
A logic for reasoning with inconsistent knowledge�Nico RoosResearch Institute for Knowledge SystemsTongersestraat 6P. O. Box 463, 6200 AL MaastrichtThe NetherlandsThis paper has been published in Arti�cial Intelligence 57 (1992) 69-103.AbstractIn many situations humans have to reason with inconsistent knowledge.These inconsistencies may occur due to not fully reliable sources of informa-tion. In order to reason with inconsistent knowledge, it is not possible to viewa set of premisses as absolute truths as is done in predicate logic. Viewingthe set of premisses as a set of assumptions, however, it is possible to deduceuseful conclusions from an inconsistent set of premisses. In this paper a logicfor reasoning with inconsistent knowledge is described. This logic is a gen-eralization of the work of N. Rescher [12]. In the logic a reliability relationis used to choose between incompatible assumptions. These choices are onlymade when a contradiction is derived. As long as no contradiction is derived,the knowledge is assumed to be consistent. This makes it possible to de�nean executable deduction process for the preference logic. For the logic a se-mantics based on the ideas of Y. Shoham [14, 15], is de�ned. It turns outthat the semantics for the logic is a preferential semantics according to thede�nition S. Kraus, D. Lehmann and M. Magidor [9]. Therefore the logic is alogic of system P and possesses all the properties of an ideal non-monotoniclogic.1 IntroductionIn many situations humans have to reason with inconsistent knowledge. Theseinconsistencies may occur due to sources of information which are not fully reliable.For example, in daylight information about the position of an object coming from�The research reported on was carried out at Delft University of Technology (TU-Delft) andthe National Aerospace Laboratory (NLR) in Amsterdam.1



your eyes is more reliable than the information about the position of the objectcoming from your ears. But even reliable sources such as domain experts, do notalways agree.To be able to reason with inconsistent knowledge it is not possible to view a setof premisses as absolute truths, as in predicate logic. Viewing a set of premisses asa set of assumptions, however, makes it possible to deduce useful conclusions froman inconsistent set of premisses. As long as we do not have it proven otherwise,the premisses are assumed to be true statements about the world. When, however,a contradiction is derived, we can no longer make this assumption. To restoreconsistency, one of the premisses has to be removed. To be able to select a premissto be removed, a reliability relation on the premisses will be used. This reliabilityrelation denotes the relative reliability of the premisses.In the following sections I will �rst describe the propositional case. After de-scribing the propositional case, I will describe how to extend the logic to the �rstorder case.2 Basic conceptsThe language L, that will be used to express the propositions of the logic, consistsof the propositions that can be generated using a set of atomic propositions and thelogical operators : and !. When in this paper the operators ^ and _ are used,they should be interpreted as shortcuts: i.e. � ^ � for :(� ! :�) and � _ � for:�! �.To be able to reason with inconsistent knowledge, I will consider premisses tobe assumptions. These premisses are assumed to be true as long as we do notderive a contradiction from them. If, however, a contradiction is derived, we haveto determine the premisses on which the contradiction is based. The premisseson which a contradiction is based are the premisses used in the derivation of thecontradiction. When we know these premisses, we have to remove one of them toblock the derivation of the contradiction. To select a premiss to be removed, I willuse a reliability relation. This reliability relation denotes the relative reliability ofthe premisses. It denotes that one premiss is more reliable than some other premiss.Clearly the relation must be irreexive, asymmetric and transitive. I do not demandthis relation to be total, for a total reliability relation implies complete knowledgeabout the relative reliability of the premisses. This does not always have to be thecase.A set of premisses � is a subset of the language L. On the set of premisses � apartial reliability relation � may be de�ned. Together they form a reliability theory.De�nition 1 A reliability theory is a tuple h�;�i where � � L is a �nite set ofpremisses and � � (���) is an irreexive, asymmetric and transitive partialreliability relation. 2



Using the reliability relation, we have to remove a least preferred premiss of theinconsistent set, thereby blocking the derivation of the contradiction.Example 2 Let � denote a set of premisses,� = f1: '; 2: '!  ; 3: : ; 4: �gand � a reliability relation on �:� = f(3; 1); (3; 2)gFrom �,  can be derived using premisses 1 and 2. Furthermore, a contradic-tion can be derived from  and premiss 3. Hence, the contradiction is basedon the premisses 1, 2 and 3. Since premiss 3 is the least preferred premiss onwhich the contradiction is based, it has to be removed.Three problems may arise when trying to block the derivation of a contradiction.� Firstly, we have to be able to determine the premisses on which a contradic-tion is based. These are the premisses that are used in the derivation of thecontradiction. To solve this problem, justi�cations are introduced. Such ajusti�cation, called an in justi�cation, describes the premisses from which aproposition is derived.� Secondly, a premiss that has been removed, may have to be placed back be-cause the contradiction causing its removal is also blocked by the removal ofanother premiss. This may occur because of some other contradiction beingderived.Example 3 Let � be a set of premisses� = f�;:� ^ :�; �gand let � be a reliability relation on � given by� � (:� ^ :�) � �:From � and :� ^ :� we can derive a contradiction causing the removalof �. From :�^:� and � we can also derive a contradiction causing theremoval of :�^:�. When :�^:� is removed, it is no longer necessarythat � is also removed from the set of premisses to avoid the derivationof a contradiction.To solve this problem, another kind of justi�cations is introduced. This type ofjusti�cation is called an out justi�cation. An out justi�cation describes whichpremiss must be removed when other premisses are still assumed to be true.It is a constraint on the set of premisses we assume to be true.3



� Thirdly, there need not exist a single least reliable premiss in the set of pre-misses on which a contradiction is based. This can occur when no reliabilityrelation between premisses is speci�ed. In such a situation we have to considerthe results of the removal of every alternative separately.Choosing a premiss to be removed implies that we assume the alternative to bemore reliable. Since the reliability relation is transitive, making such a choiceinuences the reliability relation de�ned on the premisses.Example 4 Let � = fa; b;:a;:bg be a set of premisses and let� = f(a;:b); (b;:a)g be a reliability relation on �. Since a and :a arein conict and since there is no reliability relation de�ned between them,we have to choose a culprit. If we choose to remove a, :a is assumed tobe more reliable. Therefore, :b is more reliable than b. Hence, since band :b are also in conict, b must be removed.As is illustrated in the example above, the premisses removed depend on theextension of the reliability relation. Therefore, in the logic described here,every (strict) linear extension of the reliability relation will be considered.Di�erent linear extensions of the reliability relation can result in di�erentsubsets of the premisses that are assumed to be true statement about theworld (that can be believed). The set of theorems is de�ned as the intersectionof all extensions of the logic.As mentioned above two kinds of justi�cations, in justi�cations and out justi�-cations, will be used. The in justi�cations are used to denote that a proposition isbelieved if the premisses in the antecedent are believed, while the out justi�cationsare used to denote that a premiss can no longer be believed (must be withdrawn)when the premisses in the antecedent are believed.De�nition 5 Let � be a set of premisses. Then an in justi�cation is a formula:P ) 'where P is a subset of the set of premisses � and ' 2 L is a proposition.An out justi�cation is a formula:P 6) 'where P is a subset of the set of premisses � and ' is premiss in �, but notin P .
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3 Characterizing the set of theoremsIn this section a characterization, based on the ideas of N. Rescher [12], is given forthe set of theorems of a reliability theory. As is mentioned in the previous section,linear extensions of the reliability relation have to be considered. For each linearextension a set of premisses that can still be believed can be determined. This setcan be determined by enumerating the premisses with respect to the linear extensionof the reliability relation, starting with the most reliable premiss. Starting with anempty set D, if a premiss may consistently be added to the set D, it should be added.Otherwise it must be ignored. Because the most reliable premisses are added �rst,we get a most reliable consistent set of premisses.De�nition 6 Let h�;�i be a reliability theory. Furthermore, let �1; �2; :::; �m besome enumeration of � such that for every �j � �k: k < j.Then D is a most reliable consistent set of premisses if and only if:D = Dm; D0 = ;and for 0 < i < mDi+1 = ( Di [ f�ig if Di [ f�ig is consistentDi otherwiseLet A be the set of all the most reliable consistent sets of premisses that can bedetermined.De�nition 7 Let h�;�i be a reliability theory.Then the set A of all the most reliable consistent sets of premisses is de�nedby: A = fD j D is a most reliable consistentset of premisses given some enumeration of �g:The the set of theorems of a reliability theory is de�ned as the set of those propo-sitions that are logically entailed by every most reliable consistent set of premissesin A.De�nition 8 Let h�;�i be a reliability theory and let A be the corresponding setof all the most reliable consistent sets of premisses.Then the set of theorems of h�;�i is de�ned as:Th(h�;�i) = \D2ATh(D):
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4 The deduction processIn this section a deduction process for a reliability theory is described. Given a strictlinear extension �0 of the reliability relation �, the deduction process determinesthe set of premisses that can be believed.Remark 9 Instead of starting a deduction process for every strict linear extensionof �, we can also create di�erent extensions of � when a contradiction notbased on a single least reliable premiss, is derived. This approach results inone deduction tree instead of a deduction sequence for every linear extensionof �.Instead of deriving new propositions, only new justi�cations are derived. Thesejusti�cations are generated by the inference rules. The reason why justi�cationsinstead of propositions are derived, is that the propositions that can be believed(the belief set) depend on the set of premisses that can still be believed. Sincethis set of premisses may change because of new information derived, the belief setcan change in a non-monotonic way. The justi�cations, however, do not depend onthe information derived. Furthermore, they contain all the information needed todetermine the premisses that can still be believed and the corresponding belief set.Starting with an initial set of justi�cations J0, the deduction process generatesa sequence of sets of justi�cations:J0; J1; J2; :::With each set of justi�cations Ji there corresponds a belief set Bi. So we get asequence of belief sets:B0; B1; B2; :::Although for the set of justi�cations there holds:Ji � Ji+1such a property does not hold for the belief sets. Because a belief set Bi is deter-mined by a Reason Maintenance System using the justi�cations Ji, the belief setcan change in a non-monotonic way. J. W. Goodwin has called this the processnon-monotonicity of the deduction process [7]. According to Goodwin this processnon-monotonicity is just an other aspect of non-monotonic logics.In the limit, when all the justi�cation J1 have been derived, the correspondingbelief set B1 will be equal to an extension of the reliability theory. Goodwin hascalled such this process of deriving the set of theorems, the logical process theory ofa logic [7]. The logical process theory focuses on the deduction process of a logic.In this it di�ers from the logic itself, which only focuses on derivability; i.e. logicsonly characterize the set of theorems that follow from the premisses.6



A deduction process for the preference logic starts with an initial set of justi�-cations J0. This initial set J0 contains an in justi�cation for every premiss. Thesejusti�cations indicate that a proposition is believed if the corresponding premiss isbelieved.De�nition 10 Let � be a set of premisses. Then the set of initial justi�cations J0is de�ned as follows:J0 = ff'g ) ' j ' 2 �g:Each set of justi�cations Ji with i > 0 is generated from the set Ji�1 by adding anew justi�cation. How these justi�cations are determined, depends on the deductionsystem used. In the following description of the deduction process, I will use anaxiomatic deduction system for the language L, only containing the logical operators! and :.Axioms The logical axioms are the tautologies of a propositional logic.Because an axiomatic approach is used, justi�cations for the axioms have to beintroduced. Since an axiom is always valid, it must have an in justi�cation with anantecedent equal to the empty set. An axiom is introduced by the following axiomrule.Rule 1 An axiom ' gets an in justi�cation ; ) '.In the deduction system two inference rules will be used, namely the modusponens and the contradiction rule. Modus ponens introduces a new in justi�cationfor some proposition. This justi�cation is constructed from the justi�cations for theantecedents of modus ponens.Rule 2 Let ' and ' !  be two propositions with justi�cations, respectivelyP ) ' and Q) ('!  ).Then the proposition  gets an in justi�cation (P [Q))  .While modus ponens introduces a new in justi�cation, the contradiction rule intro-duces a new out justi�cation to eliminate a contradiction.Rule 3 Let ' and :' be propositions with justi�cations P ) ' and Q) :' andlet � = min(P [Q) where the function min selects the minimal element giventhe extended preference relation �0.Then the premiss � gets an out justi�cation ((P [Q)=�) 6) �.In order to guarantee that the current set of believed premisses will approximatea most reliable consistent set of premisses, we have to guarantee that the processcreating new justi�cations is fair; i.e. the process does not forever defer the additionof some possible justi�cation to the set of justi�cations.7



Assumption 11 The reasoning process will not defer the addition of any possiblejusti�cation to the set of justi�cations forever.If a fair process is used, the following theorems hold. The �rst theorem guaranteesthe soundness of the in justi�cations; i.e. the antecedent of an in justi�cation logi-cally entails the consequent of the in justi�cation. The second theorem guaranteesthe completeness of the in justi�cations; i.e. if a proposition is logically entailedby a subset of the premisses, then there exists a corresponding in justi�cation. Fi-nally, the third and fourth theorem guarantee respectively the soundness and thecompleteness of the out justi�cations.Theorem 12 SoundnessFor each i � 0:if P ) ' 2 Ji, then:P � � and P j= ':Theorem 13 CompletenessFor each P � �:if P j= ', then there exists a Q � P such that for some i � 0:Q) ' 2 Ji:Theorem 14 SoundnessFor each i � 0:if P 6) ' 2 Ji, then:(P [ f'g) � �; and (P [ f'g) is not satis�able:Theorem 15 CompletenessFor each P � �:if P is a minimal unsatis�able set of premisses and ' = min(P ), where thefunction min selects the minimal element given the extended preferencerelation �0, then for some i � 0:P=' 6) ' 2 Ji:Given a set of justi�cations, there exists a set of the premisses that can stillbe believed. Such a set contains the premisses that do not have to be withdrawnbecause of an out justi�cation. Suppose that Ji is a set of justi�cations derived bya reasoning agent and that � � � is the set of the premisses that are assumedto be true by the reasoning agent. Then for each premiss ' such that for someout justi�cation P 6) ' 2 Ji, there holds that P � �, one may not believe '. Theset of premisses that may not be believed given a set of justi�cation Ji, is denotedby Out i(�). 8



De�nition 16Out i(S) = f' j P 6) ' 2 Ji; and P � SgThe set of premisses � must, of course, be equal to the set of premisses obtainedafter removing all the premisses we may not believe; i.e. � = � � Out i(�). Theset of premisses that satisfy this requirement is de�ned by the following �xed pointde�nition.De�nition 17 Let � be a set of premisses and let Ji be a set of justi�cations. Thenthe set of premisses �i that can be assumed to be true, is de�ned as:�i = �� Out i(�i):Property 18 For every i, the set �i exists and is unique.After determining the set of premisses that can be believed, the set of derivedpropositions that can be believed can be derived from the in justi�cations. This setis de�ned as:De�nition 19 Let Ji be a set of justi�cations and �i be the corresponding set ofpremisses that may assumed to be true.The set of propositions Bi that can be believed (the belief set) is de�ned as:Bi = f j P )  2 Ji and P � �g:Property 20 For each ' 2 Bi: �i j�'.Let J1 be the set of all justi�cations that can be derived.De�nition 21 J1 = [i�0 JiThe corresponding set of premisses that can be believed and the belief set, will bedenoted by respectively �1 and by B1.Property 22 �1 is maximal consistent.Property 23B1 = Th(�1)where Th(S) = f' j S j�'gThe following theorem implies that the characterization of the theorems of thelogic, given in the previous section, is equivalent to the intersection of the belief setsthat can be derived. 9



Theorem 24 Let h�;�i be a reliability theory.Then there holds:A = f�1 j for some linear extension of �, �1 can be derivedg:Corollary 25Th(h�;�i) =\fB1 j for some linear extension of �g:5 Determination of the belief setIn this section I will describe the algorithms that determine the set of premissesthat can be believed and the belief set, given a set of out justi�cations. The �rstalgorithm determines the set �i given the justi�cations Ji. To understand how thealgorithmworks, recall that the consequent of an out justi�cation is less reliable thanthe premisses in the antecedent. Therefore, if the consequent of an out justi�cationP 6) ' is the most preferred premiss that can be remove, because we still beliefthe premisses in the antecedent P , removing ' will never have to be undone. Af-ter having removed ' we can turn to the next most preferred consequent of anout justi�cation.The time complexity of the algorithm below depends on the for and the repeatloop. The former loop can be executed in O(n) steps where n in the number ofout justi�cations. The latter loop can be executed in O(m) steps where m in thenumber of premisses in �. Therefore, the whole algorithm can be executed inO(n�m)steps.begin�i := �;repeat' 2 max(�);� := �=';for each P 6) ' 2 Ji doif P � �ithen �i := �i=';until � = ;;return �i;end.Using the in just�cations, the belief set Bi can be determined in a straightfor-ward way. Clearly, Bi can be determined in O(n) steps where n is the numberof in justi�cations. 10



beginBi = ;;repeatP ) ' 2 Ji;Ji := Ji � fP ) 'g;if P � �ithen Bi := Bi [ f'g;until Ji = ;;return Bi;end.6 The semantics for the logicThe semantics of the logic is based on the ideas of Y. Shoham [14, 15]. In [14, 15]Shoham argues that the di�erence between monotonic logic and non-monotonic logicis a di�erence in the de�nition of the entailment relation. In a monotonic logic aproposition is entailed by the premisses if it is true in every model for the premisses.In a non-monotonic logic, however, a proposition is entailed by the premisses if it ispreferentially entailed by a set of premisses; i.e. if it is true in every preferred modelfor the premisses. These preferred models are determined by de�ning an acyclicpartial preference order on the models.The semantics for the logic di�ers slightly from Shoham's approach. Since theset of premisses may be inconsistent, the set of models for these premisses can beempty. Therefore, instead of de�ning a preference relation on the models of thepremisses, a partial preference relation on the set of semantical interpretations forthe language is de�ned. Given such a preference relation on the interpretations,the models for a reliability theory are the most preferred semantical interpretations.The preference relation used here is based on the following ideas.� The premisses are assumptions about the world we are reasoning about.� We are more willing to give up believing a premiss with a low reliability thana premiss with a high reliability.Therefore, an interpretation satisfying more premisses with a higher reliability (�)than some other interpretation, is preferred (<) to this interpretation.Example 26 Let M and N be two interpretations. Furthermore , let M satisfy� and �, and let N satisfy � and . Finally let � be more reliable than , � �. Clearly, we cannot compare M and N using the premiss �. M andN can, however, be compared using the premisses � and . Since � is morereliable than , since N does not satisfy � and sinceM does not satisfy ,Mmust be preferred to N , 11



De�nition 27 An interpretation M is a set containing the atomic propositionsthat are true in this interpretation.De�nition 28 LetM be a semantical interpretation and let � be a set of premisses.Then the premisses Prem(M) � � that are satis�ed by M, are de�ned as:Prem(M) = f' j ' 2 � and M j= 'gDe�nition 29 Let h�;�i be a reliability theory. Furthermore, let< be a preferencerelation on the interpretations.For every interpretation M;N there holds:M < N if and only if Prem(M) 6= Prem(N ) and for every ' 2 (Prem(M)�Prem(N )), there is a  2 (Prem(N )� Prem(M)) such that:' �  :Given the preference relation on the interpretations, the set of models for the pre-misses can be de�ned.De�nition 30 Let h�;�i be a reliability theory and let Mod<(h�;�i) denote themodels for the reliability theory.M 2 Mod<(h�;�i) if and only if there exists no interpretation N suchthat: M < N :Now the following important theorem, guaranteeing the soundness and the com-pleteness of the logic, holds:Theorem 31 Let h�;�i be a reliability theory. Furthermore, let A be the corre-sponding set of all most reliable consistent sets of premisses. Then:Mod<(h�;�i) = [�12AMod(�1)where Mod(S) denotes the set of classical models for a set of propositions S.7 Some properties of the logicIn this section I will discuss some properties of the logic. Firstly, I will relate thelogic to the general framework for non-monotonic logics described by S. Kraus,D. Lehmann and M. Magidor [9]. Secondly, I will compare the behaviour of thelogic when new information is added with G�ardenfors's theory for belief revision [5].12



7.1 Preferential models and cumulative logicsIn [9] Kraus et al. describe a general framework for the study of non-monotoniclogics. They distinguish �ve general logical systems and show how each of them canbe characterized by the properties of the consequence relation. Furthermore, for eachconsequence relation a di�erent class of models is de�ned. The consequence relationsand the classes of models are related to each other by representation theorems.The consequence relation relevant for the logic discussed here is the preferen-tial consequence relation of system P. I will show that the preference relation onthe semantic interpretations, described in the previous section, corresponds to apreferential model described by Kraus et al.Lemma 32 Let h�;�i be a reliability theory. Furthermore, let b� = fM j M j= �g,let �0 = � [ f�g and let �0 = (� j (�=�� �=�)) [ fh'; �i j ' 2 �=�g.Then M2 Mod<0(h�0;�0i) if and only if M2 b� and for no N 2 b�:M < N :Theorem 33 Let h�;�i be a reliability theory.hS; l; <i is a preferential model for h�;�i if and only if S is the set of allpossible interpretations for the language L, l : S ! S is the identity functionand for each M;N 2 S:M < N if and only if N <M.Now I will relate the consequence relation of system P to the logic. To motivatethe relation I will describe below, recall that � j� � should be interpreted as: `if�, normally �'. Hence, if we assume �, we must assume that � is true beyond anydoubt. To realize this, we must add � as a premiss. Furthermore, � must be morereliable than any other premiss, otherwise we cannot guarantee that � is an elementof the set of theorems Th(h�;�i). It is possible that � is an element of the originalset of premisses. In that case we should use the most reliable knowledge source fora premiss; i.e. the assumption that � is true beyond any doubt. If � is indeed anelement of B1, we must prove that � will also be an element of Th(h�;�i).Theorem 34 Let W = hS; l; <i be a preferential model for h�;�i. Then thefollowing equivalence holds:� j�W � if and only if�0 = � [ f�g;�0 = (� j (�=�� �=�)) [ fh'; �i j ' 2 �=�gand � 2 Th(h�0;�0i). 13



Corollary 35 Let W = hS; l; <i be a preferential model for h�;�i.Then:Th(h�;�i) = f� j j�W �g7.2 Belief revisionIn [5], G�ardenfors describes three di�erent ways in which a belief set can be revised,viz. expansion, revision and contraction. Expansion is a simple change that followsfrom the addition of a new proposition. Revision is a more complex form of adding anew proposition. Here the belief set must be changed in such a way that the resultingbelief set is consistent. Contraction is the change necessary to stop believing someproposition. For each of these forms of belief revision, G�ardenfors has formulated aset of rationality postulates.In this subsection I will investigate which of the postulates are satis�ed by thepreference logic. To be able to do this, the set of theorems of a reliability theoryis identi�ed as a belief set as de�ned by G�ardenfors. Here expansion, revision andcontraction of the belief set K, with respect to the proposition �, will be denotedby respectively: K+[�], K�[�] and K�[�].ExpansionTo expand a belief set K with respect to a proposition �, � should be added tothe set of premisses that generate the belief set. Since the logic does not allow aninconsistent belief set, � can be added if the belief set does not already contain:�. Otherwise, the logic would start revising the belief set. Adding � to the setof premisses, however, is not su�cient to guarantee that � will belong to the newbelief set. Take for example the following reliability theory.� = f1 : � ^ �; 2 : :� ^ �; 3 : � ^ :�; 4 : :� ^ �g� = f(3; 2); (4; 1)gClearly, adding � to � does not result in believing �. Hence, the second postulateof expansion is not satis�ed. To guarantee that � belongs to the new belief set,we have to prefer � to any other premiss. If, however, we prefer � to every otherpremiss in the example above, the third postulate for expansion will not be satis�ed.Hence, expansion of a belief set is not possible in the preference logic. The reasonfor this is that the reasons for believing a proposition in a belief set are not takeninto account by the postulates for expansion. Because of this internal structure,revision instead of expansion takes place.
14



RevisionFor revision of a belief set K with respect to a proposition �, we have to add �as a premiss and prefer it to any other premiss. With this implementation of therevision process, some of the postulates for revision of the belief set with respectto � are satis�ed. The postulates not being satis�ed relate revision to expansion.Expansion, however, is not de�ned for the logic.Theorem 36 Let belief set K = Th(h�;�i) be the set of theorems of the reliabilitytheory h�;�i.Suppose that K�[�] is the belief set of the premisses � [ f�g with reliabilityrelation:�0 = (� j (�=�� �=�)) [ fh'; �i j ' 2 �=�g;i.e. K�[�] = f� j � j�W �g where W is a preferential model for h�;�i.Then the following postulates are satis�ed.1. K�[�] is a belief set.2. � 2 K�[�].6. If j��$ �, then K�[�] = K�[�].ContractionIt is not possible to realise contraction of a belief set in the logic in a straight for-ward way. To be able to contract a proposition � from a belief set K, we have todetermine the premisses on which belief in this proposition is based. This informa-tion can be found in the applicable in justi�cation that supports the proposition�. When we have determined these premisses, we have to remove some of them.I.e. for each linear extension of the reliability relation, we must add the followingout justi�cations to J1fP=' 6) ' j P ) � 2 J1; ' 2 min(P )g:Unfortunately, this solution, which requires a modi�cation of the logic, can only beapplied after J1 has been determined. Furthermore, only the most trivial postulates1, 3, 4 and 6 will be satis�ed.8 Extension to �rst order logicThe logic described in the previous sections can be extended to a �rst order logic.To realize this we have to replace the propositional language L by a �rst orderlanguage, which only contains the logical operators : and !, and the quanti�er 8.Furthermore we have to replace the logical axioms for a propositional logic by the15



logical axioms for a �rst order logic with the modus ponens as the only inferencerule. We can for example use the following axiom scheme, which originate from [4].Axioms Let ' be a generalization of  if and only if for some n � 0 and variablesx1; :::; xn:8x1; :::; 8xn  :Since this de�nition includes the case n = 0, any formula is a generalizationof itself.The logical axioms are all the generalizations of the formulas described by thefollowing schemata.1. Tautologies.2. 8x'(x)! '(t) where t is a term containing no variables that occur in '.3. 8x('!  )! (8x'! 8x ).4. '! 8x' where x does not occur in '.Finally, we have to replace the de�nition of the semantical interpretations by ade�nition for the semantical interpretations of a �rst order logic.When these modi�cation are made we have a �rst order logic for reasoning withinconsistent knowledge. For this �rst order logic all the results that can be found inthe preceding section also hold.9 Related workIn this section I will discuss some related approaches. Firstly, the relation with ofN. Rescher's work will be discussed. Rescher's work is closely related to the logicdescribed here. Secondly, the relation with Poole's framework for default reasoning,which is a special case of Rescher's work, will be discussed. Thirdly, the di�erencebetween paraconsistent logics and the logic described here, will be discussed. Finallythe relation with Truth Maintenance Systems, and especially J. de Kleer's ATMSwill be discussed.9.1 Hypothetical reasoningIn his book `Hypothetical Reasoning' Rescher describes how to reason with an in-consistent set of premisses. He introduces his reasoning method, because he wantsto formalize hypothetical reasoning. In particular, he wants to formalize reasoningwith belief contravening hypotheses, such as counterfactuals. In the case of counter-factual reasoning, we make an assumption that we know to be false. For example,let us suppose that Plato had lived during the middle ages. To be able to make such16



a counter factual assumption, we, temporally, have to give up some of our beliefs tomaintain consistency. It is, however, not always clear which of our beliefs we haveto give up. The following example gives an illustration.Example 37Beliefs1. Bizet was of French nationality.2. Verdi was of Italian nationality.3. Compatriots are persons who share the same nationality.Hypothesis Assume that Bizet and Verdi are compatriots.There are three possibilities to restore consistency. Clearly, we do not wish towitdraw 3, but we are indi�erent whether we should give up 1 or 2.To model this behaviour in a logical system, Rescher divides the set of premissesinto modal categories. The modalities Rescher proposes are: alethic modalities,epistemic modalities, modalities based on inductive warrant, and modalities basedon probability or con�rmation. Given a set of modal categories, he selects PreferredMaximal Mutually-Compatible subsets (PMMC subsets) from them. The procedurefor selecting these subsets is as follows:Let M0; :::;Mn be a family of modal categories.1. Select a maximal consistent subset of M0 and let this be the set S0.2. Form Si by adding as many premisses of Mi to Si�1 as possible withoutdisturbing the consistency of Si.Sn is a PMMC-subset.Given these PMMC-subsets, Rescher de�nes two entailment relations.� Compatible-Subset (CS) entailment. A proposition is CS entailed if it followsfrom every PMMC-subset.� Compatible-Restricted (CR) entailment. A proposition is CR entailed if itfollows from some PMMC-subset.It is not di�cult to see that Rescher's modal categories can be represented bya partial reliability relation on the premisses. For every modal category Mi, Mjwith i < j, there must hold that each premiss in Mi is more reliable than anypremiss in Mj. Given this ordering, from De�nition 6 it follows immediately thatthe PMMC-subsets are equal to the most reliable consistent sets of premisses.
17



9.2 A framework for default reasoningThe central idea behind Poole's approach is that default reasoning should be viewedas scienti�c theory formation [10]. Given a set of facts about the world and a set ofhypotheses, a subset of the hypotheses which together with the facts can explain anobservation, have to be selected. Of course, this selected set of hypotheses has tobe consistent with the facts. A default rule is represented in Poole's framework bya hypothesis containing free variables. Such a hypothesis represents a set of groundinstances of the hypothesis. Each of these ground instances can be used indepen-dently of the other instances in an explanation. An explanation for a proposition 'is a maximal (with respect to the inclusion relation) scenario that implies '. Herea scenario is a consistent set containing all the facts and some ground instances ofthe hypotheses.This framework can be viewed as a special case of Rescher's work. Poole's frame-work consists of only two modal categories, the facts M0 and the hypotheses M1.Since Rescher's work is a special case of the logic described in this paper, so isPoole's framework. Poole, however, extends his framework with constraints. Theseconstraints are added to be able to eliminate some scenarios as possible explana-tions for a formula '. A scenario is eliminated when it is not consistent with theconstraints.The constraints can be interpreted as describing that some scenarios are preferredto others. Since in the logic described in this paper a reliability relation on thepremisses generates a preference relation on consistent subsets of the premisses, anobvious question is whether the preference relation described by the constraints canbe modelled with an appropriate reliability relation. Unfortunately, the answer is`no'. This is illustrated by the following example.Example 38Facts: ';  .Defaults: '! �; '! :�;  ! :�;  ! �.Constraints: :(� ^ �);:(:� ^ :�).Without the constraints this theory has four di�erent extensions. These ex-tensions are the logical consequences of the following scenarios.S1 = f';  ; '! �; '! :�gS2 = f';  ;  ! :�;  ! �gS3 = f';  ; '! �;  ! �gS4 = f';  ; '! :�;  ! :�g18



Only the �rst two scenarios are consistent with constraints. If this defaulttheory has to be modelled in the logic, a reliability relation has to be speci�edin such a way that fS1; S2g = A. To determine the required reliability relationon the hypotheses, combinations of two scenarios are considered. To ensurethat S1 2 A and S3 62 A, ' ! :� has to be more reliable than  ! �. Toensure that S2 2 A and S4 62 A,  ! � has to be more reliable than '! :�.Hence, the reliability relation would be reexive, violating the requirement ofirreexivity in a strict partial order. This means that not every ordering ofexplanations in Poole's framework can be modelled, using the logic describedin this paper.Although Poole's framework without constraints can be expressed in the logicdescribed in this paper, the philosophies behind the two approaches are quite di�er-ent. Poole's work is based on the idea that default reasoning is a process of selectingconsistent sets of hypotheses, which can explain a set of observations. The purposeof the logic described in this paper, however, is to derive useful conclusions from aninconsistent set of premisses.9.3 Paraconsistent logicsParaconsistent logics are a class of logics developed for reasoning with inconsistentknowledge [1]. Unlike classical logics, in paraconsistent logics there need not hold:(' ^ :') for some proposition '. Hence, an inconsistent set of premisses is notequivalent to the trivial theory; it does not imply the set of all propositions.Unlike the logic described in this paper, a paraconsistent logic does not resolve aninconsistency. Instead it simply avoids that everything follows from an inconsistenttheory. To illustrate this more clearly, consider the following a reliability theory,without a reliability relation.� = f� ^ �;:� ^ gIn the logic described in this paper, all maximal consistent subsets will be generated.f� ^ �g and f:� ^ gIn a paraconsistent logic the proposition � will be contradictory but the propositions� and  will consistently be entailed by the premisses.The di�erence between the two approaches can be interpreted as the di�erencebetween a credulous and a sceptical view of knowledge sources. With a credulousview of a knowledge source, we try to derive as much as is consistently possible.According to Arruda [1], scienti�c theories for di�erent domains, which conict witheach other on some overlapping aspect, are treated in this way. With a scepticalview of a knowledge source, we only believe one of the knowledge sources thatsupport the conicting information. So if a part of someone statement turns outto be wrong, we will not belief the rest of his/her statement. Although a credulous19



view of knowledge sources seems to be acceptable for scienti�c theories for di�erentdomains, a sceptical view seems to be better for knowledge based systems, whichhave to act on the information available.9.4 Truth maintenance systemsIn logic justi�cations are introduced. Unlike the justi�cation that used in the JTMSof J. Doyle [3] or the ATMS of J. de Kleer [8], the justi�cations in the logic are part ofthe deduction process. They follow directly from the requirement for the deductionprocess (Section 2). The justi�cations are also di�erent from the ones introducedby Doyle and de Kleer. In a(n) (A)TMS the justi�cations describe dependenciesbetween propositions, while in the logic the in justi�cations describe dependenciesbetween propositions and premisses, and out justi�cations describe dependenciesamong premisses. The in justi�cations of the logic, however, can be compared withthe labels in the ATMS [8]. Like a label, an in justi�cation describes from whichpremisses a proposition is derived. The out justi�cations have more or less the samefunction as the set nogood in the ATMS. As with an element from the set nogood,the consequent and the antecedents of an out justi�cation may not be assumed tobe true simultaneously. Unlike an element of the set nogood, an out justi�cationdescribes which element has to be removed from the set of premisses (assumptions).Because in justi�cations and labels are closely related, it is possible to describean ATMS using a propositional logic. Let hA;N; Ji be an ATMS where:� A is a set of assumptions,� N is a set of nodes, and� J is a set of justi�cations.We can model the ATMS in the logic using the following construction. Let A [ Nbe the set of propositions of the logic. Furthermore, let the set of premisses � beequal to A [ J where the justi�cations J are described by rules of the form:p1 ^ ::: ^ pn ! q:Finally, let every justi�cation be more reliable than any assumption. Then the setA is equal to the set of maximal (under the inclusion relation) environments of anATMS. Furthermore, for any linear extension of the reliability relation, the label fora node n 2 N is equal to the set:fP j P ) n 2 J1 and for no Q) n 2 J1: Q � Pg:The set of nogoods is equal to the set:f(P [ fpg) j A j P 6) p 2 J1 and for no Q 6) q 2 J1:(Q [ fqg) j A � (P [ fpg) j Ag:20



10 ApplicationsIn the previous sections a logic for reasoning with inconsistent knowledge was de-scribed. In this section two applications will be discussed.Unreliable knowledge sourcesIn situations where we must deal with sensor data the logic described in the previoussections can be applied. To be able to reason with sensor data, the data has to betranslated into statements about the world. Because of measurements errors and ofmisinterpretation of the data, these statements can be incorrect. This may result ininconsistencies. These inconsistencies may be resolved by considering the reliabilityof the knowledge sources used. To illustrate this consider the following example.Example 39 Suppose that we want to determine the type of an airplane by usingthe characteristic of its radar reection. The radar reection of an airplanedepends on the size and the shape of plane. Suppose that we have some patternrecognition system that outputs a proposition stating the type of plane, or adisjunction of possible types in case of uncertainty. Furthermore, suppose thatwe have an additional system that determines the speed and the course of theplane. The output of this system will also be stated as a proposition. Giventhe output of the two systems, we can verify whether they are compatible. Ifa plane is recognized as a Dakota and it speed is 1.5 Mach, then, knowing thata Dakota cannot go through the sound barrier, we can derive a conict. Sincethe speed measuring system is more reliable than the type identifying system,we must remove the proposition stating that the plane is a Dakota.In this example, the reliability relation can be interpreted as denoting that if twopremisses are involved in a conict the least reliable premiss has the highest proba-bility of being wrong. Since the relative probability is conditional on inconsistencies,information from one reliable source cannot be overruled by information from manyunreliable knowledge sources. For example, the position of an object determinedby seeing it is normally more reliable then the position determined hearing it, in-dependent of the number persons that heard it at some position. Notice that faultprobabilities have no meaning because faults are context dependent. The positionswhere you hear an object can be incorrect because of reections and the limitedspeed of sound. Usually, these factors cannot be predicted in advance.PlanningAnother possible application for the logic can be found in the area of planning. In[6] Ginsberg and Smith describe a possible worlds approach for reasoning aboutactions. What they propose is an alternative way of determining the consequencesof an action. Instead of using frame axioms, default rules, or add and delete lists.21



They propose to determine the nearest world that is consistent with the consequencesof an action. The advantage of this approach is that we do not have to know allpossible consequences of an action in advance. For example, in general, we cannotknow whether putting a plant on a table will obscure a picture on the wall. Hence,if we know that a picture is not obscured before an action, we may assume that it isstill not obscured after the action when this fact is consistent with the consequencesof the action.

Figure 1: living-roomExample 40 Figure 1 can be described a set of premisses. This set of premisses isdivided in to three subsets, viz. the domain constraints, the structural factsand the remaining facts. The domain constraints are:1. on(x; y) ^ y 6= z ! :on(x; z)2. on(z; y) ^ z 6= x ^ y 6= oor ! :on(z; y)3. rounded(x)! :on(x; y)4. duct(d) ^ 9x:on(x; d)! blocked(d)5. 9x:on(x; table)$ obscured(picture)6. blocked(duct1 ) ^ blocked(duct2 )$ stu�y(room)The structural facts are:7. rounded(bird)8. rounded(plant)9. duct(duct1 )10. duct(duct2 )11. in(bottom shelf ; bookcase)12. in(top shelf ; bookcase) 22



The situational facts are:13. on(bird ; top shelf )14. on(tv; bottom shelf )15. on(chest ;oor)16. on(plant ; duct2 )17. on(bookcase;oor)18. blocked(duct2 )19. :obscured(picture)20. :stu�y(room)Clearly, the situational facts are less reliable than the structural facts and the domainconstraints. Furthermore, facts added by recent actions are on average more reliablethan facts added by less recent actions.Now suppose that we move the plant from duct2 to the table. This can be de-scribed by adding the situational fact on(plant ; table). From the new set of premisseswe can derive two inconsistencies;f9x:on(x; table)$ obscured(picture);:obscured(picture); on(plant ; table)gand f[on(z; y) ^ z 6= x ^ y 6= oor ]! :on(z; y);on(plant ; duct2 ); on(plant ; table)g:The least reliable premisses in these sets of premisses are respectively the facts:obscured(picture) and on(plant ; duct2 ). Hence, they have to be removed from theset of premisses.11 ConclusionsIn this paper a logic for reasoning with inconsistent knowledge has been described.One of the original motivations for developing this logic was base on the view thatdefault reasoning is as a special case of reasoning with inconsistent knowledge. Todescribe defaults in this logic, such as Poole's framework for default reasoning, for-mulas containing free variables can be used. These formulas denote a set of groundinstances. If we do not generate these ground instances, but, by using uni�cation ofterms containing free variables, we reason with formulas containing free variables,we can derive conclusions representing sets of instances. This would seem to be avery useful property. 23



Since, in the logic described here a default rule can only be described by usingmaterial implication, a default rule has a contraposition. It is possible, however, thecontraposition may not hold for default rules. For example, the contraposition ofthe default rule: `someone who owns a driving licence, may drive a car' is not valid.A better candidate for a default reasoning would be Reiter's Default logic [11] orBrewka's aproach [2].Although it is likely that the logic is not suited for default reasoning, it is suitedfor reasoning with knowledge coming from di�erent and not fully reliable knowl-edge sources. For this use of the logic, it seems plausible that the logic satis�es theproperties of system P. A was shown in the examples described in Section 10, thereliability relation can be given a plausible probabilistic and ontological interpreta-tions. Furthermore, the current belief set with respect to the inferences made canbe determined e�ciently. One important disadvantage is that, given a set of pre-misses containing many inconsistencies and insu�cient knowledge about the relativereliability, the number of possible belief sets can become exponential in the numberminimal inconsistencies detected.AppendixTheorem 12 SoundnessFor each i � 0:if P ) ' 2 Ji, then:P � � and P j= ':Proof By the soundness of propositional logic,if P j�', then P j= '.Therefore, we only have to prove that for each i � 0:if P ) ' 2 Ji, then P � � and P j�':We can prove this by induction on the index i of Ji.� For i = 0:f'g ) ' 2 J0 if and only if ' 2 �.Therefore, f'g j�':� Proceeding inductively, suppose that P ) ' 2 Jk+1.Then: 24



P ) ' 2 Jk+1 if and only if P ) ' 2 Jk or P ) ' has been added byRule 1 or 2.{ If P ) ' 2 Jk, then, by the induction hypothesis,P � � and P j�':{ If P ) ' is introduced by Rule 1, then it is an axiom.Therefore, P = ; and j�':{ If P ) ' is introduced by Rule 2, then there is a Q )  2 Jk, R )( ! ') 2 Jk.Therefore, P = (Q [ R).According to the induction hypothesis there holds:Q;R � �;Q j� and R j� ! ':Hence:P � � and P j�': 2Theorem 13 CompletenessFor each P � �:if P j= ', then there exists a Q � P such that for some i � 0:Q) ' 2 Ji:Proof Let P � � and P j= '.By the completeness of �rst order logic,if P j= ', then P j�'.Since P j�', there exists a deduction sequence h'0; '1; :::; 'ni such that 'n = ' andfor each j � n: either� 'j 2 P , or� 'j is an axiom, or 25



� there exists a 'k and a 'l with k; l < j and 'l = 'k ! 'j.The theorem will be proven, using induction on the length n of the deduction se-quence.� For n = 1, h'1i is the deduction sequence for P j�'.{ If '1 2 P , then f'1g ) '1 2 J0.{ If '1 is an axiom, then there exists some i0 � 0 such that:Ji0 = Ji0�1 [ f; ) '0g and ; ) '0 is added by Rule 1.Hence, the theorem holds for deduction sequences of length 1.� Proceeding inductively, let h'0; '1; :::; 'm+1i be a deduction sequence forP j�'m+1.{ If 'm+1 2 P , then f'm+1g ) 'm+1 2 J0.{ If 'm+1 is an axiom, then there exists a im+1 such that:Jim+1 = Jim+1�1 [ f; ) 'm+1g and ; ) 'm+1 is added by Rule 1.{ If there exists a 'k and a 'l with k; l < m+1 and 'l = 'k ! 'm+1, then,by the induction hypothesis, there exists some ik and some il such that:R) 'k 2 Jik ;S ) ('k ! 'm+1) 2 Jiland R; S � P:Because of the fairness Assumption 11, there must exist an im+1 withik; il < im+1 such that:(R [ S ) 'm+1) 2 Jim+1 :Hence there exists some im+1 such that Q) 'm+1 2 Jim+1 and Q � P . 2Theorem 14 SoundnessFor each i � 0:if P 6) ' 2 Ji, then:(P [ f'g) � �; and (P [ f'g) is not satis�able:26



Proof The theorem will be proven using induction to the index i of the set ofjusti�cations Ji.� For i = 0 the theorem holds vacuously, because there is no P 6) ' 2 J0.� Proceeding inductively, suppose that P 6) ' 2 Jk+1.P 6) ' 2 Jk+1 if and only if P 6) ' 2 Jk or P 6) ' has been added by Rule 3.{ If P 6) ' 2 Jk, then, by the induction hypothesis, (P [ f'g) � � and(P [ f'g) is not satis�able.{ If P 6) ' is introduced by Rule 3, then there exists an R)  2 Jk anda Q) : 2 Jk such that:' = min(Q [R) and P = (R [Q)=':By Theorem 12:R;Q � �;R j� and Q j�: :Hence (P [ f'g) � �; and (P [ f'g) is inconsistent.Since inconsistency implies unsatis�ability:(P [ f'g) � � and (P [ f'g) is not satis�able: 2Theorem 15 CompletenessFor each P � �:if P is a minimal unsatis�able set of premisses and ' = min(P ), then forsome i � 0:P=' 6) ' 2 Ji:Proof Let P be a minimal unsatis�able subset of � with ' = min(P ).Since P is a minimal unsatis�able set, P is a minimal inconsistent set.Therefore, there exists a proposition  such that:P j� and P j�: :By Theorem 13 there exists a j; k � 0 such that:S )  2 Jj; S � P 27



and T ) : 2 Jk; T � P:Hence, (S [ T ) � P:Since P is minimal inconsistent:(S [ T ) = P:Because of the fairness Assumption 11 there exists an l > j; k such that:(P=') 6) ' 2 Jl: 2Property 18 For every i, the set �i exists and is unique.Proof Existence Let �0 � �1 � ::: � �k be a sequence of sets of premisses suchthat:� � = �0,� �j+1 = �j � f'g where ' is the most reliable premiss in �j such thatP 6) ' and P � �j.Then, by induction on the index of the sequence, we can prove that:��Out i(�j) � �j:� For j = 0, clearly, there holds ��Out i(�0) � �0.� Proceeding inductively, let the induction induction hypothesis hold for` � j.If � � Out i(�j) � �j, then there exists a most reliable ' 2 �j such thatP 6) ' and P � �j.Now suppose that ��Out i(�j+1) 6� �j+1.Then there exists a  62 Out i(�j+1) and  62 �j+1.Suppose that  2 �j.Then  = '.Since ' is the most reliable premiss such that P 6) ' and P � �j,P � �j+1.Hence,  2 Out i(�j+1).Contradiction. 28



Hence,  62 �j and, by the construction of �j, ' �0  .Since  62 �j, by the induction hypothesis,  2 Out(�j).Therefore, there exists a Q 6)  2 Ji and Q � �j.Since ' �0  , Q � �j+1.Hence,  2 Out i(�j+1).Contradiction.Hence, �� Out i(�j+1) � �j+1.Let k be the highest index in the sequence.Then there does not exist a ' 2 �k such that P 6) ' 2 Ji and P � �k.Hence, � � Out i(�k) = �k, otherwise there would exist a ' 2 �k such thatP 6) ' 2 Ji and P � �k.Hence, there exists at least one �i such that:�i = �� Out i(�i):Uniqueness Suppose �i is not unique.Then there exist at least two di�erent subsets of �i;�0i � � satisfying De�ni-tion 17.Let ' be the most reliable proposition in � such that:' 62 �i and ' 2 �0i:Hence, there exists a P 6) ' 2 Ji.By Theorem 15 there holds:P [ f'g is unsatis�able.Therefore, there exists a minimal inconsistent set of premisses Q with ' =min(Q).Since ' 62 �i and ' 2 �0i, there exists a  2 Q such that: 2 �i;  62 �0i and ' �  :Hence, ' is not the most reliable proposition in � such that:' 62 �i and ' 2 �0i:Contradiction.Hence �i is unique. 2Property 20 For each ' 2 Bi: �i j�'. 29



Proof Suppose ' 2 Bi.Then there exists a P ) ' 2 Ji such that:P � �i:Therefore, by Theorem 12:P j�' and P � �i:Hence, � j�': 2Property 22 �1 is maximal consistent.Proof Suppose that �1 is inconsistent.Then there exists a minimal inconsistent subset M of �1.Let ' = min(M).Then by Theorem 15 there exists an i withP 6) ' 2 JiHence P 6) ' 2 J1.Because P � �1, ' 62 �1.Contradiction.Suppose that some �1 is not maximal consistent.Then there exists a ' 2 (���1) and f'g [�1 is consistent.Since ' 2 (���1), ' 2 Out1(�1).Therefore, there exists a P 6) ' 2 J1 and P � �1.Since P 6) ' 2 J1, P [ f'g is inconsistent.Hence �1 [ f'g is inconsistent.Contradiction. 2Property 23B1 = Th(�1)where Th(S) = f' j S j�'gProof According to Property 20:if ' 2 B1, then �1 j�'. 30



Suppose there exists a ' such that:' 62 B1 and ' 2 Th(�1):Since ' 2 Th(�1), �1 j�'.By Theorem 13 there exists some i and some P ) ' 2 Ji such that:P � �1:Therefore, there exists a P ) ' 2 J1 such that:P � �1:Hence, by De�nition 20:' 2 B1:Contradiction.Hence B1 = Th(�1). 2Theorem 24 Let h�;�i be a reliability theory.Then there holds:A = f�1 j for some linear extension of �, �1 can be derivedg:Proof Let �1 be a set of believed premisses given a linear extension �0 of �.Furthermore, let �1; :::; �m be an enumeration of � such that for every �j �0 �k:k < j.Clearly, given this enumeration of �, �1 will satisfy De�nition 6.Let D be a most reliable consistent set of premisses given an enumeration �1; :::; �nof �. Furthermore, let �0 be a linear extension of � such that for each k < j:�j �0 �k.Observe that for each ' 62 D there exists a minimal inconsistent set f�i1 ; :::; �ingwith ij < ij+1 and ' = �in .Hence, by Theorem 15 and by the de�nition of the extended reliability relation �0:(f�i1 ; :::; �ing 6) �in) 2 J1:Let D � � be a set satisfying De�nition 6.Now suppose that:D 6= ��Out1(D): 31



Hence, there exists a most reliable premiss ' 2 � such that either' 2 D and ' 2 Out1or ' 62 D and ' 62 Out1:If ' 2 Out1, then for some P 6) ' 2 J1 there holds:P � D:Since P � D and since ' 2 D, D is inconsistent.By De�nition 6, however, D must be consistent.Contradiction.If ' 62 Out1, then for no P 6) ' 2 J1 there holds:P � D:Hence, for each P 6) ' 2 J1 there exists a  2 P such that: 62 D:Since  62 D, according to De�nition 6, D [ f g is inconsistent. Furthermore, byDe�nition 6 there exists a minimal inconsistent of premisses Q containing ' suchthat: Q=' � D; Q = f�i1 ; :::; �ing with ij < ij+1:Therefore  = �in and Q= 6)  2 J1.Hence,  62 Out1(D).Contradiction. 2Theorem 31 Let h�;�i be a reliability theory. Furthermore, let A be the corre-sponding set of all most reliable consistent sets of premisses. Then:Mod<(h�;�i) = [�12AMod(�1)where Mod(S) denotes the set of classical models for a set of propositions S.32



Proof The proof ofMod<(h�;�i) = [�12AMod(�1)can be divided into the proof of the soundness[�12AMod(�1) � Mod<(h�;�i)and the proof of the completenessMod<(h�;�i) � [�12AMod(�1)of the logic.Completeness Suppose that for some �1 2 A and some M2 Mod(�1):M 62 Mod<(h�;�i):Then there exists a structure N :M < N :According to Proposition 22, since Prem(M) = �1:�1 6� Prem(N ):Let ' 2 �1 be the most reliable premiss according to the linear extension �0of �, such that ' 2 (�1 � Prem(N )).Now by De�nition 29 there exists a  2 (Prem(N )��1) such that ' �0  .Since  62 �1, there exists a P 6)  2 J1 such that:P � �1:Now, P 6� Prem(N ), otherwise Prem(N ) would be inconsistent.Hence, there exists a � 2 P :� 2 (�1 � Prem(N )):Since P 6)  2 J1,  �0 �.Hence, ' �0  �0 �:Contradiction.Hence, [�12AMod(�1) � Mod<(h�;�i):33



Soundness Suppose there exists a structureM 2 Mod<(h�;�i) such that for eachlinear extension �0 of � there holds:Prem(M) 6= ��Out1(Prem(M)):Then there exists a ' such that either:' 2 Prem(M) and ' 62 ��Out1(Prem(M)); or:' 62 Prem(M) and ' 2 ��Out1(Prem(M)):� Suppose that ' 2 Prem(M) and ' 62 ��Out1(Prem(M)).Hence, there exists a P 6) ' 2 J1 such that:P � Prem(M):Because P � Prem(M), Prem(M) is inconsistent.Contradiction.� Suppose ' 62 Prem(M) and ' 2 �� Out1(Prem(M)).Then Prem(M) [ f'g is either consistent or inconsistent.If it is consistent, then for each structure N 2 Mod(Prem(M) [ f'g):M < N :Contradiction.Hence Prem(M) [ f'g is inconsistent.Therefore, there exists at least one minimal inconsistent subset ofPrem(M) [ f'g.Let P be such a minimal inconsistent subset.Suppose that ' = min(P ).Then by Theorem 15 there exists an P=' 6) '.Since P=' � Prem(M), ' 62 ��Out1(Prem(M)).Contradiction.Hence ' 6= min(P ).Let MIN be the set of all the premisses min(P ) for each minimal incon-sistent subset P of Prem(M) [ f'g.Since ' in each minimal inconsistent set P and ' 6= min(P ), for each� 2 MIN there holds:� �0 ':Clearly, the set (Prem(M) [ f'g)�MIN is consistent.Let N 2 Mod((Prem(M) [ f'g)�MIN ).Because for each � 2 (Prem(M)� Prem(N )):� �0 '; 34



and because ' 2 (Prem(N )� Prem(M)) there holds:M < N :Contradiction.Hence,Mod<(h�;�i) � [�12AMod(�1): 2Lemma 32 Let h�;�i be a reliability theory. Furthermore, let b� = fM j M j= �g,let �0 = � [ f�g and let �0 = (� j (�=�� �=�)) [ fh'; �i j ' 2 �=�g.Then M2 Mod<0(h�0;�0i) if and only if M2 b� and for no N 2 b�:M < N :Proof� Suppose that M2 b� and N 62 b�, i.e. M j= � and N 6j= �.Then by De�nition 28:Prem(M) 6= Prem(N ):Therefore,� 2 (Prem(M)� Prem(N ))and for each ' 2 (Prem(N )� Prem(M)) there holds:' �0 �:Hence by De�nition 29 for each M2 b� and N 62 b�:N <0 M:� Suppose that M;N 2 b�.Since M;N j= �, for each ' 2 (Prem(M)� Prem(N )) and for each 2 (Prem(N )� Prem(M)):{ ' �  if and only if ' �0  , and{ ' �  if and only if ' �0  . 35



Hence, for each M;N 2 b�:N <0 M if and only if N <M:Hence, M 2 Mod<0(h�0;�0i) if and only if M2 b� and for no N 2 b�:M < N : 2Theorem 33 Let h�;�i be a reliability theory.hS; l; <i is a preferential model for h�;�i if and only if S is the set of allpossible interpretations for the language L, l : S ! S is the identity functionand for each M;N 2 S:M < N if and only if N <M.Proof Since the relation < de�nes a strict partial order on interpretations, so does< on S.Since l is a function from S to S, l assigns a single `world' to each state.Suppose that < is not smooth.Then by Lemma 32 for some proposition � and some M 2 b� there holds neitherthat: M2 Mod<0(h�0;�0i);nor does there exist a N 2 Mod<0(h�0;�0i) such that:M < N :Since M 62 Mod<0(h�0;�0i), there must exists an L1: M < L1.Suppose that for some Li with i � 1 there does not exist an Li+1 such that:Li � Li+1:Then Li 2 Mod<0(h�0;�0i).Contradiction.Hence, there exists an in�nite sequence M < L1 < L2 < :::.For each Li there exists a �i � �: �i = Prem(Li).Suppose that for some j < i: �i = �j. 36



Then Lj 6< Li.Contradiction.Hence, for each Li;Lj with i 6= j: �i 6= �j.Let k = jP(�)j.Then f�1; :::;�kg = P(�).But there also holds that �k+1 2 P(�).Contradiction.Hence, < is smooth.Hence, hS; l; <i is a preferential model according to the de�nition of Kraus et al. 2Theorem 34 Let W = hS; l; <i be a preferential model for h�;�i. Then thefollowing equivalence holds:� j�W � if and only if�0 = � [ f�g;�0 = (� j (�=�� �=�)) [ fh'; �i j ' 2 �=�gand � 2 Th(h�0;�0i).Proof According to Theorem 31:� 2 Th(h�0;�0i) if and only if for each M2 Mod<0(h�0;�0i):M j= �:Therefore, by Lemma 32:� 2 Th(h�0;�0i) if and only if for each M2 min(b�):M j= �:Hence, by the de�nition of the non-monotonic entailment relation j� we have:� 2 Th(h�0;�0i) if and only if � j�W �. 2
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