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Abstract

We present a framework for fast and accurate col-
lision detection for haptic interaction with polygonal
models. Given a model, we pre-compute a hybrid hier-
archical representation, consisting of uniform grids and
trees of tight-fitting oriented bounding box trees (OBB-
Trees). At run time, we use hybrid hierarchical rep-
resentations and exploit frame-to-frame coherence for
fast prozimity queries. We describe a new overlap test,
which s specialized for intersection of a line segment
with an oriented bounding box for haptic simulation and
takes 6-36 operations excluding transformation costs.
The algorithms have been implemented as part of H-
COLLIDE and interfaced with a PHANToM arm and
its haptic toolkit, GHOST, and applied to a number of
models. As compared to the commercial implementa-
tion, we are able to achieve up to 20 times speedup in
our experiments and sustain update rates over 1000Hz
on a 400MHz Pentium II.

1 Introduction

Virtual environments require natural interaction be-
tween interactive computer systems and users. Com-
pared to the presentation of visual and auditory in-
formation, methods for haptic display are not as well
developed. Haptic rendering as an augmentation to vi-
sual display can improve perception and understanding
both of force fields and of world models populated in
the synthetic environments [6]. Tt allows users to reach
into virtual worlds with a sense of touch, so they can
feel and manipulate simulated objects.

Haptic display is often rendered through what is es-
sentially a small robot arm, used in reverse. Such de-
vices are now commercially available for a variety of

configurations (2D, 3D, 6D, specialized for laparoscopy
or general-purpose). The system used in this work was
a 6DOF-in/3DOF-out SensAble Technologies PHAN-
ToM arm.

“Real-time” graphics applications have display up-
date requirements somewhere between 20 and 30
frames/second. In contrast, the update rate of haptic
simulations must be as high as 1000 updates/second in
order to maintain a stable system. This rate varies with
the spatial frequency and stiffness of displayed forces,
and with the speed of motion of the user. Also, the
skin is sensitive to vibrations of greater than 500 Hz,
so changes in force at even relatively high frequencies
are detectable [10].

In order to create a sense of touch between the user’s
hand and a virtual object, contact or restoring forces
are generated to prevent penetration into this virtual
object. This is computed by first detecting if a colli-
sion or penetration has occurred, then determining the
(projected) contact point on the object surface. Most
of the existing algorithms are only sufficient to address
the collision detection and contact determination prob-
lems for relatively small models consisting of only a few
thousand polygons or a few surfaces. Our ultimate goal
is to be able to achieve smooth, realistic haptic inter-
action with CAD models of high complexity (normally
consisted of tens of thousands of primitives) for virtual
prototyping applications. In addition, we are aiming at
designing algorithms that are easily extensible to sup-
port a wide range of force-feedback devices (including
6 degree-of-freedom arms) and deformable surfaces.

Main Contribution: In this paper we present a
framework for fast and accurate collision detection for
haptic interaction. It consists of a number of algo-
rithms and a system specialized for computing con-
tact(s) between the probe of the force-feedback device
and objects in the virtual environment. To meet the



stringent performance requirements for haptic interac-
tion, we use a hybrid approach that specializes many
earlier algorithms for this application. Our framework
utilizes:

e Spatial Decomposition: It decomposes the
workspace into uniform grids or cells, implemented
as a hash table to efficiently deal with large stor-
age requirements. At runtime, the algorithm can
quickly find the cell containing the path swept out
by the probe.

e Bounding Volume Hierarchy based on
OBBTrees: An OBBTree is a bounding volume
hierarchy [15] of tight-fitting oriented bounding
boxes (OBBs). For each cell consisting of a subset
of polygons of the virtual model, we pre-compute
an OBBTree. At run-time, most of the compu-
tation time is spent in finding collisions between
an OBBTree and the path swept out by the tip of
the probe between two successive time steps. To
optimize this query, we have developed a very fast
specialized overlap test between a line segment and
an OBB, that takes as few as 6 operations and only
36 arithmetic operations in the worst case, not in-
cluding the cost of transformation.

¢ Frame-to-Frame Coherence: Typically, there
is little movement in the probe position between
successive steps. The algorithm utilizes this co-
herence by caching the contact information from
the previous step to perform incremental compu-
tations.

The algorithm pre-computes a hybrid hierarchy. Our
framework also allows the application program to select
only a subset of the approaches listed above.

We have successfully implemented all the algorithms
described above, interfaced them with GHOST (a com-
mercial haptic library) [34] and used them to find sur-
face contact points between the probe of a PHANToM
arm and large geometric models (composed of tens
of thousands of polygons). Their performance varies
based on the geometric model, the configuration of
the probe relative to the model, machine configura-
tion (e.g. cache and memory size) and the combina-
tion of techniques used by our system. The overall ap-
proach results in a factor of 2 — 20 speed improvement
as compared to earlier algorithms and commercial im-
plementations. For a number of models composed of
5,000 —80, 000 polygons, our system is able to substain
a KHz update rate on a 400M Hz PC.

The results presented in this paper are specialized
for a point probe against 3D object collision detection.
We conjecture that it can be extended to compute

object-object intersection for a six-degree-of-freedom
haptic device.

Organization: The rest of the paper is organized in
the following manner. Section 2 provides a brief sur-
vey of related research. Section 3 describes the system
architecture and algorithms used in the design of our
system. We discuss the implementation issues in Sec-
tion 4, present our experimental results and compare
their performance with a commercial implementation
in Section 5.

2 Related Work

Collision detection and contact determination are well-
studied problems in computer graphics, computational
geometry, robotics and virtual environments. Due to
limited space, we refer the readers to [22, 17] for recent
surveys. In the ray-tracing literature, the problem of
computing fast intersections between a ray and a three-
dimensional geometric model has also been extensively
studied [1]. While a number of algorithms have been
proposed that make use of bounding volume hierar-
chies, spatial partitioning or frame-to-frame coherence,
there is relatively little available on hybrid approaches
combining two or more such techniques.

Bounding Volume Hierarchies: A number of
algorithms based on hierarchical representations have
been proposed. The set of bounding volumes include
spheres [18, 30], axis-aligned bounding boxes [5, 17],
oriented bounding boxes [15, 4], approximation hierar-
chies based on S-bounds [7], spherical shells [21] and
k-dop’s [20]. In the close proximity scenarios, hierar-
chies of oriented bounding boxes (OBBTrees) appear
superior to many other bounding volumes [15].

Spatial Partitioning Approaches: Some of the
simplest algorithms for collision detection are based on
spatial decomposition techniques. These algorithms
partition the space into uniform or adaptive grids
(i.e. volumetric approaches), octrees [33], k-D trees or
BSP’s [27]. To overcome the problem of large memory
requirements for volumetric approaches, some authors
[29] have proposed the use of hash tables.

Utilizing Frame-to-Frame Coherence: In many
simulations, the objects move only a little between suc-
cessive frames. Many efficient algorithms that utilize
frame-to-frame coherence have been proposed for con-
vex polytopes [23, 8, 3]. Cohen et al. [9] have used
coherence-based incremental sorting to detect possible
pairs of overlapping objects in large environments.

Research in Haptic Rendering: Several tech-
niques have been proposed for integrating force feed-
back with a complete real-time virtual environment to
enhance the user’s ability to perform interaction tasks



[10, 11, 12, 24, 25 28, 35]. The commercial haptic
toolkit developed by SensAble Technologies, Inc. also
has a collision detection library probably using BSP-
Trees [32, 34]. Ruspini et al. [31] have presented a hap-
tic interface library “HL” that uses a multi-level control
system to effectively simulate contacts with virtual en-
vironments. It uses a bounding volume hierarchy based
on sphere-trees [30].

Nahvi et al. [26] have designed a haptic display sys-
tem for manipulating virtual mechanisms derived from
a mechanical CAD design. It uses the Sarcos Dex-
terous Arm Master and Utah’s Alpha_1 CAD system,
with algorithmic support from a tracing algorithm and
a minimum distance framework developed by Johnson,
Cohen et al. [36, 19]. They utilized a variety of algo-
rithmic toolkits from RAPID [15] to build an OBBTree
for each object, Gilbert’s algorithm [14] to find dis-
tances between two OBB’s and a tracing algorithm for
parametric surfaces. Their system takes about 20— 150
milliseconds for models composed of 500 — 23, 000 tri-
angles on an SGI Indigo2 and 4 milliseconds for models
composed of 3 parametric surfaces on a Motorola 68040
MIiCroprocessors.

Gibson [13] and Sobierajski [2] have proposed algo-
rithms for object manipulation including haptic inter-
action with volumetric objects and physically-realistic
modeling of object interactions.

3 Fast Proximity Queries for
Haptic Interaction

In this section, we describe the haptic system setup
and algorithmic techniques that are an integral part
of the collision detection system framework for haptic
interaction, H-COLLIDE.

3.1 Haptic System Architecture

Due to the stringent update requirements for real-
time haptic display, we run a special stand-
alone haptic server written with the VRPN library
(http://www.cs.unc.edu/Research /nano/manual /vrpn)
on a PC connected to the PHANToM. The client ap-
plication runs on another machine, which is typically
the host for graphical display. Through VRPN, the
client application sends the server the description of the
scene to be haptically displayed, and the server sends
back information such as the position and orientation
of the PHANToM probe. The client application can
also modify and transform the scene being displayed
by the haptic server.

3.2 Algorithm Overview

Given the last and current positions of the PHANToM
probe, we need to determine if it has in fact passed
through the object’s surface, in order to display the ap-
propriate force. The probe movement is usually small
due to the high haptic update rates. This implies that
we only need to check a relatively small volume of the
workspace for collision detection.

Approaches using spatial partitioning seem to be
natural candidates for such situations. For large and
complex models, techniques based on uniform or adap-
tive grids can be implemented more efficiently using
hash tables. However, to achieve the desired speed,
these approaches still have extremely high storage re-
quirements even when implemented using a hashing
scheme.

Despite its better fit to the underlying geometry, the
hierarchical bounding volume method based on OBB-
Trees may end up traversing trees to great depths to
locate the exact contact points for large, complex mod-
els. To take advantage of each approach and to avoid
some deficiency of each, we propose a hybrid technique.
Hybrid Hierarchical Representation: Given a
virtual environment containing several objects, each
composed of tens of thousands of polygons, the algo-
rithm computes a hybrid hierarchical representation of
the objects as part of the off-line pre-computation. It
first partitions the entire virtual workspace into coarse-
grain uniform grid cells. Then, for each grid cell con-
taining some primitives of the objects in the virtual
world, it computes the OBBTrees for that grid cell and
stores the pointer to the associated OBBTrees using a
hash table for constant-time proximity queries.
Specialized Intersection Tests: The on-line com-
putation of our collision detection system consists of
three phases. In the first phase, it identifies “the re-
gion of potential contacts” by determining which cells
were touched by the probe path, using the precom-
puted look-up table. In the second phase, it traverses
the OBBTree(s) in that cell to determine if collisions
have occurred, using the specialized fast overlap test
to be described later. In the third phase, if the line
segment intersects with an OBB in the leaf node, then
it computes the (projected) surface contact point(s)
(SCP) using techniques similar to those in [34, 36].
Frame-to-Frame Coherence: If in the previous
frame the probe of the feedback device was in con-
tact with the surface of the model, we exploit frame-
to-frame coherence by first checking if the last inter-
sected triangle is still in contact with the probe. If so,
we cache this contact witness. Otherwise, we check for
collision using hybrid hierarchical representation of the
objects.



3.3 H-COLLIDE

H-COLLIDE, a framework for fast and accurate colli-
sion detection for haptic interaction, is designed based
on the hybrid hierarchical representation and the al-

gorithmic techniques described above. Figure 1 shows
the system architecture of H-COLLIDE.

‘ Compute hybrid hierarchial representation ‘

offline

‘ Input last position and current position / SCP ‘

Check contact witness

false true

‘ Find segment’s bounding grid cell(s) ‘

‘ Query cell’sOBBTreg(s) ‘

‘ Check potential trianglesfor intersection ‘

‘ return FAL SE or intersection point / SCP ‘e

Figure 1. The System Architecture of H-COLLIDE

3.4 Overlap Test based on a Line Seg-
ment against an OBBTree

For haptic display using a point probe, we can spe-
cialize the algorithm based on OBBTrees by only test-
ing a line segment (representing the path swept out
by the probe device between two successive steps) and
an OBBTree. (The original algorithm [15] uses a over-
lap test between a pair of OBBs and can take more
than 200 operations per test.) At run time, most of
the computation is spent in finding collisions between
a line segment and an OBB. To optimize this query,
we have developed a very fast overlap test between a
line segment and an OBB, that takes as few as 6 oper-
ations and only 36 arithmetic operations in the worst
case, not including the cost of transformation.

At the first glance, it is tempting to use sophisticated
and optimized line clipping algorithms. However, the
line-OBB intersection problem for haptic interaction
is a simpler one than line clipping and the environ-
ment 1s dynamic and consisting of many OBBs. Next
we’ll describe this specialized overlap test between a
line segment and an oriented bounding box for haptic
rendering. Without loss of generality, we will choose
the coordinate system centered on and aligned with
the box — so the problem is transformed to an over-
lap test between a segment and a centered axis-aligned
bounding box. Our overlap test uses the Separating-

Axis Theorem described in [15], but specialized for a
line segment against an OBB.

Specifically, the candidate axes are the three box
face normals (which are aligned with the coordinate
axes) and their cross-products with the segment’s di-
rection vector. With each of these six candidate axes,
we project both the box and the segment onto it, and
test whether the projection intervals overlap. If the
projections are disjoint for any of the six candidate
axes, then the segment and the box are disjoint. Oth-
erwise, the segment and the box overlap.

How are the projection intervals computed? Given
a direction vector v of a line through the origin, and a
point p, let the point p’ be the axial projection of p onto
the line. The value d, = v - p/|v| is the signed distance
of p’ from the origin along the line. Now consider the
line segment with midpoint m and endpoints m + w
and m — w. The half-length of the line segment is |w]|.
The image of the segment under axial projection is the
interval centered at

ds = v-m/|v|
and with half-length
Ly = [w-v|/]v]

Given a box centered at the origin, the image of the
box under axial projection is an interval with midpoint
at the origin.

Furthermore, if the box has thicknesses 2¢7, 2tY, and
2t? along the orthogonal unit directions u”, ¥, and u?,
the half-length of the interval is given by

Ly = [t70 - u®/Jo][ + [T - w [|o][ 4 [t70 -/ |o]]

With the intervals so expressed, the axis v is a sep-
arating axis if and only if (see Figure 2)

|d5| > Ly + Ly

If we assume that the box is axis-aligned, then
u® = [1,0,0]7,w¥ = [0,1,0]7, and w* = [0,0,1]7,
and the dot products with these vectors become simple
component selections. This simplifies the box interval
length computation to

Ly = [t | + [tYvy| + [P0,

Now, recall that the candidate axis v is either a box
face normal, or a cross product of a face normal with
the line segment direction vector. Consider the former
case, when v is a box face normal, for example [1, 0, 0]7.
In this case, the components v, and v, are zero, and
the component v, is one, and we are left with

Ly =1t"
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Figure 2. Overlap test between a line segment and
an OBB

-

The projection of the line segment onto the z—axis
1s also simple:
Ly = |wx|

So, the test for the v = [1,0,0]7 axis is
|me| > 7 + |wel

The tests for the candidate axes v = [0, 1, 0] and
v =[0,0,1]% have similar structure.

The three cases where v is a cross product of w with
one of the box faces are a little more complex. Recall
that in general,

Ly = [t%v - u”| + |0 - w?| + [P - w0

For the sake of concreteness, we will choose v = w X uy.
Then this expression becomes

Ly = [t"(wxu?) - |+ [t (wx u¥ ) - w¥ |+ [t7 (w x u¥) -0

Application of the triple product identity
(axb)-c=(cxa)-b

yields

Ly = [t7(u¥ x u®) - w|+ ¥ (0¥ x u¥) - w|+ 17 (u¥ x u”) - w]

All of these cross products simplify, because the u vec-

tors are mutually orthogonal, u” x v¥ = v? uw¥ x u* =

xr

u-,

and u® x u” = u¥, so
Ly = [t7(=u®) - w[ 4 [tY(0) - w[ 4 [¢* (") - w]

And again, using the fact that u* = [1,0,0]%, and so
forth,
Ly = 1% |w,| + 7 |wg]

The half-length of the segment interval is
Li=|w-(wxuw)|=]u (wxw)|=u -0=0

which is what we would expect, since we are projecting
the segment onto a line orthogonal to it.

Finally, the projection of the segments midpoint falls
at

ds = (wxu’) -m=(mxw) uw=mw, —myw,
which is just the y—component of m x w. The final
test is

|m,we — mpw, | > 17w, | + t*|w,|

Similar derivations are possible for the cases v =
wx u® and v = w x u?.

Writing out the entire procedure, and precomputing

a few common subexpressions, we have the following
pseudo code:

let X = |w,]
let YV = |wy]
let 7 = |w,]

if |mg| > X +1t; return disjoint

if |my| >Y 41, return disjoint

if |m,| > 7 +1t, return disjoint

if [myw, — mywy| > t,Z7 4+ t,Y return disjoint
if |mgyw, — mywg| > 1,7 + 1, X return disjoint
if [mywy — mywy| > t,Y +1, X return disjoint
otherwise return overlap

When a segment and an OBB are disjoint, the rou-
tine often encounters an early exit and only one (or
two) out of the six expressions is executed. Total oper-
ation count for the worst case is: 9 absolute values, 6
comparisons, 9 add and subtracts, 12 multiplies. This
does not include the cost of transforming, i.e. 36 oper-
ations, the problem into a coordinate system centered
and aligned with the box.

4 Implementation Issues

H-COLLIDE has been successfully implemented in
C++. We have interfaced H-COLLIDE with GHOST,
a commercial software developer’s toolkit for haptic
rendering, and used it to find surface contact points
between the probe of a PHANToM arm and large geo-
metric models (composed of tens of thousands of poly-
gons). Here we describe some of the implementation
issues.



4.1 Hashing Scheme

Clearly it is extremely inefficient to allocate storage for
all these cells, since a polygonal surface is most likely
to occupy a very small fraction of them. We use a hash
table to alleviate the storage problem. From each cell
location at (z,y, z) and a grid that has len cells in each
dimension, we can compute a unique key using

key =z +yxlen + 2% len®.

In order to avoid hashing too many cells with same
pattern into the same table location we compute the
actual location for a grid cell in the hash table with

TableLoc = random(key)%Table Length.

Should the table have too many cells in one table
location, we can simply grow the table. Hence, it is
possible to determine which triangles we need to check
in constant time and the amount of storage required
is a constant factor (based on the grid grain) of the
surface area of the object we want to “feel”.

Determining the optimal grid grain is a non-trivial
problem. Please refer to [16] for a detailed retreat-
ment and a possible analytical solution to this problem.
We simply set the grain of the grids to be the average
length of all edges. If the model has a very irregular
triangulation it is very possible that there could be a
large number of small triangles in a single grid cell.

Querying an OBBTree takes O(logn) time, where
n is the number of triangles in the tree. During the
off-line computation, we can ensure that n is a small
number compared to the total number of triangles in
the model; thus the overall running time of our hybrid
approach should be constant.

4.2 User Options

Since the hybrid approach used in H-COLLIDE has a
higher storage requirement than either the individual
technique alone, the system also allows the user to se-
lect a subset of the techniques, such as the algorithm
purely based on OBBTrees, to opt for better perfor-
mance on a machine with less memory.

5 System Performance

For comparison, we have implemented adaptive grids,
our hybrid approach and an algorithm using only OBB-
Trees and the specialized overlap test described in Sec-
tion 3.4. We have applied them to a wide range of mod-
els of varying sizes. (Due to the page limit, we invite
the readers to view the Color Plates of these models at
http://www.cs.unc.edu/ geom/HCollide /model.pdf.)

Their performance varies based on the models, the con-
figuration of the probe relative to the model, machine
configuration (e.g. cache and memory size) and the
combination of techniques used by our system. Our
hybrid approach results in a factor of 2-20 speed im-
provement as compared to a native GHOST method.
For a number of models composed of 5,000 — 80,000
polygons, our system is able to compute all the con-
tacts and response at rates higher than 1000 Hz on a

400MHz PC.

5.1 Obtaining Test Data

We first obtained the test data set by deriving a
class from the triangle mesh primitive which comes
with SensAble Technologies’ GHOST library, version
2.0 beta. This records the start and the endpoint of
each segment used for collision detection during a real
force-feedback session with a 3-DOF PHANToM arm.
We then implemented the three techniques mentioned
above to interface with GHOST for comparison with a
native GHOST method, and timed the collision detec-
tion routines for the different libraries using the data
from the test set. The test set for each of these models
contains 30,000 readings.

The distinction between a collision and an inter-
section shown in the tables is particular to GHOST’s
haptic rendering. Each haptic update cycle contains a
“collision” test to see if the line segment from the last
position of the PHANToM probe to its current posi-
tion has intersected any of the geometry in the haptic
scene. If there has been a collision, then the inter-
sected primitive suggests a surface contact point for
the PHANToM probe to move towards. In this case
it 18 now necessary to perform an “intersection” test
to determine if the line segment from the last position
of the PHANToM probe to the suggested surface con-
tact point intersects any of the geometry in the scene
(including the primitive with which there was a “colli-
sion”).

The timings (in milliseconds) shown in Tables 1-5
were obtained by replaying the test data set on a 4
processor 400 MHz PC, with 1 GB of physical memory.
Each timing was obtained using only one processor.
For comparison, we ran the same suite of tests on a
single processor 300 MHz Pentium Pro with 128 MB
memory. The hybrid approach appeared to be the most
favorable as well.

5.2 Comparison between Algorithms

Since the algorithms run on a real-time system, we are
not only interested in the average performance, but
also the worst case performance. Tables 1-5 show the



[ Method [[ Hash Grid | Hybrid [ OBBTree | GHOST |
Ave Col. Hit 0.0122 0.00883 0.0120 0.0917
Worst Col. Hit 0.157 0.171 0.0800 0.711
Ave Col. Miss 0.00964 0.00789 0.00856 0.0217
Worst Col. Miss 0.0753 0.0583 0.0683 0.663
Ave Int. Hit 0.0434 0.0467 0.0459 0.0668
Worst Int. Hit 0.108 0.102 0.0793 0.100
Ave Int. Miss 0.0330 0.0226 0.0261 0.0245
Worst Int. Miss 0.105 0.141 0.0890 0.364
Ave. Query 0.019 0.014 0.017 0.048

Table 1. Timings in msecs for Man Symbol, 5K tris

[ Method [[ Hash Grid | Hybrid [ OBBTree | GHOST |
Ave Col. Hit 0.0115 0.0185 0.0109 0.131
Worst Col. Hit 0.142 0.213 0.138 0.622
Ave Col. Miss 0.0104 0.00846 0.0101 0.0176
Worst Col. Miss 0.0800 0.0603 0.0813 0.396
Ave Int. Hit 0.0583 0.0568 0.0652 0.0653
Worst Int. Hit 0.278 0.200 0.125 0.233
Ave Int. Miss 0.0446 0.0237 0.0349 0.0322
Worst Int. Miss 0.152 0.173 0.111 0.287
Ave. Query 0.030 0.025 0.028 0.070

Table 2. Timings in msecs for Man with Hat, 7K tris

[ Method [[ Hash Grid | Hybrid [ OBBTree | GHOST |
Ave Col. Hit 0.0138 0.0101 0.0134 0.332
Worst Col. Hit 0.125 0.168 0.0663 0.724
Ave Col. Miss 0.00739 0.00508 0.00422 0.0109
Worst Col. Miss 0.0347 0.0377 0.0613 0.210
Ave Int. Hit 0.0428 0.0386 0.0447 0.0851
Worst Int. Hit 0.0877 0.102 0.0690 0.175
Ave Int. Miss 0.0268 0.0197 0.0213 0.0545
Worst Int. Miss 0.0757 0.0697 0.0587 0.284
Ave. Query 0.022 0.016 0.039 0.18

Table 3. Timings in msecs for Nano Surface, 12K tris

[ Method [[ Hash Grid | Hybrid [ OBBTree | GHOST |
Ave Col. Hit 0.0113 0.00995 0.0125 0.104
Worst Col. Hit 0.136 0.132 0.177 0.495
Ave Col. Miss 0.0133 0.00731 0.0189 0.0280
Worst Col. Miss 0.128 0.0730 0.137 0.641
Ave Int. Hit 0.0566 0.0374 0.609 0.0671
Worst Int. Hit 0.145 0.105 0.170 0.293
Ave Int. Miss 0.0523 0.0225 0.0452 0.0423
Worst Int. Miss 0.132 0.133 0.167 0.556
Ave. Query 0.027 0.014 0.028 0.048

Table 4. Timings in msecs for Bronco, 18K tris

[ Method [[ Hash Grid | Hybrid [ OBBTree | GHOST |
Ave Col. Hit 0.0232 0.0204 0.0163 1.33
Worst Col. Hit 0.545 0.198 0.100 5.37
Ave Col. Miss 0.00896 0.00405 0.00683 0.160
Worst Col. Miss 0.237 0.139 0.121 3.15
Ave Int. Hit 0.228 0.0659 0.0704 0.509
Worst Int. Hit 0.104 0.138 0.103 1.952
Ave Int. Miss 0.258 0.0279 0.0256 0.229
Worst Int. Miss 0.0544 0.131 0.0977 3.28
Ave. Query 0.030 0.016 0.016 0.320

Table 5. Timings in msecs for Butterfly, 79K tris

timings in milliseconds obtained for both cases on each
model and each contact configuration.

All our algorithms are able to perform collision
queries at rates faster than the required 1000 Hz force
update rate for all models in the worst case. Although
the hybrid approach often outperforms the algorithm
based on OBBTrees, it is sometimes slightly slower
than the alogrithm based on OBBTrees. We conjecture
that this behavior is due to the cache size of the CPU
(independent of the memory size) and memory paging
algorithm of the operating system. Among techniques
that use hierarchical representations, cache access pat-
terns can often have a dramatic impact on run time
performance.

The hybrid approach requires more memory and 1s
likely to have a less cache-friendly memory access pat-
tern than the algorithm purely based on OBBTrees,
despite the fact that both were well within the realm
of physical memory available to the machine. Further-
more, by partitioning polygons into groups using grids,
the hybrid technique can enable real-time local surface
modification.

The adaptive grids-hashing scheme, a commonly
used technique in ray-tracing, did not perform equally
well in all cases. Once again, our hypothesis is that
its inferior worst case behavior is due to its cache ac-
cess patterns, in addition to its storage requirements.
We believe the native GHOST method uses an algo-
rithm based BSP trees. While it is competitive for the
smaller model sizes, its performance fails to scale up
for larger models. Our hybrid approach and our algo-
rithm purely based on OBBTrees and the specialized
overlap test appear to be relatively unaffected by the
model complexity.

6 Conclusion

We have presented a framework, H-COLLIDE, that
consists of a suite of algorithms and a system im-
plementation for fast and accurate collision detection
for haptic interaction with polygonal models at rates
higher than 1000Hz on a desk-top PC. This framework
may be extended for supporting 6-DOF haptic devices
to perform collision tests between a pair of 3D objects
and flexible surfaces that may deform due to manipula-
tion. In addition, it can be combined with the tracing
algorithm [36] to handle complex sculptured models
more efficiently, by using their control points.
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