our protocols and can have a severe
impact on performance. In Postgres-R, we have im-
plemented two alternatives to send a write operation.
Either the SQL statement is sent or the primary key
values of the updated tuples along with the new physi-
cal values of those attributes that have been modified.
In the former case, messages are small but remote sites
have more work to do since they need to parse the
SQL statement and execute the entire operation. In
the latter case, remote sites can be very fast installing
updates (specific tuples are accessed via the primary
key index), but messages can become quite large.

We have evaluated the performance differences be-
tween the two alternatives in terms of message size

1 tuple 50 tuples
SQL | phys. | SQL | phys.
Message Size (Byte) 123 105 125 3634
Execution Time (ms)
Not Replicated 7 125
Local 7 7 125 140
Remote 7 1 125 40

Table 1: The Write Set

and execution time by running two tests. The results
are shown in Table 1. For comparison reasons the ta-
ble also shows the execution time in a non-replicated
system. We have run two tests. In the first test, a
write set contains a single operation updating one tu-
ple. The index on the primary key can be used to find
the tuple. In the second test, there is one operation
updating 50 tuples. This statement performs a table
scan. In both cases, two tuple attributes are modified.
Regarding message size, in the 1-tuple case, there are
no significant differences between sending statements
or the physical updates. However, with 50 tuples, the
message with physical updates is quite big and might
lead to severe latency and buffer problems in the com-
munication system. Regarding execution time, if the
SQL statement is sent or if only one tuple is updated
the overhead at the local site is not visible and execu-
tion takes as long as in the non-replicated case. But
even if the local site must include the physical updates
of 50 tuples, the overhead is not very high. The most
visible difference, however, is how much faster a remote
site can apply the physical updates in comparison to
executing the SQL statement. Since the overhead at
the local site occurs only once while there are many
remote sites, we prefer sending the physical updates
as long as message size is not the limiting factor.

5 Performance Analysis
5.1 General configuration

PostgreSQL uses a force strategy to avoid redo recov-
ery, flushing all dirty buffer pages at the end of each
transaction. With this strategy, response times are
very poor. This makes it difficult to compare with
commercial systems which only flush redo logs to disk.
To allow us to use a more “realistic” setting we used
the no-flush option offered by PostgreSQL. With this
option nothing is forced to disk, not even a log record.
This, of course, violates the ACID properties, how-
ever the measured response time was better compara-
ble to standard database systems. In future versions
of Postgres-R we will correct this limitation.

We have performed 4 experiments. Except for the first
experiment, we used a cluster of 15 Unix workstations
(SUN Ultra 10, 333 MHz UltraSPARC-ITi CPU, 2MB
cache, 256 MB main memory, 9GB IDE disk, switched



Parameters

||EX.1|EX.2|EX.3| EX.4|

Database Size 10 tables of 10000 tuples each
Tuple Size appr. 100 Bytes

# of Servers 1-5 1-15 1-15 1-15
% of Upd. Txn. 100% | 100% 100% varying
# Op. in

Upd. Txn. 5 10 1 10
# Op. in Query - - - 1 scan
# of Clients 5 20 20 | 3 p. serv.
Submission rate

in tps in the

entire system 10 20-50 | 40-200 15-225

Table 2: Parameters settings

full-duplex Fast Ethernet). We did not have exclusive
access to the cluster. For all our experiments, we use
the physical copy approach in which servers only apply
the physical updates of remote transactions.

In all our experiments, the database consists of 10 ta-
bles each containing 1000 tuples. We did not consider
larger databases since this will only reduce the conflict
profile. Each table has the same schema: two integers
(one being the primary key t-id, the other denoted
below as attri), one 50-character string (attr2), one
float (attr3) and one date (attr4) attribute. For each
table there exists one index for the primary key.
Update transactions have operations of the type
update t-name set attril=’x’, attr2=attr2+4
where t-id=y

where # is randomly chosen text and y is a randomly
chosen number between 1 and 1000. The relevant tuple
is found by searching the index on the primary key.
Transactions are submitted by clients which are evenly
distributed among the servers. The interarrival time
between two submissions is exponentially distributed.
The submission rate (also referred to as workload) is
determined by the number of clients and the mean in-
terarrival rate for each client. The system throughput
is equal to the submission rate unless the system is sat-
urated. Whenever a transaction is aborted, the client
resubmits it immediately.

Table 2 summarizes the parameters of all experiments.
As performance indicator, we analyze the response
time of local transactions, i.e., the time from which
the client starts a transaction until the client receives
the commit. For comparison: in a single user, single
node system, an update transaction with 10 operations
takes around 75 ms, with 1 operation 9 ms.

5.2 Experiment 1: distributed 2 phase locking

In a first experiment we compared standard dis-
tributed locking with Postgres-R. To do so we use a
commercially available implementation of eager repli-
cation based on standard distributed locking. The
experiment was conducted with 5 instances of a

Standard Distributed Locking
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Figure 2: Comparison of distributed locking and
Postgres-R

database product installed on PCs (266MHz, 128MB
main memory, two local disk [4GB IDE, 4GB SCSI],
switched full-duples 100Mbit Fast Ethernet). The
workload consists of only update transactions, with 5
operations each. The number of clients was fixed to 5
and the interarrival rate per client to 500 ms for a total
submission rate of 10 tps. The number of replicated
nodes was varied from 1 (no replication) to 5.

The results are shown in Figure 2. As predicted by
Gray et al., we observe a clear degradation in the dis-
tributed locking solution as the number of servers in-
creases. In addition to longer response times, we also
observe significantly higher abort rates and decreasing
throughput beyond 2 nodes.

In comparison, the performance of Postgres-R proved
to be stable. Please note, that this comparison can
only be relative since different hardware platforms
are used and the underlying database systems differ
considerably. Still, the test demonstrates that — at
least for this relatively small load (10 tps) — the dan-
gers of replication seem to have been circumvented
in Postgres-R. To find out whether this is indeed the
case, we performed three other experiments varying
the workload and communication overhead as well as
testing the scalability of Postgres-R.

5.3 Experiment 2: workload

Conventional eager replication protocols do not cope
very well with increasing loads. The next step is to
analyze the behavior of Postgres-R for high update
workloads. To do so, we run tests with different work-
loads and system sizes from 5 to 15 nodes. For all
runs, transactions consist of 10 update operations and
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Figure 3: Response time of Postgres-R for different
workloads and number of nodes

there are 20 clients in the system.

As the results in Figure 3 show, for small loads we
could run the tests with 5, 10 and 15 nodes. For higher
loads, the 5 node configuration was saturated. The re-
sults clearly demonstrate that the response times im-
prove as we increase the number of replicated nodes
due to the increased processing capacity. This is ex-
actly the behavior that is needed to improve perfor-
mance by using replication.

To understand why Postgres-R can take advantage of
the increased processing capacity, we need to look at
how transactions are being processed. Regarding re-
mote transactions, nodes only install the changes with-
out having to execute the SQL statements (see Ta-
ble 1). As a result, remote transactions use signifi-
cantly less CPU than local ones which allows to run ad-
ditional transactions or reduce overall response times.
In addition, since updates on remote sites are so fast
and applied in a single step, the corresponding locks
are held for a very short time. With this, conflict rates
are very low (in the tests abort rates never exceeded
5%).

Another important point is that the coordination over-
head seems to have very little impact. First, we
observed a generally small communication overhead
(message delays were between 5 and 10 ms and con-
structing the write set added only a few milliseconds).
Second, the local node does not need to wait until the
remote sites have executed the transactions but only
waits until the write set is delivered.

We can conclude that the techniques implemented in
Postgres-R can be used to increase the processing ca-
pacity of a database by using replication. We only
tested up to 15 nodes due to the practical limitations
of setting up the experiment. With the results ob-
tained we are confident that Postgres-R can cope with
both higher loads and more nodes.

5.4 Experiment 3: communication overhead

One of the problems of using group communication
systems is the poor performance that many of them
exhibit. The claim that Postgres-R can tolerate more
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Figure 4: Response time and communication delay for
small transactions

than 15 replicated nodes is conditional to proving that
the communication system used actually scales up. In
this third experiment, we analyze how the communi-
cation system handles high message rates. The goal
is to test whether high transaction loads can collapse
the communication system and whether message de-
lays can severely affect response times.

In the previous experiments, the number of messages
never exceeded 100 messages per second. Up to then,
the communication system was not the bottleneck. In
order to stress test the system, we performed an exper-
iment with very many, very short transactions. These
transactions consist of only one operation, thus, the
write set is small but the communication overhead has
a bigger impact on the overall response time. Again,
we use 20 concurrent clients generating a throughput
between 40 and 200 transactions per second.

Response times and message delay are shown in Fig-
ure 4. Clearly, as the number of messages in the
system increases, the communication system becomes
slower. Transaction response times vary proportion-
ally to the message delay as the similarity between
the slopes in the figures indicate. A resource analysis
has shown that the communication process requires
the most CPU at high transaction loads. This means,
that the message delay is due to increased message
processing requirements (for message buffering, deter-
mining the total order etc.) and not to a shortage
of network bandwidth. Observe, however, that the
number of nodes plays no role on the communication
congestion. It is only the submission rate that has an
effect. Thus, replication can still be used to improve
performance. A 1-node system, while slightly faster at
40 tps, cannot cope with 20 clients and a workload of
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100 tps due to process management and log and data
contention while the replicated systems do.

As a summary of this experiment, communication
overhead is a factor to take into consideration but it
only started to play a limiting role under high up-
date transaction loads (over 150 tps). Then, an ef-
ficient communication module is crucial. We believe,
however, that when read transactions are considered
(which do not require communication), the mecha-
nisms of Postgres-R can provide good performance
over an even wider range of loads.

5.5 Experiment 4: scalability

This last experiment tests the scalability of Postgres-
R using a more realistic workload of update and read-
only transactions (queries). Update transactions have
10 update operations and queries are of the form
select avg(attr3), sum(attr3) from t-name
scanning an entire table. There are three clients per
site, one submitting an update transaction each 1 sec-
ond, the two other submitting queries each 150 ms.
Thus, the load per node is around 15 tps with a 14 to
1 rate between read and update transactions.

The response times for both read and write transac-
tions are shown in Figure 5. As pointed out above,
by considering queries, we are able to achieve higher
throughput (up to 225 tps in a 15-node system). The
response times increase with the number of nodes but
are reasonable if we take into account that the absolute
number of update transactions (that must be applied
everywhere and create conflicts), increases constantly.
In fact, conflicts start to become a problem at higher
loads. The way to address this limitation is to use al-
ternative isolation levels. In our specific setting, since
the queries only set a single relation level lock they
cannot be involved in any deadlock, and hence, we do
not abort them. Still, queries and update transactions
delay each other. As an alternative, a hybrid protocol
could combine serializability for update transactions
and provide a snapshot for queries [KA]. In that way,
updating transactions never conflict with queries and

are not delayed by them. Such a hybrid protocol prac-
tically eliminates conflicts at most loads and will allow
to scale Postgres-R even further.

6 Crash Recovery, Administration and
Partial Replication

Postgres-R has been designed as a system able to cope
with issues like failures and partial replication which
are often ignored in research. We have also imple-
mented the administrative tools necessary to set up
and maintain the system.

6.1 System configuration

One of the main problems of replication is how to dy-
namically change the system without having to stop
processing. We have designed Postgres-R to work in
cluster environments where failures and configuration
changes can occur quite frequently. We support this
by using the group communication services. As nodes
leave (because of failures or shutdowns) or join (new
or recovering nodes), the group communication mod-
ule creates different views in the computation. Every
time there is a change in the number of nodes, the com-
munication system switches to a new view and informs
the replication managers via a view change message.
In the case of failures, when a working sites receives
the corresponding view change message, it can iden-
tify the active transactions originating at the failed
site. In [KA] we show that active transactions from
failed nodes can be safely aborted without compro-
mising consistency at the non-faulty nodes.

Upon recovery, or when a new node is added to the
system (also triggering a new view), a peer node has
to provide a copy of the current database. The trans-
fered data must contain the updates of all write sets
that were delivered in the old view (without the join-
ing node). PostgreSQL provides a feature which ex-
tracts the database schema and all tuples from a given
database to transfer it to another database. We use
this feature to install the database in the new node.
While the data transfer takes place other nodes in the
system can continue processing transactions. The new
node will receive these messages (since they execute in
the new view) but delay their execution until all data
is installed and only then apply the updates. Once all
this is done, the new node will allow clients to connect
and proceed from then on like a normal node.

6.2 Partial replication

For simplicity in the exposition, we have assumed full
replication (all data is replicated at all nodes). Partial
replication, however, is an important issue that needs
to be addressed. Partial replication means each data
item can have one or more copies residing on arbitrary



sites. With this, data propagation and enforcing ser-
ializability can become quite complex. To tackle this
problem Postgres-R implements a client makes it right
approach where the local node sends all updates of a
transaction to all sites, regardless of who has a copy.
The nodes receiving this information have to identify
which updates need to be done locally and which ones
can be ignored. With this strategy, we still can send
all updates in a single message and the total order can
be used to determine the serialization order following
a protocol identical to the one discussed in the paper.
The overhead involved is not as high as it may seem.
If changes are propagated as physical updates, check-
ing whether a tuple is local or not can be done very
quickly. The advantage is that a site does not need to
know where the particular copies of a data item reside
in order to send the write set. Furthermore, subscrib-
ing or unsubscribing to a a data item can be handled
with little administrative overhead.

7 Conclusion

Database replication is an increasingly important
topic. New computing environments will demand in-
novative solutions and flexible mechanisms that can
support different forms of replication. In particular,
eager replication is extremely useful in cluster based
systems. Unfortunately, existing commercial products
tend to support mainly lazy replication. Similarly, the
research focus has shifted towards lazy approaches and
this is likely to prevent that future products support
eager replication.

In this paper, we prove that eager replication is feasi-
ble using the adequate techniques. We have proposed
a simple replication protocol, showed how it can be
incorporated into a real database management system
and analyzed its performance. That is, we have worked
out the engineering issues that a protocol needs to ad-
dress to actually work in practice, issues that have
been largely ignored in the literature.

As part of future work, we are developing more sophis-
ticated management tools for Postgres-R and extend-
ing the range of replication possibilities by implement-
ing a wide range of eager and lazy protocols.
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