
Journal of VLSI Signal Processing, , 1{18 (1996)c 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.Instruction Level Power Analysis and Optimization of SoftwareVIVEK TIWARI, SHARAD MALIK, ANDREW WOLFEvivek@ee.princeton.edu, sharad@ee.princeton.edu, awolfe@ee.princeton.eduDepartment of Electrical Engineering, Princeton University, Princeton, NJ 08540MIKE TIEN-CHIEN LEElee@a.fujitsu.comFujitsu Labs of America Inc., 3350 Scott Blvd., Bldg. 34, Santa Clara, CA 95054Abstract. The increasing popularity of power constrained mobile computers and embedded computing ap-plications drives the need for analyzing and optimizing power in all the components of a system. Softwareconstitutes a major component of today's systems, and its role is projected to grow even further. Thus, anever increasing portion of the functionality of today's systems is in the form of instructions, as opposedto gates. This motivates the need for analyzing power consumption from the point of view of instructions- something that traditional circuit and gate level power analysis tools are inadequate for. This paperdescribes an alternative, measurement based instruction level power analysis approach that provides anaccurate and practical way of quantifying the power cost of software. This technique has been applied tothree commercial, architecturally di�erent processors. The salient results of these analyses are summa-rized. Instruction level analysis of a processor helps in the development of models for power consumptionof software executing on that processor. The power models for the subject processors are described andinteresting observations resulting from the comparison of these models are highlighted. The ability to eval-uate software in terms of power consumption makes it feasible to search for low power implementations ofgiven programs. In addition, it can guide the development of general tools and techniques for low powersoftware. Several ideas in this regard as motivated by the power analysis of the subject processors are alsodescribed.1. MotivationThe increasing popularity of power constrainedmobile computers and embedded computing ap-plications drives the need for analyzing and op-timizing power in all the components of a sys-tem. This has forced an examination of the powerconsumption characteristics of all modules - rang-ing from disk-drives and displays to the individualchips and interconnects. Focussing solely on thehardware components of a design tends to ignorethe impact of the software on the overall powerconsumption of the system. Software constitutesa major component of systems where power is aconstraint. Its presence is very visible in a mobilecomputer, in the form of the system software andapplication programs running on the main CPU.But software also plays an even greater role ingeneral digital applications, since an ever growing
fraction of these applications are now being imple-mented as embedded systems. Embedded systemsare characterized by the fact that their function-ality is divided between a hardware and a soft-ware component. The software component usu-ally consists of application-speci�c software run-ning on a dedicated processor, while the hardwarecomponent usually consists of application-speci�ccircuits. In light of the above, there is a clear needfor considering the power consumption in systemsfrom the point of view of software. Software im-pacts the system power consumption at variouslevels of the design. At the highest level, this isdetermined by the way functionality is partitionedbetween hardware and software. The choice of thealgorithm and other higher level decisions aboutthe design of the software component can a�ectsystem power consumption in a big way. Thedesign of system software, the actual application



2 Tiwari, Malik, Wolfe, Leesource code, and the process of translation intomachine instructions - all of these determine thepower cost of the software component. In orderto systematically analyze and quantify this cost,however, it is important to start at the most fun-damental level. This is at the level of the individ-ual instructions executing on the processor. Justas logic gates are the fundamental units of com-putation in digital hardware circuits, instructionscan be thought of as the fundamental unit of soft-ware. This motivates the need for analyzing powerconsumption from the point of view of instruc-tions. Accurate modelling and analysis at thislevel is the essential capability needed to quantifythe power costs of higher abstractions of software,and to search the design space in software poweroptimizations.In spite of its importance, very little previouswork exists for analyzing power consumption fromthe point of view of software. Some attempts inthis direction are based on architectural level anal-ysis of processors. The underlying idea is to assignpower costs to architectural modules such as dat-apath execution units, control units, and memoryelements. In [1], [2] the power cost of a module isgiven by the estimated average capacitance thatwould switch when the given module is activated.More sophisticated statistical power models areused in [3], [4]. Activity factors for the modulesare then obtained from functional simulation overtypical input streams. Power costs are assigned toindividual modules, in isolation from one another.Thus, these methods ignore the correlations be-tween the activities of di�erent modules duringexecution of real programs.Since the above techniques work at higher levelsof abstraction, the power estimates they provideare not very accurate. For greater accuracy, onehas to use power analysis tools that work at lowerlevels of the design - physical, circuit, or switchlevel [5], [6], [7]. However, these tools are slowand impractical for analyzing the total power con-sumption of a processor as it executes entire pro-grams. These tools also require the availabilityof lower level circuit details of processors, some-thing that most embedded system designers donot have access too. This is also the reason whythe power contribution of software and the poten-tial for power reduction through software modi�-

cation has either been overlooked or is not fullyunderstood.1.1. Instruction Level Power AnalysisThe above problems can be overcome if the cur-rent being drawn by the CPU during the exe-cution of a program is physically measured. Aninstruction level power analysis technique basedon physical measurements has recently been de-veloped [8]. This technique helps in formulatinginstruction level power models that provide thefundamental information needed to evaluate thepower cost of entire programs. This technique hasso far been applied to three commercial, architec-turally di�erent processors - the Intel 486DX2 (aCISC processor), the Fujitsu SPARClite 934 (aRISC processor), and a Fujitsu proprietary DSPprocessor. The purpose of this paper is to pro-vide a general description of the instruction levelpower analysis technique, based on its applicationfor these three di�erent processors.The power models for the subject processorsare described and interesting observations result-ing from the comparison of these are highlighted.Other salient observations resulting from the anal-ysis of these processors are summarized and theseprovide useful insights into power consumption inprocessors in general. Instruction level analysisof each processor helps to identify the reasons forvariation in power from one program to another.These di�erences can then be exploited in orderto search for low power alternatives for each pro-gram. The information provided by the instruc-tion level analysis can guide higher-level designdecisions like hardware-software partitioning andchoice of algorithm. But it can also be directlyused by automated tools like compilers, code gen-erators and code schedulers for generating codetargeted towards low power. Several ideas in thisregard as motivated by the power analysis of thesubject processors are also described.2. Applications of Instruction LevelPower AnalysisThe previous section described the primary moti-vation for power analysis at the instruction level.



Instruction Level Power Analysis and Optimization of Software 3There are several additional applications of thisanalysis and it is instructive to list the importantones here:� The information provided by the analysis isuseful in assigning an accurate power cost tothe software component of a system. For powerconstrained embedded systems, this can help inverifying if the overall system meets its speci-�ed power budget.� The most commonway of specifying power con-sumption in processors is through a single num-ber - the average power consumption. Instruc-tion level analysis provides additional resolu-tion about power consumption that cannot becaptured through just this one number. Thisadditional resolution can guide the careful de-velopment of special programs that can be usedas power benchmarks for more meaningful com-parisons between processors.� The proposed measurement based instruc-tion level analysis methodology has the novelstrength that it does not require knowledge ofthe lower level details of the processor. How-ever, if micro-architectural details of the CPUare available, they can be related to the resultsof the analysis. This can lead to more re�nedmodels for software power consumption, as wellas power models for the micro-architecture thatmay potentially be more accurate than circuitor logic simulation based models.� The additional insight provided by aninstruction-level power model also provides di-rections for modi�cations in processor designthat lead to the most e�ective overall powerreduction. Instructions can be evaluated bothin terms of their power cost as well as fre-quency of occurrence in typical compiler oreven hand-generated code. This combined in-formation can be used to prioritize instructionsthat should be re-implemented to be less ex-pensive in terms of power.3. Analysis MethodologyThis section describes in greater detail the mea-surement based technique that was referred to inthe previous sections. This technique has so farbeen applied to three commercial processors:

� Intel 486DX2-S Series, 40MHz, 3.3V (referredto as the 486DX2). A CISC processor basedon the x86 architecture. It is widely used inmobile and desktop PCs [9], [10].� Fujitsu SPARCliteMB86934, 20MHz, 3.3V (re-ferred to as the `934). A 32-bit RISC proces-sor based on the SPARC architecture. It hasbeen specially designed for embedded applica-tions [11], [12].� Fujitsu proprietary DSP, 40MHz, 3.3V (re-ferred to as the DSP). A new implementationof an internal Fujitsu DSP architecture. It isused in several embedded DSP applications.The basic idea that allows the use of the mea-surement based technique in the development ofinstruction level power models of given processorswill also be described in this section. But �rst, wehave to clarify the distinction between \power", aterm that we have been using so far, and the term\energy". The average power consumed by a pro-cessor while running a certain program is given by:P = I �VCC , where P is the average power, I isthe average current, and VCC is the supply volt-age. Power is also de�ned as the rate at which en-ergy is consumed. Therefore, the energy consumedby a program is given by: E = P � T , where Tis the execution time of the program. This in turnis given by: T = N � � , where N is the numberof clock cycles taken by the program and � is theclock period.Energy consumption is the primary concern formobile systems, which run on the limited energyavailable in a battery. Power consumption, on itsown, is of importance in applications where cool-ing and packaging costs are a concern. Energyconsumption is the focus of attention in this pa-per. While we will attempt to maintain a distinc-tion between the two terms, we may sometimesuse the term power to refer to energy, in adher-ence to common usage. It should be noted, never-theless, that power and energy are closely related,and the energy cost of a program is simply theproduct of its average power cost and its runningtime.3.1. Current MeasurementAs can be seen from the above discussion, the abil-ity to measure the current drawn by the CPU dur-



4 Tiwari, Malik, Wolfe, Leeing the execution of the program is essential formeasuring the power/energy cost of the program.The di�erent current measurement setups used inour work point to some of the options that can beused.Board Based Measurements In the case ofthe 486DX2 study, the CPU was part of a mobilepersonal computer evaluation board. The boardwas designed for current measurements and thusthe power supply connection to the CPU was iso-lated from the rest of the system. A jumper onthis connection allows an ammeter to be insertedin series with the power supply and the CPU. Theammeter used is a standard o� the shelf, dual-slope integrating digital ammeter. Programs canbe created and executed just as in a regular PC. Ifa program completes execution in a short time, acurrent reading cannot be visually obtained fromthe ammeter. To overcome this, the programs be-ing considered are put in in�nite loops. The cur-rent waveform will now be periodic. Since thechosen ammeter averages current over a windowof time (100ms), if the period of the current wave-form is much smaller than this window, a stablereading will be obtained. The limitation of thisapproach is that it cannot directly be used forlarge programs. But this is not a limitation, sincethe main use of this technique is for performingan instruction-level power analysis. As discussedin the next section, short loops are adequate forthis. This inexpensive current measurement ap-proach works very well here. The current drawnby the external DRAM chips is also measured in asimilar way. A similar measurement technique isalso used in the case of the Fujitsu DSP. However,the DSP board had not been laid out with currentmeasurements in mind. Therefore, the power pinsof the CPU had to be lifted from the board in or-der to create an isolated power supply connectionfor them.Tester Based Measurements A suitableboard was not available for the `934. Therefore,an alternative experimental setup, consisting of aprocessor chip and an IC tester machine was used.The program under consideration was �rst simu-lated on a VERILOGmodel of the CPU. This pro-

duces a trace �le consisting of vectors that specifythe exact logic values that would appear on thepins of the CPU for each half-cycle during the ex-ecution of the program. The tester then appliesthe voltage levels speci�ed by the vectors on eachinput pin of the CPU. This recreates the sameelectrical environment that the CPU would see ona real board. The current drawn by the CPU ismonitored by the tester using an internal digitalammeter.It should be stressed that the main conceptsdescribed in this paper are independent of themethod used to measure average current. The re-sults of the above approaches have been validatedby comparisons with other current measurementsetups. But if sophisticated data acquisition basedmeasurement instruments are available, the mea-surement method can be based on them, if so de-sired. Interestingly, instruction level power poweranalysis can be conducted even for un-fabricatedCPUs. Instead of physical current measurements,current estimates can be obtained through simu-lations on low level design models of the CPU.4. Instruction Level Power ModelsThe instruction level analysis scheme describedin the previous section has been applied to allthree subject processors. Instruction level powermodels have been developed based on the re-sults of these analyses. The key observations aresummarized in this section. Separate referencesprovide greater detail for each individual proces-sor [13], [14], [15]. The basic components of eachpower model are the same. The �rst componentis the set of base costs of individual instructions.The other component is the power cost of inter-instruction e�ects, i.e., e�ects that involve morethan one instruction. This includes the e�ect ofcircuit-state, and other e�ects like stalls and cachemisses. These components of the power modelsare described below:4.1. Instruction Base CostsThe primary component of the power models isthe set of base costs of instructions. The base costof an instruction can be thought of as the cost as-



Instruction Level Power Analysis and Optimization of Software 5Table 1. Subset of the base cost table for the 486DX2 and the `934Intel 486DX2 Fujitsu SPARClite `934No. Instruction Current Cycles Energy Instruction Current Cycles Energy(mA) (10�8J) (mA) (10�8J)1 nop 276 1 2.27 nop 198 1 3.262 mov dx,[bx] 428 1 3.53 ld [%l0],%i0 213 1 3.513 mov dx,bx 302 1 2.49 or %g0,%i0,%l0 198 1 3.264 mov [bx],dx 522 1 4.30 st %i0,[%l0] 346 2 11.45 add dx,bx 314 1 2.59 add %i0,%o0,%l0 199 1 3.286 add dx,[bx] 400 2 6.60 mul %g0,%r29,%r27 198 1 3.267 jmp 373 3 9.23 srl %i0,1,%l0 197 1 3.25sociated with the basic processing needed to exe-cute the instruction. The experimental procedureused to determine this cost requires a programcontaining a loop consisting of several instances ofthe given instruction. The average current drawnduring the execution of this loop is measured. Theproduct of this current and VCC is the base powercost of the instruction. The base power cost mul-tiplied by the number of non-overlapped cyclesneeded to execute the instruction is proportionalto its base energy cost. Table 1 presents a sam-ple of the base costs of some instructions for the486DX2 and the `934. The measured average cur-rent, number of cycles, and the base energy costsare also shown. The base energy costs are derivedfrom the formula shown in Section 3.There are some points to be noted with regardto the assignment of base costs to instructions:� The de�nition of base costs follows the conven-tion that the base costs of instructions shouldnot reect the power contribution of e�ects likestalls and cache misses. The programs used todetermine the base costs have to be designedto avoid these e�ects. The power costs of thesee�ects are modelled separately.� The program loops used to determine the basecosts should be large enough to overcome theimpact of the jump instruction at the bottomof the loop. But they should not be so large soas to cause cache misses. Loop sizes of around200 have been found to be appropriate.� It has been observed that, in general, instruc-tions with similar functionality tend to havesimilar base costs. This observations suggeststhat similar instructions can be arranged inclasses, and a single average cost can be as-signed to each class. Doing so speeds up the

task of power analysis of the given processor.Table 2 illustrates the application of instruc-tion grouping in the case of the DSP. The com-monly used instructions have been grouped into6 classes as shown.� The base cost of an instruction can vary withthe value and address of the operands used.While appropriate measurement experimentscan give the exact cost if the operand and ad-dress values are known, in real situations thesevalues are often unknown until runtime. Thealternative is to assign a single average cost asthe base cost of an instruction. This is jus-ti�ed, since extensive experimentation revealsthat the variation in operands leads to only alimited variation in base costs. The DSP, whichwas the smallest of the three processors, exhib-ited the maximumvariation. But even this wasless than 10% for most instructions. Therefore,the inaccuracy due to the use of averages willbe limited.4.2. E�ect of Circuit StateThe switching activity, and hence, the power con-sumption in a circuit is a function of the changein circuit state resulting from changes in two con-secutive sets of inputs. Now, during the deter-mination of base costs, the same instruction exe-cutes each time. Thus, it can be expected that thechange in circuit state between instructions wouldbe less here, than in an instruction sequence inwhich consecutive instructions di�er from one an-other. The concept of circuit state overhead fora pair of instructions is used to deal with this ef-fect. Given any two instructions, the current for a



6 Tiwari, Malik, Wolfe, LeeTable 2. Average base costs for instruction classes in the DSPLDI LAB MOV1 MOV2 ASL MACCurrent range (mA) 15.8 - 22.9 34.6 - 38.5 18.8 - 20.7 17.6 - 19.2 15.8 - 17.2 17.0 - 17.4Average energy (10�8J) 0.160 0.301 0.163 0.151 0.136 0.142loop consisting of an alternating sequence of theseinstructions is measured. The di�erence betweenthe measured current and the average base costs ofthe two instructions is de�ned as the circuit stateoverhead for the pair. For a sequence consistingof a mix of instructions, using the base costs ofinstructions almost always underestimates the ac-tual cost. Adding in the average circuit state over-head for each pair of consecutive instructions leadsto a much closer estimate.While the above e�ect was observed for all thesubject processors, it had a limited impact in thecase of the 486DX2 and the `934. In the case ofthe 486DX2, the circuit state overhead varied ina restricted range, 5-30mA, while most programsvaried in the range of 300-420mA. In the case ofthe `934, the overhead was less than 20mA be-tween integer instructions, and in the range 25-34mA between integer and oating point instruc-tions. In contrast, most programs themselves varyin the range 250-400mA. The explanation for thelimited impact may lie in the fact that in largecomplex processors like the 486DX2 and `934, amajor part of the circuit activity is common to allinstructions, e.g., the clocks, instruction prefetch,memory management, pipeline control, etc. Cir-cuit state can certainly result in signi�cant varia-tion within certain control and data path modules.But the impact of the variation on the net powerconsumption of the processor will be masked bythe much larger common cost.It should also also follow from the above thatif instruction control and the data path constitutea larger fraction of silicon, the impact of circuitstate should be more visible. This indeed happensin the case for the DSP, a smaller, more basic pro-cessor. Table 3 shows the average overhead costsbetween di�erent classes of instructions. Consid-ering the fact that for most programs the averagecurrent is in the range 20-60mA, several numbersin the table are signi�cantly large.

4.3. Other Inter-Instruction E�ectsThe �nal component of the power model is thepower cost of other inter-instruction e�ects thatcan occur in real programs. Examples are prefetchbu�er and write bu�er stalls [10], other pipelinestalls, and cache misses. Base costs of instructionsdo not reect the impact of these inter-instructione�ects. Separate costs need to be assigned to thesee�ects through speci�c current measurement ex-periments. The basic idea is to write programswhere these e�ects occur repeatedly. This helps toisolate the power costs of these e�ects. For exam-ple, in the case of the 486DX2, an average cost of250mA per stall cycle was determined for prefetchbu�er stalls [8]. The average cost for a cache misswas 216mA per cache miss cycle. Multiplying thepower cost of each kind of stall or cache miss bythe number of cycles taken for each, gives the en-ergy cost of these e�ects.4.4. Overall Instruction Level Power ModelThe previous subsections described the basic com-ponents of the instruction level power models ofthe subject processors. These models form thebasis of estimating the energy cost of entire pro-grams. For any given program, P , its overall en-ergy cost, EP , is given by:EP = Pi(Bi�Ni)+Pi;j(Oi;j �Ni;j)+Pk Ek (1)The base cost, Bi, of each instruction, i,weighted by the number of times it will be exe-cuted, Ni, is added up to give the base cost of theprogram. To this the circuit state overhead, Oi;j,for each pair of consecutive instructions, (i; j),weighted by the number of times the pair is ex-ecuted, Ni;j, is added. The energy contribution,Ek, of the other inter instruction e�ects, k, (stallsand cache misses) that would occur during the ex-ecution of the program, is �nally added.



Instruction Level Power Analysis and Optimization of Software 7Table 3. Average pairwise circuit state overhead costs for the DSP (in mA)LDI LAB MOV1 MOV2 ASL MACLDI 3.6 13.7 15.5 6.3 10.8 6.0LAB 2.5 1.9 12.2 20.9 15.0MOV1 4.0 18.3 10.5 3.8MOV2 25.6 26.7 22.2ASL 3.6 8.0MAC 12.5The base cost and overhead values are obtainedas shown in the previous sections. As described inSection 4.2, circuit state varies in a limited rangein the case of the 486DX2 and the `934. This sug-gests a more e�cient and yet fairly accurate way ofmodelling this e�ect for these processors. Insteadof a table of pairwise overhead values, a constantvalue is used for all instruction pairs. For e.g.,15mA and 18mA in the case of the 486DX2 andthe `934 respectively. A table is still needed forthe DSP, since this e�ect has a signi�cant impactand greater variation, in the case of this processor.The other parameters in the above formula varyfrom program to program. The execution countsNi and Ni;j depend on the execution path of theprogram. This is dynamic, run-time information.In certain cases it can be determined staticallybut in general it is best obtained from a programpro�ler. For estimating Ek, the number of timespipeline stalls and cache misses occur has to be de-termined. This is again dynamic information thatcan be statically predicted only in certain cases.In general, this information is obtained from aprogram pro�ler and cache simulator. A softwarepower/energy estimation framework based on theabove model is described in [8].The 486DX2 program shown in Table 4 willbe used to illustrate the basic elements of the es-timation process. The program has three basicblocks as shown in the �gure (A basic block is de-�ned as a contiguous section of code with exactlyone entry and exit point. Thus, every instruc-tion in a basic block is executed as many timesas the basic block.). The average current and thenumber of cycles for each instruction are providedin two separate columns. For each basic block,the two columns are multiplied and the productsare summed up over all instructions in the basicblock. This yields a value that is proportional tothe base energy cost of one instance of the basic

block. The values are 1713:4, 4709:8, and 2017:9,for B1, B2, and B3 respectively. B1 is executedonce, B2 four times, and B3 once. The jmp mainstatement has been inserted to put the programin an in�nite loop. Cost of the jl L2 statementis not included in the cost of B2 since its cost isdi�erent depending on whether the jump is takenor not. It is taken 3 times and not taken once.Multiplying the base cost of each basic block bythe number of times it is executed and adding thecost of the unconditional jump jl L2, we get anumber proportional to the total energy cost ofthe program. Dividing it by the estimated num-ber of cycles (72)gives us an average current of369:1mA. Adding the circuit state overhead o�-set value of 15:0mA we get 384:0mA. This pro-gram does not have any stalls, and thus, no furtheradditions to the estimated cost are required. If inthe real execution of this program, some cold-startcache misses are expected, their energy overheadwill have to be added. The actual measured av-erage current is 385:0mA. Thus, the estimate iswithin 0.26% of the measured value.An interesting extension of the above ideas isthe development of power pro�lers for given pro-cessors. The above instruction level power modelsuggests that this can easily be done by enhanc-ing existing performance based pro�lers with thepower costs of instructions and inter-instructione�ects. Using this data, the pro�lers can generatea cycle by cycle pro�le of the power consumptionof given programs.When average values are used for base costsetc., the accuracy of the energy estimate given bythe model described in Equation 1 is limited tosome extent by the range of variation in the aver-age and the actual costs. However, the accuracyof the energy estimate is primarily limited by theaccuracy in determining the dynamic informationregarding the program. Other than this the model



8 Tiwari, Malik, Wolfe, Lee Table 4. Illustration of the Estimation ProcessProgram Current(mA) Cycles; Block B1main:mov bp,sp 285.0 1sub sp,4 309.0 1mov dx,0 309.8 1mov word ptr -4[bp],0 404.8 2;Block B2L2:mov si,word ptr -4[bp] 433.4 1add si,si 309.0 1add si,si 309.0 1mov bx,dx 285.0 1mov cx,word ptr a[si] 433.4 1add bx,cx 309.0 1mov si,word ptr b[si] 433.4 1add bx,si 309.0 1mov dx,bx 285.0 1mov di,word ptr -4[bp] 433.4 1inc di, 1 297.0 1mov word ptr -4[bp],di 560.1 1cmp di,4 313.1 1jl L2 405.7(356.9) 3(1);Block B3L1:mov word ptr sum,dx 521.7 1mov sp,bp 285.0 1jmp main 403.8 3is very accurate. For example, for the 486DX2and the `934, for instruction sequences where thedynamic information was fully known, the max-imum di�erence between the estimated and themeasured cost was less than 3%.It should also be mentioned that in cer-tain applications, e.g., speech processing, somestatistical characteristics of the input data areknown [16]. Incorporating this knowledge into thepower model can lead to more accurate power es-timates. This may be specially bene�cial in thecase of the DSP, which shows greater sensitivityto data based power variations than the other twoprocessors.4.5. Impact of Internal Power ManagementAn examination of the base costs of the `934 inTable 1 reveals that the cost for di�erent oper-ations like OR, SHIFT, ADD, or MULTIPLY does notshow much of a variation. It may well be the casethat the di�erences in the circuit activity for theseinstructions are much less relative to the circuit
activity common to all instructions. Thus, thesedi�erences may not reected in the comparisons ofthe overall current cost. Nevertheless, the almostcomplete lack of variation is somewhat counter-intuitive. For instance, it is expected that thelogic for an OR should be much less than that fora MULTIPLY, thus leading to some variation in theoverall current drawn for these instructions. Thereason for the similarity of the costs most likelyhas to do with the way ALUs are traditionally de-signed. A common bank of inputs feeds all thedi�erent ALU modules, and thus all the modulesswitch and consume power, even though on anygiven cycle, only one of the modules computes use-ful results. This observation motivates a power re-duction technique called guarded evaluation [17].Under this, the modules that are not needed forthe current ALU operation are disabled. Thus, itcan be expected that if this technique were to beused, the power costs of the di�erent ALU opera-tions will show a variation depending upon theirfunctionality.



Instruction Level Power Analysis and Optimization of Software 9The above idea is actually an extension ofthe principles of power management, which refersto the dynamic shutting down of modules thatare not needed for a given computation. Powermanagement is gaining popularity as an e�ec-tive power reduction technique, and has beenimplemented in recent processors like the LowPower Pentium, PowerPC 603 [18] , and oth-ers [19]. Logic level techniques based on the powermanagement idea have also been proposed re-cently [17], [20], [21]. An aggressive applicationof power management in a processor may haveinteresting rami�cations for the instruction levelpower analysis of the processor. First, the basecosts of di�erent instructions may show greatervariation than they do now. Variations due todi�erences in data may also increase, both dueto the presence of data dependent power manage-ment features and due to a general decrease in theoverall power consumption. The overall reductionin power may also make the e�ect of circuit stateoverhead more prominent. Some power manage-ment features may get activated depending on theoccurrence of speci�c sequences of instructions,and these may require special handling.A related e�ect was observed in the case of theDSP. The inputs to the on-chip multiplier on theDSP are latched. Thus, the change in the circuitstate in the multiplier occurs only for multiply in-structions. This change in circuit state is observedeven if multiply instructions are not consecutive,and due to the relatively large power contributionof the multiplier for this processor, this e�ect canactually get reected in the power cost of instruc-tion sequences. An accurate way to deal with thee�ect is to add in the exact circuit state overheadfor consecutive multiply instructions, even whenthey are not adjacent in the instruction executionorder. An easier but approximate alternative is toenhance the base cost of the multiply instructionwith an average value for this overhead. This as-sumes an unkown state for the multiplier on eachmultiply instruction, but eliminates the need tokeep track of the preceding multiply. While thise�ect was observed only in the speci�c case of mul-tiply instructions in the DSP, and for none of thelarger processors, aggressive use of power man-agement may mean that the basic power modeldescribed in Section 4.4 may need to be adapted

in certain cases. And �nally, if the mechanism ofthe major power management features is not de-scribed in public domain data books, greater ex-perimental e�ort may be needed in order to con-duct a comprehensive power analysis of the pro-cessors. These issues will be investigated furtheras part of future work.5. Software Energy Optimization Tech-niquesIt is generally accepted that there is a great po-tential for energy reduction through modi�cationof software. However, very little has been done toe�ectively exploit this potential. This has largelybeen due to the lack of practical techniques foranalysis of software energy consumption. The in-struction level analysis technique described in theprevious sections overcomes this de�ciency. Appli-cation of this technique provides the fundamentalinformation that can guide the development of en-ergy e�cient software. It also helps in the iden-ti�cation of sources of energy reduction that canthen be exploited by software development toolslike compilers and code generators and schedulers.Several ideas in this regard as motivated by ouranalysis of the subject processors are described be-low. Some of these ideas have general applicabilityfor most processors. Others are based on speci�carchitectural features of the subject processors.5.1. Reducing Memory AccessesAn inspection of energy costs reveals an importantfact that holds for all three processors - instruc-tions that involve memory accesses are much moreexpensive than instructions that involve just reg-ister accesses. For example, for the 486DX2, in-structions that use register operands cost in thevicinity of 300mA per cycle. In contrast, memoryreads cost upwards of 400mA, even in the caseof a cache hit. Memory writes cost upwards of530mA. Every memory access can also poten-tially lead to caches misses, misaligned accesses,and stalls. These increase the number of cyclesneeded to complete the access, and the energy costgoes up by a corresponding factor. The energyconsumption in the external memory system adds



10 Tiwari, Malik, Wolfe, LeeTable 5. Energy Optimization of sort and circle for the 486DX2Program sort hlcc.asm hfinal.asmAvg. Current (mA) 525.7 486.6Execution Time (�sec) 11.02 7.07Energy (10�6J) 19.12 11.35Energy Reduction 40.6%Program circle clcc.asm cfinal.asmAvg. Current (mA) 530.2 514.8Execution Time (�sec) 7.18 4.93Energy (10�6J) 12.56 8.37Energy Reduction 33.4%an additional energy penalty for cache misses, andfor each write in case of write-through caches (asin the 486DX2 and the `934).These observations point to the large energysavings that can be attained through a reductionin the number of memory accesses. This moti-vates the need for development of optimizationsto achieve this reduction at all levels of the soft-ware design process, starting from higher level de-cisions down to the generation of the �nal assem-bly code. At the higher level, some ideas for con-trol ow transformations [22] and data structuredesign for signal processing applications have beenproposed [23] by other researchers. Our experi-ments provide physical data to analyze these ideasquantitatively.Attempts can also be made to reduce mem-ory operations during generation of the �nal code.This can be done automatically if compilers areused, but the basic ideas are applicable even if theassembly code is created manually. This is thelevel that we explored further using the instruc-tion level analysis technique. The technique pro-vides the guiding information as described above,and is also used to quantify the e�ectiveness ofdi�erent ideas.During compilation, the most e�ective way ofreducing memory operands is through better uti-lization of registers. The potential of this ideawas demonstrated through some experiments inthe case of the 486DX2 [24] and the results arealso shown in Table 5. The �rst program in the ta-ble is a heapsort program (\sort" [25]). hlcc.asmis the assembly code for this program generated bylcc, a general purpose ANSI C compiler [26]. Thesum of the observed average CPU and memorycurrents is given in the table above. The program

execution times and overall energy costs are alsoreported. The generated code for the main routineis shown on the left in Table 9. While lcc gener-ates good code in general, it often makes tradeo�sin favor of faster compilation time and lesser com-piler complexity. For example, register allocationis performed only for temporary variables. Localand global variables for the program are normallynot allocated to registers. Optimizations were per-formed by hand on this code, in order to facilitatea more aggressive use of register allocation. The�nal code is shown on the right in Table 9. Theenergy results are shown in Column 3 of Table 5.There is a 40% reduction in the CPU and memoryenergy consumption for the optimized code. Re-sults for another program (circle) are also shownin Table 5. Large energy reduction, about 33%, isobserved for this program too.It should be noted that register allocation hasbeen the subject of research for several years dueto its role in traditional compilation. The resultsof our study show that this research also has animmediate application in compilation for low en-ergy. Further, it also motivates the aggressiveuse of known techniques, and the development ofnewer techniques in this direction.On a related note, an interesting RISC vs.CISC power tradeo� is suggested by the follow-ing observation. In the 486DX2, a memory readthat hits the cache is about 100mA more expen-sive than a register read. This di�erence is only10mA in the case of the `934 (compare entries 2and 3 for the two processors in Table 1). Thesmaller di�erence can be attributed to the largersize of the register �le in the `934, which leads toa higher power cost for accessing registers. The`934 has 136 registers, as opposed to only 8 in the



Instruction Level Power Analysis and Optimization of Software 11Table 6. E�ect of instruction reordering in the `934No. Instruction Register contents1 fmuls %f8,%f4,%f0 %f8=0, %f4=0)2 andcc %g1,0xaaa,%l0 (%g1=0x555)3 faddd %f10,%f12,%f14 (%f10=0x123456, %f12=0xaaaaaa)4 ld [0x555],%o55 sll %o4,0x7,%o6 (%o4=0x707)6 sub %i3,%i4,%i5 (%i3=0x7f, %i4=0x44)7 or %g0,0xff,%l0Sequence Current (mA)a 1,2,3,4,5,6,7 227.5b 1,3,5,7,2,4,6 224c 1,4,7,2,5,3,6 226d 2,3,7,6,1,5,4 228e 5,3,1,4,6,7,2 223.5486DX2. A large register �le is characteristic ofRISC architectures. Availability of more registerscan help to reduce memory accesses, leading topower reduction. But on the other hand, a largerregister �le also means that each register accessitself will be costlier.5.2. Energy Cost Driven Code GenerationCode generation refers to the process of translat-ing a high-level problem speci�cation into machinecode. This is either done automatically throughcompilers, or in certain design situations, it is doneby hand. In either case, code generation involvesthe selection of the instructions to be used in the�nal code, and this selection is based on some costcriterion. The traditional cost criteria are eitherthe size or the running time of the generated code.The main idea behind energy cost driven code gen-eration is to select instructions based on their en-ergy costs instead. The instruction energy costsare obtained from the analysis described in theprevious sections.An energy based code generator was createdfor the 486DX2 using this idea. An existing treepattern based code generator selected instructionsbased on the number of cycles they took to exe-cute. It was modi�ed to use the energy costs of theinstructions instead. Interestingly, it was foundthat the energy and cycle based code generatorsproduced very similar code.

This observation provides quantitative evi-dence for a general trend that was observed forall the subject processors. This is that energyand running times of programs track each otherclosely. It was consistently observed that the dif-ference in average current for sequences that per-form the same function is never large enough tocompensate for any di�erence in the number of cy-cles. Thus, the shortest sequence is also invariablythe least energy sequence. Since this observationholds for all the subject processors, each of whichrepresents a distinct architecture style, it is rea-sonable to expect that it will also hold for mostother processors that exist today.This is a very important observation, and some-thing that has not been addressed in previous lit-erature. It can be considered as empirical justi�-cation for a powerful guideline for software energyreduction for today's processors - as a �rst step to-wards energy reduction, do what needs to be doneto improve performance. Potentially large energyreductions can be obtained if this observation isused to guide high-level decisions like hardware-software partitioning and choice of algorithm. Itshould be noted that this guideline is motivatedand justi�ed by the results of our instruction levelanalysis. Without the physical corroboration pro-vided by the results, we would not have been ableto put forth this guideline.It also bears mentioning that it is possible thatthere may be certain application speci�c proces-sors where this observation may not hold in gen-eral. It is also possible that aggressive use of use



12 Tiwari, Malik, Wolfe, LeeTable 7. Results for Di�erent Energy Optimization Techniques for the DSPBenchmark Original Packing Scheduling SwappingFJex1 Energy (10�8J) 2.79 2.46 2.12Energy Reduction 12.0% 24.0%FJex2 Energy (10�8J) 3.91 3.14 2.83Energy Reduction 19.7% 27.7%LP FIR60 Energy (10�8J) 57.60 30.80 25.60Energy Reduction 46.6% 55.6%IIR4 Energy (10�8J) 10.10 7.47 6.78 6.37Energy Reduction 26.3% 33.1% 37.2%FFT2 Energy (10�8J) 9.59 9.35 8.97 8.64Energy Reduction 3.4% 7.4% 10.9%of power management and other low power designoptimizations may also lead to situations wherethe fastest code may not always be the least en-ergy code. While these cases remain to be iden-ti�ed, code generation based on energy costs willbe useful in its own right for these cases.5.3. Instruction Reordering for Low PowerReordering of instructions in order to reduceswitching between consecutive instructions is amethod for energy reduction that does not involvea corresponding reduction in the number of cycles.An instruction scheduling technique based on thisidea has been proposed in another work [27]. Inthis, instructions are scheduled in order to mini-mize the estimated switching in the control pathof an experimental RISC processor. Our experi-ments, however, indicate that in terms of net en-ergy reduction for the entire processor, instruc-tion reordering may not always be e�ective. Ithas been observed to have very limited impact inthe case of the 486DX2 and the `934. Table 6 il-lustrates this with an example. As can be seen,di�erent reordering of the given sequence of in-structions lead to very little change in the mea-sured average current. The idea behind reorderinginstructions can be seen as an attempt to reducethe overall circuit state overhead between consec-utive instructions. But as seen in Section 4.2, thisquantity is bounded in a small range and does notshow much variation in the 486DX2 and the `934.In the case of the DSP, however, this quan-tity is more signi�cant and does show relativelygreater variation (refer to Section 4.2 and Table 3).Thus, instruction reordering is more bene�cial for

this processor. A scheduling algorithm that usesthe measured overhead costs was developed forthis processor [15]. The data in Table 7 illus-trates the e�ectiveness of this algorithm. Thistable shows the impact of di�erent software en-ergy optimization techniques that are applicablefor the DSP (\packing" and \swapping" will bediscussed later). Five standard signal processingprograms were used for the experiment. FJex1and FJex2 are real Fujitsu applications for vec-tor preprocessing. LP FIR60 is a length-60 lin-ear phase FIR �lter. IIR4 is a fourth-order directform IIR �lter, and FFT2 is a radix-2 decimal-in-time FFT buttery. The last three programs weretaken from the TMS320 embedded DSP examplesin [28] and translated into native code for the tar-get DSP processor. Column 2 shows the initialenergy consumption of the programs. Columns 3,4, and 5 show the energy consumption and theoverall percent energy reduction after the applica-tion of each technique. The three techniques areapplied one after the other, from left to right. Thepercent by which the values in Column 4 are lowerthan those in Column 3 quanti�es the e�ectivenessof instruction scheduling alone. As shown, up to14% reduction in energy (for FJex1) has been ob-served using this algorithm. Table 10 shows theinitial code for IIR4, and the �nal code after allthree optimizations. For this example, instructionscheduling alone leads to a 9.3% reduction in en-ergy.Switching on the address and data pins is aspeci�c manifestation of the e�ect of circuit state.Software transformations to reduce this switch-ing are believed to be a possible energy reduc-tion method. The large capacitance associatedwith these pins can indeed lead to greater current



Instruction Level Power Analysis and Optimization of Software 13
unpacked

packed

60.4

65.1

n 2n Cycles

Current (mA)

Fig. 1. Comparison of energy consumption for packed and unpacked instructions.when these pins switch. However, there are somepractical considerations that should be noted inthis regard. First, the presence of on-chip cachesgreatly reduces external tra�c. In addition thetra�c becomes unpredictable making it harder tomodel the correlation between consecutive exter-nal accesses. Second, real systems often use exter-nal buses and memories that are slower than theCPU, necessitating the use of \wait states". Thisimplies that, on the average, pins switch less of-ten. Thus, for instance, in the case of the 486DX2system, switching on the address and data pinshad only a limited impact for most programs -even for back to back writes, the impact of greaterswitching on the address lines was less than 5%.Finally, even for processors without caches, it isdi�cult to model this switching for general pro-grams. The necessary information is fully avail-able only at run-time. However, reasonable mod-els may be feasible for more structured applica-tions like signal processing, and this bears furtherinvestigation.5.4. Processor Speci�c OptimizationsInstruction level power analysis of a given proces-sor can lead to the identi�cation of features spe-ci�c to that processor that can then be exploitedfor energy e�cient software. We identi�ed suchspeci�c features for each of the subject processors.Some of the more noteworthy examples are brieydescribed below.

Instruction Packing The DSP has a specialarchitectural feature called instruction packingthat allows an ALU instruction and a memorydata transfer instruction to be packed into a sin-gle instruction. The packed instruction executesin one cycle, as opposed to a total of two for thesequence of two unpacked instructions. Interest-ingly, we found that the use of packing alwaysleads to large energy reductions, even though apacked instruction represents the same function-ality as a sequence of two unpacked instructions.Figure 1 illustrates this graphically. The aver-age current for a certain sequence of n packedinstructions is only marginally greater than forthe corresponding sequence of 2n unpacked in-structions. Therefore, since the unpacked instruc-tions complete in twice as many cycles, their en-ergy consumption (proportional to the area underthe graph) is almost twice that of the packed in-structions. Thus, instructions should be packedas much as possible.Table 10 illustrates the application of packingfor the example IIR4. Instructions with two op-codes separated by a colon are packed instruc-tions, e.g., MUL:LAB. The use of packing leads tolarge energy savings for real programs (e.g. 26%for IIR4 and 47% for LP FIR60, as shown in Col-umn 3 of Table 7). The substantial savings at-tainable also make it worthwhile to develop pro-gram transformation and scheduling techniquesthat can lead to better utilization of instructionpacking.Dual Memory Loads The Fujitsu DSP hastwo on-chip data memory banks. A special dual



14 Tiwari, Malik, Wolfe, LeeTable 8. Software controlled power management in the `934Instruction: or %i0,0,%l0Units powered down Current (mA) % Energy ReductionNone 198 0.0SDI 185 6.6FPU 176 11.1DMA,FPU 172 13.1FIFO,FPU 163 17.7SDI,DMA,FIFO,FPU 154 22.2load instruction can transfer two operands, onefrom each memory, to registers in one cycle. Thesame task can also be attained by two single loadinstructions over two cycles. However, we foundthat the average current for the latter was onlymarginally lower, and thus, doubling of executioncycles implies a corresponding increase in energyconsumption. The large energy di�erence alsojusti�es the use of memory allocation techniquesthat can lead to better utilization of dual loads.A static memory allocation technique based onsimulated annealing was developed for this pur-pose [29]. Application of this technique led to a47% energy reduction over the case where data isassigned to only bank for LP FIR60. Our observa-tions also suggest that other memory allocationstechniques developed from the point of view ofimproving performance can also �nd direct appli-cation for energy reduction [30].It should be noted that both the above featuresare not unique to the Fujitsu DSP, but are alsoprovided by several other popular DSP proces-sors, e.g., the Motorola 56000 series. The aboveobservations are likely to be valid for these otherprocessors too.Swapping Multiplication Operands The re-sults of our analysis of the Fujitsu DSP indicatethat the on-chip multiplier on this processor is amajor source of energy consumption for signal pro-cessing applications. This motivated a more de-tailed analysis of power consumption for multiplyinstructions. It was discovered that similar varia-tions in the values of the two operands lead to dif-ferent degrees of variations in the power consump-tion of multiply operations. This is reasonable,since the multiplier is based on the Booth multipli-cation algorithm,which treats the two operands in

very di�erent ways. We found that an appropriateswapping of the operands, in order to exploit thisasymmetry, leads to up to 30% reduction in mul-tiplication energy costs. This can translate intoappreciable energy reduction for entire programs,as shown in Column 5 of Table 7. For example,for LP FIR60, the use of operand swapping reducesthe energy consumption of the packed code by anadditional 16%.Software Controlled Power ManagementThe `934 provides a software mechanism for pow-ering down parts of the CPU. By setting appro-priate bits in a system control register througha speci�ed sequence of instructions, the clock in-puts to certain modules can be enabled or dis-abled. We were able to quantify the e�ectivenessof this mechanism by using our analysis technique.Table 8 shows the measured power reductions at-tained for an OR instruction, when some combina-tions of the SDRAM interface (SDI), DMA mod-ule, oating-point unit (FPU), and oating-pointFIFOs are powered down. It is evident from theresults, that power management, i.e., poweringdown of unneeded modules can lead to signi�cantpower savings. It should also be noted that au-tomatic power management will be a more e�ec-tive and more generally applicable power reduc-tion technique. The energy overhead associatedwith power management will be much less if itis controlled by logic internal to the CPU, ratherthan through a sequence of instructions. The tem-poral resolution of the power management strat-egy will also be much �ner, since it can then beapplied on a cycle by cycle basis.



Instruction Level Power Analysis and Optimization of Software 15Table 9. 486DX2 Software Energy Optimization Example: sort.cCompiler Generated Codesort:push ebxpush esipush edipush ebpmov ebp,espsub esp,24mov edi,dword ptr 014H[ebp]mov esi,1mov ecx,esimov esi,edisar esi,cllea esi,1[esi]mov dword ptr -20[ebp],esimov dword ptr -8[ebp],ediL3:mov edi,dword ptr -20[ebp]cmp edi,1jle L7mov edi,dword ptr -20[ebp]sub edi,1mov dword ptr -20[ebp],edilea edi,[edi*4]mov esi,dword ptr 018H[ebp]add edi,esimov edi,dword ptr [edi]mov dword ptr -12[ebp],edijmp L8L7:mov edi,dword ptr 018H[ebp]mov esi,dword ptr -8[ebp]lea esi,[esi*4]add esi,edimov ebx,dword ptr [esi]mov dword ptr -12[ebp],ebxmov edi,dword ptr 4[edi]mov dword ptr [esi],edimov edi,dword ptr -8[ebp]sub edi,1mov dword ptr -8[ebp],edicmp edi,1jne L8mov edi,dword ptr 018H[ebp]mov esi,dword ptr -12[ebp]mov dword ptr 4[edi],esijmp L2L8:mov edi,dword ptr -20[ebp]mov dword ptr -16[ebp],edilea edi,[edi*2]mov dword ptr -4[ebp],edijmp L12L11:mov edi,dword ptr -4[ebp]mov esi,dword ptr -8[ebp]cmp edi,esijge L14lea edi,[edi*4]mov esi,dword ptr 018H[ebp]mov ebx,ediadd ebx,esi

mov ebx,dword ptr [ebx]mov edi,dword ptr 4[edi][esi]cmp ebx,edijge L14mov edi,dword ptr -4[ebp]lea edi,1[edi]mov dword ptr -4[ebp],ediL14:mov edi,dword ptr -12[ebp]mov esi,dword ptr -4[ebp]lea esi,[esi*4]mov ebx,dword ptr 018H[ebp]add esi,ebxmov esi,dword ptr [esi]cmp edi,esijge L16mov edi,2mov esi,dword ptr 018H[ebp]mov ebx,dword ptr -16[ebp]mov ecx,edisal ebx,cladd ebx,esimov ecx,dword ptr -4[ebp]mov dword ptr -24[ebp],ecxmov ecx,edimov edi,dword ptr -24[ebp]sal edi,cladd edi,esimov edi,dword ptr [edi]mov dword ptr [ebx],edimov edi,dword ptr -4[ebp]mov dword ptr -16[ebp],edimov esi,ediadd esi,edimov dword ptr -4[ebp],esijmp L12L16:mov edi,dword ptr -8[ebp]lea edi,1[edi]mov dword ptr -4[ebp],ediL12:mov edi,dword ptr -4[ebp]mov esi,dword ptr -8[ebp]cmp edi,esijle L11mov edi,dword ptr -16[ebp]lea edi,[edi*4]mov esi,dword ptr 018H[ebp]add edi,esimov esi,dword ptr -12[ebp]mov dword ptr [edi],esijmp L3L2:mov esp,ebppop ebppop edipop esipop ebxret

Energy Optimized Codesort:push ebpmov edi,dword ptr 08H[esp]mov esi,edisar esi,1inc esimov ebp,esimov ecx,ediL3:cmp ebp,1jle L7dec ebpmov esi,dword ptr 0cH[esp]mov edi,dword ptr [edi*4][esi]mov ebx,edijmp L8L7:mov edi,dword ptr 0cH[esp]mov esi,dword ptr 4[edi]mov ebx,dword ptr [ecx*4][edi]mov dword ptr [ecx*4][edi],esidec ecxcmp ecx,1jne L8mov dword ptr 4[edi],ebxjmp L2L8:mov edi,ebpmov edx,ediadd edi,edimov eax,edijmp L12L11:cmp eax,ecxjge L14mov esi,dword ptr 0cH[esp]mov edi,dword ptr [eax*4][esi]cmp edi,dword ptr 4[eax*4][esi]jge L14inc eaxL14:mov esi,dword ptr 0cH[esp]cmp ebx,dword ptr[eax*4][esi]jge L16mov edi,dword ptr [eax*4][esi]mov dword ptr [edx*4][esi],edimov edx,eaxadd eax,eaxjmp L12L16:mov eax,ecxinc eaxL12:cmp eax,ecxjle L11mov esi,dword ptr 0cH[esp]mov dword ptr [edx*4][esi],ebxjmp L3L2:pop ebpret



16 Tiwari, Malik, Wolfe, Lee6. Future DirectionsThere are several directions in which we wouldlike to extend this work. The �rst of these wouldbe to extend the analysis methodology to proces-sors whose architecture and implementation styleis signi�cantly di�erent from the processors stud-ied here. We would specially like to analyze pro-cessors that are based on superscalar and VLIWarchitectures. These seem to be the architecturesof choice for high performance processors in thenear future, and with ever increasing integrationand clock frequencies, the power problem will be-come even more acute for these processors. Wewould also like to continue to work on avenuesfor power reduction through software optimiza-tion, and development of automated tools whereapplicable. The results of our work show that anumber of ideas from existing literature on tradi-tional software optimization can be used here, butnew techniques will also be developed. The abilityto evaluate the power cost of the software compo-nent of an embedded system can also be used asa �rst step towards ideas and tools for hardware-software co-design for low power. Finally, the soft-ware perspective is essential in understanding thepower consumption in processors. This additionalperspective can help guide us in the search formore power e�cient architectures, and this issuewill be explored in the future.7. ConclusionsThe increasing role of software in today's sys-tems demands that energy consumption be stud-ied from the perspective of software. This paperdescribes a measurement based instruction levelpower analysis technique that makes it feasible toe�ectively analyze software power consumption.The main observations resulting from the appli-cation of this technique to three commercial pro-cessors were presented here. These provide use-ful insights into the power consumption in proces-sors. They also illustrate how a systematic analy-sis can lead to the identi�cation of sources of soft-ware power consumption. These sources can thenbe targeted through suitable software design andtransformation techniques. The ability to quan-titatively analyze the power consumption of soft-

ware makes it possible to deal with the overallsystem power consumption in an integrated way.A uni�ed perspective allows for the developmentof more e�ective power reduction techniques thatare applicable for the entire system.References1. T. Sato, M. Nagamatsu, and H. Tago. Power andperformance simulator: ESP and its application for100MIPS/W class RISC design. In Proceedings of1994 IEEE Symposium on Low Power Electronics,pages 46{47, San Diego, CA, Oct. 1994.2. P. w. Ong and R. H. Yan. Power-conscious softwaredesign - a framework for modeling software on hard-ware. In Proceedings of 1994 IEEE Symposium onLow Power Electronics, pages 36{37, San Diego, CA,Oct. 1994.3. P. Landman and J. Rabaey. Black-box capacitancemodels for architectural power analysis. In Proceed-ings of the International Workshop on Low PowerDesign, pages 165{170, Napa, CA, April 1994.4. P. Landman and J. Rabaey. Activity-sensitive ar-chitectural power analysis for the control path. InProceedings of the International Symposium on LowPower Design, pages 93{98, Dana Point, CA, April1995.5. L. W. Nagle. SPICE2: A computer program to sim-ulate semiconductor circuits. Technical Report ERL-M520, University of California, Berkeley, 1975.6. A. Salz and M. Horowitz. IRSIM: An incrementalMOS switch-level simulator. In Proceedings of theDesign Automation Conference, pages 173{178, 1989.7. C. X. Huang, B. Zhang, A. C. Deng, and B. Swirski.The design and implementation of PowerMill. InProceedings of the International Symposium on LowPower Design, pages 105{110, Dana Point, CA, April1995.8. V. Tiwari, S. Malik, and A. Wolfe. Power analysisof embedded software: A �rst step towards softwarepower minimization. IEEE Transactions on VLSISystems, 2(4):437{445, December 1994.9. Intel Corp. Intel486 Microprocessor Family, Pro-grammer's Reference Manual, 1992.10. Intel Corp. i486 Microprocessor, Hardware ReferenceManual, 1990.11. Fujitsu Microelectronics Inc. SPARClite EmbeddedProcessor User's Manual, 1993.12. Fujitsu Microelectronics Inc. SPARClite Embed-ded Processor User's Manual: MB86934 Addendum,1994.13. V. Tiwari, S. Malik, and A. Wolfe. Power analysisof the Intel 486DX2. Technical Report CE-M94-5,Princeton Univ., Dept. of Elect. Eng., June 1994.14. V. Tiwari and Mike T.-C. Lee. Power analysis of a32-bit embedded microcontroller. Accepted for pub-lication in the VLSI Design Journal.15. T. C. Lee, V. Tiwari, S. Malik, and M. Fujita. Poweranalysis and low-power scheduling techniques for em-bedded DSP software. In Proceeding of the Inter-national Symposium on System Synthesis, Cannes,France, Sept. 1995.



Instruction Level Power Analysis and Optimization of Software 17Table 10. DSP Software Energy Optimization Example : IIR4Portion of Original CodeLDI coefa,X0LDI xn,X2MOV (X2),CLDI datanm1,X3LAB (X3+1),(X0+1)MUL:LAB (X3+1),(X0+1)MSMC:LAB (X3+1),(X0+1)LDI datan,X4MSMC:LAB (X3+1),(X0+1)MSMC:LDI coefb,x1MSMC:MOV C,(X4)RESC:LAB (X4+1),(X1+1)MUL:LAB (X4+1),(X1+1)MSMC:LAB (X4+1),(X1+1)MSMC:LAB (X4+1),(X1+1)MSMC:MSMC:MOV C,(X4)
After Energy OptimizationsLDI coefa,X0LDI coefb,X1LDI xn,X2LDI datanm1,X3LDI datan,X4MOV (X2),CLAB (X0+1),(X3+1)MUL:LAB (X0+1),(X3+1)MSMC:LAB (X0+1),(X3+1)MSMC:LAB (X0+1),(X3+1)MSMC:MSMC:MOV C,(X4)RESC:LAB (X1+1),(X4+1)MUL:LAB (X1+1),(X4+1)MSMC:LAB (X1+1),(X4+1)MSMC:LAB (X1+1),(X4+1)MSMC:MSMC:MOV C,(X4)16. P. Landman and J. Rabaey. Power estimation for highlevel synthesis. In Proceedings of the European De-sign Automation Conference, pages 361{366, Paris,Feb. 1993.17. V. Tiwari, S. Malik, and P. Ashar. Guarded evalu-ation: Pushing power management to logic synthe-sis/design. In Proceedings of the International Sym-posium on Low Power Design, pages 221{226, DanaPoint, CA, April 1995.18. S. Gary et al. PowerPC 603, a microprocessor forportable computers. IEEE Design & Test of Com-puters, pages 14{23, Winter 1994.19. A. Correale. Overview of the power minimizationtechniques employed in the IBM PowerPC 4xx em-bedded controllers. In Proceedings of the Interna-tional Symposium on Low Power Design, pages 75{80, Dana Point, CA, April 1995.20. M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, andM. Papaefthymiou. Precomputation-based sequentiallogic optimization for low power. IEEE Transactionson VLSI Systems, pages 426{436, December 1994.21. L. Benini andG. De Micheli. Transformationand syn-thesis of fsms for low power gated clock implementa-tion. In Proceedings of the International Symposiumon Low Power Design, pages 21{26, Dana Point, CA,April 1995.22. S. Wuytack, F. Franssen F. Catthoor, L. Nachter-gaele, and H. De Man. Global communication andmemory optimizing transformations for low power

systems. In Proceedings of the International Work-shop on Low Power Design, pages 203{208, Napa,CA, April 1994.23. S. Wuytack, F. Catthoor, and H. De Man. Transform-ing set data types to power optimal data structures. InProceedings of the International Symposium on LowPower Design, Dana Point, CA, April 1995.24. V. Tiwari, S. Malik, and A. Wolfe. Compilation tech-niques for low energy: An overview. In Proceedingsof 1994 IEEE Symposium on Low Power Electronics,pages 38{39, San Diego, CA, Oct. 1994.25. Press et al. Numerical Recipes in C. Cambridge Univ.Press, 1988.26. C. W. Fraser and D. R. Hanson. A retargetable com-piler for ANSI C. SIGPLAN Notices, pages 29{43,Oct. 1991.27. C. L. Su, C. Y. Tsui, and A. M. Despain. Low powerarchitecture design and compilation techniques forhigh-performance processors. In IEEE COMPCON,Feb. 1994.28. Texas Instruments. Digital Signal Processing Appli-cations - Theory, Algorithm, and Implementations,1986.29. T. C. Lee and V. Tiwari. A memory allocation tech-nique for low-energy embeddedDSP software. In Pro-ceedings of 1995 IEEE Symposium on Low PowerElectronics, San Jose, CA, Oct. 1995.30. A. Sudarsanam and S. Malik. Memory bank andregister allocation in software synthesis for ASIPs.



18 Tiwari, Malik, Wolfe, LeeIn Proceedings of the International Conference onComputer-Aided Design, San Jose, CA, Nov. 1995.Vivek Tiwari received the B. Tech degree in Com-puter Science and Engineering from the Indian Insti-tute of Technology, New Delhi, India in 1991. Cur-rently he is working towards the Ph.D. degree in theDepartment of Electrical Engineering, Princeton Uni-versity. He will be joining Intel Corporation, SantaClara, CA, in fall 1996.His research interests are in the areas of ComputerAided Design of VLSI and embedded systems and inmicroprocessor architecture. The focus of his currentresearch is on tools and techniques for power estima-tion and low power design. He has held summer posi-tions at NEC Research Labs (1993), Intel Corporation(1994), Fujitsu Labs of America (1994), and IBM T.J. Watson Research Center (1995), where he workedon the above topics.He received the IBM Graduate Fellowship Awardin 1993, 1994, and 1995, and a Best Paper Award atASP-DAC '95.Sharad Malik received the B. Tech. degree in Elec-trical Engineering from the Indian Institute of Tech-nology, New Delhi, India in 1985 and the M.S. andPh.D. degrees in Computer Science from the Univer-sity of California, Berkeley in 1987 and 1990 respec-tively.Currently he is on the faculty in the Department ofElectrical Engineering, Princeton University. His cur-rent research interests are: design tools for embeddedcomputer systems, synthesis and veri�cation of digitalsystems.He has received the President of India's Gold Medalfor academic excellence (1985), the IBM Faculty De-velopment Award (1991), an NSF Research InitiationAward (1992), a Best Paper Award at the IEEE Inter-national Conference on Computer Design (1992), the

Princeton University Engineering Council Excellencein Teaching Award (1993, 1994, 1995), the Walter C.Johnson Prize for Teaching Excellence (1993), Prince-ton University Rheinstein Faculty Award (1994) andthe NSF Young Investigator Award (1994). Heserves/has served on the program committees of DAC,ICCAD and ICCD. The is on the editorial boards ofthe Journal of VLSI Signal Processing and Design Au-tomation for Embedded Systems.Andrew Wolfe received a B.S.E.E. in Electrical En-gineering and Computer Science from The Johns Hop-kins University in 1985 and the M.S.E.E and Ph.D. inElectrical and Computer Engineering from CarnegieMellon University in 1987 and 1992 respectively. Hejoined Princeton University in 1991, where he is cur-rently an Assistant Professor in the Department ofElectrical Engineering. He served as Program Chair ofMicro-24 and General Chair of Micro-26 as well as onthe program committees of several IEEE/ACM confer-ences. He has received the Walter C. Johnson awardfor teaching excellence at Princeton. His current re-search interests are in embedded systems, instruction-level parallel architectures and implementations, opti-mizing compilers and digital video.Mike Tien-Chien Lee received his B.S. degree inComputer Science from National Taiwan Universityin 1987, and the M.S. degree and the Ph.D. degreein electrical engineering from Princeton University, in1991 and 1993, respectively.He has been working at Fujitsu Laboratories ofAmerica, Santa Clara, CA, as a Member of ResearchSta� since 1994. Before then he was a Member ofTechnical Sta� at David Sarno� Research Center,Princeton, NJ, working on video chip testing. His re-search interests include low-power design, embeddedDSP code generation, high-level synthesis, and testsynthesis. He received a Best Paper Award at ASP-DAC'95.


