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Abstract— This paper describes an effort to identify com-
mon metrics for task-oriented human-robot interaction (HRI).
We begin by discussing the need for a toolkit of HRI metrics.
We then describe the framework of our work and identify im-
portant biasing factors that must be taken into consideration.
Finally, we present preliminary results, including a summary
of task-specific metrics already in use and suggested common
metrics for standardization. Preparation of a larger, more
detailed HRI metric toolkit is in progress.

I. INTRODUCTION

In the early years of many technical fields, the research
community often utilizes a wide range of metrics that
are not comparable due to a bias towards application
specific measures. Common metrics typically develop as
researchers devote more attention to the core questions
of the field. This transition allows for greater sharing of
knowledge as it becomes possible to compare findings, to
benchmark designs, and to draw from an evaluation toolkit.

We believe that human-robot interaction (HRI) has
reached such a point and, thus, we are working to develop
a set of common metrics. Specifically, we have begun
identifying methods to assess how much effort human
and robot must contribute (independently and jointly) to
effectively accomplish a task. Our goal is to provide a
foundation upon which to build better HRI and to improve
the performance of human-robot teams.

The primary difficulty in defining common metrics is
the incredibly diverse range of human-robot applications.
Thus, although metrics from other fields (HCI, human
factors, etc.) can be applied to satisfy specific needs, iden-
tifying metrics that can accommodate the entire application
space may not be feasible. As such, it may be necessary
to rely on measures that, while not ensuring comparability
across applications, provide the benefits afforded by famil-
iar methods and scoring. A good example of this would be
the use of subjective ratings scales (e.g., Cooper-Harper).

Many metrics, such as time-to-completion, are highly
application or task specific. As such, many fields develop
scenario-based reference tasks. The best example of this
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technique in HRI is the NIST Urban Search and Rescue
arena, which is currently used for scoring in a number of
robot competitions [1], [2]. Within the arena, the metrics
that are used focus on overall human-robot system perfor-
mance (e.g. number of victims found minus the number of
penalties assigned), but do not specifically emphasize how
the mission is accomplished (i.e., by the human, the robot,
or some combination of the two).

As a means of partitioning HRI, metrics can be orga-
nized with respect to system characteristics and interactions
[3]. Although there have been several attempts to develop
taxonomies [4]–[6], the community has yet to develop a
consensus for a standard framework. For the purposes of
this paper, therefore, we have chosen to analyze HRI in
terms of three aspects: human, robot, and system. This
enables us to identify and discuss metrics that are useful
throughout the application space.

In summary, the goals of our effort are: (1) identify
classes of metrics to facilitate comparison of research
results; (2) identify common metrics that can be used for
evaluations across a wide range of tasks and systems; and
(3) provide a measurement toolkit for future studies.

II. SCOPE AND FRAMEWORK

In order to bound the scope of our study, we have chosen
to focus our work on task-oriented mobile robots. In partic-
ular, we present metrics in terms of five task categories. We
selected these tasks because they can be performed with a
high-level of human direction (pure teleoperation), a high-
level of robot independence (full autonomy), or at any point
on the interaction spectrum. By doing so, we believe that:
(1) our metrics are broadly applicable to a wide range of
applications and (2) we can assess the impact of different
levels/types of HRI on performance.

A. Navigation

This is a fundamental task for mobile robots: move
the robot from A to B [7]. Performing this task requires
determining where the robot is (A), where it needs to be
(B), how it should get there (path, resource usage, etc.), and
how to deal with environmental factors and contingencies
(obstacles, hazards, etc.) encountered on the way.
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B. Perception

The focus of this task is to perceive and understand
the remote environment for applications such as search,
surveillance, target identification, etc. This task does not
include perception needed for other tasks (e.g., naviga-
tion requires localization). Performing this task requires:
establishing a context through proprioceptive sensing, in-
terpreting sensor data within this context, seeking/filtering
additional sensor data, and deciding what information
to give to other agents. Reflecting current practice, we
emphasize camera imagery in choosing perception metrics.

C. Management

The purpose of this task is to coordinate and manage
the actions of humans and robots, acting independently
or in groups. Of primary concern is allocating and de-
ploying resources to guarantee appropriate coverage (i.e.,
having the “right” agent at the “right” place at the “right”
time). Performing this task requires assessing availability,
understanding capabilities, team coordination, monitoring,
recognizing problems, and intervention.

D. Manipulation

In this task, the robot interacts with the environment. For
our work, we consider manipulation to encompass not only
arm-based grasping, but also non-prehensile motions (e.g.,
pushing) and discrete actions, such as payload drop-off.
Applications include ordnance disposal, geology (e.g., rock
sampling), construction, and personnel/material delivery.
Performing this task requires determining what is to be
effected, specifying how it is to be done (“put this there”),
executing the process, and verifying the outcome.

E. Social

The objective of this task is to perform work that requires
significant “social interaction”. Applications include tour
guiding, health care (mobility assistance, therapy, etc.),
entertainment, and testing models of human intelligence.
Performing this task requires perceiving and interpreting
the world in terms of past experience, recognizing and
modeling users, understanding social communication and
norms models, and acquiring/exhibiting social competen-
cies [8].

III. BIASING EFFECTS

While this is not meant to be an exhaustive list, there
are many factors that may bias or confound HRI effec-
tiveness. Therefore, care should be taken in measuring
system effectiveness or attempting to establish benchmarks
when such effects are present. An excellent discussion of
biasing effects and general issues related to performance
measurement can be found in [9].

A. Communications

Communications factors, such as delay, jitter, and band-
width, can have profound effects on human performance.
As such, HRI quality may be strongly dependent on the
capacity of the communication channel(s) to carry infor-
mation between human and robot [10].

Delay (also referred to as “latency” or “lag”) is the
time delay caused by the transmission of information
across a communications network. Delay is well known to
degrade human performance in motor-sensory tasks with
interactive systems as well as planning and performance in
teleoperation scenarios [11], [12].

Jitter is the variance in transmission time that measures
whether the amount of time between two messages at the
receiving end is the same as the when they were sent [13].
In teleoperation, data packets transmitted between a control
station and a telerobot may have different inter-arrival times
with no data packet loss [14], [15].

Bandwidth describes the data transmission capacity of
the communications channel. Bandwidth limitations do not
imply loss of information unless techniques are used to pro-
mote transmissions speed. For example, video transmission
across computer networks (e.g., the Internet), generally
requires the use of lossy data compression, which may
result in unacceptable loss of visual detail for remote
perception.

B. Robot Response

Timing factors within the robot may confound time-
oriented HRI metrics. This is especially true if these
factors are not uniform across examined designs or test
conditions. Special care should be taken with prototype
and proof-of-concept robots as variable system behavior is
likely to occur. Moreover, most conventional robot control
architectures are not designed to support interaction at
human rates.

Examples include system lag and update rate. System lag
is comparable to communication delay, but refers to time
spent by the robot processing information. For example, a
mobile robot may spend time computing a new collision-
free path when given a waypoint request. Update rate (also
referred to as “display-system lag”) refers to a delay in
displaying information (camera images, sensor data, robot
status, etc.) to the operator.

C. User

Performance shaping factors (PSF) can influence behav-
ior and affect human performance. These include oper-
ational factors (tactics, time on station, etc.), equipment
factors (physical parameters, workspace layout, etc.), task
factors (complexity, repetitiveness, etc.), personnel factors
(training, motivation, stress, etc.), and external environmen-
tal factors (illumination, visibility, etc). Numerous guide-
lines for reducing and analyzing the impact of PSF are
given in [9].

The human’s role may also affect the fluidity and ef-
fectiveness of HRI. In [16], for example, it is suggested
that there five different HRI roles (supervisor, operator,
mechanic, peer and bystander) that humans may play, each
of which requires different information and awareness.
Thus, performance may be dependent on the role required
and how well the interface supports it in specific mission
situations.



IV. TASK METRICS

A. Navigation

1) Global navigation: The system needs to have an
overall understanding of the locale in which it is working.
Some parameters might be adjusted prior to starting a
task or mission, such as whether the robot is indoors or
outdoors, off-road or on-road, in an urban terrain, wooded
terrain, or desert. During task execution, the system needs
to know where in this particular area is it. For example,
if the robot is moving about inside a building, the system
should know on which floor it is located.

2) Local navigation: This is a finer granularity of in-
formation that is essential for smoothly moving in an area.
The system must know what potential hazards are close
by, such as doorways, stairs, culverts, trees, or pedestrians.

3) Obstacle encounter: Not all navigation is without
problems. Obstacles are often encountered and at times,
robotic systems may have to extract themselves from
ditches or debris. Creating a plan for extraction necessitates
knowing characteristics of the obstacle (size, hardness)
as well as knowing other potential hazards in the local
environment.

Effectiveness measures how well the task is completed.
Potential measures include:

• Percentage of navigation tasks successfully completed
• Coverage of area
• Deviation from planned route
• Obstacles that were successfully avoided
• Obstacles that were not avoided, but could be over-

come

Critical incidents can be used as an indirect measure of
navigation HRI. For example, [17] coded critical incidents
in an urban search and rescue competition and noted the
number of critical incidents that could be attributed to each
type of navigation.

Efficiency measures the time needed to complete the
task. Efficiency measures include:

• Time to complete the task
• Amount of operator time for the task (includes HRI

overhead)
• Average time for obstacle extraction
• Amount of non-planned looping in navigating

Effort, or workload, measures include:

• Number of operator interventions per unit time. In-
teractions can be planned or unplanned. Unplanned
interactions are termed “interventions” [18]. The av-
erage number of interventions per unit of time can
also be used as a measure of HRI in navigation. In
addition to the number of interventions, the average
time needed for the intervention, and the effectiveness
of the intervention can be measured [19].

• Ratio of operator time to robot time. For example, if
the operator spends 5 minutes to input a navigation
plan that allows the robot to successfully navigate for
an hour, we have a 1:12 ratio [20].

B. Perception

Perception is the process of making inferences about dis-
tal stimuli (objects in the environment) based on proximal
stimuli (energy detected by sensors). In HRI, perceptual
inference can be performed by the robot (localization,
obstacle detection, etc.), by the human (e.g., identifying
a victim in a video image), or in combination, such as
a robot that directs its operator’s attention to an area of
interest but leaves inference making to the human.

Veridical perception depends on fusing sensor data about
robot state with sensor data about the environment. Infer-
ences about objects viewed in a camera image, for example,
depend on whether the image is from an upright robot or
the robot has rolled over and the camera is now pointing
to the ceiling [21].

There are two basic tasks involved in perception: inter-
preting sensed data and seeking new sensor data. HRI met-
rics for perception can be divided between those addressing
passive perception (interpretation of received sensor data)
and active perception (in which multiple sensor readings
are obtained to disambiguate or increase confidence for
perceptual inference [22]).

1) Passive Perception: Passive perception involves in-
terpreting sensor data: identification, judgment of extent,
and judgment of motion. Identification measures detection
and recognition accuracy for task objects within sensor
range. Potential measures include:

• Detection measures: % detected, signal detection, de-
tection by object orientation, contrasts between detec-
tion in cluttered and sparse environments, etc.

• Recognition measures: classification accuracy, confu-
sion matrices, recognition by object orientation

Judgment of extent measures the accuracy of quantitative
judgments about the environment. The unaccustomed view-
ing height and field of view provided by a robot’s camera
can make these judgments very difficult. Psychophysical
data on spatial judgments can, however, provide a norma-
tive reference [23]. Potential measures include:

• Absolute judgments of distance, size, or length
• Relative judgments of distance, size, or length
• Platform relative judgments such as “How long would

it take the robot to reach the wall?”
Judgment of motion measures the accuracy with which

egomotion or movement of objects in the environment is
judged. Potential measures include:

• Absolute estimates of robot velocity
• Estimates involving relative motion such as “Will

robot collide with another moving object?”
Other metrics include indirect measures of perceptual

performance that reflect the accuracy of the operator’s
perception. Clear perception of robot attitude, for example,
might be inferred from the choice of level paths through
uneven terrain [24].

2) Active Perception: Active perception in HRI ranges
from relatively passive tasks such as control of pan and
tilt of a camera to control of robot movement in search.
To differentiate active perception from mobility/navigation



tasks we require that active perception involving mobility
be initiated by detection of a possible search target.

Active identification measures performance on recog-
nition tasks involving mobility. Potential measures (in
addition to recognition measures for identification) include:

• Efficiency: time or effort to confirm identification,
improvement in identification over initial detection

• Effort: amount of camera movement [25].

Stationary search measures performance on search tasks
that do not involve mobility. Stationary search may involve
camera control or data fusion between sensors. Potential
measures include:

• Detection accuracy for targets within sensor range
• Efficiency measured as time to search or non overlap-

ping coverage
• Coverage measured as percentage of potential sensor

coverage
• Operator confidence in sensor coverage

Active search measures performance on search tasks
involving mobility. In this case the initiating stimuli are
objects within sensor range that might conceal a target
(e.g., [26]). Potential measures (in addition to stationary
search measures) include:

• Efficiency: time and effort expended (e.g., for target
identification)

• Identification errors: number of incorrect targets, num-
ber of targets missed, etc.

• Degree of operator fusion

While humans are effective at synthesizing information,
there are known interface characteristics that can hinder
this capability. Cataloging how well a system supports the
synthesis of information can provide a valuable HRI metric.
An example task that can be affected by degree of operator
fusion is the ability to utilize information from multiple
sensors to develop an accurate awareness of robot state.
Essentially, how well does a system support the ability to
develop accurate assessments of remote scenarios?

C. Management

1) Fan out: Fan out, as defined in [27], is a measure
of how many robots (with similar capabilities) can be
effectively controlled by a human. It directly affects the
logistical demands related to robot deployment, the diffi-
culty in handling and managing the robot during use, and
the total cost-benefit ratio of the robot system in question.

Depending on the value of the robot in question, fan
out can be considerably biased in favor of the robot.
For example, unmanned aerial vehicles (Predator, Global
Hawk, etc.) currently in use by the U.S. military require
many humans to operate each vehicle.

This measure is also a good indicator of robot hand-
offs between operators and the upper limit of workload for
operators. When the number of robots is large and a group
of humans are managing them as a team, this begins to
emulate the task requirements seen in air traffic control.
As such, metrics and methods from this domain may be
relevant (e.g., [28]).

2) Intervention response time: Whenever an operator
does not devote total attention to a robot, there will
be delay between when the robot encounters problems
and when the operator intervenes. This is often the case
with supervisory control or when multiple robots must
be controlled [29]. Operator intervention may be physical
(i.e., requiring “mechanic-like” assistance) or cognitive
(requiring decision making, perceptual support, etc) [16],
[30].

A key metric, therefore, is intervention response time,
which can be measured either from when the operator first
recognizes the problem or when the robot first requests
assistance. Response time can also allow specific details
to be examined. For example, response time could be
subdivided into: (1) time to deliver the request from the
robot, (2) time for the operator to notice the request, (3)
situation awareness and planning time, and (4) execution
time. The first segment examines system performance
while the remaining ones are specific to the interface design
and task at hand.

3) Level of autonomy discrepancies: It is becoming
increasingly common for autonomous robots to be designed
and operated with multiple levels of control and autonomy
[10]. In many cases, some levels are more appropriate
than others for specific environments, tasks, and events.
Anecdotal evidence documented from robot deployments
suggests that some robot failures may have been prevented
if the robot had either had the ability to enter an appropriate
autonomous state or the operator had commanded the robot
to do so [31].

In the simplest case, one can measure the ability of the
human to accurately and rapidly identify the appropriate
level of autonomy. Interfaces that support this process have
been highlighted as important in previous research [7],
[10]. Related to this process is the performance of the
human to subsequently activate autonomy appropriately,
e.g., [32]. Greater understanding of how and why autonomy
behaves generally leads to more appropriate utilization of
the autonomy [10], [33].

This metric encompasses several factors (situation
awareness, trust, etc), but serves as a good indicator of
system efficiency. It is particularly useful if one knows
what the “optimal” autonomy state should be for a given
task. Experimenters can then configure test events that
require certain states (e.g., impossible to complete without
human assistance on object detection) and check if the
human-robot system enters the appropriate state.

D. Manipulation

1) Degree of mental computation: Certain manipulation
activities can be measured by the degree of mental com-
putation performed by the operator. Examples of mental
computation tasks are mental rotation, rate tracking, and
object-referent association in working memory. For exam-
ple, because of limited camera views and communication
bandwidth, operators may be required to make mental,
orthographic projections of 2-D views of an end-effector
for control purposes.



Mental workload is strongly influenced by demands
made on short and long-term memory. For example, re-
liance on working memory for mental labeling of objects
(e.g., in a remote work environment) can result in high
operator workload. Moreover, the degree of mental com-
putation required for a particular task may depend upon
perceptual features of the environment.

2) Contact errors: A key metric in almost all manip-
ulation tasks is contact error. In particular, the number
of unintentional (or inadvertent) collisions between a ma-
nipulator and the environment (including task objects) is
highly indicative of performance (e.g., positional accuracy).
Moreover, the type of contact errors (glancing, hard/soft,
etc.) is useful for system assessment (e.g., capability for
working in cluttered spaces).

Prior research has demonstrated that operator perfor-
mance and workload are significantly affected by whether
joint or world mode (i.e., end-effector position) control is
required for task performance [12]. For example, world
mode can reduce task completion times, but may also
increase the number of contact errors when working in
confined spaces in which joints may contact other objects.
That is, the operator may have good global situational
awareness on the end goal for the manipulator, but may
suffer from poor local situational awareness on the position
of each manipulator joint, etc.

E. Social

Some social robots (Cog, Kismet, etc.) are “biologically
inspired” and use deep models of human cognition and
interaction in order to simulate the social intelligence
found in living creatures. This is often the case when the
primary function of the robot is to interact socially with
people. Other social robots (Nursebot, CERO, etc.) are
“functionally designed” and show their social competence
only in reaction to human behavior (i.e., they outwardly
appear to be socially intelligent, even if the internal design
does not have a basis in cognitive science) [8].

This dichotomy is important to understand because the
criteria for “good performance” often differs substantially.
In particular, “functionally designed” social robots may
need only to produce certain experiences for the user,
rather than having to withstand deep scrutiny for “life-like”
capabilities. The difficulty, of course, is determining which
metrics (engineering, psychological, sociological) are most
appropriate for evaluating social “effectiveness”.

1) Interaction characteristics: One approach is to assess
characteristics such as interaction style or social context via
observation [34] or conversational analysis [35].

2) Persuasiveness: The robot is used to change the
behavior, feelings or attitudes of humans. This is the
case when robots mediate human-human interaction, as in
autism therapy [35].

3) Trust: Research on trust in automation suggests that
this is an important factor to measure. In particular, trust
is likely to influence reliance on complex, imperfect au-
tomation in dynamic environments that require the human
to adapt to unanticipated circumstances [36].

4) Engagement: Social interaction is widely cited as
an effective mechanism for engaging users. A key metric,
therefore, is to measure the efficacy of various social
characteristics (emotion, dialogue, personality, etc.) for
capturing attention (acquisition time) and holding interest
(duration). See, for example, [37] and [38].

5) Compliance: Social characteristics (appearance, ad-
herence to norms, etc.) can also influence the amount of
cooperation a human gives to a robot, which may be critical
for tasks in certain domains (e.g., in health care). Thus,
measuring compliance can provide significant insight into
the effectiveness of the robot design, e.g., [39].

V. COMMON METRICS

A. System Performance

When we assess system performance, we are concerned
with measuring how well the human(s) and the robot(s)
perform as a team. Although there are many well-known
task measures (see [9] for an extensive list), our emphasis
is to evaluate the human-robot team and human-robot
interactions, rather than task-specific performance.

1) Quantitative performance: Quantitative measures as-
sess the effectiveness and efficiency of the team at per-
forming a task. Since robots are generally designed to
operate with some level of autonomy [40], performance
measures must consider the autonomy design. Quantitative
performance measures include:

• Effectiveness: the percentage of the mission that was
accomplished with the designed autonomy. For ex-
ample, consider a system that is designed to be fully
autonomous. If this system successfully performs a
task, but a human is required to intervene 20% of
the time, then the system is only 80% effective given
the design specifications. The number and duration of
operator interventions can also be used to compute the
effectiveness metric.

• Efficiency: the time required to complete a task. In
many cases, a robot may have sufficient competency
to perform a task if time constraints are ignored.
Thus, efficiency can be calculated for: (1) all tasks
completed (regardless of the contributions of the hu-
man and the robot); or (2) only for those missions
completed with the autonomy design.

2) Subjective ratings: In addition to quantitative mea-
sures of performance, subjective ratings can be used to
assess the quality of the effort. The effectiveness metric
measures the performance of the system (human and
robot) but subjective ratings should be compiled from all
stakeholders in the effort, both direct and indirect.

Consider, for example, a search and rescue operation. A
human-robot team locates a victim trapped in a collapsed
structure. The medical team gets the correct information to
provide medical support while the structural engineering
team directs rescue operations. Metrics for this mission
should assess not just the effectiveness and efficiency of
locating the victim but also the quality of the information
provided to the medical and structural engineering teams.



3) Appropriate utilization of mixed-initiative: As robots
become more capable, they will possess more self-
awareness and more awareness of their operators [30]. One
aspect of system performance is the ability of the human-
robot team to appropriately regulate who has control ini-
tiative. Suggested measures are:

• Percentage of requests for assistance made by robot
• Percentage of requests for assistance made by operator
• Number of interruptions of operator rated as non-

critical
Perhaps the main issue in task-oriented HRI, however, is

achieving the right mixture of human and robot autonomy.
Often it is possible to perform tasks with humans and/or
robots, thus it is important to decide and verify which
human or robotic assets are most appropriate to use for
a given mission.

One method for assessing the performance of human-
robot teams is described in [41]. This method focuses
on decomposing a work scenario into “functional prim-
itives”, allocating these primitives to either human or
robot resources, evaluating execution of each primitive,
and computing the ratio of performance benefit to resource
allocation.

Another method for evaluating the overall effectiveness
of human-robot teams is interaction effort, which measures
the overall effort required by the human to work with
the team [42]. Interaction effort, because it considers the
amount of autonomy of each team member, is particularly
useful for when the overall mission requires the use of a
mix of competencies or sub-groups within the team.

B. Operator Performance

1) Situational awareness: Situation awareness (SA) has
been shown to be critical to effective decision making,
operator performance and workload in numerous dynamic
control tasks [43], [44]. In general, SA is relevant to human
in-the-loop control when there are multiple competing
goals and multiple, simultaneous task demands on atten-
tional resources. It is particularly relevant in high workload
and time stress situations as a basis for decision-making.

One well-known query-based tool for evaluating SA is
the “Situation Awareness Global Assessment Technique”
(SAGAT) [45]. SAGAT has been used to assess SA at
a various levels of autonomy [19], [43]. In general, the
most important aspect of using SAGAT to measure SA is
performing a detailed task analysis in order to formulate
appropriate operator queries. In [19], for example, an
analysis of human interventions in autonomous rover off-
road driving was used to develop questions for assessing
SA at multiple levels.

2) Workload: Multidimensional workload assessment
techniques may be useful for relating human perceptions of
cognitive load to operator SA, telepresence, performance,
and user interface design. For example, the NASA-Task
Load IndeX (NASA-TLX) [46], has been widely used to
measure human performance and workload in teleoperation
scenarios [19], [43], [47]. In general, results have shown
that subjective ratings of workload decrease as the level of

system autonomy increases and that shorter teleoperation
tasks yield lower workload ratings.

At this point in time, there is a need to identify non-
intrusive measures of workload that can characterize oper-
ator stress in real-time. Such workload information could
be used as a basis for dynamically configuring system
interfaces to best support operator performance [48]. Sub-
stantial research has already been conducted on the use of
physiological measures as real-time indicators of cognitive
workload (e.g., see [49] for a survey of cardiovascular and
respiratory measures).

3) Accuracy of mental models of device operation:
As in human interaction with everyday things, design
affordances, operator expectations and stimulus-response
compatibility can all impact human performance. The
common types of compatibility identified in the literature
include conceptual, movement, spatial, and modality com-
patibility [50]. The benefits of matching interface displays
and controls to human “mental” models include reductions
in mental transformations of information, faster learning
and reduced cognitive load (e.g., [51]).

Numerous studies on user mental model assessment have
been published in the human factors literature, primarily
in regards to household appliances and desktop computer
interfaces [50], [52]. Many of the measures developed in
these studies can be directly used for HRI.

C. Robot Performance

1) Self-awareness: The degree to which a robot can
accurately assess itself will have a direct impact on the
ability of the human to efficiently interact with the robot.
The less a robot is aware of its capabilities and the less
it is able to recognize when it is having trouble, the more
human monitoring and intervention is required.

Self-awareness is particularly important when a robot
must ascertain if involving the human is useful. For ex-
ample, if a robot is operating far (in time and/or distance)
from the human (e.g., a lunar rover with an Earth-based
operator), it must be aware that it cannot ask the human for
physical assistance and that obtaining cognitive/perceptual
help may take considerable time.

To qualitatively measure self-awareness, we propose as-
sessing the following robot characteristics: (1) understand-
ing of intrinsic limitations (mobility, sensor limitations,
etc); (2) capacity for self-monitoring (health, state, task
progress) and recognizing deviations from nominal; and (3)
effectiveness at detecting, isolating, and recovering from
faults (during both planning and execution).

2) Human awareness: A robot can also be scored on
the degree to which it is aware of humans. Depending
on the application, the robot may need to be sensitive to
the human’s presence and have knowledge of the human’s
commands (expectations, constraints, intent) [53]. Clearly,
the level of “awareness” depends on the level of autonomy
that the robot is expected to achieve and the role(s) played
by the human(s) [16]. This capability can be dynamic and
may include a user model that helps the robot recognize
human behavior and react appropriately [8].



Human awareness implies competency in various skills,
the proficiency of which can be assessed independently or
collectively. These include: (1) human-oriented perception
(human detection and tracking, gesture and speech recog-
nition, etc); (2) user modeling and monitoring (cognitive,
attentional, activity); (3) user sensitivity (adapting behavior
to user, measuring user feedback, recognizing human state).

A recently proposed metric is the number of “awareness
violations” (awareness information that should be provided
that is not provided) that occur during task execution [53].
This metric is particularly well-suited to critical incident
analysis, in which anomalous situations (operator or robot
encounters a problem) are examined post-mortem.

3) Autonomy: The ability of robots to function inde-
pendently is limited, though continually improving. This is
especially true when robots face anomalies, or conditions,
that exceed their autonomous capabilities. Though there
are many application-specific methods, a useful metric for
measuring autonomy in general is “neglect tolerance” [27].

Neglect tolerance directly measures how a robot’s effec-
tiveness declines when the human is not attending to the
robot. In particular, it measures the amount of the time the
robot can be neglected before performance drops below
an acceptable level of task performance. Two methods for
assessing neglect tolerance are described in [42].

We must note, however, that neglect tolerance encom-
passes numerous factors: task complexity, robot capability,
user interface, and the user. Thus, the metric is only useful
for obtaining an overall measure of a robot autonomy,
rather than specific details (e.g., failure modes).

VI. CONCLUSION

The continuing work under this effort will expand and
refine the material presented here. The eventual plan is
to provide a living, comprehensive document that future
research and development efforts can utilize as a HRI
metric toolkit and reference source.

In closing, we would like to point out the need to
select appropriate test populations when applying these
metrics. Specifically, as robots are increasingly deployed
in applications in which the target user is not an expert
roboticist [10], it becomes critical to recruit subjects having
a broad range of knowledge, experience, and expertise.
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