
SIMULATION PROGRAM DEVELOPMENT BY STEPWISE REFINEMENT IN UNITYMarc AbramsErnest H. PageRichard E. NanceDepartment of Computer ScienceSystems Research CenterVirginia Polytechnic Institute and State UniversityBlacksburg, VA 24061-0106fabrams,page,nancegvtopus.cs.vt.eduABSTRACTChandy and Misra's UNITY is a computationalmodel and proof system suitable for development ofparallel (and distributed) programs through step-wisere�nement of speci�cations. UNITY supports the de-velopment of correct programs and the e�cient im-plementation of those programs on parallel computerarchitectures. This paper assesses the potential ofUNITY for simulation model speci�cation and im-plementation by developing a UNITY speci�cation ofthe machine interference problemwith a patrolling re-pairman service discipline. The conclusions reachedare that the UNITY proof system can assist for-mal veri�cation of simulationmodels and the UNITYmappings of programs to various computer architec-tures o�er some potential for assisting the automaticimplementation of simulation models on parallel ar-chitectures. The paper gives some insights into therelationship of time 
ow mechanisms, parallel simu-lation protocols, and target parallel computer archi-tectures.1 INTRODUCTIONThe automated support of simulation model develop-ment is entering the second decade as a topic of signif-icant research interest. Approaches to computer as-sistance have sought a conceptual basis in arti�cial in-telligence (Klahr 1985, Snyder and Macbulack 1988),general systems theory (Kim and Zeigler 1987, Mur-ray and Sheppard 1987), software engineering (Hen-riksen 1983), and modeling methodologies (Balmerand Paul 1986, Nance 1981). In fact, the primarye�orts in simulation support environments draw tovarying degrees from all these conceptual sources.Balzer, Cheatham, and Green (1983, p. 41) describethe automation-based paradigm as separating imple-mentation from speci�cation so that maintenance isperformed entirely on the latter. Automatic transla-

tion from a higher level speci�cation to an e�cientimplementation is envisioned. This perspective onapplication development and support emphasizes therole of speci�cation languages (see Stoegerer (1984)for an excellent survey) and the necessity for realizingan e�cient implementation.Simulation modeling represents a challenge forboth model speci�cation and implementation, andthis work represents an e�ort to assess the poten-tial of UNITY (Chandy and Misra 1988) for accom-plishing both. (See the companion paper, Abrams,Page, and Nance (1991b), for a brief introduction toUNITY.) In addition, UNITY is intended for devel-opment of e�cient parallel and distributed programsthrough step-wise re�nement of speci�cations. Thispaper also assesses the potential of UNITY to derivee�cient parallel simulation implementations.A simulation program development methodologythat uses UNITY is presented in Section 2 and ap-plied to the Machine Repairman Problem in Sec-tion 3. Conclusions follow in Section 4.2 UNITY-BASED METHODOLOGYWe propose that a simulation model be representedas a UNITY program by mapping simulation \at-tributes" and \events," as de�ned by Kiviat (Nance1981), to UNITY \variables" and \assignment state-ments," respectively.Assume that the \system and objectives de�nition"and \conceptual model" in Balci and Nance's simu-lation life cycle are completed (Balci 1989). We pro-pose using a state transition diagram representationof the \communicative model" in the methodology tosimplify the presentation. Starting at this point wepropose the following methodology:Step 1: This step speci�es a simulation that cap-tures the order of events that occur in the system,but ignores the absolute time at which events occur.



(For the machine repairman problem discussed in Sec-tion 3, this means capturing the correct state spaceand state transitions without regard to failure andrepair rates or the rate at which the operator walks.)Step 1A: Select a set of state variables, enumerateall values of each state variable, and for each statevariable enumerate all constraints on transitions thatthe system can make between the values of the statevariable. Also specify which transitions are known tooccur in a �nite period of time.(This paper uses one state transition diagram torepresent each state variable, which permits a me-chanical translation from the transition diagrams tothe UNITY representation. However other represen-tations, such as a single transition diagram, a Petrinet, or English statements could be used.)Verify that the states enumerated and the con-straints on transitions match the conceptual model.Also verify that the list of constraints is complete(i.e., all invalid transitions are prohibited) and con-sistent (i.e., satisfying one constraint never leads to aviolation of another constraint).Step 1B: Express each output measure in terms ofthe holding time for a set of states. Verify that alloutput measures can be expressed in terms of thestates selected in Step 1A.Step 1C: Formalize the state transition diagram ofStep 1A in UNITY. Verify that all transitions present(prohibited) in the diagrammatch transitions present(respectively, prohibited) in the UNITY speci�cation.Overall veri�cation of Step 1: Verify that the com-municative model and the UNITY speci�cation a-gree in the following manner: State a set of prop-erties that the communicative model implies, and useUNITY's proof system to show that the speci�cation(i.e., the UNITY assertions of Step 1C and the addi-tional properties of this step) implies these properties.Step 2: Re�ne the simulation by mapping the orderof events to a time scale. (In the machine repair-man problem of Section 3, this means adding failureand repair rates and the rate at which the operatorwalks.) Verify that the re�ned speci�cation meets thespeci�cation from Step 1.Step 3: Derive a simulation program from the spec-i�cation in Step 2. Formally verify using UNITY'sproof system that the program meets the speci�ca-tion.

Step 4: Re�ne the simulation program by mappingthe program to a particular (1) time 
ow mechanism,(2) sequential or parallel simulation protocol, and (3)sequential or parallel hardware architecture. We con-jecture that these three must all be considered to-gether to achieve an e�cient program.3 MACHINE REPAIRMAN PROBLEMThis paper applies the methodology of Section 2 tothe classical machine interference problem (Cox andSmith 1961). In the problem, a set of N semi-automatic machines fail intermittently and are re-paired by one or more technicians. Machine failurerates are assumed to follow a Poisson distributionwith parameter �. Upon arriving at a failed machine,a technician can repair the machine in a time periodthat is exponentially distributed with parameter �. Avariety of service disciplines are possible that specifyhow the technician selects a machine to repair.The multiple repairman version of this problemshould serve as an interesting benchmark for paral-lel simulation. The system being modeled containsconcurrent behavior because machines fail indepen-dently, technicians after arriving at a machine repairmachines independently. However the choice of ser-vice discipline introduces dependencies between thetimes that technicians arrive at machines that shouldfrustrate e�cient parallel execution of a simulationmodel.This paper considers the patrolling repairman ser-vice discipline, in which a single technician servicesall machines (Nance 1971, p. 60). The techniciantraverses a path amongst the machines in a cyclicfashion (1; 2; : : : ; N; 1; : : :). The technician walks ata constant rate and only stops walking upon encoun-tering a down machine. The technician takes con-stant time T to walk from one machine to the next.The model terminates when the number of machinerepairs exceeds the constant MaxRepairs. This prob-lem, hereafter referred to as the machine repairmanproblem (MRP), is chosen so that both the UNITYspeci�cation and program may be presented withinthe space available for this paper.3.1 Illustration of Methodology Step 13.1.1 Step 1A: Select States and Specify Con-straints on TransitionsNotation: Symbol N denotes the number of ma-chines. Let m and n each denote an integer in theinterval [1; N ] and represent machine numbers.



Machines: Each machinem is in one of two states:up or down. Associated with each m is a variablem.state that takes on values up or down. For con-venience we employ variables m:u and m:d, de�nedas: m:u � (m.state=up)m:d � (m.state=down)Therefore the value of m.state is up or down if m isup or down, respectively.Technician: The technician is in one of 2N states:at machine 1, leaving machine 1, at machine 2, leav-ing machine 2, : : : , at machine N , and leaving ma-chine N .To represent these 2N states, we associate with thetechnician a single state variable loc that takes on the2N values 1, 1.5, 2, 2.5, : : : , N , N +0:5, respectively.For convenience we employ boolean variablesm:a andm:l, de�ned as:m:a � (loc = m)m:l � (loc = m + 0:5)Therefore the value of loc is 1 if the technician is atmachine 1, the value is 1.5 if the technician is travel-ing frommachine 1 to 2, the value is 2 if the technicianis at machine 2, and so on.Number of repairs: SymbolNR denotes the num-ber of repairs to down machines that the technicianhas completed so far. Initially, NR = 0.State TransitionDiagrams: The state of the sys-tem is represented by N+3 state variables: 8m; m =1; 2; : : : ; N; m.state, loc, and NR. Constraints on thetransitions between states that the system may makeare represented using one state transition diagramfor each state variable, as illustrated in Figures 1through 3. Some transitions are labeled with Booleanfunctions of state variables not shown in the diagram,which means that the associated transition may onlybe taken if the Boolean function has value true. Forexample, in Figure 1 a machine can only go from adown state to an up state if the technician is present(e.g., the transition from state m:d tom:u occurs onlyif m:a holds).The diagram in Figure 1 speci�es that an up ma-chine may go down independently of the location ofthe technician or state of other machines, and a downmachine may only go up when a technician is present.Figure 2 speci�es that a technician that is at machine

m.u m.dm:a�� ��- -Figure 1: State Diagram Illustrating Variablem.state1.a 1.l 2.a 2.l N:a N:l1:u 2:u N:u�� ��- - - - - : : : - -Figure 2: State Diagram Illustrating Variable locm advances to machine m � 1 only if machine m isup.The diagram in Figure 3 uses double lines for tran-sitions. We choose the convention that a doubletransition line can only occur simultaneously withthe predicate labeling the transition becoming false.Therefore in Figure 3 the value of variable NR is in-cremented only when predicate m:a ^ m:d becomesfalse, corresponding to the technician leaving a ma-chine and the machine going back up.Modeling Simultaneity: Step 1A requires spec-ifying states and legal and illegal transitions betweenstates without specifying information about the dura-tion of simulation time that can elapse between statetransitions; the time may be zero or it may be posi-tive. Constraints on times are added in Step 2.Often a modeler knows that changes to multiplestate variables must occur simultaneously; that is,zero simulation time must elapse between the settingof one variable and the setting of any other variable.This information may be incorporated into the speci-�cation either in Step 1A or in Step 2; either may beused as is convenient to the modeler:1. in Step 1A specify one transition that changesthe value of all state variables in the set, or2. in Step 2 specify the holding time of instanta-neous events to be zero.0 h9m::P (m)i======): : :) k h9m::P (m)i======) k + 1 h9m::P (m)i======): : :Figure 3: State Diagram Illustrating Variable NR(Predicate p(m) denotes m:a^m:d, and m is quanti-�ed over the set f0; 1; : : :; Ng of all machines.)



Does it matter whether simultaneous state changesare speci�ed in Step 1A or in Step 2? It is nat-ural to assert that certain states have zero holdingtime in Step 2 and then implement a zero holdingtime in a simulation programming language; on theother hand specifying simultaneity in Step 1A permitsformal veri�cation of properties about simultaneousstate changes using UNITY's proof system. (For ex-ample, one could verify that a machine never goesdown while a technician is at the machine.) A de�ni-tive answer requires further investigation.3.1.2 Step 1B: Express OutputMeasures Us-ing Holding TimesLet us assume that the desired output measures are:1. fraction of time which machine m is up,2. fraction of time during which the technician isrepairing machine m, and3. fraction of time during which the technician istraveling.In Step 1 we must show that the time intervals re-ferred to in the output measures can be expressedin terms of the states identi�ed in Step 1B. Calcu-lation of measure 1 above is straightforward becausestate m:u is the only state in which machine m is up.Calculation of measure 2 above is also straightfor-ward because state m:a is exactly the state in whichthe technician is repairing machine m. Calculationof measure 3 above is a little more complex. De�neBoolean variable traveling as follows:traveling � (_m :: m:l)Output measure 3 is simply the duration of simula-tion time for which predicate traveling has value true.3.1.3 Step 1C: Formalize State TransitionDi-agrams in UNITYTable 1 provides a set of rules that may be mechani-cally followed to generate a UNITY speci�cation fromeach state transition diagram. The rules are appliedto the MRP in Table 2.Rule I formalizes a transition from a state S toa state S0 without a Boolean function labeling thetransition. In this case assertions (a)and optionally(b) must be added to the speci�cation. Assertion (a)insures that when the state variable has value S, ifit ever changes value, its next value must be S0. Op-tional assertion (b) is included if the following holds:

If diagramcontains: Add to speci�cation:Rule I:S �! S0 (a) S unless S0(b) S 7! S0 (optional)Rule II:S P�! S0 (c) S ^ :P unless S ^ P(d) S unless S0(e) S ^ P 7! S0 (optional)Rule III:S h9m::P (m)i=====) S0 (f) S ^ h8m :: :P (m)iunless S ^h9m :: P (m)i(g) h8m ::S ^ P (m) unless S0 ^:P (m)i(h) h8m ::S ^ P (m) 7! S0 ^ :P (m)i(optional)Rule IV:Initial state is S Initial condition ) STable 1: Rules to Mechanically Map a State Diagramto a UNITY Speci�cation (S and S0 denote states, Pand p(m) denote Boolean valued predicates, m 2W ,and W denotes any set. Rule III applies when atmost one p(m), for all m 2W , is true at any time.)when the state variable has value S, it must eventu-ally change to value S0.In Rule II, assertion (c) insures that when the statevariable has value S and predicate P is false, then thestate variable value remains constant as long as P re-mains false. Assertion (d) is similar to (a). Optionalassertion (e) is included if the following holds: whenthe state variable has value S and P holds, then even-tually the variable must change to value S0.In Rule III, assertion (f) is similar to (c), but it isgeneralized to handle multiple predicates on the arc.Assertion (g) generalizes (d) to capture the essence ofwhat makes the double arrow transition di�er fromthe single arrow: when the state variable has valueS and predicate P (m) holds for some m, after thenext state transition (in this or another state dia-gram), either the condition continues to hold or elsethe transition changes the state variable value to S0and P (m) is now false. Optional assertion (h) is in-cluded if, when the state variable has value S andpredicate P (m) holds for some m, the transition de-scribed by (g) must eventually occur.Rule IV simply adds the initial condition of each



Speci�cation includes: Due to state dia-gram fragment: FromFigure:MRP1: m:u until m:d m:u �! m:d 1MRP2: m:d unless m:u m:d m:a�! m:u 1MRP3: m:d ^ :m:a unless m:d ^m:aMRP4: m:d ^m:a 7! m:uMRP5: m:a unless m:l m:a m:u�! m:l 2MRP6: m:a ^m:d unless m:a ^m:uMRP7: m:a ^m:u 7! m:lMRP8: m:l until (m � 1):a m:l �! (m � 1):a 2MRP9: NR = k^h8m :: :(m:a^m:d)i unless NR = k^h9m ::m:a^m:diMRP10: NR = k ^m:a ^m:d until NR = k + 1 ^ :(m:a ^m:d)i k h9m::m:a^m:di=======) k + 1 3MRP11: Initial condition) NR = 0 3Table 2: Complete Unity Speci�cation for MRPstate diagram, if any, to the speci�cation.The set of rules in Table 1 are insu�cient to formal-ize any state transition diagram. In particular, RulesI and II must be modi�ed to handle the case of twoor more output arcs from a value S. Rule III mustbe modi�ed to handle the case of two or more outputarcs to di�erent values; in its present form Rule IIIhandles multiple arcs to the same value S0. Thesegeneralizations are unnecessary for formalization ofthe machine repairman problem and are omitted.Applying the rule of Table 1 to the transition di-agrams of Figures 1 to 3 yields the UNITY speci�-cation of the MRP shown in Table 2. For example,MRP1 states that a machine that is up must eventu-ally go directly to a down state.Note that the de�nition of logical relation untilhas been used in Rules I and III whenever the op-tional assertion is included to reduce the numberof assertions that comprise the speci�cation. In allUNITY formulas in the paper, universal quanti�ca-tion over the values of variable loc is assumed, unlessthe quanti�cation is explicit. Hence all formulas ex-cept MRP11 in Table 2 hold for m = 1; 2;: : : .The only veri�cation necessary for Step 1C is toinsure that the rules from Table 1 have been correctlyapplied.3.1.4 Overall veri�cation of Step 1The speci�cation of Table 2 is veri�ed by stating ad-ditional properties and using UNITY's proof systemto formally show that the speci�cation implies theseproperties. Inability to prove the properties impliesthat the speci�cation is incomplete or incorrect, orthat the properties themselves do not hold for the

P1 : m:d 7! m:uP2 : m:a until m:lP3 : true 7! NR � MaxRepairsFigure 4: Properties of MRP Used to Formally VerifySpeci�cation Correctnesssystem. Carrying out such a proof does not guaranteethe correctness of the speci�cation, but does increaseour con�dence in the speci�cation. In fact, in writingthis paper our original statement of the speci�cationomitted several properties shown in Table 2.We give three properties (Figure 4) which areproved in Abrams, Page, and Nance (1991a). First,when a machine goes down, it is eventually repairedand comes back up (P1). Second, when the technicianis at a particular machine, he remains at that machineuntil, eventually, he leaves that machine (P2). Third,the value of variable NR eventually exceeds any con-stant MaxRepairs (P3).3.2 Illustration of Methodology Step 2In Step 2, the speci�cation of Step 1 is augmentedby two additional assertions on the holding time ofcertain states, speci�ed in units of simulation time.Before stating the assertions, two additional variablesare necessary.A sequence is a data type commonly employed inUNITY speci�cations, and represents a list of itemswith a �rst element and a last element. If s denotes asequence, then Head(s) is the �rst element of the se-



quence, and Tail(s) is the sequence obtained by delet-ing Head(s).The speci�cation represents \calls to a randomnumber generator" by referring to a sequence whoseelements are a list of random variates returned by therandom number generator. Let sequence m:� denotea list of random variates representing the sequence oftimes for which machine m remains up. Let sequencem:� denote a list of random variates representing thesequence of repair times of machine m.The additional assertions are:1. State m:u has holding time Head(m.�).2. State m:d ^m:a has holding time Head(m.�).3. State m:u ^m:a has holding time zero.UNITY has no notion of \time"; therefore these as-sertions cannot be formalized in UNITY.Veri�cation: The speci�cation of Step 1 is sub-sumed by the speci�cation of Step 2.3.3 Illustration of Methodology Step 3The speci�cation of Table 2 is implemented by pro-gram MRP, shown in Figure 5.Veri�cation: Formal proof that the code meets thespeci�cation in Table 2 can be carried out, but isnot presented in this paper. Proof that the outputmeasures are correctly computed requires formulatingand proving a suitably strong invariant.It is impossible to prove the time-in-state asser-tions from Section 3.3 using the current proof systemof UNITY. UNITY's computational model of fairlyinterleaved, atomic execution of statements permitsno notion of simultaneity, which means that funda-mental changes to UNITY are required to carry outthese proofs.3.4 Illustration of Methodology Step 4In this section we explore how di�erent time 
ow al-gorithms may be added to a UNITY simulation spec-i�cation of the form given in Step 3. In particular,we consider two classical time 
ow mechanisms: �xedtime increment and Time-of-Next-Event.UNITY advocates program development by step-wise re�nement of speci�cations, with the transfor-mation from the most re�ned speci�cation to a pro-gram written in a programming language being the\most mechanical and least creative part of the pro-cess" (Chandy and Misra 1988, p. ix). To apply this

philosophy to the simulation program developmentcycle, we must have a way to re�ne the speci�cationof Step 3 into the speci�cation of Step 4 by adding atime 
ow mechanism. Step 4 is necessary only as wemove toward implementation and is not necessary forspeci�cation of model behavior in its most basic sense(i.e. what the model does rather than how the modelaccomplishes what it does). Therefore the additionof a time 
ow mechanism in Step 4 should be accom-plished with minimal (ideally no) perturbations of theStep 3 speci�cation. We demonstrate below that thiscan be accomplished using the UNITY concept of su-perposition.3.4.1 Superposing Fixed Time IncrementFirst we consider the speci�cation of the �xed timeincrement time 
ow mechanism.Symbol � denotes an integer value of simulationtime, representing a time increment; the value of �is �xed during simulation. Recall from Figure 5 thatSysTime is a program variable containing the currentsimulation time. The �xed time increment algorithmconsists of two phases:1. Execute any statements (events) whose alarmshave gone o� at the current value of SysTime.2. Set SysTime to SysTime + �.In order to add the above two phase algorithm tothe Step 3 speci�cation (Figure 5) we must devisea means to insure that all statements whose alarmshave gone o� at the current value of SysTime areexecuted before SysTime is incremented. (BecauseUNITY does not specify sequencing of statements,we must add something to enforce the two phase se-quencing.)Let the UNITY program of Step 3 contain S state-ments in the assign section (S = 5 in Figure 5).To enforce the two phase algorithm, we �rst num-ber the statements in the program of Step 3 by theintegers 1,2,: : : ,S. Next we add array A[1..S]. Ini-tially, all elements of array A are zero. Each state-ment si numbered i (for 1 � i � S) is transformed tosi k A[i] := 1. When all elements of array A are one,SysTime can be incremented. When system time isincremented (in the superposed program) all elementsof array A are set to zero. (Note that an assignmentstatement of the form x := e if b in Figure 5 is ashorthand for x := e if bjjx := x if :b: Therefore thestatement is executed even though b is false.)The superposed program is formalized in Figure 6.Note that Figure 6 works with any simulation speci-�cation that results from Step 3.



program MRP fsimulate the MRPgdeclareconstants N=: : : ; MaxRepairs=: : : ; T=: : : ;types alarm = integer;variablesm : integer fmachine number; integer in [1,N]gState[N] : (up, down) fenumerated typegLoc : (1,1.5,: : :,N,N+0.5) fenumerated typegNR : integer fnumber of completed repairsgSysTime : integer fcurrent simulation time; read only gFailure[N] : alarm fFailure[m] = time machine m next fails if Failure[m]>SysTimegArrival[N] : alarm fArrival[m] = time technician next arrives at machine m, if m	0.5= Loc, otherwise time when technician arrived at machine mgFinish[N] : alarm fFinish[m] = time machine m goes back up if State[m]=down andLoc=m, otherwise time of last repair completiong�[N] : sequence of integer f sequence of random variates representing time between failuresg�[N] : sequence of integer fsequence of random variates representing repair timesgalwaysterm = NR � MaxRepairsinitiallySysTime = 0.0 k NR = 0 k Loc=1.5 ftechnician initially leaving machine 1gk h k m : 1 � m � N :: State[m] = up i finitially all machines are up gk h k m : 1 � m � N :: Failure[m] = SysTime + Head(�[m]) k �[m] = Tail(�[m]) ik h k m : 1 � m � N :: Arrival[m] = SysTime + T if m = Loc � 0.5 � -1 if m 6= Loc � 0.5 iassignfArrival: Update location; schedule �nish if machine is down, else schedule arrival at next machine. g2 h k m : 1 � m � N :: Loc := m if SysTime = Arrival[m] ^ :term2 Finish[m], �[m] := SysTime+Head(�[m]), tail(�[m]) if Loc=m ^ State[m]=down ^ :term2 Loc, Arrival[(m � 1)] := m � 0.5, SysTime+T if Loc=m ^ State[m]=up ^ :termifFinish: Increment NR, set machine state to up, schedule next failure, update technician's locationand schedule arrival at next machineg2 h k m : 1 � m � N :: NR, Arrive[m �1], Failure[m], State[m], Loc, �[m] :=NR+1, SysTime+T, SysTime+Head(�[m]), up, m �0:5, Tail(�[m]) if SysTime=Finish[m] ^ :termifFailure: Set machine's state to down. g2 h k m : 1 � m � N :: State[m] := down if SysTime=Failure[m] ^ :term iend f MRP g Figure 5: UNITY Code for MRP



Program FTI TFMdeclare A[S] : integerinitially hi : 1 � i � A[i] = 0itransformeach statement s in the underlying programto s k A[i] := 1 where i is the lexical state-ment number of s.add to always sectionupdate = h^i : 1 � i � S :: A[i] = 1iadd to assign sectionhk i :: 1 � i � S :: A[i] := 0 if update ik SysT ime := SysT ime +� if updateend f FTI TFM gFigure 6: Speci�cation of Fixed Time IncrementTime Flow MechanismThis superposition can be accomplished with nochanges to the underlying speci�cation (other thanthe ones addressed by the superposition program ofcourse). So, for the �xed time increment time 
owmechanism we seem to have achieved our ideal.3.4.2 Superposing Time-of-Next-EventNext we sketch a method to add the next event time
ow mechanism to a Step 3 program. As in the �xedtime increment method, we assign each statement inthe assign section an integer identi�cation number.These numbers serve as event numbers. We add anEventList and a variable called CurrentEvent. Re-call that m is an integer in [1; : : : ; N ] denoting a ma-chine number. EventList is a list of triples (time,event number, m). The statements which set alarmsin Figure 5 now append triples to EventList. Thetime 
ow mechanism superimposed on the programsets SysTime to the time component of a triple ofEventList that is less than or equal to the time com-ponent of all other triples. This triple's event numberis stored in CurrentEvent. Finally, We add to eachstatement si in the assign section the condition \ifCurrentEvent=si ."This superposition fails to achieve our goal of notmodifying the speci�cation in Step 3 in order to adda time 
ow mechanism. Therefore the Step 3 speci�-cation is biased towards Fixed Time Increment. Oneway to rectify this is to modify the de�nition of su-perposition in UNITY, which would require the proofsystem to be extended. A second way to rectify thiswould be to choose a representation in Step 3 not

based on alarms that maps as easily to Fixed TimeIncrement and to Time-of-Next-Event.3.4.3 Mapping Speci�cation to a Protocoland ArchitectureMapping a simulation speci�cation to a simulationprotocol is an open problem. Mapping of UNITYspeci�cations to architectures is discussed by Chandyand Misra (1988, Chapter 4), and applies to simula-tion speci�cations.We propose that jointlymapping a simulation spec-i�cation to a time 
ow mechanism, sequential or par-allel simulation protocol, and sequential or parallelhardware architecture may be necessary to achievean e�cient program. In terms of UNITY, the resultof all three mappings is a set of constraints on whenassignment statements (corresponding to simulationevents) can be executed.The simplest joint mapping maps a simulationspeci�cation to a �xed time increment time 
owmechanism, a synchronous parallel simulation pro-tocol, and a synchronous shared-memory computerarchitecture. All three mappings produce the sameconstraint: that all events (assignment statements)are executed each time the clock is incremented.However, mappings to other time 
ow mechanisms,parallel simulation protocols, and architectures aremore complex and constitute an open problem.4 CONCLUSIONSStep 1 of the proposed methodology dictates that theorder of events in a conceptual model be correctlyspeci�ed without regard for the particular times atwhich events occur. The justi�cation is that one oftenwishes to \get the simulation logic correct." Based onthe example in Section 3.1, UNITY works well for thisjob.Step 2 (mapping the order of events to a time scale)requires a modi�cation of UNITY to add notationfor the holding time of certain states. We introducedsuch a notation in Section 3.2. However, in orderto prove any properties about timings, the UNITYproof system must be extended, which is likely to bea di�cult task.Step 3 (deriving a simulation program from a spec-i�cation) in Section 3.3 is straightforward. Again, wecannot formally verify the correctness of the timingproperties without an extension of the proof systemto handle time.Step 4 (mapping the program to a particular time
ow mechanism, sequential or parallel simulation pro-tocol, and sequential or parallel target architecture)



requires additional research to accomplish. Based onthe example in Section 3.4 of mapping the MRP to�xed time increment as well as the Time-of-Next-Event mechanisms, we believe UNITY is su�cient tohandle Step 4.Based on the speci�cation example in this paper,UNITY could help simulationmodelers in three areas:Model veri�cation: UNITY provides a compre-hensive proof system of both safety and progressproperties, which can be applied to verifying proper-ties of simulation models. Our experience in provingthe properties of Figure 4 is that UNITY proofs arefairly mechanical, but can be time consuming. Fol-lowing are some speci�c examples of where the proofsare time consuming.(a) Applying induction: A key to the proof thatdown machines are eventually repaired (P1) is estab-lishing by an induction proof that after a machinegoes down, the technician keeps getting \closer" tothe failed machine, until eventually he is at the failedmachine. Induction is required whenever we want todraw a conclusion about a sequence of state transi-tions, given a speci�cation describing only single steptransitions, as Table 2 does. Figuring out how to �tthe induction theorem to this intuition did requiresome time on the part of the authors.(b) Constructing chain of deductions: In generalthe authors spent much of their time playing withthe more than thirty theorems in the UNITY book(Chandy and Misra, Chapter 3) to construct the for-mal chain of deductions required for each proof. Thisprocess is somewhat analogous to what an undergrad-uate student does in a calculus class, as he browsesthrough a table of integrals and a list of trigonometricidentities in trying to symbolically integrate a func-tion. However a theorem proving system might alle-viate this problem.(c) Devising invariants: This paper does not presenta proof that the simulation code (Figure 5) meetsthe speci�cation. However, proofs of code generallyrequire invariants to be formulated, which takes somecreativity. This is analogous to integrating a functionby guessing the antiderivative.As our experience with UNITY grows, we expectthe time required for items (a) and (b) listed aboveto decrease.Automation-based paradigm: The fact that wecould give, in Table 1, a set of rules to map cer-

tain state transition diagrams to a UNITY speci�-cation in a mechanical manner is encouraging. Webelieve that additional rules can be developed torepresent any state transition diagram, as well asother forms of model representation (e.g., Petri nets).If UNITY grows in popularity, a rich set of meth-ods to map UNITY programs to target architecturesmay be developed. By identifying the correspon-dence between simulation modeling and UNITY pro-grams, a model development environment using theautomation-based paradigm could apply the UNITYarchitecture mappings for simulation models to assistin construction of parallel simulation programs.Mapping speci�cation to time-
ow mecha-nism, parallel protocol, and target machinearchitecture: An important lesson from the ex-ercise in this paper is that mapping a simulationspeci�cation to a time-
ow mechanism, a parallelsimulation protocol (e.g., conservative-synchronous,conservative-asynchronous, optimistic), and a targetmachine architecture are intimately connected. Allthree correspond to specifying constraints on when toexecute statements in a UNITY program. Perhapsall three must be done jointly during the program de-velopment cycle to obtain a su�ciently e�cient pro-gram.E�cient parallel execution of a simulation modelimplies consideration of the constraints imposed byeach combination of computer architecture, time 
owmechanism, and parallel simulation protocol, whichleads to an enormous design space. An additionalcomplication is that many of these constraints are in-put data dependent; thus a correct temporal orderingof events cannot be predicted before execution. Thisexposes one reason why parallel discrete-event simu-lation programming is a fundamentally hard problem.REFERENCESAbrams, M., E. H. Page, and R. E. Nance. 1991a.Linking Simulation Model Speci�cation and Par-allel Execution Through UNITY. Technical Re-port TR 91-14, Computer Science Department,VPI&SU, May 1991.Abrams, M., E. H. Page, and R. E. Nance. 1991b.Linking Simulation Model Speci�cation and Paral-lel Execution Through UNITY. Proceedings of the1991 Winter Simulation Conference.Balci, O. 1989. How to Assess the Acceptability andCredibility of Simulation Results. Proceedings ofthe 1989 Winter Simulation Conference, eds. E.A. MacNair, K. J. Musselman, and P. Heidelberger,62-71.



Balmer, D.W. and R.J. Paul. 1986. CASM { TheRight Environment for Simulation. Journal of theOperational Research Society 37, 443-452.Balzer, R. T. E. Cheatham, Jr., and C. Green. 1983.Software Technology in the 1990s: Using a NewParadigm. Computer 16 (11), November, 39-45.Chandy K. M. and J. Misra. 1988. Parallel Pro-gram Design: A Foundation. Reading, MA: Addi-son Wesley.Cox D. R. and W. L. Smith. 1961. Queues, Methuenand Company, Ltd.Henriksen, J. O. 1983. The Integrated SimulationEnvironment (Simulation Software of the 1990s).Operations Research 31 (6), November-December,1053-1073.Kim, T.G. and B.P. Zeigler. 1987. The DEVS Foun-dation: Hierarchical, Modular Systems Speci�ca-tions in a Object Oriented Framework. Proceedingsof the 1987 Winter Simulation Conference, eds. A.Thesen, H. Grant, and W.D. Kelton, 559-566.Klahr, P. 1985. Expressibility in ROSS: An Object-Oriented Simulation System. AI Applied to Simu-lation: Proceedings of the European Conference atthe University of Ghent, 136-139.Murray, K.J. and S.V. Sheppard. 1987. AutomaticModel . Synthesis: Using Automatic Program-ming and Expert Systems Techniques Toward Sim-ulation Modeling. Proceedings of the 1987 WinterSimulation Conference, eds. A. Thesen, H. Grant,and W.D. Kelton, 534-543.Nance, R. E. 1971. On Time Flow Mechanisms forDiscrete System Simulation. Management Science18, (1), September, 59-73.Nance, R. E. 1981. The Time and State Relationshipsin Simulation Modeling. Communications of theACM 24, (4), 173-179.Snyder, J. and G.T. Macbulack. 1988. IntelligentSimulation Environments: Identi�cation of the Ba-sics. Proceedings of the 1988 Winter SimulationConference, eds. M. Abrams, P. Haigh, and J.Comfort, 359-363.Stoegerer, J.K. 1984. A Comprehensive Approach toSpeci�cation Languages, The Australian ComputerJournal 16(1), February, 1-13.AUTHOR BIOGRAPHIESMARC ABRAMS is an assistant professor ofComputer Science Department at Virginia Polytech-nic Institute and State University. His research inter-ests include parallel simulation, software performanceanalysis, and communication protocols. He receivedhis Ph.D. from the University of Maryland in 1986.He serves as Program Chair for the 1992 SCS Parallel

and Distributed Simulation (PADS) workshop.ERNEST H. PAGE is a Ph.D. student in theDepartment of Computer Science at Virginia Poly-technic Institute and State University (VPI&SU). Hereceived B.S. and M.S. degrees in Computer Sciencefrom VPI&SU in 1988 and 1990. He has served as theChairman of the ACM Student Chapter at VPI&SUduring the 1988-89 academic year. His research inter-ests include simulation model development environ-ments, parallel and distributed simulation, and soft-ware engineering. He is a member of ACM, ACMSIGSIM, IEEE CS, SCS, and Upsilon Pi Epsilon.RICHARD E. NANCE is the RADM John A-dolphus Dahlgren Professor of Computer Science andthe Director of the Systems Research Center atVirginia Polytechnic Institute and State University(VPI&SU). He received B.S. and M.S. degrees fromN.C. State University in 1962 and 1966, and thePh.D. degree from Purdue University in 1968. Heas served on the faculties of Southern Methodist Uni-versity and VPI&SU, where he was Department Headof Computer Science, 1973-1979. Dr. Nance has heldresearch appointments at the Naval Surface WeaponsCenter and at the Imperial College of Science andTechnology (UK). The author of over 80 papers ondiscrete event simulation, performance modeling andevaluation, computer networks, and software engi-neering, Dr. Nance is the founding Editor-in-Chiefof the ACM Transactions on Modeling and ComputerSimulation and served as Program Chair for the 1990Winter Simulation Conference. He is a member ofSigma Xi, Alpha Pi Mu, Upsilon Pi Epsilon, ACM,IIE, ORSA, and TIMS.


