
A Framework for Fast and Accurate Collision Detectionfor Haptic InteractionArthur Gregory Ming C. Lin Stefan Gottschalk Russell TaylorDepartment of Computer ScienceUniversity of North CarolinaChapel Hill, NC 27599-3175fgregory,lin,stefan,taylorrg@cs.unc.eduAbstractWe present a framework for fast and accurate col-lision detection for haptic interaction with polygonalmodels. Given a model, we pre-compute a hybrid hier-archical representation, consisting of uniform grids andtrees of tight-�tting oriented bounding box trees (OBB-Trees). At run time, we use hybrid hierarchical rep-resentations and exploit frame-to-frame coherence forfast proximity queries. We describe a new overlap test,which is specialized for intersection of a line segmentwith an oriented bounding box for haptic simulation andtakes 6-36 operations excluding transformation costs.The algorithms have been implemented as part of H-COLLIDE and interfaced with a PHANToM arm andits haptic toolkit, GHOST, and applied to a number ofmodels. As compared to the commercial implementa-tion, we are able to achieve up to 20 times speedup inour experiments and sustain update rates over 1000Hzon a 400MHz Pentium II.1 IntroductionVirtual environments require natural interaction be-tween interactive computer systems and users. Com-pared to the presentation of visual and auditory in-formation, methods for haptic display are not as welldeveloped. Haptic rendering as an augmentation to vi-sual display can improve perception and understandingboth of force �elds and of world models populated inthe synthetic environments [6]. It allows users to reachinto virtual worlds with a sense of touch, so they canfeel and manipulate simulated objects.Haptic display is often rendered through what is es-sentially a small robot arm, used in reverse. Such de-vices are now commercially available for a variety of

con�gurations (2D, 3D, 6D, specialized for laparoscopyor general-purpose). The system used in this work wasa 6DOF-in/3DOF-out SensAble Technologies PHAN-ToM arm.\Real-time" graphics applications have display up-date requirements somewhere between 20 and 30frames/second. In contrast, the update rate of hapticsimulations must be as high as 1000 updates/second inorder to maintain a stable system. This rate varies withthe spatial frequency and sti�ness of displayed forces,and with the speed of motion of the user. Also, theskin is sensitive to vibrations of greater than 500 Hz,so changes in force at even relatively high frequenciesare detectable [10].In order to create a sense of touch between the user'shand and a virtual object, contact or restoring forcesare generated to prevent penetration into this virtualobject. This is computed by �rst detecting if a colli-sion or penetration has occurred, then determining the(projected) contact point on the object surface. Mostof the existing algorithms are only su�cient to addressthe collision detection and contact determination prob-lems for relatively small models consisting of only a fewthousand polygons or a few surfaces. Our ultimate goalis to be able to achieve smooth, realistic haptic inter-action with CAD models of high complexity (normallyconsisted of tens of thousands of primitives) for virtualprototyping applications. In addition, we are aiming atdesigning algorithms that are easily extensible to sup-port a wide range of force-feedback devices (including6 degree-of-freedom arms) and deformable surfaces.Main Contribution: In this paper we present aframework for fast and accurate collision detection forhaptic interaction. It consists of a number of algo-rithms and a system specialized for computing con-tact(s) between the probe of the force-feedback deviceand objects in the virtual environment. To meet the



stringent performance requirements for haptic interac-tion, we use a hybrid approach that specializes manyearlier algorithms for this application. Our frameworkutilizes:� Spatial Decomposition: It decomposes theworkspace into uniformgrids or cells, implementedas a hash table to e�ciently deal with large stor-age requirements. At runtime, the algorithm canquickly �nd the cell containing the path swept outby the probe.� Bounding Volume Hierarchy based onOBBTrees: An OBBTree is a bounding volumehierarchy [15] of tight-�tting oriented boundingboxes (OBBs). For each cell consisting of a subsetof polygons of the virtual model, we pre-computean OBBTree. At run-time, most of the compu-tation time is spent in �nding collisions betweenan OBBTree and the path swept out by the tip ofthe probe between two successive time steps. Tooptimize this query, we have developed a very fastspecialized overlap test between a line segment andan OBB, that takes as few as 6 operations and only36 arithmetic operations in the worst case, not in-cluding the cost of transformation.� Frame-to-Frame Coherence: Typically, thereis little movement in the probe position betweensuccessive steps. The algorithm utilizes this co-herence by caching the contact information fromthe previous step to perform incremental compu-tations.The algorithm pre-computes a hybrid hierarchy. Ourframework also allows the application program to selectonly a subset of the approaches listed above.We have successfully implemented all the algorithmsdescribed above, interfaced them with GHOST (a com-mercial haptic library) [34] and used them to �nd sur-face contact points between the probe of a PHANToMarm and large geometric models (composed of tensof thousands of polygons). Their performance variesbased on the geometric model, the con�guration ofthe probe relative to the model, machine con�gura-tion (e.g. cache and memory size) and the combina-tion of techniques used by our system. The overall ap-proach results in a factor of 2� 20 speed improvementas compared to earlier algorithms and commercial im-plementations. For a number of models composed of5; 000�80; 000 polygons, our system is able to substaina KHz update rate on a 400M Hz PC.The results presented in this paper are specializedfor a point probe against 3D object collision detection.We conjecture that it can be extended to compute

object-object intersection for a six-degree-of-freedomhaptic device.Organization: The rest of the paper is organized inthe following manner. Section 2 provides a brief sur-vey of related research. Section 3 describes the systemarchitecture and algorithms used in the design of oursystem. We discuss the implementation issues in Sec-tion 4, present our experimental results and comparetheir performance with a commercial implementationin Section 5.2 Related WorkCollision detection and contact determination are well-studied problems in computer graphics, computationalgeometry, robotics and virtual environments. Due tolimited space, we refer the readers to [22, 17] for recentsurveys. In the ray-tracing literature, the problem ofcomputing fast intersections between a ray and a three-dimensional geometric model has also been extensivelystudied [1]. While a number of algorithms have beenproposed that make use of bounding volume hierar-chies, spatial partitioning or frame-to-frame coherence,there is relatively little available on hybrid approachescombining two or more such techniques.Bounding Volume Hierarchies: A number ofalgorithms based on hierarchical representations havebeen proposed. The set of bounding volumes includespheres [18, 30], axis-aligned bounding boxes [5, 17],oriented bounding boxes [15, 4], approximation hierar-chies based on S-bounds [7], spherical shells [21] andk-dop's [20]. In the close proximity scenarios, hierar-chies of oriented bounding boxes (OBBTrees) appearsuperior to many other bounding volumes [15].Spatial Partitioning Approaches: Some of thesimplest algorithms for collision detection are based onspatial decomposition techniques. These algorithmspartition the space into uniform or adaptive grids(i.e. volumetric approaches), octrees [33], k-D trees orBSP's [27]. To overcome the problem of large memoryrequirements for volumetric approaches, some authors[29] have proposed the use of hash tables.Utilizing Frame-to-Frame Coherence: In manysimulations, the objects move only a little between suc-cessive frames. Many e�cient algorithms that utilizeframe-to-frame coherence have been proposed for con-vex polytopes [23, 8, 3]. Cohen et al. [9] have usedcoherence-based incremental sorting to detect possiblepairs of overlapping objects in large environments.Research in Haptic Rendering: Several tech-niques have been proposed for integrating force feed-back with a complete real-time virtual environment toenhance the user's ability to perform interaction tasks2



[10, 11, 12, 24, 25, 28, 35]. The commercial haptictoolkit developed by SensAble Technologies, Inc. alsohas a collision detection library probably using BSP-Trees [32, 34]. Ruspini et al. [31] have presented a hap-tic interface library \HL" that uses a multi-level controlsystem to e�ectively simulate contacts with virtual en-vironments. It uses a bounding volume hierarchy basedon sphere-trees [30].Nahvi et al. [26] have designed a haptic display sys-tem for manipulating virtual mechanisms derived froma mechanical CAD design. It uses the Sarcos Dex-terous Arm Master and Utah's Alpha 1 CAD system,with algorithmic support from a tracing algorithm anda minimumdistance framework developed by Johnson,Cohen et al. [36, 19]. They utilized a variety of algo-rithmic toolkits from RAPID [15] to build an OBBTreefor each object, Gilbert's algorithm [14] to �nd dis-tances between two OBB's and a tracing algorithm forparametric surfaces. Their system takes about 20�150milliseconds for models composed of 500� 23; 000 tri-angles on an SGI Indigo2 and 4 milliseconds for modelscomposed of 3 parametric surfaces on a Motorola 68040microprocessors.Gibson [13] and Sobierajski [2] have proposed algo-rithms for object manipulation including haptic inter-action with volumetric objects and physically-realisticmodeling of object interactions.3 Fast Proximity Queries forHaptic InteractionIn this section, we describe the haptic system setupand algorithmic techniques that are an integral partof the collision detection system framework for hapticinteraction, H-COLLIDE.3.1 Haptic System ArchitectureDue to the stringent update requirements for real-time haptic display, we run a special stand-alone haptic server written with the VRPN library(http://www.cs.unc.edu/Research/nano/manual/vrpn)on a PC connected to the PHANToM. The client ap-plication runs on another machine, which is typicallythe host for graphical display. Through VRPN, theclient application sends the server the description of thescene to be haptically displayed, and the server sendsback information such as the position and orientationof the PHANToM probe. The client application canalso modify and transform the scene being displayedby the haptic server.

3.2 Algorithm OverviewGiven the last and current positions of the PHANToMprobe, we need to determine if it has in fact passedthrough the object's surface, in order to display the ap-propriate force. The probe movement is usually smalldue to the high haptic update rates. This implies thatwe only need to check a relatively small volume of theworkspace for collision detection.Approaches using spatial partitioning seem to benatural candidates for such situations. For large andcomplex models, techniques based on uniform or adap-tive grids can be implemented more e�ciently usinghash tables. However, to achieve the desired speed,these approaches still have extremely high storage re-quirements even when implemented using a hashingscheme.Despite its better �t to the underlying geometry, thehierarchical bounding volume method based on OBB-Trees may end up traversing trees to great depths tolocate the exact contact points for large, complex mod-els. To take advantage of each approach and to avoidsome de�ciency of each, we propose a hybrid technique.Hybrid Hierarchical Representation: Given avirtual environment containing several objects, eachcomposed of tens of thousands of polygons, the algo-rithm computes a hybrid hierarchical representation ofthe objects as part of the o�-line pre-computation. It�rst partitions the entire virtual workspace into coarse-grain uniform grid cells. Then, for each grid cell con-taining some primitives of the objects in the virtualworld, it computes the OBBTrees for that grid cell andstores the pointer to the associated OBBTrees using ahash table for constant-time proximity queries.Specialized Intersection Tests: The on-line com-putation of our collision detection system consists ofthree phases. In the �rst phase, it identi�es \the re-gion of potential contacts" by determining which cellswere touched by the probe path, using the precom-puted look-up table. In the second phase, it traversesthe OBBTree(s) in that cell to determine if collisionshave occurred, using the specialized fast overlap testto be described later. In the third phase, if the linesegment intersects with an OBB in the leaf node, thenit computes the (projected) surface contact point(s)(SCP) using techniques similar to those in [34, 36].Frame-to-Frame Coherence: If in the previousframe the probe of the feedback device was in con-tact with the surface of the model, we exploit frame-to-frame coherence by �rst checking if the last inter-sected triangle is still in contact with the probe. If so,we cache this contact witness. Otherwise, we check forcollision using hybrid hierarchical representation of theobjects.3



3.3 H-COLLIDEH-COLLIDE, a framework for fast and accurate colli-sion detection for haptic interaction, is designed basedon the hybrid hierarchical representation and the al-gorithmic techniques described above. Figure 1 showsthe system architecture of H-COLLIDE.
offline

online

Compute hybrid hierarchial representation

Find segment’s bounding grid cell(s)

Query cell’s OBBTree(s)

Check potential triangles for intersection

Input last position and current position / SCP

false true

Check contact witness

return FALSE or intersection point / SCP

Figure 1. The System Architecture of H-COLLIDE3.4 Overlap Test based on a Line Seg-ment against an OBBTreeFor haptic display using a point probe, we can spe-cialize the algorithm based on OBBTrees by only test-ing a line segment (representing the path swept outby the probe device between two successive steps) andan OBBTree. (The original algorithm [15] uses a over-lap test between a pair of OBBs and can take morethan 200 operations per test.) At run time, most ofthe computation is spent in �nding collisions betweena line segment and an OBB. To optimize this query,we have developed a very fast overlap test between aline segment and an OBB, that takes as few as 6 oper-ations and only 36 arithmetic operations in the worstcase, not including the cost of transformation.At the �rst glance, it is tempting to use sophisticatedand optimized line clipping algorithms. However, theline-OBB intersection problem for haptic interactionis a simpler one than line clipping and the environ-ment is dynamic and consisting of many OBBs. Nextwe'll describe this specialized overlap test between aline segment and an oriented bounding box for hapticrendering. Without loss of generality, we will choosethe coordinate system centered on and aligned withthe box { so the problem is transformed to an over-lap test between a segment and a centered axis-alignedbounding box. Our overlap test uses the Separating-

Axis Theorem described in [15], but specialized for aline segment against an OBB.Speci�cally, the candidate axes are the three boxface normals (which are aligned with the coordinateaxes) and their cross-products with the segment's di-rection vector. With each of these six candidate axes,we project both the box and the segment onto it, andtest whether the projection intervals overlap. If theprojections are disjoint for any of the six candidateaxes, then the segment and the box are disjoint. Oth-erwise, the segment and the box overlap.How are the projection intervals computed? Givena direction vector v of a line through the origin, and apoint p, let the point p0 be the axial projection of p ontothe line. The value dp = v � p=jvj is the signed distanceof p0 from the origin along the line. Now consider theline segment with midpoint m and endpoints m + wand m �w. The half-length of the line segment is jwj.The image of the segment under axial projection is theinterval centered at ds = v �m=jvjand with half-lengthLs = jw � vj=jvjGiven a box centered at the origin, the image of thebox under axial projection is an interval with midpointat the origin.Furthermore, if the box has thicknesses 2tx; 2ty; and2tz along the orthogonal unit directions ux; uy; and uz,the half-length of the interval is given byLb = jtxv � ux=jvjj+ jtyv � uy=jvjj+ jtzv � uz=jvjjWith the intervals so expressed, the axis v is a sep-arating axis if and only if (see Figure 2)jdsj > Lb + LsIf we assume that the box is axis-aligned, thenux = [1; 0; 0]T ; uy = [0; 1; 0]T; and uz = [0; 0; 1]T ,and the dot products with these vectors become simplecomponent selections. This simpli�es the box intervallength computation toLb = jtxvxj+ jtyvy j+ jtzvz jNow, recall that the candidate axis v is either a boxface normal, or a cross product of a face normal withthe line segment direction vector. Consider the formercase, when v is a box face normal, for example [1; 0; 0]T .In this case, the components vy and vz are zero, andthe component vx is one, and we are left withLb = tx4



c

m-w

m

m+w
Ls

ds

L
b

Figure 2. Overlap test between a line segment andan OBBThe projection of the line segment onto the x�axisis also simple: Ls = jwxjSo, the test for the v = [1; 0; 0]T axis isjmxj > tx + jwxjThe tests for the candidate axes v = [0; 1; 0]T andv = [0; 0; 1]T have similar structure.The three cases where v is a cross product of w withone of the box faces are a little more complex. Recallthat in general,Lb = jtxv � uxj+ jtyv � uyj+ jtzv � uzjFor the sake of concreteness, we will choose v = w�uy.Then this expression becomesLb = jtx(w�uy) �uxj+ jty(w�uy) �uyj+ jtz(w�uy) �uzjApplication of the triple product identity(a� b) � c = (c� a) � byieldsLb = jtx(uy�ux) �wj+ jty(uy�uy) �wj+ jtz(uy�uz) �wjAll of these cross products simplify, because the u vec-tors are mutually orthogonal, ux � uy = uz; uy � uz =ux; and uz � ux = uy, soLb = jtx(�uz) �wj+ jty(0) �wj+ jtz(ux) �wjAnd again, using the fact that ux = [1; 0; 0]T , and soforth, Lb = txjwzj+ tz jwxj

The half-length of the segment interval isLs = jw � (w � uy)j = juy � (w � w)j = juy � 0j = 0which is what we would expect, since we are projectingthe segment onto a line orthogonal to it.Finally, the projection of the segments midpoint fallsatds = (w � uy) �m = (m �w) � uy = mzwx �mxwzwhich is just the y�component of m � w. The �naltest is jmzwx �mxwzj > txjwzj+ tzjwxjSimilar derivations are possible for the cases v =w � ux and v = w � uz.Writing out the entire procedure, and precomputinga few common subexpressions, we have the followingpseudo code:let X = jwxjlet Y = jwyjlet Z = jwzjif jmxj > X + tx return disjointif jmyj > Y + ty return disjointif jmzj > Z + tz return disjointif jmywz �mzwyj > tyZ + tzY return disjointif jmxwz �mzwxj > txZ + tzX return disjointif jmxwy �mywxj > txY + tyX return disjointotherwise return overlapWhen a segment and an OBB are disjoint, the rou-tine often encounters an early exit and only one (ortwo) out of the six expressions is executed. Total oper-ation count for the worst case is: 9 absolute values, 6comparisons, 9 add and subtracts, 12 multiplies. Thisdoes not include the cost of transforming, i.e. 36 oper-ations, the problem into a coordinate system centeredand aligned with the box.4 Implementation IssuesH-COLLIDE has been successfully implemented inC++. We have interfaced H-COLLIDE with GHOST,a commercial software developer's toolkit for hapticrendering, and used it to �nd surface contact pointsbetween the probe of a PHANToM arm and large geo-metric models (composed of tens of thousands of poly-gons). Here we describe some of the implementationissues.5



4.1 Hashing SchemeClearly it is extremely ine�cient to allocate storage forall these cells, since a polygonal surface is most likelyto occupy a very small fraction of them. We use a hashtable to alleviate the storage problem. From each celllocation at (x; y; z) and a grid that has len cells in eachdimension, we can compute a unique key usingkey = x+ y � len + z � len2.In order to avoid hashing too many cells with samepattern into the same table location we compute theactual location for a grid cell in the hash table withTableLoc = random(key)%TableLength.Should the table have too many cells in one tablelocation, we can simply grow the table. Hence, it ispossible to determine which triangles we need to checkin constant time and the amount of storage requiredis a constant factor (based on the grid grain) of thesurface area of the object we want to \feel".Determining the optimal grid grain is a non-trivialproblem. Please refer to [16] for a detailed retreat-ment and a possible analytical solution to this problem.We simply set the grain of the grids to be the averagelength of all edges. If the model has a very irregulartriangulation it is very possible that there could be alarge number of small triangles in a single grid cell.Querying an OBBTree takes O(logn) time, wheren is the number of triangles in the tree. During theo�-line computation, we can ensure that n is a smallnumber compared to the total number of triangles inthe model; thus the overall running time of our hybridapproach should be constant.4.2 User OptionsSince the hybrid approach used in H-COLLIDE has ahigher storage requirement than either the individualtechnique alone, the system also allows the user to se-lect a subset of the techniques, such as the algorithmpurely based on OBBTrees, to opt for better perfor-mance on a machine with less memory.5 System PerformanceFor comparison, we have implemented adaptive grids,our hybrid approach and an algorithm using only OBB-Trees and the specialized overlap test described in Sec-tion 3.4. We have applied them to a wide range of mod-els of varying sizes. (Due to the page limit, we invitethe readers to view the Color Plates of these models athttp://www.cs.unc.edu/~geom/HCollide/model.pdf.)

Their performance varies based on the models, the con-�guration of the probe relative to the model, machinecon�guration (e.g. cache and memory size) and thecombination of techniques used by our system. Ourhybrid approach results in a factor of 2-20 speed im-provement as compared to a native GHOST method.For a number of models composed of 5; 000 � 80; 000polygons, our system is able to compute all the con-tacts and response at rates higher than 1000 Hz on a400MHz PC.5.1 Obtaining Test DataWe �rst obtained the test data set by deriving aclass from the triangle mesh primitive which comeswith SensAble Technologies' GHOST library, version2.0 beta. This records the start and the endpoint ofeach segment used for collision detection during a realforce-feedback session with a 3-DOF PHANToM arm.We then implemented the three techniques mentionedabove to interface with GHOST for comparison with anative GHOST method, and timed the collision detec-tion routines for the di�erent libraries using the datafrom the test set. The test set for each of these modelscontains 30,000 readings.The distinction between a collision and an inter-section shown in the tables is particular to GHOST'shaptic rendering. Each haptic update cycle contains a\collision" test to see if the line segment from the lastposition of the PHANToM probe to its current posi-tion has intersected any of the geometry in the hapticscene. If there has been a collision, then the inter-sected primitive suggests a surface contact point forthe PHANToM probe to move towards. In this caseit is now necessary to perform an \intersection" testto determine if the line segment from the last positionof the PHANToM probe to the suggested surface con-tact point intersects any of the geometry in the scene(including the primitive with which there was a \colli-sion").The timings (in milliseconds) shown in Tables 1-5were obtained by replaying the test data set on a 4processor 400 MHz PC, with 1 GB of physical memory.Each timing was obtained using only one processor.For comparison, we ran the same suite of tests on asingle processor 300 MHz Pentium Pro with 128 MBmemory. The hybrid approach appeared to be the mostfavorable as well.5.2 Comparison between AlgorithmsSince the algorithms run on a real-time system, we arenot only interested in the average performance, butalso the worst case performance. Tables 1-5 show the6



Method Hash Grid Hybrid OBBTree GHOSTAve Col. Hit 0.0122 0.00883 0.0120 0.0917Worst Col. Hit 0.157 0.171 0.0800 0.711Ave Col. Miss 0.00964 0.00789 0.00856 0.0217Worst Col. Miss 0.0753 0.0583 0.0683 0.663Ave Int. Hit 0.0434 0.0467 0.0459 0.0668Worst Int. Hit 0.108 0.102 0.0793 0.100Ave Int. Miss 0.0330 0.0226 0.0261 0.0245Worst Int. Miss 0.105 0.141 0.0890 0.364Ave. Query 0.019 0.014 0.017 0.048
Table 1. Timings in msecs for Man Symbol, 5K trisMethod Hash Grid Hybrid OBBTree GHOSTAve Col. Hit 0.0115 0.0185 0.0109 0.131Worst Col. Hit 0.142 0.213 0.138 0.622Ave Col. Miss 0.0104 0.00846 0.0101 0.0176Worst Col. Miss 0.0800 0.0603 0.0813 0.396Ave Int. Hit 0.0583 0.0568 0.0652 0.0653Worst Int. Hit 0.278 0.200 0.125 0.233Ave Int. Miss 0.0446 0.0237 0.0349 0.0322Worst Int. Miss 0.152 0.173 0.111 0.287Ave. Query 0.030 0.025 0.028 0.070
Table 2. Timings in msecs for Man with Hat, 7K trisMethod Hash Grid Hybrid OBBTree GHOSTAve Col. Hit 0.0138 0.0101 0.0134 0.332Worst Col. Hit 0.125 0.168 0.0663 0.724Ave Col. Miss 0.00739 0.00508 0.00422 0.0109Worst Col. Miss 0.0347 0.0377 0.0613 0.210Ave Int. Hit 0.0428 0.0386 0.0447 0.0851Worst Int. Hit 0.0877 0.102 0.0690 0.175Ave Int. Miss 0.0268 0.0197 0.0213 0.0545Worst Int. Miss 0.0757 0.0697 0.0587 0.284Ave. Query 0.022 0.016 0.039 0.18
Table 3. Timings in msecs for Nano Surface, 12K trisMethod Hash Grid Hybrid OBBTree GHOSTAve Col. Hit 0.0113 0.00995 0.0125 0.104Worst Col. Hit 0.136 0.132 0.177 0.495Ave Col. Miss 0.0133 0.00731 0.0189 0.0280Worst Col. Miss 0.128 0.0730 0.137 0.641Ave Int. Hit 0.0566 0.0374 0.609 0.0671Worst Int. Hit 0.145 0.105 0.170 0.293Ave Int. Miss 0.0523 0.0225 0.0452 0.0423Worst Int. Miss 0.132 0.133 0.167 0.556Ave. Query 0.027 0.014 0.028 0.048

Table 4. Timings in msecs for Bronco, 18K trisMethod Hash Grid Hybrid OBBTree GHOSTAve Col. Hit 0.0232 0.0204 0.0163 1.33Worst Col. Hit 0.545 0.198 0.100 5.37Ave Col. Miss 0.00896 0.00405 0.00683 0.160Worst Col. Miss 0.237 0.139 0.121 3.15Ave Int. Hit 0.228 0.0659 0.0704 0.509Worst Int. Hit 0.104 0.138 0.103 1.952Ave Int. Miss 0.258 0.0279 0.0256 0.229Worst Int. Miss 0.0544 0.131 0.0977 3.28Ave. Query 0.030 0.016 0.016 0.320
Table 5. Timings in msecs for Buttery, 79K tris

timings in milliseconds obtained for both cases on eachmodel and each contact con�guration.All our algorithms are able to perform collisionqueries at rates faster than the required 1000 Hz forceupdate rate for all models in the worst case. Althoughthe hybrid approach often outperforms the algorithmbased on OBBTrees, it is sometimes slightly slowerthan the alogrithm based on OBBTrees. We conjecturethat this behavior is due to the cache size of the CPU(independent of the memory size) and memory pagingalgorithm of the operating system. Among techniquesthat use hierarchical representations, cache access pat-terns can often have a dramatic impact on run timeperformance.The hybrid approach requires more memory and islikely to have a less cache-friendly memory access pat-tern than the algorithm purely based on OBBTrees,despite the fact that both were well within the realmof physical memory available to the machine. Further-more, by partitioning polygons into groups using grids,the hybrid technique can enable real-time local surfacemodi�cation.The adaptive grids-hashing scheme, a commonlyused technique in ray-tracing, did not perform equallywell in all cases. Once again, our hypothesis is thatits inferior worst case behavior is due to its cache ac-cess patterns, in addition to its storage requirements.We believe the native GHOST method uses an algo-rithm based BSP trees. While it is competitive for thesmaller model sizes, its performance fails to scale upfor larger models. Our hybrid approach and our algo-rithm purely based on OBBTrees and the specializedoverlap test appear to be relatively una�ected by themodel complexity.6 ConclusionWe have presented a framework, H-COLLIDE, thatconsists of a suite of algorithms and a system im-plementation for fast and accurate collision detectionfor haptic interaction with polygonal models at rateshigher than 1000Hz on a desk-top PC. This frameworkmay be extended for supporting 6-DOF haptic devicesto perform collision tests between a pair of 3D objectsand exible surfaces that may deform due to manipula-tion. In addition, it can be combined with the tracingalgorithm [36] to handle complex sculptured modelsmore e�ciently, by using their control points.Acknowledgements: We are grateful toNational Science Foundation, National Institute ofHealth National Center for Research Resources and In-tel Corporation for their support and the reviewers fortheir comments.7



References[1] J. Arvo and D. Kirk. A survey of ray tracing acceleration tech-niques. In An Introduction to Ray Tracing, pages 201{262,1989.[2] R. S. Avila and L. M. Sobierajski. A haptic interaction methodfor volume visualization. Proceedings of Visualization'96,pages 197{204, 1996.[3] D. Bara�. Curved surfaces and coherence for non-penetratingrigid body simulation. ACM Computer Graphics, 24(4):19{28,1990.[4] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and A. Tal.Boxtree: A hierarchical representation of surfaces in 3d. InProc. of Eurographics'96, 1996.[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. Ther*-tree: An e�cient and robust access method for points andrectangles. Proc. SIGMOD Conf. on Management of Data,pages 322{331, 1990.[6] Frederick P. Brooks, Jr., Ming Ouh-Young, James J. Batter,and P. Jerome Kilpatrick. Project GROPE | Haptic displaysfor scienti�c visualization. In Forest Baskett, editor, ComputerGraphics (SIGGRAPH '90 Proceedings), volume 24, pages177{185, August 1990.[7] S. Cameron. Approximation hierarchies and s-bounds. InProceedings. Symposium on Solid Modeling Foundations andCAD/CAM Applications, pages 129{137, Austin, TX, 1991.[8] Stephen Cameron. A comparison of two fast algorithms for com-puting the distance between convex polyhedra. IEEE Transac-tions on Robotics and Automation, 13(6):915{920, December1996.[9] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-collide:An interactive and exact collision detection system for large-scale environments. In Proc. of ACM Interactive 3D GraphicsConference, pages 189{196, 1995.[10] J. E. Colgate and J. M. Brown. Factors a�ecting the z-width of ahaptic display. IEEE Conference on Robotics and Automation,pages 3205{3210, 1994.[11] J. E. Colgate and et al. Issues in the haptic display of tooluse. Proceedings of the ASME Haptic Interfaces for VirtualEnvironment and Teleoperator Systems, pages 140{144, 1994.[12] M. Finch, M. Falvo, V. L. Chi, S. Washburn, R. M. Taylor,and R. Super�ne. Surface modi�cation tools in a virtual en-vironment interface to a scanning probe microscope. In PatHanrahan and Jim Winget, editors, 1995 Symposium on In-teractive 3D Graphics, pages 13{18. ACM SIGGRAPH, April1995.[13] S. Gibson. Beyond volume rendering: Visualization, haptic ex-ploration, an d physical modeling of element-based objects. InProc. Eurographics workshop on Visualization in Scienti�cComputing, pages 10{24, 1995.[14] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast pro-cedure for computing the distance between objects in three-dimensional space. IEEE J. Robotics and Automation, volRA-4:193{203, 1988.[15] S. Gottschalk, M. Lin, and D. Manocha. Obb-tree: A hierarchi-cal structure for rapid interference detection. In Proc. of ACMSiggraph'96, pages 171{180, 1996.[16] A. Gregory, M. Lin, S. Gottschalk, and R. Taylor. H-collide:A framework for fast and accurate collision detection for hapticinteraction. Technical report, Department of Computer Science,University of North Carolina, 1998.[17] M. Held, J.T. Klosowski, and J.S.B. Mitchell. Evaluation ofcollision detection methods for virtual reality y-throughs. InCanadian Conference on Computational Geometry, 1995.

[18] P. M. Hubbard. Interactive collision detection. In Proceedingsof IEEE Symposium on Research Frontiers in Virtual Reality,October 1993.[19] D. Johnson and E. Cohen. A framework for e�cient minimumdistance computation. IEEE Conference on Robotics and Au-tomation, pages 3678{3683, 1998.[20] J. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, andK. Zikan. E�cient collision detection using bounding volumehierarchies of k-dops. In Siggraph'96 Visual Proceedings, page151, 1996.[21] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spheri-cal shell: A higher order bounding volume for fast proximityqueries. In Proc. of Third International Workshop on Algo-rithmic Foundations of Robotics, pages 122{136, 1998.[22] M. Lin and S. Gottschalk. Collision detection between geomet-ric models: A survey. In Proc. of IMA Conference on Mathe-matics of Surfaces, 1998.[23] M.C. Lin and John F. Canny. E�cient algorithms for incremen-tal distance computation. In IEEE Conference on Robotics andAutomation, pages 1008{1014, 1991.[24] William Mark, Scott Randolph, Mark Finch, James Van Verth,and Russell M. Taylor II. Adding force feedback to graphicssystems: Issues and solutions. In Holly Rushmeier, editor,SIGGRAPH 96 Conference Proceedings, Annual ConferenceSeries, pages 447{452, 1996.[25] T. M. Massie and J. K. Salisbury. The phantom haptic interface:A device for probing virtual objects. Proc. of ASME HpaticInterfaces for Virtual Environment and Teleoperator Systems,1:295{301, 1994.[26] A. Nahvi, D. Nelson, J. Hollerbach, and D. Johnson. Haptic ma-nipulation of virtual mechanisms from mechanical cad designs.In Proc. of 1998 Conference on Robotics and Automation,pages 375{380, 1998.[27] B. Naylor, J. Amanatides, and W. Thibault. Merging bsp treesyield polyhedral modeling results. In Proc. of ACM Siggraph,pages 115{124, 1990.[28] M. Ouh-Young. Force Display in Molecular Docking. PhDthesis, University of North Carolina, Computer Science Depart-ment, 1990.[29] M. H. Overmars. Point location in fat subdivisions. Inform.Proc. Lett., 44:261{265, 1992.[30] S. Quinlan. E�cient distance computation between non-convex objects. In Proceedings of International Conferenceon Robotics and Automation, pages 3324{3329, 1994.[31] D.C. Ruspini, K. Kolarov, and O. Khatib. The haptic display ofcomplex graphical environments. Proc. of ACM SIGGRAPH,pages 345{352, 1997.[32] K. Salisbury, D. Brock, T. Massie, N Swarup, and C. Zilles.Haptic rendering: Programming touch interaction with virtualobjects. Proc. of 1995 ACM Symposium on Interactive 3DGraphics, pages 123{130, 1995.[33] H. Samet. Spatial Data Structures: Quadtree, Octrees andOther Hierarchical Methods. Addison Wesley, 1989.[34] Inc. SensAble Technologies. ghostTM : Sofware developer'stoolkit. Programmer's Guide, 1997.[35] R. M. Taylor, W. Robinett, V.L. Chii, F. Brooks, andW. Wright. The nanomanipulator: A virtual-reality interfacefor a scanning tunneling microscope. In Proc. of ACM Sig-graph, pages 127{134, 1993.[36] T.V. Thompson, D. Johnson, and E. Cohen. Direct haptic ren-dering of sculptured models. Proc. of ACM Interactive 3DGraphics, pages 167{176, 1997.8


