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Abstract

A method for computing nonlinear soft–tissue
deformation caused by simulated surgical pro-
cedures is presented. A mass–spring system is
used to model patient individual soft–tissue.
Instead of simulating dynamic behaviour, the
introduced approach directly estimates the
rest position of the system. Very fast and ro-
bust nonlinear soft–tissue deformation is com-
puted using an optimization approach.

The multi–layer soft–tissue model consid-
ers features like skin turgor and gravity. The
model takes into account the nonlinear stress–
strain relationship of soft–tissue and the fact
that soft–tissue is almost incompressible due
to its liquid components.

The approach to soft–tissue deformation is
part of an integrated system for craniofacial
surgical simulation. The system is capable of
simulating bone cutting and bone realignment
with integrated interactive collision detection.
Furthermore, soft–tissue deformation and cut-
ting due to the application of surgical instru-
ments can be visualized.

1 Introduction

The idea of estimating soft–tissue deforma-
tion due to bone realignment was formu-
lated by Vannier in 1983 [26]. In 1992 fur-
ther approaches to surgery simulation were
introduced by Kikinis [16, 1], followed by

Delingette in 1994 [8, 9, 7], Bohner in 1996
[3], Koch in 1996 [17], and Bro-Nielsen in 1998
[4]. These approaches use deformable vol-
umes, mass–spring models, or finite elements
to predict soft–tissue changes.

In this paper, a method for direct compu-
tation of soft–tissue deformation based on a
mass–spring model is presented. Instead of
simulating the dynamic behaviour, the intro-
duced approach directly estimates the rest po-
sition of the system. The method is part of
an integrated system for craniofacial surgical
simulation [13, 14, 24, 25]. The system is
capable of simulating a variety of craniofa-
cial surgical procedures. It consists of com-
ponents for simulating bone cutting and bone
realignment with integrated interactive colli-
sion detection and avoidance. Nonlinear soft–
tissue deformation and soft–tissue cutting can
be computed using a very fast and robust opti-
mization approach. The computation of soft–
tissue deformation does not require any pre-
processing time and is very efficient with re-
gard to memory. The system handles individ-
ual patient data sets. While the model of the
patient’s bone structure and the patient’s face
is provided by a CT scan and a surface laser
scan, respectively, the patient’s soft–tissue is
represented by a mass–spring system.

Mass–spring systems [22, 23] are not only
used to model deformable soft–tissue in sur-
gical simulation environments, but they are
also widely used to model other deformable
objects. They have been applied to a variety



of problems, such as cloth modeling [6, 10] and
facial animation [18].

Mass–spring models assume a discretization
of the object into n points xi with masses
mi. These points are linked by springs and
dampers. In order to compute the dynamics
of a mass–spring system, the relation between
position, velocity, and acceleration for point
xi at time t can be described by

mi
d2xi(t)

dt2
+ γ

dxi(t)

dt
+ Fint

i (t) = Fext
i (t) (1)

with γ denoting a damping factor, Fint
i de-

noting the internal elastic force caused by
strains of adjacent springs of xi and Fext

i de-
noting the sum of external forces. Thus, the
dynamics of the entire object is described by
a system of second-order ordinary differential
equations. Eq. 1 can be reduced to two cou-
pled first–order differential equations

dxi(t)

dt
= vi(t) (2)

dvi(t)

dt
=

Fext
i (t) − Fint

i (t) − γvi(t)

mi

(3)

with vi denoting the velocity of point xi.
Given initial values for xi, vi, Fint

i , and Fext
i

at time t, Euler’s method is commonly applied
to numerically integrate through time:

xi(t + ∆t) = xi(t) + ∆tvi(t) (4)

vi(t + ∆t) =

vi(t) + ∆t
Fext

i (t) − Fint
i (t) − γvi(t)

mi

(5)

This scheme can be used to compute the dy-
namic behavior of a deformable mass–spring
model [15]. Other approaches employ higher–
order Runge–Kutta methods [2] or finite dif-
ferences [11].

Excellent results can be achieved by apply-
ing these methods in order to animate de-
formable models. However, due to numeri-
cal problems and slow convergence these ap-
proaches are not very well suited to estimate

the rest position of mass–spring systems. In
this paper, a new method for estimating the
rest position of a deformable soft–tissue model
is introduced. Instead of simulating the dy-
namic behavior of soft–tissue, a very fast and
robust optimization approach is applied to di-
rectly estimate the deformation due to bone
realignment or due to the application of sur-
gical instruments.

The paper is organized as follows. Due to
the fact, that individual patient data sets are
used for soft–tissue prediction, the next sec-
tion describes the generation of 3–D models
of the patient’s bone structure and the pa-
tient’s face. In Section 3 the structure of the
soft–tissue model is described. In Section 4
the approach to nonlinear soft–tissue defor-
mation is introduced. Simulation results are
presented in Section 5.

2 Data Acquisition

Triangle meshes that describe the surface of
the face and the bone structure of the head
are the basic models of the surgery simula-
tion system. These meshes are built using two
different sensory modalities. A computer to-
mography scan provides the anatomically cor-
rect representation of the bone structure and
a laser scanner records a photorealistic, 3–D
model of the patient’s face. The triangle mesh
that represents the surface of the bone struc-
ture is generated by applying the Marching–
Cubes algorithm [19] to the CT scan. The tri-
angle mesh that represents the face surface is
computed from the depth and color map of the
laser scan. Both modalities are registered by
exploiting corresponding cephalometric land-
marks of the laser scan and the skin surface
taken from the CT scan [15].

The extraction of isosurfaces from the CT
volume data set and the surface reconstruc-
tion from the Cyberware range scanner data
set easily generate hundreds of thousends
of triangles. In order to enable interactive
visualization and handling of these triangle
meshes they must be decimated. In [5] a
simplification method is proposed that incor-



porates the one–sided Hausdorff distance as
global error criterion. This algorithm is ap-
plied to the triangle meshes that describe the
bone and the face surface. It guarantees that
the deviation of the original and the deci-
mated mesh is not larger than the given one–
sided Hausdorff distance.

3 Soft–Tissue Model

The proposed approach to compute soft–
tissue deformation caused by surgical proce-
dures employs a multi–layer spring model.
The soft–tissue model basically consists of
three types of points, which are connected
with springs. Soft–tissue point set P con-
sists of soft–tissue points. A soft–tissue point
p ∈ P is characterized by its position p =
(x, y, z)T and a mass m. Boundary point set
PB ⊂ P consists of boundary points which are
fixed in space. The soft–tissue model is con-
nected to several bone structures. For each
bone structure i there exists a bone point set
P i

B ⊂ P . Bone points represent connections
to a bone structure. In contrast to boundary
points they are not fixed in space, but can
be transformed by moving the correspond-
ing bone structure. Point set P ∗

B represents
all bone points. Point set Ps represents all
soft-tissue points, which are neither bone nor
boundary points: Ps = P \ (PB ∪ P ∗

B).
All points are connected with springs. A

spring spi is parametrized by its initial length
li and a spring constant ki, which describes
its stiffness. All springs are categorized into
sets according to their location and function.
This allows to model differentiated elasto–
mechanical properties of soft–tissue layers by
assigning different spring constants k to each
spring set.

Layer spring sets represent soft–tissue lay-
ers. The number and the thickness of
soft–tissue layers are variable. Simulations
have been performed with up to six lay-
ers. Connecting–layer spring sets and diago-
nal connecting–layer spring sets connect soft–
tissue layers. All layer spring sets have the
same structure as the triangulated skin sur-

face. The connecting–layer springs form pris-
matic volume elements. Spring set S repre-
sents all springs of the model.

All point sets and spring sets are illustrated
in Fig. 1.
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Figure 1: Three–layer soft–tissue model.

All springs in a spring set are parametrized
by a spring constant k in order to model
the elasto–mechanical properties of the cor-
responding soft–tissue layer.

The spring set that represents the skin sur-
face can be initialized with an initial strain.
This strain corresponds to the so–called skin
turgor. In order to enable simulation of
gravity each soft–tissue point is character-
ized by a mass m. Each soft–tissue layer is
parametrized by an overall mass, which is dis-
tributed according to the topology and geom-
etry of the representing soft–tissue points.

Due to mass and the initial strain of the sur-
face, there are forces at each soft–tissue point.
In order to obtain a stable equilibrium of the
mesh, the resulting force at each soft–tissue
point has to be zero. This is achieved by de-
termining appropriate strains for all springs,
given the initial strain of springs representing
the skin surface. In order to compute the sta-
ble equilibrium an optimization approach is
applied.

In the left–hand image of Fig. 2 initial forces
at soft–tissue positions due to skin turgor and
mass are visualized using an individual pa-
tient data set. The right–hand image of Fig. 2
illustrates the forces after applying the opti-
mization approach. All internal forces are di-
verted to bone points, which have a fixed po-
sition. The optimization process required ap-
proximately seven seconds on an SGI Octane,
R12000.



Figure 2: Forces at soft–tissue points. Left:
Initial state with forces at soft–tissue points
due to mass and skin turgor. Right: Sta-
ble equilibrium. Forces are diverted to bone
boints which have a fixed position.

4 Nonlinear Soft–Tissue

Deformation

In order to simulate soft–tissue deformation
the state of the model is described by three
functions. These functions are parametrized
by all soft–tissue points p ∈ Ps which are nei-
ther bone nor boundary points. Function ff

(Eq. 7) describes the sum of absolute values
of resulting forces Fi for each soft–tissue point
pi ∈ Ps with Si denoting all springs spj, that
are connected with pi (p1,j = pi).

Fi =
∑

j:spj∈Si

kj

(
1 − lj

|pi − p2,j|
)

(p2,j − pi)

+ (0, 0,−mig)T (6)

ff (Ps) =
∑

i:pi∈Ps

|Fi| (7)

Function fe (Eq. 9) describes the sum of all
spring energies with S denoting the set of all
springs.

Ei =
1

2
ki (li − |p1,i − p2,i|)2 (8)

fe (Ps) =
∑

i:spi∈S

Ei (9)

Function fv (Eq. 10) describes the differ-
ence of initial volumes v0,i and current vol-
umes vi of all prismatic volume elements. Due
to lack of space the equation for estimating

the volume of prismatic elements is omitted
here.

fv (Ps) =
∑

i

(v0,i − vi)
2 (10)

Functions ff and fv are equal to zero in the
stable equilibrium of the soft–tissue model.
Function fe does not equals zero due to the
fact that all springs can have a certain strain.

Soft–tissue deformation can be caused by
additional external forces, which are applied
to soft–tissue points, or by transforming soft–
tissue points to a fixed position. Transfor-
mation of a bone structure leads to the same
transformation of corresponding bone points
of the soft–tissue model. Additional external
forces or transformed bone points p ∈ P ∗

B re-
sult in increased values for ff , fe, and fv.

An optimization approach is used to esti-
mate the deformed soft–tissue model. The op-
timization process is applied in order to mini-
mize the spring mesh energy fe (Eq. 11), or to
minimize the internal forces ff (Eq. 12). Both
approaches take the volume of the soft–tissue
model into account. This is due to the fact
that soft–tissue is almost incompressible. The
components are weighted by λ. For both ap-
proaches the multidimensional conjugate gra-
dient method [21] is used. Tests have shown,
that the conjugate gradient method provides
reliable results and is very efficient with re-
gard to memory and computational complex-
ity [24].

P f
s = argmin (λff (Ps) + (1 − λ)fv(Ps)) (11)

P e
s = argmin (λfe(Ps) + (1 − λ)fv(Ps)) (12)

P f
s and P e

s describe the soft–tissue points
of the deformed soft–tissue model with mini-
mized energy and minimized resulting forces,
respectively. Experiments have shown, that
energy minimization is more robust and con-
verges faster compared with the force mini-
mization. However, the energy minimization
approach is not able to take gravity into con-
sideration.

The functions, which are used in the opti-
mization process, basically require the com-



putation of spring force (Eq. 6) and spring
energy (Eq. 9). In the linear case the absolute
value of spring force F is computed as F = k0s
with k0 denoting the spring constant and s de-
noting deformation (Hooke’s Law). However,
it has been shown, that soft–tissue has a non-
linear stress–strain relationship [12, 20].

The proposed optimization approach to
compute soft–tissue deformation has been ex-
tended in order to take nonlinear stress–strain
relationship into account. Instead of using a
constant value k0 to compute ff and fe, a
function k(s) is introduced, which leads to a
nonlinear stress–strain relationship:

F = k(s)s (13)

Fig. 3 illustrates the stress–strain relation-
ship for
k(s) = k0, k(s) = k0(1 + s2) and k(s) =
k0(1 + s2)2. Function k(s) can be chosen to
model linear or nonlinear stress–strain rela-
tionship. However, k(s) should always con-
verge against k0 for small deformation s. All
experimental results shown in Section 5 have
been performed with F = k0(1 + s2)2s, and

E = 1
2
k0

(
1
3
s4 + s2 + 1

)
s2.
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Figure 3: Nonlinear stress–strain relationship
with k0 = 1.

5 Results

The simulation methods for soft–tissue de-
formation and soft–tissue cutting have been
tested with six individual patient data sets
and several synthetic data sets. Fig. 4 shows

the bone structure and the photo–realistic
surface scan of a patient. Fig. 5 shows a phys-
iological movement of the patient’s lower jaw
and the resulting soft–tissue changes. Simu-
lations have been performed with three dif-
ferent soft–tissue models. Table 1 shows the
parameters for the soft–tissue models which
have been generated for this patient. Table
2 and Table 3 show the computation time re-
quired by the optimization process. Although
the visualization of simulation results is based
on SGI’s OpenInventor, the soft–tissue defor-
mation can be computed on any hardware
platform, such as Sun or PC. The simula-
tion process does not require any preprocess-
ing time. In general, the force–based mini-
mization process is more time consuming com-
pared with the energy–based approach. The
energy–based approach converges faster and is
more robust. However, the energy minimiza-
tion approach is not able to take gravity into
consideration. Taking the volume preserva-
tion function into account has different effects
on the minimization process. Function fv sup-
ports the convergence in case of force–based
minimization, but does not positively influ-
ence the convergence in case of energy–based
minimization.

Simulation results for a second individual
patient data set are shown in Fig. 6 and
Fig. 7. In this case two different surgical
options have been tested. Fig. 6 illustrates
the original bone structure, a simulated re-
alignment of a part of the lower jaw, and a
simulated realignment of the chin. The cor-
responding soft–tissue prediction is shown in
Fig. 7. This example illustrates the versatility
of computer–based surgical planning meth-
ods compared with planning methods that use
stereolithographic or milled models.

Fig. 8 illustrates the deformation of a syn-
thetic data set caused by a synthetic surgi-
cal instrument. Some soft–tissue points are
forced to a fixed position due to the synthetic
surgical instrument. In addition to bone and
boundary points these points are excluded
from the optimization process. Thus, the po-
sition of these points is not affected by the



optimization process.

Fig. 9 illustrates soft–tissue cutting. The
gap is caused by the initial strain of springs
which represent the skin surface. Two sim-
ulations have been performed with different
skin turgors. A soft–tissue cut is initiated due
to large external forces at soft–tissue points.
In this case, the topology of the soft–tissue
model is modified and the optimization ap-
proach is applied. This leads to the result
shown in Fig. 9.

Figure 4: Bone structure and photo–realistic
surface scan of a patient.

Figure 5: Simulated jaw movement for a pa-
tient. This result has been obtained using the
two–layer soft–tissue model described in Tab.
1.

Layers
Soft–
tissue
points

Springs Volumes

Memory
during
simula-

tion

2 954 5881 1748 2,8 MByte
4 1908 14941 2622 3,5 MByte
6 2862 24001 4370 4,3 MByte

Table 1: Parameters for three soft–tissue
models generated for the patient in Fig. 4
and Fig. 5.

Layers fe fe+fv ff ff+fv

2 0.3 0.6 3.1 0.8
4 1.2 3.7 7.3 4.8
6 3.3 6.4 12.2 10.8

Table 2: Computation time [s] for soft–tissue
deformation (Fig. 5). SGI Octane, MIPS
R12000, 300 MHZ, 128 MB. Functions ff , fe

and fv, that are used in the optimization pro-
cess, are defined in Eq. 7, 9, and 10.

6 Conclusion

In this paper, a new, very efficient and ro-
bust approach to nonlinear soft–tissue defor-
mation has been introduced. The approach
takes into account the nonlinear stress–strain
relationship of soft–tissue and the fact that
soft–tissue is almost incompressible due to its
liquid components. Mass and skin turgor are
integrated in the proposed soft–tissue model.

Layers fe fe+fv ff ff+fv

2 0.6 1.2 4.4 1.2
4 3.2 6.3 10.4 8.1
6 8.4 14.7 19.8 17.7

Table 3: Computation time [s] for soft–tissue
deformation (Fig. 4). PC, Pentium III 450
MHz, 128MB. Functions ff , fe and fv, that
are used in the optimization process, are de-
fined in Eq. 7, 9, and 10.



Figure 6: Simulated bone realignment. The
corresponding soft–tissue changes are shown
in Fig. 7.

Figure 7: Simulated soft–tissue deformation.
Fig. 6 shows the corresponding bone realign-
ment.

Instead of simulating the dynamic behaviour
the approach directly computes the rest posi-
tion of the deformed soft–tissue model due to
surgical procedures.

Ongoing work focusses on the integration
of muscles in order to simulate the patient’s
postoperative facial expressions. Further-
more, it is intended to perform clinical stud-
ies to estimate appropriate parameters for the
introduced soft–tissue model, such as num-
ber, thickness and elasto–mechanical proper-
ties of soft–tissue layers. Postoperative sur-
face scans, which are registered with the pre-
operative surface scan, will be used to com-
pare the simulated soft–tissue deformation

Figure 8: Simulated deformation using a syn-
thetic data set and a synthetic surgical instru-
ment.

Figure 9: Simulated cutting using a synthetic
data set with different values for skin turgor.

and the actual surgical result.
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