Journal of VLSI Signal Processing, , 1-18 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Instruction Level Power Analysis and Optimization of Software

VIVEK TIWARI, SHARAD MALIK, ANDREW WOLFE

vivek@ee.princeton.edu, sharad@ee.princeton.edu, awolfe@ee.princeton.edu

Department of Electrical Engineering, Princeton University, Princeton, NJ 08540

MIKE TIEN-CHIEN LEE

lee@fla.fujitsu.com

Fujitsu Labs of America Inc., 3350 Scott Blud., Bldg. 84, Santa Clara, CA 35054

Abstract. The increasing popularity of power constrained mobile computers and embedded computing ap-
plications drives the need for analyzing end optimizing power in all the components of a system. Software
constitutes ¢ major component of today’s systems, and its role is projected to grow even further. Thus, an
ever increasing portion of the functionality of today’s systems is in the form of instructions, as opposed
to gates. This motivates the need for analyzing power consumption from the point of view of instructions
- something that treditional circuit and gate level power analysis tools are inadequate for. This paper
describes an alternative, measurement based instruction level power analysis approach that provides an
accurate and practical way of quantifying the power cost of software. This technique has been applied to
three commercial, architecturally different processors. The salient results of these analyses are summa-
rized. Instruction level analysis of a processor helps in the development of models for power consumption
of software exzecuting on that processor. The power models for the subject processors are described and
interesting observations resulting from the comparison of these models are highlighted. The ability to eval-
uwate software in terms of power consumption makes it feasible to search for low power implementations of
given programs. In addition, it can guide the development of general tools and techniques for low power
software. Several ideas in this regard as motivated by the power analysis of the subject processors are also

described.

1. Motivation

The increasing popularity of power constrained
mobile computers and embedded computing ap-
plications drives the need for analyzing and op-
timizing power in all the components of a sys-
tem. This has forced an examination of the power
consumption characteristics of all modules - rang-
ing from disk-drives and displays to the individual
chips and interconnects. Focussing solely on the
hardware components of a design tends to ignore
the impact of the software on the overall power
consumption of the system. Software constitutes
a major component of systems where power is a
constraint. Its presence is very visible in a mobile
computer, in the form of the system software and
application programs running on the main CPU.
But software also plays an even greater role in
general digital applications, since an ever growing

fraction of these applications are now being imple-
mented as embedded systems. Embedded systems
are characterized by the fact that their function-
ality is divided between a hardware and a soft-
ware component. The software component usu-
ally consists of application-specific software run-
ning on a dedicated processor, while the hardware
component usually consists of application-specific
circuits. In light of the above, there is a clear need
for considering the power consumption in systems
from the point of view of software. Software im-
pacts the system power consumption at various
levels of the design. At the highest level, this is
determined by the way functionality is partitioned
between hardware and software. The choice of the
algorithm and other higher level decisions about
the design of the software component can affect
system power consumption in a big way. The
design of system software, the actual application

2 Tiwaeri, Malik, Wolfe, Lee

source code, and the process of translation into
machine instructions - all of these determine the
power cost of the software component. In order
to systematically analyze and quantify this cost,
however, it is important to start at the most fun-
damental level. This is at the level of the individ-
ual instructions executing on the processor. Just
as logic gates are the fundamental units of com-
putation in digital hardware circuits, instructions
can be thought of as the fundamental unit of soft-
ware. This motivates the need for analyzing power
consumption from the point of view of instruc-
tions. Accurate modelling and analysis at this
level is the essential capability needed to quantify
the power costs of higher abstractions of software,
and to search the design space in software power
optimizations.

In spite of its importance, very little previous
work exists for analyzing power consumption from
the point of view of software. Some attempts in
this direction are based on architectural level anal-
ysis of processors. The underlying idea is to assign
power costs to architectural modules such as dat-
apath execution units, control units, and memory
elements. In [1], [2] the power cost of a module is
given by the estimated average capacitance that
would switch when the given module is activated.
More sophisticated statistical power models are
used in [3], [4]. Activity factors for the modules
are then obtained from functional simulation over
typical input streams. Power costs are assigned to
individual modules, in isolation from one another.
Thus, these methods ignore the correlations be-
tween the activities of different modules during
execution of real programs.

Since the above techniques work at higher levels
of abstraction, the power estimates they provide
are not very accurate. For greater accuracy, one
has to use power analysis tools that work at lower
levels of the design - physical, circuit, or switch
level [5], [6], [7]. However, these tools are slow
and impractical for analyzing the total power con-
sumption of a processor as it executes entire pro-
grams. These tools also require the availability
of lower level circuit details of processors, some-
thing that most embedded system designers do
not have access too. This is also the reason why
the power contribution of software and the poten-
tial for power reduction through software modifi-

cation has either been overlooked or is not fully
understood.

1.1. Instruction Level Power Analysis

The above problems can be overcome if the cur-
rent being drawn by the CPU during the exe-
cution of a program is physically measured. An
instruction level power analysis technique based
on physical measurements has recently been de-
veloped [8]. This technique helps in formulating
instruction level power models that provide the
fundamental information needed to evaluate the
power cost of entire programs. This technique has
so far been applied to three commercial, architec-
turally different processors - the Intel 486DX2 (a
CISC processor), the Fujitsu SPARClite 934 (a
RISC processor), and a Fujitsu proprietary DSP
processor. The purpose of this paper is to pro-
vide a general description of the instruction level
power analysis technique, based on its application
for these three different processors.

The power models for the subject processors
are described and interesting observations result-
ing from the comparison of these are highlighted.
Other salient observations resulting from the anal-
ysis of these processors are summarized and these
provide useful insights into power consumption in
processors in general. Instruction level analysis
of each processor helps to identify the reasons for
variation in power from one program to another.
These differences can then be exploited in order
to search for low power alternatives for each pro-
gram. The information provided by the instruc-
tion level analysis can guide higher-level design
decisions like hardware-software partitioning and
choice of algorithm. But it can also be directly
used by automated tools like compilers, code gen-
erators and code schedulers for generating code
targeted towards low power. Several ideas in this
regard as motivated by the power analysis of the
subject processors are also described.

2. Applications of Instruction Level

Power Analysis

The previous section described the primary moti-
vation for power analysis at the instruction level.

Instruction Level Power Analysis and Optimization of Software 3

There are several additional applications of this
analysis and it is instructive to list the important
ones here:

e The information provided by the analysis is
useful in assigning an accurate power cost to
the software component of a system. For power
constrained embedded systems, this can help in
verifying if the overall system meets its speci-
fied power budget.

o The most common way of specifying power con-
sumption in processors is through a single num-
ber - the average power consumption. Instruc-
tion level analysis provides additional resolu-
tion about power consumption that cannot be
captured through just this one number. This
additional resolution can guide the careful de-
velopment of special programs that can be used
as power benchmarks for more meaningful com-
parisons between processors.

e The proposed measurement based instruc-
tion level analysis methodology has the novel
strength that it does not require knowledge of
the lower level details of the processor. How-
ever, if micro-architectural details of the CPU
are available, they can be related to the results
of the analysis. This can lead to more refined
models for software power consumption, as well
as power models for the micro-architecture that
may potentially be more accurate than circuit
or logic simulation based models.

o The additional insight provided by an
instruction-level power model also provides di-
rections for modifications in processor design
that lead to the most effective overall power
reduction. Instructions can be evaluated both
in terms of their power cost as well as fre-
quency of occurrence in typical compiler or
even hand-generated code. This combined in-
formation can be used to prioritize instructions
that should be re-implemented to be less ex-
pensive in terms of power.

3. Analysis Methodology

This section describes in greater detail the mea-
surement based technique that was referred to in
the previous sections. This technique has so far
been applied to three commercial processors:

o Intel 486DX2-S Series, 40MHz, 3.3V (referred
to as the 486DX2). A CISC processor based
on the x86 architecture. It is widely used in
mobile and desktop PCs [9], [10].

o Fujitsu SPARCliteMB86934, 20MHz, 3.3V (re-
ferred to as the ‘934). A 32-bit RISC proces-
sor based on the SPARC architecture. It has
been specially designed for embedded applica-
tions [11], [12].

e Fuyjitsu proprietary DSP, 40MHz, 3.3V (re-
ferred to as the DSP). A new implementation
of an internal Fujitsu DSP architecture. It is
used in several embedded DSP applications.

The basic idea that allows the use of the mea-

surement based technique in the development of

instruction level power models of given processors
will also be described in this section. But first, we

have to clarify the distinction between “power”, a

term that we have been using so far, and the term

“energy”. The average power consumed by a pro-

cessor while running a certain program is given by:

P = I xVge, where P is the average power, I is

the average current, and Vg¢ is the supply volt-

age. Power is also defined as the rate at which en-
ergy is consumed. Therefore, the energy consumed

by a program is given by: F = P X T, where T

is the execution time of the program. This in turn

is given by: T = N X 7, where N is the number
of clock cycles taken by the program and 7 is the
clock period.

Energy consumption is the primary concern for
mobile systems, which run on the limited energy
available in a battery. Power consumption, on its
own, is of importance in applications where cool-
ing and packaging costs are a concern. Energy
consumption is the focus of attention in this pa-
per. While we will attempt to maintain a distinc-
tion between the two terms, we may sometimes
use the term power to refer to energy, in adher-
ence to common usage. It should be noted, never-
theless, that power and energy are closely related,
and the energy cost of a program is simply the
product of its average power cost and its running
time.

3.1. Current Measurement

As can be seen from the above discussion, the abil-
ity to measure the current drawn by the CPU dur-

4 Tiwaeri, Malik, Wolfe, Lee

ing the execution of the program is essential for
measuring the power/energy cost of the program.
The different current measurement setups used in
our work point to some of the options that can be
used.

Board Based Measurements In the case of
the 486DX2 study, the CPU was part of a mobile
personal computer evaluation board. The board
was designed for current measurements and thus
the power supply connection to the CPU was iso-
lated from the rest of the system. A jumper on
this connection allows an ammeter to be inserted
in series with the power supply and the CPU. The
ammeter used is a standard off the shelf, dual-
slope integrating digital ammeter. Programs can
be created and executed just as in a regular PC. If
a program completes execution in a short time, a
current reading cannot be visually obtained from
the ammeter. To overcome this, the programs be-
ing considered are put in infinite loops. The cur-
rent waveform will now be periodic. Since the
chosen ammeter averages current over a window
of time (100ms), if the period of the current wave-
form is much smaller than this window, a stable
reading will be obtained. The limitation of this
approach is that it cannot directly be used for
large programs. But this is not a limitation, since
the main use of this technique is for performing
an instruction-level power analysis. As discussed
in the next section, short loops are adequate for
this. This inexpensive current measurement ap-
proach works very well here. The current drawn
by the external DRAM chips is also measured in a
similar way. A similar measurement technique is
also used in the case of the Fujitsu DSP. However,
the DSP board had not been laid out with current
measurements in mind. Therefore, the power pins
of the CPU had to be lifted from the board in or-
der to create an isolated power supply connection
for them.

Tester Based Measurements A suitable
board was not available for the ‘934. Therefore,
an alternative experimental setup, consisting of a
processor chip and an IC tester machine was used.
The program under consideration was first simu-
lated on a VERILOG model of the CPU. This pro-

duces a trace file consisting of vectors that specify
the exact logic values that would appear on the
pins of the CPU for each half-cycle during the ex-
ecution of the program. The tester then applies
the voltage levels specified by the vectors on each
input pin of the CPU. This recreates the same
electrical environment that the CPU would see on
a real board. The current drawn by the CPU is
monitored by the tester using an internal digital
ammeter.

It should be stressed that the main concepts
described in this paper are independent of the
method used to measure average current. The re-
sults of the above approaches have been validated
by comparisons with other current measurement
setups. But if sophisticated data acquisition based
measurement instruments are available, the mea-
surement method can be based on them, if so de-
sired. Interestingly, instruction level power power
analysis can be conducted even for un-fabricated
CPUs. Instead of physical current measurements,
current estimates can be obtained through simu-
lations on low level design models of the CPU.

4. Instruction Level Power Models

The instruction level analysis scheme described
in the previous section has been applied to all
three subject processors. Instruction level power
models have been developed based on the re-
sults of these analyses. The key observations are
summarized in this section. Separate references
provide greater detail for each individual proces-
sor [13], [14], [15]. The basic components of each
power model are the same. The first component
is the set of base costs of individual instructions.
The other component is the power cost of inter-
instruction effects, i.e., effects that involve more
than one instruction. This includes the effect of
circuit-state, and other effects like stalls and cache
misses. These components of the power models
are described below:

4.1. Instruction Base Costs

The primary component of the power models is
the set of base costs of instructions. The base cost
of an instruction can be thought of as the cost as-

Instruction Level Power Analysis and Optimization of Software 5

Table 1. Subset of the base cost table for the 486DX2 and the ‘934

Intel 486DX2

Fujitsu SPARClite ‘934

No. Instruction Current Cycles Energy Instruction Current Cycles Energy

(mA) (1072) (mA) (1072)
1 nop 276 1 2.27 nop 198 1 3.26
2 mov dx, [bx] 428 1 3.53 14 [%10],%io0 213 1 3.51
3 mov dx,bx 302 1 2.49 or %g0,%10,%10 198 1 3.26
4 mov [bx],dx 522 1 4.30 st %10, [%10] 346 2 11.4
5 add dx,bx 314 1 2.59 add %i0,%00,%10 199 1 3.28
6 add dx, [bx] 400 2 6.60 mul %g0,%r29,%r27 198 1 3.26
7 jmp 373 3 9.23 srl %i0,1,%10 197 1 3.25

sociated with the basic processing needed to exe-
cute the instruction. The experimental procedure
used to determine this cost requires a program
containing a loop consisting of several instances of
the given instruction. The average current drawn
during the execution of this loop is measured. The
product of this current and Vg is the base power
cost of the instruction. The base power cost mul-
tiplied by the number of non-overlapped cycles
needed to execute the instruction is proportional
to its base energy cost. Table 1 presents a sam-
ple of the base costs of some instructions for the
486DX2 and the ‘934. The measured average cur-
rent, number of cycles, and the base energy costs
are also shown. The base energy costs are derived

from the formula shown in Section 3.

There are some points to be noted with regard
to the assignment of base costs to instructions:

o The definition of base costs follows the conven-
tion that the base costs of instructions should
not reflect the power contribution of effects like
stalls and cache misses. The programs used to
determine the base costs have to be designed
to avoid these effects. The power costs of these
effects are modelled separately.

o The program loops used to determine the base
costs should be large enough to overcome the
impact of the jump instruction at the bottom
of the loop. But they should not be so large so
as to cause cache misses. Loop sizes of around
200 have been found to be appropriate.

o It has been observed that, in general, instruc-
tions with similar functionality tend to have
similar base costs. This observations suggests
that similar instructions can be arranged in
classes, and a single average cost can be as-
signed to each class. Doing so speeds up the

task of power analysis of the given processor.
Table 2 illustrates the application of instruc-
tion grouping in the case of the DSP. The com-
monly used instructions have been grouped into
6 classes as shown.

e The base cost of an instruction can vary with
the value and address of the operands used.
While appropriate measurement experiments
can give the exact cost if the operand and ad-
dress values are known, in real situations these
values are often unknown until runtime. The
alternative is to assign a single average cost as
the base cost of an instruction. This is jus-
tified, since extensive experimentation reveals
that the variation in operands leads to only a
limited variation in base costs. The DSP, which
was the smallest of the three processors, exhib-
ited the maximum variation. But even this was
less than 10% for most instructions. Therefore,
the inaccuracy due to the use of averages will
be limited.

4.2. Effect of Circuit State

The switching activity, and hence, the power con-
sumption in a circuit is a function of the change
in circuit state resulting from changes in two con-
secutive sets of inputs. Now, during the deter-
mination of base costs, the same instruction exe-
cutes each time. Thus, it can be expected that the
change in circuit state between instructions would
be less here, than in an instruction sequence in
which consecutive instructions differ from one an-
other. The concept of circuit state overhead for
a pair of instructions is used to deal with this ef-
fect. Given any two instructions, the current for a

6 Tiwaeri, Malik, Wolfe, Lee

Table 2. Average base costs for instruction classes in the DSP

LDI LAB MOV1 MOV2 ASL MAC
Current range (mA) 15.8-22.9 34.6-38.5 18.8-20.7 17.6-19.2 158-172 17.0-174
Average energy (1078) 0.160 0.301 0.163 0.151 0.136 0.142

loop consisting of an alternating sequence of these
instructions is measured. The difference between
the measured current and the average base costs of
the two instructions is defined as the circuit state
overhead for the pair. For a sequence consisting
of a mix of instructions, using the base costs of
instructions almost always underestimates the ac-
tual cost. Adding in the average circuit state over-
head for each pair of consecutive instructions leads
to a much closer estimate.

While the above effect was observed for all the
subject processors, it had a limited impact in the
case of the 486DX2 and the ‘934. In the case of
the 486DX2, the circuit state overhead varied in
a restricted range, 5-30mA, while most programs
varied in the range of 300-420mA. In the case of
the ‘934, the overhead was less than 20mA be-
tween integer instructions, and in the range 25-
34mA between integer and floating point instruc-
tions. In contrast, most programs themselves vary
in the range 250-400mA. The explanation for the
limited impact may lie in the fact that in large
complex processors like the 486DX2 and ‘934, a
major part of the circuit activity is common to all
instructions, e.g., the clocks, instruction prefetch,
memory management, pipeline control, etc. Cir-
cuit state can certainly result in significant varia-
tion within certain control and data path modules.
But the impact of the variation on the net power
consumption of the processor will be masked by
the much larger common cost.

It should also also follow from the above that
if instruction control and the data path constitute
a larger fraction of silicon, the impact of circuit
state should be more visible. This indeed happens
in the case for the DSP, a smaller, more basic pro-
cessor. Table 3 shows the average overhead costs
between different classes of instructions. Consid-
ering the fact that for most programs the average
current is in the range 20-60mA, several numbers
in the table are significantly large.

4.3. Other Inter-Instruction Effects

The final component of the power model is the
power cost of other inter-instruction effects that
can occur in real programs. Examples are prefetch
buffer and write buffer stalls [10], other pipeline
stalls, and cache misses. Base costs of instructions
do not reflect the impact of these inter-instruction
effects. Separate costs need to be assigned to these
effects through specific current measurement ex-
periments. The basic idea is to write programs
where these effects occur repeatedly. This helps to
isolate the power costs of these effects. For exam-
ple, in the case of the 486DX2, an average cost of
250mA per stall cycle was determined for prefetch
buffer stalls [8]. The average cost for a cache miss
was 216mA per cache miss cycle. Multiplying the
power cost of each kind of stall or cache miss by
the number of cycles taken for each, gives the en-
ergy cost of these effects.

4.4. Owerall Instruction Level Power Model

The previous subsections described the basic com-
ponents of the instruction level power models of
the subject processors. These models form the
basis of estimating the energy cost of entire pro-
grams. For any given program, P, its overall en-
ergy cost, Ep, is given by:

Ep = Y (Bix Ni)+37, (0 x Nijj)+ 32, B (1)

The base cost, B;, of each instruction, 4,
weighted by the number of times it will be exe-
cuted, N;, is added up to give the base cost of the
program. To this the circuit state overhead, O; ;,
for each pair of consecutive instructions, (%,j),
weighted by the number of times the pair is ex-
ecuted, N;;, is added. The energy contribution,
E}y, of the other inter instruction effects, k, (stalls
and cache misses) that would occur during the ex-
ecution of the program, is finally added.

Instruction Level Power Analysis and Optimization of Software 7

Table 3. Average pairwise circuit state overhead costs for the DSP (in mA4)

LDI LAB MOV1 MOV2 ASL MAC

LDI 3.6 13.7 15.5 6.3 10.8 6.0
LAB 2.5 1.9 12.2 20.9 15.0
MOV1 4.0 18.3 10.5 3.8
MOV2 25.6 26.7 22.2
ASL 3.6 8.0
MAC 12.5

The base cost and overhead values are obtained
as shown in the previous sections. As described in
Section 4.2, circuit state varies in a limited range
in the case of the 486DX2 and the ‘934. This sug-
gests a more efficient and yet fairly accurate way of
modelling this effect for these processors. Instead
of a table of pairwise overhead values, a constant
value is used for all instruction pairs. For e.g.,
15mA and 18mA in the case of the 486DX2 and
the ‘934 respectively. A table is still needed for
the DSP, since this effect has a significant impact
and greater variation, in the case of this processor.

The other parameters in the above formula vary
from program to program. The execution counts
N; and N;; depend on the execution path of the
program. This is dynamic, run-time information.
In certain cases it can be determined statically
but in general it is best obtained from a program
profiler. For estimating Ej, the number of times
pipeline stalls and cache misses occur has to be de-
termined. This is again dynamic information that
can be statically predicted only in certain cases.
In general, this information is obtained from a
program profiler and cache simulator. A software
power/energy estimation framework based on the
above model is described in [8].

The 486DX2 program shown in Table 4 will
be used to illustrate the basic elements of the es-
timation process. The program has three basic
blocks as shown in the figure (A basic block is de-
fined as a contiguous section of code with exactly
one entry and exit point.
tion in a basic block is executed as many times
as the basic block.). The average current and the
number of cycles for each instruction are provided
in two separate columns. For each basic block,
the two columns are multiplied and the products
are summed up over all instructions in the basic
block. This yields a value that is proportional to
the base energy cost of one instance of the basic

Thus, every instruc-

block. The values are 1713.4, 4709.8, and 2017.9,
for B1, B2, and B3 respectively. B1 is executed
once, B2 four times, and B3 once. The jmp main
statement has been inserted to put the program
in an infinite loop. Cost of the j1 L2 statement
is not included in the cost of B2 since its cost is
different depending on whether the jump is taken
or not.
Multiplying the base cost of each basic block by
the number of times it is executed and adding the
cost of the unconditional jump j1l L2, we get a
number proportional to the total energy cost of
the program. Dividing it by the estimated num-
ber of cycles (72)gives us an average current of
369.1mA. Adding the circuit state overhead off-
set value of 15.0mA we get 384.0mA. This pro-
gram does not have any stalls, and thus, no further
additions to the estimated cost are required. If in
the real execution of this program, some cold-start
cache misses are expected, their energy overhead
will have to be added. The actual measured av-
erage current is 385.0mA. Thus, the estimate is
within 0.26% of the measured value.

An interesting extension of the above ideas is
the development of power profilers for given pro-
cessors. The above instruction level power model
suggests that this can easily be done by enhanc-
ing existing performance based profilers with the
power costs of instructions and inter-instruction
effects. Using this data, the profilers can generate
a cycle by cycle profile of the power consumption
of given programs.

When average values are used for base costs
etc., the accuracy of the energy estimate given by
the model described in Equation 1 is limited to
some extent by the range of variation in the aver-
age and the actual costs. However, the accuracy
of the energy estimate is primarily limited by the
accuracy in determining the dynamic information
regarding the program. Other than this the model

It is taken 3 times and not taken once.

8 Tiwaeri, Malik, Wolfe, Lee

Table 4. Illustration of the Estimation Process

Program

Current(mA)

Cycles

;s Block B1

main:

mov bp,sp

sub sp,4

mov dx,0

mov word ptr -4[bp],0
sBlock B2

L2:

mov si,word ptr -4[bpl
add si,si

add si,si

mov bx,dx

mov cx,word ptr _a[si]
add bx,cx

mov si,word ptr _b[si]
add bx,si

mov dx,bx

mov di,word ptr -4[bpl
inc di, 1

mov word ptr -4[bp]l,di
cmp di,4

j1 L2

sBlock B3

L1:

mov word ptr _sum,dx
mov sp,bp

jmp main

285.0
309.0
309.8
404.8

N e

433.4

309.0

309.0

285.0

433.4

309.0

433.4

309.0

285.0

433.4

297.0

560.1

313.1
405.7(356.9) 3

s

—
-
~—

521.7 1
285.0 1
403.8 3

is very accurate. For example, for the 486DX2
and the ‘934, for instruction sequences where the
dynamic information was fully known, the max-
imum difference between the estimated and the
measured cost was less than 3%.

It should also be mentioned that
tain applications, e.g., speech processing, some
statistical characteristics of the input data are
known [16]. Incorporating this knowledge into the
power model can lead to more accurate power es-
timates. This may be specially beneficial in the
case of the DSP, which shows greater sensitivity
to data based power variations than the other two
processors.

in cer-

4.5. Impact of Internal Power Management

An examination of the base costs of the ‘934 in
Table 1 reveals that the cost for different oper-
ations like OR, SHIFT, ADD, or MULTIPLY does not
show much of a variation. It may well be the case
that the differences in the circuit activity for these
instructions are much less relative to the circuit

activity common to all instructions. Thus, these
differences may not reflected in the comparisons of
the overall current cost. Nevertheless, the almost
complete lack of variation is somewhat counter-
intuitive. For instance, it is expected that the
logic for an OR should be much less than that for
a MULTIPLY, thus leading to some variation in the
overall current drawn for these instructions. The
reason for the similarity of the costs most likely
has to do with the way ALUs are traditionally de-
signed. A common bank of inputs feeds all the
different ALU modules, and thus all the modules
switch and consume power, even though on any
given cycle, only one of the modules computes use-
ful results. This observation motivates a power re-
duction technique called guarded evaluation [17].
Under this, the modules that are not needed for
the current ALU operation are disabled. Thus, it
can be expected that if this technique were to be
used, the power costs of the different ALU opera-
tions will show a variation depending upon their
functionality.

Instruction Level Power Analysis and Optimization of Software 9

The above idea is actually an extension of
the principles of power management, which refers
to the dynamic shutting down of modules that
are not needed for a given computation. Power
management is gaining popularity as an effec-
tive power reduction technique, and has been
implemented in recent processors like the Low
Power Pentium, PowerPC 603 [18] , and oth-
ers [19]. Logic level techniques based on the power
management idea have also been proposed re-
cently [17], [20], [21]. An aggressive application
of power management in a processor may have
interesting ramifications for the instruction level
power analysis of the processor. First, the base
costs of different instructions may show greater
variation than they do now. Variations due to
differences in data may also increase, both due
to the presence of data dependent power manage-
ment features and due to a general decrease in the
overall power consumption. The overall reduction
in power may also make the effect of circuit state
overhead more prominent. Some power manage-
ment features may get activated depending on the
occurrence of specific sequences of instructions,
and these may require special handling.

A related effect was observed in the case of the
DSP. The inputs to the on-chip multiplier on the
DSP are latched. Thus, the change in the circuit
state in the multiplier occurs only for multiply in-
structions. This change in circuit state is observed
even if multiply instructions are not consecutive,
and due to the relatively large power contribution
of the multiplier for this processor, this effect can
actually get reflected in the power cost of instruc-
tion sequences. An accurate way to deal with the
effect is to add in the exact circuit state overhead
for consecutive multiply instructions, even when
they are not adjacent in the instruction execution
order. An easier but approximate alternative is to
enhance the base cost of the multiply instruction
with an average value for this overhead. This as-
sumes an unkown state for the multiplier on each
multiply instruction, but eliminates the need to
keep track of the preceding multiply. While this
effect was observed only in the specific case of mul-
tiply instructions in the DSP, and for none of the
larger processors, aggressive use of power man-
agement may mean that the basic power model
described in Section 4.4 may need to be adapted

in certain cases. And finally, if the mechanism of
the major power management features is not de-
scribed in public domain data books, greater ex-
perimental effort may be needed in order to con-
duct a comprehensive power analysis of the pro-
cessors. These issues will be investigated further
as part of future work.

5. Software Energy Optimization Tech-
niques

It is generally accepted that there is a great po-
tential for energy reduction through modification
of software. However, very little has been done to
effectively exploit this potential. This has largely
been due to the lack of practical techniques for
analysis of software energy consumption. The in-
struction level analysis technique described in the
previous sections overcomes this deficiency. Appli-
cation of this technique provides the fundamental
information that can guide the development of en-
ergy efficient software. It also helps in the iden-
tification of sources of energy reduction that can
then be exploited by software development tools
like compilers and code generators and schedulers.
Several ideas in this regard as motivated by our
analysis of the subject processors are described be-
low. Some of these ideas have general applicability
for most processors. Others are based on specific
architectural features of the subject processors.

5.1. Reducing Memory Accesses

An inspection of energy costs reveals an important
fact that holds for all three processors - instruc-
tions that involve memory accesses are much more
expensive than instructions that involve just reg-
ister accesses. For example, for the 486DX2, in-
structions that use register operands cost in the
vicinity of 300mA per cycle. In contrast, memory
reads cost upwards of 400mA, even in the case
of a cache hit. Memory writes cost upwards of
530mA. Every memory access can also poten-
tially lead to caches misses, misaligned accesses,
and stalls. These increase the number of cycles
needed to complete the access, and the energy cost
goes up by a corresponding factor. The energy
consumption in the external memory system adds

10 Tiwaeri, Malik, Wolfe, Lee

Table 5. Energy Optimization of sort and circle for the 486DX2

Program sort
Avg. Current (mA4)

Execution Time (usec)

Energy (107%J)
Energy Reduction

Program circle
Avg. Current (mA4)

Execution Time (usec)

Energy (10%J)
Energy Reduction

hlcc.asm hfinal.asm

525.7 486.6

11.02 7.07

19.12 11.35
40.6%

clcc.asm cfinal.asm

530.2 514.8

7.18 4.93

12.56 8.37

33.4%

an additional energy penalty for cache misses, and
for each write in case of write-through caches (as
in the 486DX2 and the ‘934).

These observations point to the large energy
savings that can be attained through a reduction
in the number of memory accesses. This moti-
vates the need for development of optimizations
to achieve this reduction at all levels of the soft-
ware design process, starting from higher level de-
cisions down to the generation of the final assem-
bly code. At the higher level, some ideas for con-
trol flow transformations [22] and data structure
design for signal processing applications have been
proposed [23] by other researchers. Our experi-
ments provide physical data to analyze these ideas
quantitatively.

Attempts can also be made to reduce mem-
ory operations during generation of the final code.
This can be done automatically if compilers are
used, but the basic ideas are applicable even if the
assembly code is created manually. This is the
level that we explored further using the instruc-
tion level analysis technique. The technique pro-
vides the guiding information as described above,
and is also used to quantify the effectiveness of
different ideas.

During compilation, the most effective way of
reducing memory operands is through better uti-
lization of registers. The potential of this idea
was demonstrated through some experiments in
the case of the 486DX2 [24] and the results are
also shown in Table 5. The first program in the ta-
ble is a heapsort program (“sort” [25]). hlcc.asm
is the assembly code for this program generated by
lcc, a general purpose ANSI C compiler [26]. The
sum of the observed average CPU and memory
currents is given in the table above. The program

execution times and overall energy costs are also
reported. The generated code for the main routine
is shown on the left in Table 9. While 1cc gener-
ates good code in general, it often makes tradeoffs
in favor of faster compilation time and lesser com-
piler complexity. For example, register allocation
is performed only for temporary variables. Local
and global variables for the program are normally
not allocated to registers. Optimizations were per-
formed by hand on this code, in order to facilitate
a more aggressive use of register allocation. The
final code is shown on the right in Table 9. The
energy results are shown in Column 3 of Table 5.
There is a 40% reduction in the CPU and memory
energy consumption for the optimized code. Re-
sults for another program (circle) are also shown
in Table 5. Large energy reduction, about 33%, is
observed for this program too.

It should be noted that register allocation has
been the subject of research for several years due
to its role in traditional compilation. The results
of our study show that this research also has an
immediate application in compilation for low en-
ergy. Further, it also motivates the aggressive
use of known techniques, and the development of
newer techniques in this direction.

On a related note, an interesting RISC wvs.
CISC power tradeoff is suggested by the follow-
ing observation. In the 486DX2, a memory read
that hits the cache is about 100mA more expen-
sive than a register read. This difference is only
10mA in the case of the ‘934 (compare entries 2
and 3 for the two processors in Table 1). The
smaller difference can be attributed to the larger
size of the register file in the ‘934, which leads to
a higher power cost for accessing registers. The
‘934 has 136 registers, as opposed to only 8 in the

Instruction Level Power Analysis and Optimization of Software 11

Table 6. Effect of instruction reordering in the ‘934

No. Instruction

Register contents

1 fmuls %E8,Y%£4,%f0 %£8=0, %f4=0)
2 andcc %gl,0xaaa,}10 (%g1=0x555)
3 faddd %£10,%f12,%f14 (%£10=0x123456, %f12=0Oxaaaaaa)
4 1d [0x555],%05
5 s11 %o04,0x7,%06 (%04=0x707)
6 sub %i3,%i4,%i5 (%hi3=0x7f, %i4=0x44)
7 or %g0,0xff,%10
Sequence Current (mA4)
a 1,2,3,4,5,6,7 227.5
b 1,3,5,7,2,4,6 224
¢ 1,4,7,2,5,3,6 226
d 2,3,7,6,1,5,4 228
e 5,3,1,4,6,7,2 223.5

486DX2. A large register file is characteristic of
RISC architectures. Availability of more registers
can help to reduce memory accesses, leading to
power reduction. But on the other hand, a larger
register file also means that each register access
itself will be costlier.

5.2. Energy Cost Driven Code Generation

Code generation refers to the process of translat-
ing a high-level problem specification into machine
code. This is either done automatically through
compilers, or in certain design situations, it is done
by hand. In either case, code generation involves
the selection of the instructions to be used in the
final code, and this selection is based on some cost
criterion. The traditional cost criteria are either
the size or the running time of the generated code.
The main idea behind energy cost driven code gen-
eration is to select instructions based on their en-
ergy costs instead. The instruction energy costs
are obtained from the analysis described in the
previous sections.

An energy based code generator was created
for the 486DX2 using this idea. An existing tree
pattern based code generator selected instructions
based on the number of cycles they took to exe-
cute. It was modified to use the energy costs of the
instructions instead. Interestingly, it was found
that the energy and cycle based code generators
produced very similar code.

This observation provides quantitative evi-
dence for a general trend that was observed for
all the subject processors. This is that energy
and running times of programs track each other
closely. It was consistently observed that the dif-
ference in average current for sequences that per-
form the same function is never large enough to
compensate for any difference in the number of cy-
cles. Thus, the shortest sequence is also invariably
the least energy sequence. Since this observation
holds for all the subject processors, each of which
represents a distinct architecture style, it is rea-
sonable to expect that it will also hold for most
other processors that exist today.

This is a very important observation, and some-
thing that has not been addressed in previous lit-
erature. It can be considered as empirical justifi-
cation for a powerful guideline for software energy
reduction for today’s processors - as a first step to-
wards energy reduction, do what needs to be done
to improve performance. Potentially large energy
reductions can be obtained if this observation is
used to guide high-level decisions like hardware-
software partitioning and choice of algorithm. It
should be noted that this guideline is motivated
and justified by the results of our instruction level
analysis. Without the physical corroboration pro-
vided by the results, we would not have been able
to put forth this guideline.

It also bears mentioning that it is possible that
there may be certain application specific proces-
sors where this observation may not hold in gen-
eral. It is also possible that aggressive use of use

12 Tiwaeri, Malik, Wolfe, Lee

Table 7. Results for Different Energy Optimization Techniques for the DSP

Benchmark Original Packing Scheduling Swapping
FJex1 Energy (1078J) 2.79 2.46 2.12
Energy Reduction 12.0% 24.0%
Flex2 Energy (1078J) 3.91 3.14 2.83
Energy Reduction 19.7% 27.7%
LP_FIR60 Energy (1078J) 57.60 30.80 25.60
Energy Reduction 46.6% 55.6%
IIR4 Energy (1078J) 10.10 7.47 6.78 6.37
Energy Reduction 26.3% 33.1% 37.2%
FFT2 Energy (1078J) 9.59 9.35 8.97 8.64
Energy Reduction 3.4% 7.4% 10.9%

of power management and other low power design
optimizations may also lead to situations where
the fastest code may not always be the least en-
ergy code. While these cases remain to be iden-
tified, code generation based on energy costs will
be useful in its own right for these cases.

5.8. Instruction Reordering for Low Power

Reordering of instructions in order to reduce
switching between consecutive instructions is a
method for energy reduction that does not involve
a corresponding reduction in the number of cycles.
An instruction scheduling technique based on this
idea has been proposed in another work [27]. In
this, instructions are scheduled in order to mini-
mize the estimated switching in the control path
of an experimental RISC processor. Our experi-
ments, however, indicate that in terms of net en-
ergy reduction for the entire processor, instruc-
tion reordering may not always be effective. It
has been observed to have very limited impact in
the case of the 486DX2 and the ‘934. Table 6 il-
lustrates this with an example. As can be seen,
different reordering of the given sequence of in-
structions lead to very little change in the mea-
sured average current. The idea behind reordering
instructions can be seen as an attempt to reduce
the overall circuit state overhead between consec-
utive instructions. But as seen in Section 4.2, this
quantity is bounded in a small range and does not
show much variation in the 486DX2 and the ‘934.

In the case of the DSP, however, this quan-
tity is more significant and does show relatively
greater variation (refer to Section 4.2 and Table 3).
Thus, instruction reordering is more beneficial for

this processor. A scheduling algorithm that uses
the measured overhead costs was developed for
this processor [15]. The data in Table 7 illus-
trates the effectiveness of this algorithm. This
table shows the impact of different software en-
ergy optimization techniques that are applicable
for the DSP (“packing” and “swapping” will be
discussed later). Five standard signal processing
FJex1
and FJex2 are real Fujitsu applications for vec-
tor preprocessing. LP_FIR60 is a length-60 lin-
ear phase FIR filter. IIR4 is a fourth-order direct
form IIR filter, and FFT2 is a radix-2 decimal-in-
time FFT butterfly. The last three programs were
taken from the TMS320 embedded DSP examples
in [28] and translated into native code for the tar-
get DSP processor. Column 2 shows the initial
energy consumption of the programs. Columns 3,
4, and 5 show the energy consumption and the
overall percent energy reduction after the applica-
tion of each technique. The three techniques are
applied one after the other, from left to right. The
percent by which the values in Column 4 are lower
than those in Column 3 quantifies the effectiveness
of instruction scheduling alone. As shown, up to
14% reduction in energy (for FJex1) has been ob-
served using this algorithm. Table 10 shows the
initial code for IIR4, and the final code after all
three optimizations. For this example, instruction
scheduling alone leads to a 9.3% reduction in en-
ergy.

Switching on the address and data pins is a
specific manifestation of the effect of circuit state.
Software transformations to reduce this switch-

programs were used for the experiment.

ing are believed to be a possible energy reduc-
tion method. The large capacitance associated
with these pins can indeed lead to greater current

Instruction Level Power Analysis and Optimization of Software 13

Current (mA)

packed
65.1

unpacked

60.4 | 3

n

Cycl
on ycles

Fig. 1. Comparison of energy consumption for packed and unpacked instructions.

when these pins switch. However, there are some
practical considerations that should be noted in
this regard. First, the presence of on-chip caches
greatly reduces external traffic. In addition the
traffic becomes unpredictable making it harder to
model the correlation between consecutive exter-
nal accesses. Second, real systems often use exter-
nal buses and memories that are slower than the
CPU, necessitating the use of “wait states”. This
implies that, on the average, pins switch less of-
ten. Thus, for instance, in the case of the 486DX2
system, switching on the address and data pins
had only a limited impact for most programs -
even for back to back writes, the impact of greater
switching on the address lines was less than 5%.
Finally, even for processors without caches, it is
difficult to model this switching for general pro-
grams. The necessary information is fully avail-
able only at run-time. However, reasonable mod-
els may be feasible for more structured applica-
tions like signal processing, and this bears further
investigation.

5.4. Processor Specific Optimizations

Instruction level power analysis of a given proces-
sor can lead to the identification of features spe-
cific to that processor that can then be exploited
for energy eflicient software. We identified such
specific features for each of the subject processors.
Some of the more noteworthy examples are briefly

described below.

Instruction Packing The DSP has a special
architectural feature called instruction packing
that allows an ALU instruction and a memory
data transfer instruction to be packed into a sin-
gle instruction. The packed instruction executes
in one cycle, as opposed to a total of two for the
sequence of two unpacked instructions. Interest-
ingly, we found that the use of packing always
leads to large energy reductions, even though a
packed instruction represents the same function-
ality as a sequence of two unpacked instructions.
Figure 1 illustrates this graphically. The aver-
age current for a certain sequence of n packed
instructions is only marginally greater than for
the corresponding sequence of 2n unpacked in-
structions. Therefore, since the unpacked instruc-
tions complete in twice as many cycles, their en-
ergy consumption (proportional to the area under
the graph) is almost twice that of the packed in-
structions. Thus, instructions should be packed
as much as possible.

Table 10 illustrates the application of packing
for the example IIR4. Instructions with two op-
codes separated by a colon are packed instruc-
tions, e.g., MUL:LAB. The use of packing leads to
large energy savings for real programs (e.g. 26%
for IIR4 and 47% for LP FIR60, as shown in Col-
umn 3 of Table 7). The substantial savings at-
tainable also make it worthwhile to develop pro-
gram transformation and scheduling techniques
that can lead to better utilization of instruction
packing.

Dual Memory Loads The Fuyjitsu DSP has
two on-chip data memory banks. A special dual

14 Tiwaeri, Malik, Wolfe, Lee

Table 8. Software controlled power management in the ‘934

Instruction: or %i0,0,%10

Units powered down

Current (mA4)

% Energy Reduction

None

SDI

FPU

DMA,FPU
FIFO,FPU
SDI,DMA,FIFO,FPU

198
185
176
172
163
154

0.0
6.6
11.1
13.1
17.7
22.2

load instruction can transfer two operands, one
from each memory, to registers in one cycle. The
same task can also be attained by two single load
instructions over two cycles. However, we found
that the average current for the latter was only
marginally lower, and thus, doubling of execution
cycles implies a corresponding increase in energy
consumption. The large energy difference also
justifies the use of memory allocation techniques
that can lead to better utilization of dual loads.
A static memory allocation technique based on
simulated annealing was developed for this pur-
pose [29]. Application of this technique led to a
47% energy reduction over the case where data is
assigned to only bank for LP_FIR60. Our observa-
tions also suggest that other memory allocations
techniques developed from the point of view of
improving performance can also find direct appli-
cation for energy reduction [30].

It should be noted that both the above features
are not unique to the Fujitsu DSP, but are also
provided by several other popular DSP proces-
sors, e.g., the Motorola 56000 series. The above
observations are likely to be valid for these other
processors too.

Swapping Multiplication Operands The re-
sults of our analysis of the Fujitsu DSP indicate
that the on-chip multiplier on this processor is a
major source of energy consumption for signal pro-
cessing applications. This motivated a more de-
tailed analysis of power consumption for multiply
instructions. It was discovered that similar varia-
tions in the values of the two operands lead to dif-
ferent degrees of variations in the power consump-
tion of multiply operations. This is reasonable,
since the multiplier is based on the Booth multipli-
cation algorithm, which treats the two operands in

very different ways. We found that an appropriate
swapping of the operands, in order to exploit this
asymmetry, leads to up to 30% reduction in mul-
tiplication energy costs. This can translate into
appreciable energy reduction for entire programs,
as shown in Column 5 of Table 7. For example,
for LP_FIR60, the use of operand swapping reduces
the energy consumption of the packed code by an
additional 16%.

Software Controlled Power Management
The ‘934 provides a software mechanism for pow-
ering down parts of the CPU. By setting appro-
priate bits in a system control register through
a specified sequence of instructions, the clock in-
puts to certain modules can be enabled or dis-
abled. We were able to quantify the effectiveness
of this mechanism by using our analysis technique.
Table 8 shows the measured power reductions at-
tained for an OR instruction, when some combina-
tions of the SDRAM interface (SDI), DMA mod-
ule, floating-point unit (FPU), and floating-point
FIFOs are powered down. It is evident from the
results, that power management, i.e., powering
down of unneeded modules can lead to significant
power savings. It should also be noted that au-
tomatic power management will be a more effec-
tive and more generally applicable power reduc-
tion technique. The energy overhead associated
with power management will be much less if it
is controlled by logic internal to the CPU, rather
than through a sequence of instructions. The tem-
poral resolution of the power management strat-
egy will also be much finer, since it can then be
applied on a cycle by cycle basis.

Instruction Level Power Analysis and Optimization of Software

Table 9. 486DX2 Software Energy Optimization Example: sort.c

Compiler Generated Code

Energy Optimized Code

sort:

push
push
push
push

cmp

cmp
jge
lea

mov
add

ebx

esi

edi

ebp

ebp,esp

esp,24

edi,dword ptr 014H[ebp]
esi,1

ecx,esi

esi,edi

esi,cl

esi,1[esil

dword ptr -20[ebp],esi
dword ptr -8[ebpl,edi

edi,dword ptr -20[ebp]
edi,1

L7

edi,dword ptr -20[ebp]
edi,1

dword ptr -20[ebp],edi
edi, [edi*4]

esi,dword ptr 018H[ebp]
edi,esi

edi,dword ptr [edi]
dword ptr -12[ebp],edi
L8

edi,dword ptr 018H[ebp]
esi,dword ptr -8[ebp]
esi,[esi*4]

esi,edi

ebx,dword ptr [esi]
dword ptr -12[ebp],ebx
edi,dword ptr 4[edil
dword ptr [esi],edi
edi,dword ptr -8[ebp]
edi,1

dword ptr -8[ebpl,edi
edi,1

L8

edi,dword ptr 018H[ebp]
esi,dword ptr -12[ebp]
dword ptr 4[edil,esi
L2

edi,dword ptr -20[ebp]
dword ptr -16[ebp],edi
edi, [edi*2]

dword ptr -4[ebpl,edi
L12

edi,dword ptr -4[ebp]
esi,dword ptr -8[ebp]
edi,esi

L14

edi, [edi*4]

esi,dword ptr 018H[ebp]
ebx,edi

ebx,esi

sal
add

cmp

Jmp

pop
pop
pop
pop
ret

ebx,dword ptr [ebx]
edi,dword ptr 4[edi] [esi]
ebx,edi

L14

edi,dword ptr -4[ebp]
edi,1[edil

dword ptr -4[ebpl,edi

edi,dword ptr -12[ebp]
esi,dword ptr -4[ebp]
esi,[esi*4]

ebx,dword ptr 018H[ebp]
esi,ebx

esi,dword ptr [esi]
edi,esi

L16

edi,2

esi,dword ptr 018H[ebp]
ebx,dword ptr -16[ebp]
ecx,edi

ebx,cl

ebx,esi

ecx,dword ptr -4[ebp]
dword ptr -24[ebpl,ecx
ecx,edi

edi,dword ptr -24[ebp]
edi,cl

edi,esi

edi,dword ptr [edi]
dword ptr [ebx],edi
edi,dword ptr -4[ebp]
dword ptr -16[ebp],edi
esi,edi

esi,edi

dword ptr -4[ebp]l,esi
L12

edi,dword ptr -8[ebp]
edi,1[edil
dword ptr -4[ebpl,edi

edi,dword ptr -4[ebp]
esi,dword ptr -8[ebp]
edi,esi

L11

edi,dword ptr -16[ebp]
edi, [edi*4]

esi,dword ptr 018H[ebp]
edi,esi

esi,dword ptr -12[ebp]
dword ptr [edi],esi
L3

esp,ebp
ebp
edi
esi
ebx

sort:
push
mov
mov
sar
inc
mov
mov
L3:
cmp
jle
dec
mov
mov
mov
jmp
L7:
mov
mov
mov
mov
dec
cmp
jne
mov
jmp
LS:
mov
mov
add
mov
jmp
Li1:
cmp
jge
mov
mov
cmp
jge
inc
L14:
mov
cmp
jge
mov
mov
mov
add
jmp
L16:
mov
inc
L12:
cmp
jle
mov
mov
jmp
L2:
pop
ret

ebp

edi,dword ptr 08H[esp]
esi,edi

esi,1

esi

ebp,esi

ecx,edi

ebp,1

L7

ebp

esi,dword ptr OcH[esp]

edi,dword ptr [edi*4][esil

ebx,edi
L8

edi,dword ptr OcH[esp]
esi,dword ptr 4[edil

ebx,dword ptr [ecx*4][edil
dword ptr [ecx*4][edi],esi

ecx
ecx,1

L8

dword ptr 4[edil,ebx
L2

edi,ebp
edx,edi
edi,edi
eax,edi
L12

eax,ecx
L14
esi,dword ptr OcH[esp]

edi,dword ptr [eax*4][esil
edi,dword ptr 4[eax*4][esi]

L14
eax

esi,dword ptr OcH[esp]
ebx,dword ptr[eax*4] [esi]
L16

edi,dword ptr [eax*4][esil
dword ptr [edx*4][esi],edi

edx,eax
eax,eax
L12

eax,ecx
eax

eax,ecx
L11
esi,dword ptr OcH[esp]

dword ptr [edx*4][esi],ebx

L3

ebp

15

16 Tiwaeri, Malik, Wolfe, Lee

6. Future Directions

There are several directions in which we would
like to extend this work. The first of these would
be to extend the analysis methodology to proces-
sors whose architecture and implementation style
is significantly different from the processors stud-
ied here. We would specially like to analyze pro-
cessors that are based on superscalar and VLIW
architectures. These seem to be the architectures
of choice for high performance processors in the
near future, and with ever increasing integration
and clock frequencies, the power problem will be-
come even more acute for these processors. We
would also like to continue to work on avenues
for power reduction through software optimiza-
tion, and development of automated tools where
applicable. The results of our work show that a
number of ideas from existing literature on tradi-
tional software optimization can be used here, but
new techniques will also be developed. The ability
to evaluate the power cost of the software compo-
nent of an embedded system can also be used as
a first step towards ideas and tools for hardware-
software co-design for low power. Finally, the soft-
ware perspective is essential in understanding the
power consumption in processors. This additional
perspective can help guide us in the search for
more power efficient architectures, and this issue
will be explored in the future.

7. Conclusions

The increasing role of software in today’s sys-
tems demands that energy consumption be stud-
ied from the perspective of software. This paper
describes a measurement based instruction level
power analysis technique that makes it feasible to
effectively analyze software power consumption.
The main observations resulting from the appli-
cation of this technique to three commercial pro-
cessors were presented here. These provide use-
ful insights into the power consumption in proces-
sors. They also illustrate how a systematic analy-
sis can lead to the identification of sources of soft-
ware power consumption. These sources can then
be targeted through suitable software design and
transformation techniques. The ability to quan-
titatively analyze the power consumption of soft-

ware makes it possible to deal with the overall
system power consumption in an integrated way.
A unified perspective allows for the development
of more effective power reduction techniques that
are applicable for the entire system.

References

1. T. Sato, M. Nagamatsu, and H. Tago. Power and
performance simulator: ESP and its application for
100MIPS/W class RISC design. In Proceedings of
1994 IEEE Symposium on Low Power Electronics,
pages 46—47, San Diego, CA, Oct. 1994.

2. P. w. Ong and R. H. Yan. Power-conscious software
design - a framework for modeling software on hard-
ware. In Proceedings of 1994 IEEE Symposium on
Low Power Electronics, pages 36—37, San Diego, CA,
Oct. 1994.

3. P. Landman and J. Rabaey. Black-box capacitance
models for architectural power analysis. In Proceed-
ings of the International Workshop on Low Power
Design, pages 165-170, Napa, CA, April 1994.

4. P. Landman and J. Rabaey. Activity-sensitive ar-
chitectural power analysis for the control path. In
Proceedings of the International Symposium on Low
Power Design, pages 93-98, Dana Point, CA, April
1995.

5. L. W. Nagle. SPICE2: A computer program to sim-
ulate semiconductor circuits. Technical Report ERL-
M520, University of California, Berkeley, 1975.

6. A. Salz and M. Horowitz. IRSIM: An incremental
MOS switch-level simulator. In Proceedings of the
Design Automation Conference, pages 173-178,1989.

7. C. X. Huang, B. Zhang, A. C. Deng, and B. Swirski.
The design and implementation of PowerMill. In
Proceedings of the International Symposium on Low
Power Design, pages 105-110, Dana Point, CA, April
1995.

8. V. Tiwari, S. Malik, and A. Wolfe. Power analysis
of embedded software: A first step towards software
power minimization. IEEE Transactions on VLSI
Systems, 2(4):437—445, December 1994.

9. Intel Corp. Intel{86 Microprocessor Family, Pro-
grammer’s Reference Manual, 1992.

10. Intel Corp. 1486 Microprocessor, Hardware Reference
Manual, 1990.

11. Fujitsu Microelectronics Inc. SPARClite Embedded
Processor User’s Manual, 1993.

12. Fujitsu Microelectronics Inc. SPARClite Embed-
ded Processor User’s Manual: MB86934 Addendum,
1994.

13. V. Tiwari, S. Malik, and A. Wolfe. Power analysis
of the Intel 486DX2. Technical Report CE-M94-5,
Princeton Univ., Dept. of Elect. Eng., June 1994.

14. V. Tiwari and Mike T.-C. Lee. Power analysis of a
32-bit embedded microcontroller. Accepted for pub-
lication in the VLSI Design Journal.

15. T. C. Lee, V. Tiwari, S. Malik, and M. Fujita. Power
analysis and low-power scheduling techniques for em-
bedded DSP software. In Proceeding of the Inter-
national Symposium on System Synthesis, Cannes,
France, Sept. 1995.

16.

17.

18.

19.

20.

21.

22.

Instruction Level Power Analysis and Optimization of Software 17

Table 10. DSP Software Energy Optimization Example : IIR4

Portion of Original Code

After Energy Optimizations

LDI coefa,X0

LDI xn,X2

Mov (x2),C

LDI datanml ,X3
LAB (X3+1), (X0+1)
MUL:

LAB (X3+1), (X0+1)
MSHC:

LAB (X3+1), (X0+1)
LDI datan,X4
MSHC:

LAB (X3+1), (X0+1)
MSHC:

LDI coefb,x1
MSHC:

Mov c, (X4)

RESC:

LAB (X4+1), (X1+1)
MUL:

LAB (X4+1), (X1+1)
MSHC:

LAB (X4+1), (X1+1)
MSHC:

LAB (X4+1), (X1+1)
MSHC:

MSHC:

Mov c, (X4)

LDI coefa,X0

LDI coefb,X1

LDI xn,X2

LDI datanml ,X3
LDI datan,X4

Mov (x2),¢c

LAB (X0+1), (X3+1)
MUL:LAB (X0+1), (X3+1)
MSMC:LAB (X0+1), (X3+1)
MSMC:LAB (X0+1), (X3+1)
MSHC:

MSHC:

Mov c, (X4)
RESC:LAB (X1+1), (X4+1)
MUL:LAB (X1+1), (X4+1)
MSMC:LAB (X1+1), (X4+1)
MSMC:LAB (X1+1), (X4+1)
MSHC:

MSHC:

Mov c, (X4)

P. Landman and J. Rabaey. Power estimation for high
level synthesis. In Proceedings of the European De-
sign Automation Conference, pages 361-366, Paris,
Feb. 1993.

V. Tiwari, S. Malik, and P. Ashar. Guarded evalu-
ation: Pushing power management to logic synthe-
sis/design. In Proceedings of the International Sym-
postum on Low Power Design, pages 221-226, Dana
Point, CA, April 1995.

S. Gary et al. PowerPC 603, a microprocessor for
portable computers. IEEE Design & Test of Com-
puters, pages 14-23, Winter 1994.

A. Correale. Overview of the power minimization
techniques employed in the IBM PowerPC 4xx em-
bedded controllers. In Proceedings of the Interna-
tional Sympositum on Low Power Design, pages 75—
80, Dana Point, CA, April 1995.

M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and
M. Papaefthymiou. Precomputation-based sequential
logic optimization for low power. IEEE Transactions
on VLSI Systems, pages 426-436, December 1994.
L. Benini and G. De Micheli. Transformation and syn-
thesis of fsms for low power gated clock implementa-
tion. In Proceedings of the International Symposium
on Low Power Design, pages 21-26, Dana Point, CA,
April 1995.

S. Wuytack, F. Franssen F. Catthoor, L. Nachter-
gaele, and H. De Man. Global communication and
memory optimizing transformations for low power

23.

24.

25.

26.

27.

28.

29.

30.

systems. In Proceedings of the International Work-
shop on Low Power Design, pages 203-208, Napa,
CA, April 1994.

S. Wuytack, F. Catthoor, and H. De Man. Transform-
ing set data types to power optimal data structures. In
Proceedings of the International Symposium on Low
Power Design, Dana Point, CA, April 1995.

V. Tiwari, S. Malik, and A. Wolfe. Compilation tech-
niques for low energy: An overview. In Proceedings
of 1994 IEEE Symposium on Low Power Electronics,
pages 38-39, San Diego, CA, Oct. 1994.

Press et al. Numerical Recipes in C. Cambridge Univ.
Press, 1988.

C. W. Fraser and D. R. Hanson. A retargetable com-
piler for ANSI C. SIGPLAN Notices, pages 2943,
Oct. 1991.

C. L. Su, C. Y. Tsui, and A. M. Despain. Low power
architecture design and compilation techniques for
high-performance processors. In IEEE COMPCON,
Feb. 1994.

Texas Instruments. Dzigital Signal Processing Appli-
cations - Theory, Algorithm, and Implementations,
1986.

T. C. Lee and V. Tiwari. A memory allocation tech-
nique for low-energy embedded DSP software. In Pro-
ceedings of 1995 IEEE Symposium on Low Power
Electronics, San Jose, CA, Oct. 1995.

A. Sudarsanam and S. Malik. Memory bank and

register allocation in software synthesis for ASIPs.

18 Tiwaeri, Malik, Wolfe, Lee

In Proceedings of the International Conference on
Computer-Aided Design, San Jose, CA, Nov. 1995.

Vivek Tiwari received the B. Tech degree in Com-
puter Science and Engineering from the Indian Insti-
tute of Technology, New Delhi, India in 1991. Cur-
rently he is working towards the Ph.D. degree in the
Department of Electrical Engineering, Princeton Uni-
versity. He will be joining Intel Corporation, Santa
Clara, CA, in fall 1996.

His research interests are in the areas of Computer
Aided Design of VLSI and embedded systems and in
microprocessor architecture. The focus of his current
research is on tools and techniques for power estima-
tion and low power design. He has held summer posi-
tions at NEC Research Labs (1993), Intel Corporation
(1994), Fujitsu Labs of America (1994), and IBM T.
J. Watson Research Center (1995), where he worked
on the above topics.

He received the IBM Graduate Fellowship Award
in 1993, 1994, and 1995, and a Best Paper Award at
ASP-DAC ’95.

Sharad Malik received the B. Tech. degree in Elec-
trical Engineering from the Indian Institute of Tech-
nology, New Delhi, India in 1985 and the M.S. and
Ph.D. degrees in Computer Science from the Univer-
sity of California, Berkeley in 1987 and 1990 respec-
tively.

Currently he is on the faculty in the Department of
Electrical Engineering, Princeton University. His cur-
rent research interests are: design tools for embedded
computer systems, synthesis and verification of digital
systems.

He has received the President of India’s Gold Medal
for academic excellence (1985), the IBM Faculty De-
velopment Award (1991), an NSF Research Initiation
Award (1992), a Best Paper Award at the IEEE Inter-
national Conference on Computer Design (1992), the

Princeton University Engineering Council Excellence
in Teaching Award (1993, 1994, 1995), the Walter C.
Johnson Prize for Teaching Excellence (1993), Prince-
ton University Rheinstein Faculty Award (1994) and
the NSF Young Investigator Award (1994). He
serves/has served on the program committees of DAC,
ICCAD and ICCD. The is on the editorial boards of
the Journal of VLSI Signal Processing and Design Au-
tomation for Embedded Systems.

Andrew Wolfe received a B.S.E.E. in Electrical En-
gineering and Computer Science from The Johns Hop-
kins University in 1985 and the M.S.E.E and Ph.D. in
Electrical and Computer Engineering from Carnegie
Mellon University in 1987 and 1992 respectively. He
joined Princeton University in 1991, where he is cur-
rently an Assistant Professor in the Department of
Electrical Engineering. He served as Program Chair of
Micro-24 and General Chair of Micro-26 as well as on
the program committees of several IEEE/ACM confer-
ences. He has received the Walter C. Johnson award
for teaching excellence at Princeton. His current re-
search interests are in embedded systems, instruction-
level parallel architectures and implementations, opti-
mizing compilers and digital video.

Mike Tien-Chien Lee received his B.S. degree in
Computer Science from National Taiwan University
in 1987, and the M.S. degree and the Ph.D. degree
in electrical engineering from Princeton University, in
1991 and 1993, respectively.

He has been working at Fujitsu Laboratories of
America, Santa Clara, CA, as a Member of Research
Staff since 1994. Before then he was a Member of
Technical Staff at David Sarnoff Research Center,
Princeton, NJ, working on video chip testing. His re-
search interests include low-power design, embedded
DSP code generation, high-level synthesis, and test
synthesis. He received a Best Paper Award at ASP-
DAC’95.

