Available at
www.ComputerScienceWeb.com Artificial

Intelligence

ELSEVIER Avrtificial Intelligence 145 (2003) 147-180

www.elsevier.com/locate/artint

Multiple agent-based autonomy for satellite
constellations

Thomas Schettéf, Mark Campbelt*, Derek Surk#?

a University of Washington, Box 352400, Seattle, WA 98195-2400, USA
b princeton Satellite Systems, 33 Witherspoon S, Princeton, NJ 08542, USA

Received 3 January 2002; received in revised form 8 September 2002

Abstract

Multiple, highly autonomous, satellite systems are envisioned in the near future because they are
capable of higher performance, lower cost, better fault tolerance, reconfigurability and upgradability.
This paper presents an architecture and multi-agent design and simulation environment that will
enable agent-based multi-satellite systems to fulfill their complex mission objectives, termed
ObjectAgenTM. Its application is shown for a distributed aperture radar mission, although its
applicability spans many types of missions. Required spacecraft functions, software agents, and
multi-agent organisations are described for the radar mission, as well as their implementation.
Agent-based simulations of mission case studies show the autonomous operation of the multi-
agent architecture, which can then be used to build, evaluate and compare autonomous software
architectures for multiple satellite systems.

0 2003 Elsevier Science B.V. All rights reserved.

Keywords: Multiple satellite autonomy; Multi-agent systems; Spacecraft autonomy; Software agents

1. Introduction

A new paradigm shift in spacecraft design is sweeping the space industry, including
the science [17], defense [6], and commercial sectors [24]. The shift is from single large

* Corresponding author. Assistant Professor, Member IEEElingaAddress: 208 Upson Hall, Cornell
University, Ithaca NY 14853, (607)255-4268, (607)255-1222 (fax).
E-mail addresses: thomas_schetter@hotmail.com (T. Schetter), mc288@cornell.edu (M. Campbell),
surka@alum.mit.edu (D. Surka).
1 Research Assistant.
2 Technical Staff.

0004-3702/03/$ — see front mattér 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0004-3702(02)00382-X

148 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

satellites that are expensive and have a lot of built in redundancy, to several smaller
satellites working in tandem. The redundancy of the “cluster” is now in the large number
of satellites rather than in the individual subsystems. Satellite clusters include several
smaller satellites that collaboratively work together on a satellite mission, thus forming a
“virtual” satellite. The reasons for this paradigm switch are many, including the increased
usage of micro-electromechanical (MEMS) based components to reduce mass, increased
production rates to decrease unit cost, and better performance in terms of mission science,
fault tolerance, reconfigurability and upgradability. With these far reaching benefits,
however, comes a new set of challenges, including relative navigation, control, and electric
propulsion. The key technology that will enable multiple, distributed satellites to achieve
their potential, however, is coordinated intelligent autonomy.

The cost of operating aingle spacecraft after launch is a considerable portion of
the overall mission cost. For commercial satellites, operations consist of monitoring the
spacecraftSs health and status, taking corrective measures when necessary, and performing
maneuvers. Military and scientific satellites require additional ground personnel to process
the tremendous amount of payload data gathered. Automating these activities through the
use of agents will reduce the cost of missions and make spacecraft more robust, reliable,
and efficient. In addition, the use oiultiple satellites distributed over a small cluster will
require much higher levels of autonomy than those that exist today.

There is very little “intelligence” on today’s satellites. Current space flight software only
measures sensors, acts on ground commands, and gracefully reboots when an anomaly
occurs. In 1999, the first attempt to use agents for satellite autonomy was launched in
NASA's Deep Space 1 (DS1) mission. The DS1 researchers developed Remote Agent [16],
an autonomous agent architecture based on model based programming, on-board deduction
and search, and goal-directed closed loop commanding. The complexity of automating
activities in space systems to the level that owners/operators will use the autonomous
software was shown when, because of technical difficulties, much of the Remote Agent
software was stripped off the satellite prior to launch, although portions of the software
were uplinked at a later date [8]. The DS1 work is slightly different than this work for
several reasons. First, it was for one satellite, not a group of satellites. Second, DS1 was
still based on traditional flight software rather than a hierarchy of intelligent agents.

Some of the most relevant work in autonomy for distributed systems has been in
robotics and autonomous underwater vehicles. There has been recent work in emergent
behavior [1], where robot colonies work together, even though no single robot knows
the group objectives. Though this approach has had much success for robots and simple
tasks, many useful tasks for multiple satellites will require the ability to plan. The
MAUV/CoDA Project [25] focuses on controlling autonomous oceanographic networks,
including autonomous underwater vehicles. The work uses two organizations: a task-
level organization to control the system during the actual mission, and a meta-level
organization to self-organize the system. Much of this work has been in simulation,
although experiments will be used to evaluate the work.

Intelligent autonomy for multiple satellite systems, however, is different than many
other systems being developed because of its many unique challenges, including:

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 149

e There will typically be many vehicles that must coordinate to achieve the desired goals
of the fleet, thus making it much more complex than architectures such as DS-1 [16].

e The dynamics and close proximity of multiple satellites create more challenging
control and fault detection problems as compared to multiple rover systems [2,9].

e The cost and far proximity of space based systems require reliability to be much higher
than ground based systems, such as distributed robotics for environmental clean-up
operations [23].

e The complexity of the trajectory planning and resource allocation are not problems
that many traditional Al technologies, such as the subsumption approach, usually
address [2].

The use of agent-based software architectures represents a new technique in the area of
space applications. The individual spacecraft and/or its sub-components are now seen as
agents, that is, individual, independent autonomous entities. Agent based software differs
from traditional space based approaches both in the modularity (i.e., the organizational
structure) as well as in the intelligence (functional distribution). Agent based approaches
also allow different agent organizations with varying levels of autonomy to be easily
developed and tested.

The objective of this work is to create a software infrastructure for simulating and
comparing architectures for multiple satellite systems; each architecture will create a
different “virtual” satellite and therefore allow multi-satellite systems to fulfill their
complex mission objectives at a lower cost. That is, the cluster is now seen as a single
entity rather than several or many individual satellites. The software infrastructure must
be adaptable in both its low level code (such as changing planning approaches) and high
level code (such as adding or subtracting satellites to the cluster). This differs from the
traditional approach both in the way they act together (i.e., the organisational structure) as
well as in the “intelligence” they have (functional distribution).

This paper presents the agent based software infrastructure to enable autonomous,
multiple satellite systems. More specifically, the paper shows how low level agents can
be developed and combined into spacecraft level agents, which can then be combined into
an agent based software architecture for clusters of satellites. Examples of agents at all
levels are given, along with several simulations to show how the architecture(s) can be
developed. It is noted that Ref. [22] details a full comparison of different types of agent
based organizations. This paper details the software infrastructure, and is unique in three
areas: (1) integration of (formal) control and Al technologies into a multi-agent framework,
(2) a message passing software approach that easily allows comparisons of technologies
and multi-agent organizisations, and (3) the application of the multi-agent approach to
multiple satellite systems.

2. Distributed satellite systems

Many future space systems in Earth and space science, defense, and commercial
industries will utilize multiple satellites systems. NASAs Origins program is interested
in spaceborne interferometry to image far off planets for possible life forms [17]. The US

150 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

Z-axis

y-axis 200

Fig. 1. Left: TechSat21—a revolutionary approach to space based sensing. Right: a 3D-animation of the
TechSat21 mission, where ¥ is the virtual center of the cluster, and the spacesrafare in two planes of
four.

Air Force is interested in distributed space based radar because of increased performance
and decreased cost [6]. Future commercial space based systems, such as Teledesic, will use
many satellites for global telecommunications coverage [24].

The TechSat21 mission is an Air Force mission designed to explore the benefits of
a distributed approach to satellite design. The initial demonstration is currently being
designed for a space based distributed radar [6]. The ability to perform a space based
radar mission, which historically has required very large, high-power satellites, is seen as
an extreme test of this concept. TechSat21 takes advantage of the distributed satellites by
using a sparse aperture array for radar imaging, which allows improved resolution because
of the satellite spacing (Fig. 1).

The function of imaging (radar or others) with multiple aperture is done through the use
of interferometry techniques, where different spatial frequencies that make up the image
are recorded by pairwise interference of signals from selected satellites. In the case of
an imaging radar such as TechSat21, the radar moves along a flight path and an area is
illuminated by the radar, termed ttieotprint. Each spacecraft in the cluster illuminates
the same footprint simultaneously. The antenna receives the return echoes from the target
(area) and stores them. This return signal is the composite of each spacecraft in the cluster.
The data is then processed to resolve a single pixel in the footprint.

In order to accomplish distributed aperture radar imaging, the satellites in the cluster
must cover the Earth’s surface area of particular interest with a more or less uniform
distribution. Given the very strict constraints on the fuel available, the only conceivable
approach for the cluster is to have the satellites berice free orbits while in formation.

The current configuration for TechSat21 has focused on clusters of spacecraft in two local
ellipses, tilted at-30 degrees from the verticataxis. The center of the cluster, or also
called the Hill frame with, is shown as a **" in Fig. 1 and rotates about the Earth as any

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 151

single large satellite might. The nominal orbit for the cluster (or cluster center) is a circular,
polar orbit. The Hill's equations [11] describe the relative motion of spacecraft by the use
of linearized equations.

Ro
x = Y coswyt + ¢),
y = Rosin(w,t + @),
z = RocoSwnt + ¢ + ¢), ()

whereRg corresponds to the major axis of the elliptical motion alongytfeis andRg/2

to the minor axis along the direction. The phasing angle describes the phase of the
spacecraft within each of the two ellipses afidhe rotation about the-axis of the two
ellipses. For ease and simplicity, a constellation of eight satellites was chosen, with four
satellites placed in each ellipse. The central concept in planning for clusters is to change
the size of the ellipseRp) and phasing of the ellipsey(¢) as the spacecraft maneuver
from one target to the next.

3. Functional agent definitions

Agents are defined slightly differently in many texts, but one that is appropriate to this
work is from Ref. [26]: “An agent is a computational entity that can viewed as perceiving
and acting upon its environmentand that is autonomous in that its behavior at least partially
depends on its own experience”.

In the following section, the ObjectAgent infrastructure is introduced to aid in the
development of agents and their interconnects for multiple satellite systems. This is
followed by a detailed description of the agents and their skills. The ObjectAgent
framework enables the primary contributions of this work: (1) development of agents
that can be easily integrated into the multi-agent system even after implementation, (2)
development and comparison of different organizations of agents, such as using two
different coordination schemes: centralized and distributed. The subsequent section then
describes how they are integrated into spacecraft level agents and autonomous hierarchies.

3.1. ObjectAgent infrastructure

ObjectAgent is a MATLAB toolbox [19] for the design and simulation of multi-
agent systems, especially spacecraft. In ObjectAggents are software processes that
represent software algorithms and remote termiriRésote terminals (RT) are software
objects that connect agents with hardware.

ObjectAgent is based on rmessage passing architecture, meaning that all agent-to-
agent and agent-to-RT communication is done through messages that pass through message
centers (MC) or post offices. The functions of the MC are:

e register and validate agents,
e process messages for itself,
e pass messages to registered agents, RT's, and other MC's for processing,

152 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

o allocate processor time for each agent.

Messages can be passed over several MC’s; therefore it does not matter where the agent
or RT is located. The MC functional process is shown in Fig. 12. Note that while the MC

is explicitly used in the work presented here, an alternate real time implementation is to
integrate the message passing into the operating system level.

Sills are the basic building blocks of agents and remote terminals within ObjectAgent.
Agents and RT's are created in ObjectAgent by assigning to them a set of skills. These
are special MATLAB files that represent agent functions. For example, a skill required by
all agents is to register with the MC, represented byRhgi st er Ski | | . mfunction.
Generally, each skill corresponds to one basic function, has inputs and outputs, and triggers
one or more actions. The primary action for each skill isiadat e action that the skill
runs periodically based on a pre-defined update period. Each skill contains a data structure
field that describes the assigned priority, the update period, the input and output interfaces
and the communication method.

There are several structures within ObjectAgent that allow communication between
agents.Messages are exchanged between agents alath are blocks of information
exchanged between agents within the messatgsks are the activities that an agent
performs and each agent maintains a dynamic list of the tasks it is currently running.
Messages and tasks each have the same structure in ObjectAgent; hence, a message can
cause the receiving agent to take a particular action. vehle of the message or task
dictates the particular action taken.

As described previously, each skill has at least one task associated willpdtate.

When skills are added to an agent, tasks associated with that skill are automatically
generated. These tasks, when processed, can cause a message to be created and sent, and/or
actions to be taken by agents that change its internal state.

Fig. 2 shows an example, where the tasptiat e Col | Avoi dSki | | ” creates the
message NbveCol | Avoi d sc_4| To: O bi t ManAgent 4(Or bi t ManSki | 1 4)

(m1), because a possible collision involving spacecraft #4 was detected. The message
m1, which tells ‘Or bi t ManAgent 4” to command a maneuver, is then sent to MC4.
When ‘Or bi t ManAgent 4” receives the message, the verb functMorveCol | Avoi d

is called which triggers the command generation for an avoidance maneuver within
the O bi t Maneuver Ski | | . Additionally, message m2 (the state of spacecraft #2) is
transmitted back to the collision avoidance agent 1.

3.2. Lower level functional agents and skills

In order to demonstrate the usefulness of multi-agent systems applied to multiple
satellite clusters in general, and TechSat21 specifically, four high-level tasks are defined:

HT1: Performing science (Imaging),
HT2: Formation maintaining and control,
HT3: Cluster reconfiguration,

HT4: Cluster upgrade.

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 153

ml:

MoveCollAvoid m2:

transmity 4

MoveColl-

Avoid
Cpll- Orbit-
Avo 1d:dnce- Maneuver-
Skill Skill
collision

avoidance agent 1 maneuver agent 4

[skin
l:l Task

- Verb
C| Mcssage

Fig. 2. Example of the relationship between skills, messages, and verbs.

These high-level tasks were then used to identify all necessary sub-level tasks, along with
the elementary functional blocks required to implement these tasks. Fig. 3 shows the
functional breakdown from high level tasks to lower level agents. The columns correspond
to four high level tasks, and the rows to sub-tasks and functional blocks/agents. The
particular agents are denoted with a two digit number. The first digit refers to the task

category (i.e., 2-decision-making function) and the second to the sub-partition within the

task category (i.e., 3-failure/loss).

Table 1 shows the implemented skills for the corresponding agents. Shown are also
the priority assignments, the update period and tools which are used by the corresponding
skills. These skills are also related to the spacecraft level aghnig, to be discussed
subsequently. A variety of state of the art tools are used for these skills, including fuzzy
logic for decision-making [18], the Cornwell Metric for cluster positioning based on radar
imaging [12], contract net bidding and negotiation algorithms for planning [7,10], and
linear programming for optimal trajectory generation [4]. Each of these agents and their
associated skills are described next.

3.3. Interaction agents

Sensi ngAgent (F11) continuously obtains and updates the state and health from
the spacecraft, and makes it available for the entire cluster. This agent re§eires
i ngSki I I . m which continuously reads the required spacecraft statend health;
for eachi spacecraft. The state includes satellite positi@md velocity v, and the health
h includes the status of the scienkg powerh,, and thrust:; subsystems, as well as
the remaining fueh ;. Other important parameters include the velocity increment for a

154 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

HT 1. 5
HIGH-LEVEL TASKS | Sgence . HTZ2 HT3 HT 4:
G i Formation Maintaining and Control Cluster reconfiguration Cluster upgrade

e 3 ST 21 ST 22: ST 23: ST 31: ST 32: ST 41 ST 32
SUBLEYEL TASKS ?ST vl 1 Rejecting Collision Orbit Fault Formation Accepting Formaton
TASK CATEGORY i Disturbances | | [Avoidance | [Maneuvering| Detection Change new S/C Change
I INTERACTION F11 F11 F11 F11 F11 F11
| sensing s'c info Fl12 F12 F12 F12 F12 F12
2 transmilting s/c info
2 DECISION-MAKING | F20
0 Imaging F21
’I]I?isn‘lr.hnncc_) F22
; II:O_IIILSIQE Avoidance F23
3 Failure/Loss
4 Upgrade/Gain F24
30RGANISATIONAL | F30 | | [E30 | [F30]! [F30
0 Scheduler 31 F31
1 Planner (Cornwell)
2 Planner (Assign positions) -—F‘Sl— 32
3 Task allocator K33 K33

_A4FF planer (Trajectory) &) F34
4 REPRESENTATIONAL

0 Storing Cluster Information F40

S OPERATIVE [Fso |
?Er‘lﬁ':\ii{:l?:f:l:{:ring(].qk LFsi| i [Fst]: [Fst]

Fig. 3. Functional breakdown of the task structure specifically for TechSat21.

maneuverAYV;;, error in the position and velocity staterr ;, thrust sequenceu;, and
current formation summary;. Some states are measured, while others can be estimated
from measurements.

3.4. Decision making agents

Decision-making agents periodically make decisions or monitor specific system
parameters for changes. Most of these agents use fuzzy logic as the base algorithm.
Sci enceAgent (F20) decides which satellites acquire which targets, and how many
satellites are required to monitor changing points of inter@sat KeepAgent (F21)
decides whether it is necessary to station keep (maintain position) or to perform
an orbit correction maneuver due to external disturbances. This agent requires the
St at KeepSki I | . m which is implemented using fuzzy logic. The agent uses one input:
the relative erroerr; for each spacecraft position from the nominal reference positign
minus the actual positiosy ; and two outputs: dynamic allocation of the update period and
of the priority of the corresponding taflej ect Di st (m21). Dynamic allocation of both
the update period and the priority is based on the magnitude of theeerror

Col | Avoi dAgent (F22) detects when collisions may occur between the spacecraftin
the cluster, and can be implemented in a centralized or distributed framework. This agent

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 155

Table 1
Examples of implemented software agents
“Agent” Description Priority Tool s/c agent
11 I I3 Ig

F11 Sensing retrieving s/c state, health fix - X X X X
F12 Xconmmuni cat e exchange data with other s/c fix - X X X X
F13 Communi cat e exchange data with ground fix - X
F20 Sci encePl an which s/c, which targets fix Fuzzy Logic X X
F21 DecSt at Keep monitor for station keeping var Fuzzy Logic X X X
F22 Col | Avoi d* collision monitoring (C) var Fuzzy Logic X X

collision monitoring (D) var Fuzzy Logic X X
F23 DecMakFai | health monitoring fix Fuzzy Logic X
F24 DecMakAdd cluster upgrade fix Fuzzy Logic X
F30 Schedul e Scheduler fix Prioritize using logic X X X
F31 Pl anReconfig* plan cluster reconfig (C) fix Symmetric placement X

plan cluster reconfig (C) fix Cornwell Metric X

plan local reconfig (D) fix Cornwell Metric X X
F32 Pl anAssi gn* cluster assignment (C) fix Fuzzy Logic X

local cost (D) fix Contract Net X X

local cost (D) fix Negotiation X X
F33 TaskAll oc* task allocation(C) fix Fuzzy Logic X X

local cost(D) fix Contract net X X
F34 Pl anFF trajectory planning for s/c fix Linear Program X X X
F35 Propul sion thruster logic fix Fuzzy Logic X X X X
F40 CusterHealth maintain cluster record var - X X
F50 Science perform radar fix - X X X X
F51 OrbitMn orbit maneuvering var LQR control X X X X
+—those agents that are implemented using two or more coordination schemes.
C—centralized.
D—distributed.
requiresCol | Avoi dSki | | . m which implements a fuzzy logic controller for collision

detection. Because the spacecraftfly in close formation (less than 250 m separation), some
type of collision checking and avoidance functionality on board is required. Based on the
current position xand velocity vof each spacecraft, the future relative positions of the
spacecraft can be predicted in the near term for one update time,sigpof the collision
avoidance task (Fig. 4). This is given as

Ax;i = min x.—x.+wW;:—v;) 1), 2
" Oglsglupdate(_] - (_] _l) S) ()

whereAyx;; is a scalar number used to evaluate how close to a collision two satellites may
be. If this number is smaller than a predefined limit, action is taken. A fuzzy variable can
be defined based on three cases: SMALL, MEDIUM, OR LARGE. These are shown in
Fig. 4. The possible actions afeel t aX(LARGE)—no action, just continue to monitor;
Del t aX(MEDIUM)—simple action such as a small thruster firing or sending a warning
to the other satellite; dbel t aX(SMALL)—drastic action such as an orbit maneuver. If
the latter is the case, a corresponding collision avoidanceMaskCol | Avoi d (m22) is
triggered consisting of a bang-bang control that “moves” the spacecraft apart.

The priority of the collision avoidance task, which is used by $e@edul eAgent ,
also increases as the satellites move closer. As a collision becomes moreDixetya(X
tends to 0), the priority of the collision avoidance agent increases, and the time update
of its information, update decreases (i.e., it receives information more frequently). The
implemented fuzzy controller has one inpe(t ax), two outputs Updat eTi me and
TaskPri ority), and three rules, which are shown in Table 2. The collision avoidance

156 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

+x .
Trajectory
r o spacecraft 2
Trajectory ‘/'4-—-:' | _~.~.
' o
spacecraft 1 PR .
’ o o
\ A \
Ay \
KA i
K i

’ \’/
X-Xg +(& Vl)tupdate
XX
T T T T T
LARGE | | | |
0.8 i	i i i 1		
o3 i i i i i			
<			1
2			
306 :	i		1
[
[1	1		
e			
—	I		
o ! ! ! I			
g 04 .			
2 i i i i i			
a			
02 .			
I			
0			
500 600 700 800 900 1000
DeltaX

Fig. 4. Calculating of the minimum distance between spacecraft 1 and 2. The “star” symbol denotes a possible
collision between the two spacecraft. Also shown is the fuzzy decision variable for collision monitoring.

task is only activated if the input variablze| t aX is SMALL. The fuzzy controller then
regulates over the membership function HIGH of the output varigdgkPri ori t y the
priority of the collision avoidance task. Membership functions used for the input and output
variables are triangular or Gaussian, as shown in Fig. 4. The membership functions for the

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 157

Table 2
Fuzzy inference rules for the collision avoidance agent
Input variable Output variable

Update time? Collision detected?
Del t aX(LARGE) HIGH NO, TaskPriority (LOW)
Del t aX(MEDIUM) MEDIUM NO, TaskPri ority (MEDIUM)
Del t aX(SMALL) SMALL YES, TaskPriority (HIGH)

input variableDel t aX are plotted on the left and for the output variablpsdat eTi e
andTaskPri ori ty inthe middle and on the right.

The centralized implementation of this agent is based on one satellite (the leader)
using all monitored/sensed information to calculate all possible collisions. The distributed
implementation requires all satellites to monitor collisions to itself using its own agent, and
then broadcast warnings if there are potential problems. With each satellite monitoring its
own potential collisions by monitoring the distances between each individual spacecratt, all
potential collisions within the cluster are evaluated, but now using a distributed approach.
Assuming that there arespacecraftin the cluster, the total number of distances to check is
then(n — 1)n/2. If each spacecraft must check their own possible collisions,(therl)n
must be calculated; therefore, there is a penalty for distribution (more total computations),
but benefits as well (no computational bottlenecks on the leader satellite, less information
exchanged).

DecMakFai | Agent (F23) monitors the health statuisof the spacecraft to detect
failures on-board, and, if required, starts a cluster reconfiguration. This agent requires
theDecMakFai | Ski |l I . m and is also implemented with a fuzzy logic controller. The
fuzzy logic has four inputs: the health, %,, h; of the science, power, thrust sub-
systems and for the remaining amount of fuel; and three outputs: a variable indicating
the status of the particular spacecraft (i.e., ‘0’: spacecraft has failed and ‘1": spacecraft
is working); a decision variable indicating the need for a cluster reconfiguration (i.e.,
< 0.5:'NO’ and > 0.5: ‘YES’); and a decision variable indicating the need for a de-orbit
maneuver of the particular spacecraft (i€.0.5: ‘NO’ and > 0.5: 'YES’). Both update
period and the priority of the corresponding tafteconf i gur eCl ust er (m23) and
Al | ocat eRol e (m24) are fixed. Th®ecMakAddAgent (F24) is developed similarly.

3.5. Organizational agents

The Schedul er Agent (F30) uses &askPri oriti ze. mskill that orders items
according to their assigned priority. This priority is set by other agents. Resolution of
conflictual relationships between tasks is solved by having the task that is the most
dominant inhibit the output of the less dominant tasks. A task with a higher priority
value therefore suppresses a task with a lower priority. The science task and the cluster
reconfiguration task have a fixed priority, whereas collision avoidance and disturbance
rejection have a dynamic priority.

Pl anReconf i gAgent (F31) optimizes new spacecraft positions within the cluster
based on maximizing usefulness for science (imaging). This agent, which is called in the

158 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

event of a failure or the addition of a new satellite, requiPeanReconfi gSki | I . m

and calculates new optimal positions within the cluster for reconfigurations. There are
several approachesto implementing this agent based on the science of radar and two current
approaches are presented here: (1) symmetric placement, where the phasing between
the satellites is the same, or (2) using the Cornwell metric [12], a numerical approach
based onV radar targetsM satellites, and the type of target (moving or not). The latter

skill can be implemented in a distributed or centralized fashion, based on the numerical
algorithm. More details on the algorithm and its implementation can be found in Ref. [12].

The Pl anReconfi gSki | | is run only on demand; i.e., is triggered by the message
Reconf i gur eCl ust er (m23) from the decision-making agent cluster reconfiguration
(F23).

Pl anAssi gnAgent (F32) assigns new spacecraft positions within the cluster based
on locations from thePl anReconfi gAgent (F31), and can be implemented in a
centralized or distributed fashion. The assignments are based on a cluster level cost
function, which could be a function of fuel, time or other factors that may be important
to the particular application. The agents developed here utilize fuel as the basis for the
assignments as that is one of the most important factors. The normalized fuel required to
maneuver theth satellite to thejth location is given as

AV;;

dij = e

3)

where# s, is the remaining fuel on each satellite. The velocity increment can be found
by using either a linear program (to be described later in this paper), or classical optimal
control and optimization [5]. The agent uses the dkilpl anner . mto calculate the fuel
required for each maneuver.

The centralized implementation of this agent is based on the leader satellite having
approximate knowledge of the remaining fuel for each satellite, using scheduled sharing of
health information between satellites. The leader satellite then calculates the fuel required
to maneuver to each location using a linear program. For instance, Fig. 5 showd'the
required for different orbital reconfiguration maneuvers over all phasing apghéthin
the ellipse for a fixed duration timgng of 1000 sec. TheAV continuously increases
from ¢ = 0° to 180 and decreases from = 180° down to 360. The plot also shows
an anomaly betweep = 190° and 250, a result from the lack of convergence to the
absolute minimum in the linear program. For the case of changing the phasinggangle
from ¢ = 0° to 18C (i.e., from one elliptical trajectory to another), the require¥l is
approximately bounded between 0.0073smand 0.01 njis over all phasing angles.

After calculation of thed;; cost factors, satellite assignments are made using a resource
minimization algorithm, or Fuzzy logic if the variables are uncertain.

There are two approaches to implementing PleanAssi gnAgent agent in a
distributed fashion. The first is using a contract net protocol, or bids from each of the
satellites. In this case, the agent (F32) acts as contractor and the remaining spacecratft (i.e.,
the trajectory planner agents F34) as bidders. The bids arrive at a leader satellite in the
form of the normalized cost;;. The contract net protocol attempts to assigns locations to
satellites in order to best equalize the cost over the full cluster (or among all agents). The
search space consists of the initial location of each satellite (initial station) and the possible

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 159

Required AV for Cluster Reconfiguration

0-025 T T T T T T T
! ! ! —©— Qut of plane change (@ = 180°)
! ! ! —#— In plane change (® = 0°)
! ! : De-orbit maneuver (R0 = 1km)
0.02 | | i . . . =
| | | | | : |
A | | | | | : |
@ 0.015 -~~~ L (R SR (R e (S NN
£ | | | | | | |
3 | | | : : | |
% 1 1 1 1 1 1
e a1 e
> 1 1 1 1 1 1 1
< 1 1
1 1 1 1
e T
0 1 1 1 1 1 1 1 ¥
0 50 100 150 200 250 300 350 400

Change in Phasing Angle ¢ [°] -->

Fig. 5. AV requirements for different configuration changes. Each of these make up the bids for the contract net
protocol for cluster reconfiguration.

goal locations (new stations) to which the satellite can move. For each satellite there are
possible stations to occupy. Thus, the search spacensists of &« x n array

Goal State
—
din diz ... du
do1 dyp ... dy,
=) | Initial Statei. (4)
. cee d,’j .
dnl an e dnn

The approach here is based on scarce resources [14,21], where the following five steps
occur:

Sep 1: Find the minimum bidder. For each of the goal statgsthe bidder corresponding
to dmin(j) is

dmin(j) =), min (di;). (5)
=1 S

160 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

Sep 2: Find the maximum (of the minimum bidder). Among the set of minimum bidders
dmin(j), the maximum (of the minimum) biddémax is

dmax=_Max (dmin(/)) = max (Z min (d;})) (6)

<jsn 1<jgn 1<in

Sep 3: Task Assignment. For the bidder wherd;; = dmax is true, assign the goal stafe
(i.e., new cluster station of spacecrajt

Sep 4. Reduce the search space. After the bidderi and goal statg are assigned, the
corresponding rows and columnsin(Eg. (4)) are deleted, and

n—n-—1

Sep 5: Check if all bidders are assigned. If all bidders are assigned finish, else go to
Step 1.

The second distributed approach is a negotiation technique [10], which is used in
conjunction with one of the two coordination techniques above. The approach here is that
once a nominal plan for cluster assignment is put forth, each of the individual satellites
can negotiate based on parameters of each of the maneuvers. For instance, one satellite
could optimize its own plan by delaying the start of the maneuver, in an effort to save fuel.
This type of calculation is best suited in a distributed fashion because it will require more
complex models and therefore more computation. Consider the case when an initial cluster
reconfiguration plan has been developed. Fig. 6 shows an example of how the total amount
of fuel for a maneuver4 V) varies as a function of the maneuver duration tig using
the linear program and th@l anTr aj ect Agent . The amount of control force required
increases as the duration time of the configuration maneuver decreases. Therefore, a large
amount of fuel must be used in order to speed up the reconfiguration maneuver. Individual
satellites may use this information to reduce their own fuel usage without inhibiting the
cluster as a whole. As long as the overall cluster characteristics and requirements do not
change, distributed negotiation can work quite well.

ThePl anAssi gnSki | | is run only on demand; i.e., it is triggered by the message
Assi gnCl ust er (m31) from the cluster reconfiguration planner agent (F31).

TaskAl | ocAgent (F33) distributes tasks for the cluster when there is a potential
failure with the leader satellite, based on a predefined cost, and can be implemented using
a centralized or distributed approach. The centralized approach is based on a logic rule
base. For instance, if there is one passivadent in each cluster, then the logic rule base
could contain several priority levels for the nomination, such as:

IF (passive |1 agent is alive in cluster of failed |1 agent)
THEN (nom nate new active |1 in own cluster)
ELSElI F (passive |1 agent is alive in other cluster)
THEN (nominate active |1 (old passive) agent in other
cl uster)
ELSEI F (active |1 agent fromother cluster is alive)
THEN noninate active |1 (old passive) agent from other
cluster

AV [m/s] -->

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 161

Fuel-time tradeoff for the case of a configuration change 0° to 90°, LP

N
Ow

|

1

|

1

1

1

1

|

1
R S ——

1

1

|

1

1

1

1

|

1
R T

1

1

|

1

1

1

1

|

1
e e == —

I
I
I
I
0 500 1000 1500 2000 2500 3000

Fig. 6. Fuel-Time tradeoff using the LP-maneuver planer for the case of an in-plane configuration change from
¢ =0° to 9C°. This can be used to negotiate an individual satellites plan.

The decentralized approach makes use of distributed task allocation techniques such
as the contract net protocol [7], or negotiation [10] to nominate the “optimal” candidate
spacecraft-level agent. The contract net protocol is described here to reconfigure the cluster.
As an example, consider an eight satellite cluster, and there is a failure within spacecraft
#1 (the leader). In this case, spacecraft #5 acts as contractor in nominating a new leader
agent, and the other (passive) spacecraft-level ageats bs bidders. The following steps
detail the contract net protocol to this problem:

1.

2.

The task allocation planner agent (F33) spacecraft #5 is nominated as contractor for
the contract net protocol using a logic based rule base.

The contractor sends out requesAtl(ocat e) to the sensing agents (F11) on all
passive spacecraft-level agentd the cluster, i.e., to spacecraft#2, #6, and #8, which
act as bidders.

. The bidders can eitheA¢cept Task) or deny DenyTask) the request. The accept

or denial is based on the status of the health of the power subsysteBpacecraft

with a health valuér, < 50% deny the request and spacecraft wiith> 50% accept

it. In the case of an accept, the bidder transmits the bid in the form of their spacecraft
health value4, i.e., health values for science, power, thrust and the remaining fuel, to
the contractor.

. The contractor selects a new active spacecraft-level agbasked on the smallest cost

from the bidders. An example could be

162 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

C=-1.22.23. = 7)

where c1—4 are weighting factors, chosen on the importance of the different
subsystems and/or normalization, and @& correspond to the health values of the
different monitored spacecraft subsystems. In this case, spacecraft #8 is chosen to be
the new leader.

5. The contractor transmits &jpdat eCl ust er | nf or mat i on message with a new
value for theCl ust er I nf or mati on. ScAct i veMast er entry to all spacecraft
(i.e., representational agents (F40)) in the cluster, which then update their internal
cluster description.

6. The new active master spacecraft-level agent begins its operation.

The TaskAl | ocSki | | is run only on demand; i.e., it is triggered by the message
Al | ocat eRol e (m24) from the decision-making agent cluster reconfiguration (m23).

Pl anTr aj ect Agent (F34) generates a fuel and/or time optimized control maneuver
for a spacecraft. This agent requiRlsanFFSKi | | . m which is implemented using a lin-
ear program to calculate a thruster command sequencéd32) and velocity increments
AV (d31) for time and fuel optimal trajectories. The linear program is implemented in the
external functiorf f control | er. m Thef f cont r ol | er function has the following
inputs: the start and end time of the orbital maneuxgrf,a) and the orbital parameters
for the start and final trajectories (initial and final phase anglaad¢ and major axisRg
of the elliptical trajectories).

The linear program [15] is a very flexible approach to planning a trajectory move for
a distributed satellite system. A cost function is used, such as minimizing the time or the
fuel of the maneuver, with added constraints. The minimum fuel cost is given as:

Je)=Y"|ujl (8)
j=1

whereu is the thrust used at timg Minimizing this cost is subject to an initial position
y(10), desired final state (ffinal) = y rof? and total number of time steps Additional
constraints include the maximum thrust, such as that imposed by future precision on-off
type thrusters [20], maximum position errorsts, and minimum satellite separation to

prevent collisions. These are added to the problem as linear inequality constraints, or

lu()| <umax onN-off thruster
|Xref - X(f)| <& minimum separation)
|Xref - X(ffinal)| <er minimum final separatian

A final added benefit of the linear program is that the final positiiina), can be

time varying, which it is in the TechSat21 case where each satellite is rotating about the
virtual center (Fig. 1). Because no classical method in calculus or linear algebra offers a
closed form solution to this problem, numerical techniques for solving linear programming
problems have been developed such assthpplex Method [15]. Details on this trajectory
planner and its implementation in a closed loop formation flying control for multiple

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 163

satellites can be found in Ref. [4]. TR anFFSki | | is run only on demand; i.e., it is
triggered by the messag€al cul at eFFcont r ol (m50) from the orbit maneuver agent
(F51) orCal cul at eDel t aV (m32) from the cluster allocation planner agent (F32).

Or bi t ManAgent (F40) keeps and continuously updates the internal cluster descrip-
tion. This agent requires ther bi t ManSki | | . m which is also implemented in F51
(orbit maneuver agent). The cluster description contains the number of active spacecraftin
the cluster; the particular tasks that each spacecraft are capable/allowed to carry out (i.e.,
passive, partial active and active); and the relative position for each spacecraft within the
cluster. In addition, the health status of the satellite cluster is monitored, which is critical
to many other agents. The health status of the satellite cluster can be formulated as a
array H, wheren indicates the number of satellites in the cluster anthe number of
health values to consider. In this work, subsystems to be tracked include science devices,
power generating modules, propulsion modules including thrusters, and the remaining fuel
of each spacecraft. Thereforé,can be written as

his hip hy hay

b h'zs hop ha hzy

; (10)

hns hnp ht hnf
where the subscripts, p, ¢+ and f correspond to the science, power, thrust and fuel
subsystems respectively. The health variablgscan take on values in the range from 0
to 1, where a ‘0’ indicates 0% health and a ‘1’ for 100% health.

3.6. Operative agents

Sci enceAgent (F50) performs the radar imaging task, whebi t ManAgent
(F51) performs the physical orbital maneuver commands (i.e., thrusting). For orbit
maneuvering, the agent uses the thruster command sequgn¢d32), or a closed
loop linear quadratic (LQR) controller [13]. The controller is triggered by setting
the appropriate disable/enable flags. T@ebi t ManSki |l | uses an internal data
structure array to store the current cluster description. @hki t ManSki I | is run
only on demand; i.e., it is triggered by the messaBegect Di st (m21) from the
decision-making agent station keeping (m2L)y eNewPos (m34),DeOr bi t (m35) or
Updat ed ust er | nf or mat i on from the cluster allocation planner agent (F32).

4. Agent based softwar e architecturesfor multiple satellite systems

With the functional agents and their skills defined, they can be integrated into agent
based hierarchies for autonomous control of the satellite clusters. Obviously, many
different organizations exist with many levels of autonomy. A detailed comparison of
several organizations is given in Ref. [22].

This section presents spacecraft level agents, which is the hierarchical integration of
agents on each spacecraft. There are fpacecraft level agents presented based on the
level of intelligence within the hierarchy of functional agents. This is done primarily to

164 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

-
>

&— Levels of Intelligence

* Cluster-level planning

* Interacting)
I] ' * (full) cluster knowledge Clusttfr-le\ el
planning

* receive/execute

Intelligence

* Local planning
12 ' * Interacting

* (partial) cluster-knowledge
* Receive/execute

Cluster-
knowledge

Local
planning

I * Local planning
3 f * Receive/execute

l * Receive/execute
L

Fig. 7. Identification of spacecraft-level agents based on levels of capable intelligence.

narrow the scope of study. This is followed by a brief section on the agent organizations
for clusters along with an example of an actual architecture and the information flow.

4.1. Spacecraft-level agents

In order to narrow the scope of study of agents for multiple spacecraft, spacecraft-level
agents are defined as a function of their level of intelligence. Based on the sum of capable
spacecraft functions, four levels of intelligence have been identified, whelenbtes the
highest level of intelligence and the lowest level (Fig. 7).

The spacecraft-level agent fepresents the most “unintelligent” agent. It can only
receive commands and tasks from other spacecraft-level agents in the organisation or from
the ground and execute them. An example includes receiving and execution of a control
command sequence to move to a new position within the cluster. This type of intelligence
is similar to what is being flown on most spacecraft today.

The next higher spacecraft-level agent4swhich has local planning functionalities
on board. “Local’ means the spacecraft-level agent is capable of generating and executing
only plans related to its own tasks. An example includes trajectory planning for orbital
maneuvers in case of a cluster reconfiguration. This type of intelligence is similar to
DS1 [16].

Spacecraft level agent hdds a capability to interact with other spacecraft-level agents
in the organisation. This usually requires the agent to have at least partial knowledge of
the full agent-based organisation, i.e., of other spacecraft-level agents. It must therefore
continuously keep and update (or receive) an internal representation of the cluster (agent-
based organisation). An example includes coordinating/negotiating with other spacecraft-
level agents in case of conflicting requirements or enhancing performance.

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 165

The spacecraft-level agent tepresents the most “intelligent” agent. The primary
difference between;land other spacecraft-level agents is that it is capable monitoring
all spacecraft-level agents in the organisation and planning for the organisation as a whole.
This requires planning capabilities on the cluster level as well as having full knowledge of
all other spacecraft-level agents in the organisation. An example includes calculation of a
new cluster configuration and assigning new satellite positions within the cluster.

4.2. Organizations of spacecraft level agents

In order to develop a coherent working community within the cluster such that all
of the necessary capabilities can be achieved, the organization must be designed very
carefully. In addition, it must be adaptable to prevent faults, avoid bottlenecks, and allow
reconfiguration. It must be efficient in terms of time, resources, information exchange and
processing. And it must be distributed in terms of intelligence, capabilities and resources.

Again in order to narrow the scope of multi-agent systems on multiple spacecratft,
several generic organizational levels are defined. The possible organizations for spacecraft-
level agents include:

Top-down coordination architecture,
Centralized coordination architecture,
Distributed coordination architecture,
Fully Distributed coordination architecture.

Fig. 8 shows a summary of the four possible coordination options mentioned above for
a spacecraft-level agent team, afuaction of individual, capable spacecraft-level agent
intelligence. The blocks represent the spacecraft-level agents labeled according to the capa-
ble level of intelligence required for the organization. As can be seen, the number and com-
position of the different spacecraft-level agentsly determines the organizational archi-
tecture. The top-down coordination architecture includes only one single spacecraft-level
agent | and the other spacecraft argdgents. The centralized coordination architecture
requires at least local planning and possibly interaction capabilities from each spacecraft.
Thus spacecraft-level agents or 1> are required instead. The distributed coordination
architecture consists of several parallel hierarchical decision-making structures, each of
which is “commanded” by spacecraft-level agentNote that the different spacecraft-level
agents | can interact with each other as well as with their lower leyeair I3 spacecraft-
level agents. In the case of a fully distributed coordination architecture, each spacecraft in
the organization represents a spacecraft-level agenédulting in a totally “flat” organi-
zation.

Note also that the specific functional agents that make up the spacecraft level agents are
shown in Table 1.

4.2.1. Top-down coordination architecture

In a simple top-down coordination architecture, similar to a Master-Slave Organization,
agents are coordinated in a hierarchical fashion where the spacecraft-level agertel
top of the hierarchy make the majority of the intelligent group decisions. Then, decisions

166 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

Group-level: Levels of Coordination/Organization

4 Increasing Fully Distributed
Agent- Coordination

Intelligence/ A’E
Interaction Distributed Coordination m

Sy

Centralized Coordination

Full
System/Agent
Models

A)rdination

Planning,
Reasoning and
Interaction

>

Fig. 8. Coordination architectures for coordination of multiple spacecraft-level agents.

are passed down to the rest of the spacecraft-level agents that agerts where the
commands are executed. This organization is fairly rigid since it has one centralized
intelligent spacecraft-level agent. But it is also the most straight-forward to implement
as it requires almost no communication between the spacecraft-level agéageihts at

the bottom of the hierarchy) because these agents exercise no group intelligence.

Applied to the TechSat21 example, one of the eight spacecraft is considered to have
higher “intelligence” and therefore acts as a spacecraft-level agetEven though they
may be exactly the same for redundancy purposes, one is chosen as the leader.) Fig. 9 shows
this scenario. Tasks of the spacecraft include high-level decision making, planning and
scheduling for the cluster as well as performing all lower level tasks for the cluster.

In addition, the spacecraft-level agent $erves as the communication center for
information flow within the cluster. The remaining seven spacecraft form slaves and
are “unintelligent” spacecraft-level agentg, land therefore only receive and execute
commands. Note that each of the individual spacecraft-level aggmtansmits its state
vectorx, and its health:,, to the spacecraft-level agent &t a particular sampling rate.

The master spacecraft then evaluates, plans and schedules for the cluster, and sends back
the particular control output, to each spacecraft-level agent |

4.2.2. Centralized coordination architecture

With new developments in on-board planning and reasoning, a new organization can be
developed, termed “centralized coordination architecture”, where a centralized hierarchy is
still used, but now the underlying agents have increased intelligence and can interact with
higher level agents for the betterment of the intelligent agent team. For instance, lower-

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 167

S/IC#1

o
t DMA PA SA CA
'—I
§ Message Center
X Y3
h,
Ys
|f Message Centet{ |f Message Centel*
t t i
CA CA eee CA
S/IC#2 S/C #3 S/C #8
t | Control/ t | Scheduling | ¥ | Planning f | Decision-
CA ; SA PA DMA ;
Execution Making

Fig. 9. Top-down coordination architecture with $pacecraft-level agents with little intelligence and an |
spacecraft-level agent with high intelligence.

level agents may formulate plans for a part of or the entire organization to follow and send
these up the chain of the organization. Then, a centralized spacecraft-levehadgrites

on the best plans. This organization is more complex and requires more communication
between agents, but the intelligence is better distributed throughout the system. This makes
for a more flexible, adaptive, and efficient organization.

Fig. 10 shows this organization as applied to the TechSat21 mission. In comparison
to the previous organization, the lower level spacecraft agents are at knel. These
spacecraft now have increased intelligence to allow them to perform low-level decision
making and planning of basic tasks, as well as to interact with other agents. These tasks
include rejecting disturbances or performing the science task (i.e., imaging); Tewel
agent still performs the higher-level planning and decision making for the cluster as a
whole, then sends particular tasks to the lower level spacecraft ageits &n example
of a high level task, thejllevel spacecraft will plan a new reference positigg for each
spacecraft in the case of a reconfiguration of the cluster or position vegtorghe case
of collision avoidance. Eachp Ispacecraft-level agent is then responsible to perform all
control tasks, low level decision making and planning.

Lower level spacecraft-level agents ¢an now send results and other information
pertaining to their tasks or reasoning processes back to the higheriegsnt. Consider
the case when a higher level spacecraft-level ageimas sent out a list of possible cluster
positions for relative reconfiguration. The task of the lower level spacecraft-level agents
I> is then to calculate the required velocity incremexit for each position and send it
back to the { level spacecraft agent, along with information about its remaining/ifyel
The high-level planner of the spacecraft-level agetihén attempt to equalize the fuel use

168 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

DMA PA .| SA
(High-level) igh-Level)| |(High-Level)
E { Message Center |

‘ Yeer2 ‘ Yeef 3 Vief s
t Message Center { Message Center { Message Center
clv,wM]:vel}.L'Lq;:wHt’llathfwﬂl LLI?\H:VCI}’LM:A wl!mll I(Lgrl:vell.Lln:A v:ll’L.m(v: lwell
W, U3 a
S/C #2 S/C #3 S/C #8
t | Control/ ! | Scheduling | ! | Planning | ! |Decision-
CA ; SA PA DMA :
Execution Making

Fig. 10. Centralized coordination architecture with lower level agents having the capability to perform low-level
tasks, including decision making, planning and control. They can also interact with the higher level agent.

across the cluster when assigning each spacecraft to a particular position within the cluster.
In this way, the planner is now distributed.

4.2.3. Distributed coordination architecture

The next type of organization allows the agents to coordinate together in a distributed
coordination architecture. This is a more ideal case for an intelligent team of agents, as
they take full advantage of their capabilities in terms of adaptability, distribution and
intelligence. The distributed organizations make full use of the distributed coordination
algorithms presented in Table 1, such as using the contract net protocol or negotiation
techniques for assignments and reconfiguration. The advantages of using these tools are
that both performance and robustness can be improved, communications bottlenecks can
be elimited, and computations can be distributed. The disadvantages are that the total
computation increases.

The contract net protocol is an excellent example for utilizing the distributed
coordination architecture. If an agent has a goal which itis trying to realize, it may attempt
to enlist other agents with unused resources to help it accomplish its plan. Agents can
contract other agents that are available, so that a small group works to fulfill the goal of
a single agent. This approach requires large communication costs between agents, but it
allows high-level planning of goals, flexibility in achieving the goals, and natural load
balancing within the multi-agent system.

Once a group has determined a plan for all the agents of the group, another approach
is to allow each agent to try to improve the overall group plan. Each individual agent
attempts to modify the group plan so that it can achieve its goals more efficiently. This

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 169

plan negotiation is useful in that it distributes the intelligent process of optimizing a group
plan among all agents within an organization, but it is complicated in that it requires high-
levels of intelligence in each agent and substantial communication between all agents.

4.2.4. Fully distributed coordination architecture

One can extend these organizational ideas to the point where each agent in the system
has “full group intelligence” where any agent has intelligence equal to any other agent.

In this “fully distributed coordination” architecture, there is no hierarchy, meaning the
organization is flat and fully distributed. But in order to achieve this, there must be
extensive communication between all agents in the system. This has the advantage of being
highly adaptable and very reliable, as any agent can exercise intelligence for the entire
system as well as any other agent (so a decision never has to be passed to other agents).
But the organization is complex and requires elaborate inter-agent communications.
Fig. 11 shows this concept applied to the TechSat21 mission. Each spacecraft represents a
spacecraft-level agent Bnd there is no fixed structure that defines information flow and
distribution of functionality. Instead, the agents now must coordinate between each other
in order to achieve goals or perform tasks.

A final important issue with agent hierarchies for multiple spacecraft is redundancy.
Spacecraft, unlike many other applications, requires very high reliability because of the far
proximity of the system. Thus, most systems are usually very redundant. With the added
software complexity of agent based systems, there must also be redundancy in the software
architecture. Therefore, within the organizations, passiegeénts are used to increase the

oAl sa e

§ Message Center

§ Message Center § Message Center § Message Center ‘
S-EE R i
2 3
S/C #2 S/C #3 S/C #8
i [Control/ ! | Scheduling | # | Planning | ! |Decision-
CA y SA PA DMA 5
Execution Making

Fig. 11. Fully distributed coordination architecture. Each agent represents a spacecraft-leve] agéritas the
same “intelligence” and capabilities.

170 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

reliability of the system as a whole. Their primary functions, however, are attHg |
levels.

4.3. Architectures and information flow

Information flow between the agents are based ordtta required to perform their
actions and/or theessagesthat trigger corresponding tasks. Fig. 12 shows the information
flow architecture for a distributed architecture, and the distribution of the functional
agents onto spacecraft-level agents. A “passive” spacecraft level agent (such as passive |
indicates a redundant agent, or an agent with more intelligent capabibityo(t acts with
lower intelligence 3). Also, “m” refers to a message, and “d” refers to data.

AU oo m2e ACTIVE 1, R
¢ di3 F21 |-m21 m2l
FoH 22 m2
! F12 ! m33 E |F30m34, m35
g diz [R4 F33 WE 5 F51
m. F32 mid m3is
d m23| g3 m32 32 a3z ms0
F24 —I_:. |
m —]
/ Ce ication SEND Active spacecraft-level agent
y c ication RECEIV] d11,d12,d13,d31
—c o RECEIVH|C e SENT] —c = RECEIVH|C: jcation SENT)
a13 T =
i d13
— ar|
m2{
TE Ay E——
2] s F40
R F30
| Tl |
m22.m34, m35
m50 L
PACCIVERE X
rAdOLY L ll
Legend for functional agents:
F11 Sensing F20 Dec.-mak. science F21 Stat. keeping
F22 Coll. avoidance F23 Dec.-mak. reconfig. F24 Dec.-mak. upgrade
F30 Scheduler F31 Cluster reconfig. F32 Cluster assignment
F33 Task allocation F34 Trajectory planner F40 Representational
F50 Science F51 Orbit maneuver
m21 Station Keeping m22 Collision avoidance m23 Cluster reconfiguration

m24 Assigning of roles/tasks m31 Cluster assignment m32 Delta V calculation
m33 Update internal state m34 Move to new position m35 De-orbit s/c
m40 FF control generation

Fig. 12. Information flow architecture for a distributed coordination architecture, with active and passive
spacecraft-level agentsg,land spacecraft-level agent |

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 171

Table 3

Messages within ObjectAgent with corresponding verbs, sources and sinks

Identification Verb required Action Source Sink
m21 Rej ect Di st Station keeping F21 F51
m22 MoveCol | Avoi d Collision avoidance F22 F51
m23 Reconfi gured uster Cluster reconfiguration F23 F31
m24 Assi gnRol e Assigning of roles/tasks F23 F33
m31 Assi gnCl uster Cluster assignment F31 F32
m32 Cal cul ateDel t aV AV calculation F32 F34
m33 Updat eCl ust er | nformati on Update internal state F32, F33 F40
m34 MoveNewPos Move to new position F32 F51
m35 DeOr bi t De-orbit S/C F32 F51
m40 Cal cul at eFFCont r ol FF control generation F51 F34
Table 4

Extract of defined data with corresponding content, sources and sinks

Ident. Content Description Source Sink
di1 X State vector F11 F20, F22
d12 h Health F11 F23, F24
di3 er Position error F11 F21

d31 AV Velocity increment F34 F32

d32 U Feed forward control sequence F34 F51
d40 ci Internal cluster description F40 F2X

Each lower level spacecraft agent performs local planning and decision-making, and
interacts with the higher-level ageatwhen a reconfiguration is required. Each spacecraft-
level agent performs its own station keeping, F21, monitors the relative position error (d13)
and produces, if required,Rej ect Di st message (m21) that triggers a station keeping
task. Additionally, each spacecraft-level agent runs its own trajectory planner agent (F34)
for the generation of the feed forward control sequence (d32). The primary difference lies
in the case of a cluster reconfiguration, where each spacecraft-level agent interacts with the
central spacecraft-level agent To assign new positions within the cluster, the spacecraft-
level agent 1 requests bids from each spacecraft by transmitti@glacul at eDel t aV
message (m32). Each spacecraft then submits a bid to the cluster allocation planner agent
(F32) on the central spacecraft-level agentin form of the velocity increment (d31)
required to move to these new positions. The latter then decides upon an optimal cluster
assignment based on the received bids. If a failure within an intelligetavel agent
occurs, a dynamic reconfiguration mode is used to create a new organization of spacecraft-
level agents using the task allocation planner agents (F33).

A summary of messages, data and agents is given in Tables 3 and 4.

5. Simulation results

A series of simulations have been developed to test and evaluate the contributions
of this work, including the functional agent development, hierarchical agent integration,

172 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

and the message passing concept. This implementation is a very important first step in
the realization of the agent based software for multiple satellites. As shown by the DS1
experience, however, a full real time implementation of the software is critical to its
eventual success. The work here not only is an important initial step in the development
of software for multiple satellite systems, but also allows easy comparisons of different
software architectures.

A spacecraft simulator was developed in the MATLAB/Simulink environment. The
agent based software was also developed in this environment, and there are specific
interfaces between the two based on a real spacecraft system (thruster commands,
communication cross-link, uplink, and downlink, sensor measurements, etc.). Three
examples are shown to demonstrate specific technologies and compare centralized and
distributed organizations: (1) Failure of a spacecraft and cluster reconfiguration, (2) Fuel
Savings using Negotiation, and (3) Task priorities in collision avoidance.

5.1. Reconfiguration: Failure of a spacecraft component

The first case study is the reconfiguration of a system when a high level, intelligent
spacecraft agent has failed. This is shown in Fig. 13 for both centralized and distributed
organizations. In both cases, the active spacecraft-level ag&sgdcecraft #1) has failed,
and the organization must be reconfigured.

The centralized case makes use of the centralized agents for collision avoidance,
reconfiguration, assignments, and task allocation, as shown in Table 1 and described in
the previous section. Most of these algorithms are rule based, with information flowing
from the leader satellite/{) to the lower level satellited/§). The distributed organization

13 13
S/IC#H2 S/IC#3 S/IC#4, S/IC#5 S/IC#6 S/IC#T S/ICH#8 ,
~ ~
cluster 1 cluster 2

(a) Centralized Organization

S/C #1 I] L » ll SIC #5

I, I,

S/CH2 SICH#3 SIC#4, S/IC#6 SICHT S/CHS,

" o
cluster 1 cluster 2

(b) Distributed Organization

Fig. 13. Centralized (a) and distributed (b) coordination architecture for TechSat21. In both cases, spacecraft #1
has failed and the cluster must be reconfigured.

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 173
1 T T T T T T T T
positions
i | — Distributed, 7,
o | - -~ Centralized, /,]
I
\ MAX:66.095 / MEAN:1.9812
_ calculation of new— MAX:36.015 / MEAN:1.3392
® ~— trajectory
E) i
3 i
< 1
5 B
2 10
§ station keeping.
5 monitoring,...
© /
F—X I
; T - : { s
; ¥ : '
4 5k ;
) j& g 4 1 ! !
: 1. 41 LI | IR
T ¢ L | i N SEEREY W] R
1 1 1
1(pO 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8
Number of orbits
4.5
4 /4
35 —=
/ o
Pl
£’
3 -
25 pros
S -’
= e
-_— *
g2 e
o
= ’f”
”
15 i
-
1 w”
o — Distributed, /, + 7/,
7 ~w Centralized, /; + 71,
0.5
/R cluster reconfiguration
Ol 1 1 1 1 1 1] 1 i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Number of orbits

Fig. 14. Leader satellite CPU workload and cluster total CPU time comparing the centralized and distributed

organizations.

makes use of the distributed approaches (such as the contract net protocol) to these agents,
as shown in Table 1 and described in the previous section.
As part of the simulation and comparison, the workload (i.e., CPU time) and
communication effort (i.e., transmitted bytes) are compared for both cases. Fig. 14 shows
the average and total CPU time, while Fig. 15 shows the average and total communications
load. The centralized case has a higher peak computational usage, but a lower average

174 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

14000 T T T T T T T T T
© (a) Distributed coordination (I,<->L,)
~+ (b) Centralized coordination (I,<->1,)

e}
12000 =
°© (a) max data rate:12260.8 / mean data rate:322.8889
(b) max data rate:5923.2 / mean data rate:169.0995
10000

Data rate [bps]
(2] ©
o o
8 8
\O

-
+ (oo} o o CcCocoo [e] felielie] [elie] (o]
4000 5
++ ++ + +4+++ + +++ +++ + +
2000 ’
o o + ©° o
++ +4 +
1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of orbits
X 105 Communication history (cumulative)
3.5
[| [[
= |, agent (centralised organisation) 'J_,
3 === |, agent (distributed organisatiory f
==aa |, agent (distributed organisatiory) /
2.5 r
% . '-, T Mean datg rate
T 2
/ e —
@ 15 3 =
S /'8-:':\
e Mean data rate
1 f e F
05 =2
I I L
lnl----l-lt“""“. manu et
0O 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [s]

Fig. 15. Communication data rates and total data sent for the centralized and distributed organizations.

because the lower level spacecraft do not perform intense computational functions. The
communications, however, is larger in the case of the centralized coordination because the
higher level spaceraft must send specific commands as a function of time to each of the
lower level spacecraft. Note that if the bidding mechanism of the distributed case required
more bids, or negotiation was allowed to run more often, the communication load of the
distributed case would be higher.

T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 175

100.08 T T T . T T T
~~~~~~ Fuel S/C 1
== = Fuel S/C 2
100.07 asxe Fuel S/C 3 [
... e
nemearly, N
. 100.06 S S, o
.i. 'wﬁ;‘:& ...."."'"'-b. i
Z100.05 = BT
= e -
2 T, =
£100.04 -
© AN
£ i
e
>100.03
<
100.02
100.01
100 1 1 1 ] 1 1 1
0 2 4 6 8 10 12 14 16
Number of Reconfigurations -->
100.08 T T T T T T T T T
*y, et w“"“«-« i
100.07 SRS — | = Fuel S/C 1
= = Fuel SIC 2
-~ =smn Fuel S/C 3
100.06 N 5 —
@, sy e
A e, -
A N —
—_ o, o
2 100.05 o s
g ", -
- o, =~ -
P ~
‘£ 100.04 N
£ .
£
[ ...%
= 100.03 e
= o,
e,
o,
100.02 S
s,
o,
v,
o,
100.01 Ty
o,
.
100 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11

Number of Reconfigurations -->

Fig. 16. Fuel usage for cluster reconfiguration for the distributed organization using contract net protocol (top),
and a centralized case using simple assignments (bottom).

5.2. Reconfigurations: Fuel savings

The simulation for the reconfiguration case shows that the agent architecture works
well. Although the benefit of the distributed case is not explicitly clear in the previous
example, it is in the case of nominal operations, where reconfigurations of the cluster into
different formations for the science take place frequently. Fig. 16 shows the fuel usage



176 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

for three satellites as a function of the number of science reconfigurations for both the
centralized and distributed cases. Notice that the contract net protocol described in the
previous section works well to (1) equalize resources across the cluster, and (2) minimize
the total fuel usage across the cluster. The CPU and communication histories are similar
to those in Figs. 14 and 15. Therefore, the two examples show that advantages in fuel
savings and similar metrics are traded for computational and communication effort. In
general, it appears that satellite clusters ruled by distributed organisations are more flexible
and adaptive to changes. It does, however, increase the complexity of the software, and
this must be traded against the higher lifetime that results from equalizing the fuel across
the satellites. The interaction between the satellites in an intelligent manner also opens up
other possibilities, such as exchanging and using overall satellite health information. As an
example, consider the case when multiple new target are to be imaged. The clusters can
dynamically group themselves for the targets based on health, fuel, and image quality, and
then move on to the next set of targets.

5.3. Conflict resolution: Collision avoidance

The final simulation shows the autonomous operation of the multi agent system for
the case of a collision avoidance maneuver between two spacecraft, followed by a cluster
reconfiguration. This case studies a conflict resolution between more than one agent
for a distributed organization. Conflictual relationships between tasks and agents arise
when they can be run in parallel. The sub-level tasks ST11 (science), ST21 (rejecting
disturbances), ST22 (collision avoidance) and ST23 (orbit maneuvering) occasionally
require execution at the same time. A conflict resolution is therefore required. In this case,
the monitoring for a collision and subsequent orbit maneuver must override the priority of
the science (radar processing).

The simulation considers one cluster with one active master spacecraft (spacecraft #1)
and three slave spacecraft (spacecraft #2—4). Fig. 17 shows the steps of this simulation,
including the trajectories for the spacecraft #1 and #2. The following steps are simulated:

Step A A failure occurs within spacecraft #2, and it begins to drift towards spacecraft #1
in the cluster.

Step B The collision checking agent detects the possible collision between spacecraft #1
and #2 and initiates a collision avoidance maneuver between the two spacecratft.

Step C A deorbit of the failed spacecraft #2 is performed (meaning that it is placed on an
elliptical trajectory with a larger major axis).

This is a difficult task for traditional approaches where spacecraft commands are
received only from the ground. The close proximity of the satellites requires more
autonomy with collision avoidance.

The resolution of conflictual relationships between tasks is implemented using an
approach similar to the subsumption architecture [2,3]. When a conflict occurs, the task
with a higher priority suppresses a task with a lower priority.

Fig. 18 shows the priority for the tasker f or nSci ence (m20), Rej ect Di st
(m21),MoveCol | Avoi dance (m22), andReconf i gur eCl ust er (m23) as a func-



T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 177

Possibl Collision
g0 Os.s b ¢ 80 avoidance \
60! collision 60 maneuver
40 40 A\
20 - > 200 — >
oT| 7 LR N 07| 5 iaeRyEER
-201 3 = 20 g
s/C#3 s/c#3
_40 slc#d _40 o i
: 568 500
e -200 5 0 200 5 0
-500 200 -500
2004561000 400 -1000
A) Close to collision B) Collision avoidance
D bit / /
8o mg-::u:'er ‘ 80 A
60 - T~ 60 -
40 A 40 A
20 — - 20 ........ hd
of| % iaERyEE of| 5 ERsyER
20 ] 20 § %
sic #3 s/c #3
-40 o #4 40 I
48 E 500
200 5 0 -200 5 0
500 -500
2 200
0 406 1000 400 -1000
C) De-orbit S/C #2 D) Final Situation

Fig. 17. A 3D animation of the collision avoidance simulation with a cluster reconfiguration. Shown are four
snapshots of the scenario for the agent based organisation: (A) Close to collision, (B) Collision avoidance, (C)
De-orbit of S/C #2, and (D) Final situation.

tion of the degree of membership of a fuzzy output variable. This variable is the prime
factor within the decision-making skill. The science task and the cluster reconfiguration
task have a fixed priority because the science is always performed in a healthy situation,
and the cluster is always reconfigured as new targets arise. The collision avoidance and
disturbance rejection tasks, however, have a dynamic priority, depending on whether a col-
lision is imminent or if a disturbance has been measured and requires action. Collision
avoidance and cluster reconfiguration can have a higher priority than disturbance rejection
or science because they must be accomplished prior to all other tasks.

Using different values for membership functions, the intersection points for the task
priorities (points “A” and “B” in the figure) can be regulated. For example, it is natural that
the relative distance between two spacecraft can become smaller during a reconfiguration
maneuver. However, the collision avoidance task is activated only when the relative
distance between the spacecraft reaches a certain limit (A). Similarly, the science task must
be canceled if the error between actual and reference position of the spacecraft reaches a
point at which the radar imaging task is not possible (B).

Fig. 19 shows the CPU and communication workload. The CPU workload obviously
increases near the collision avoidance detection and maneuver generation. The communi-
cation increases only slightly near the maneuver time.



178 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

Dynamic Priority Allocation for the different tasks

25 T T T T T 1rITT T T T T TTTrT T T T T TT1rT
1 1 1 L] 1
—6— Collision Avoidance (m22) A L
Disturbance Rejection (m21) I IRRRE! v,
—— Science Task (m20) Lo h &
- - Cluster Reconfiguration (m23) T gl
201 AR Vo IR R
1 1 1 1 LI 1 1 1 e
1 1 1 1 L ] 1 “ o 1 e
1 1 1 1 [ e oY 1 [ ]
A o N o it | RN
' —_—— = 4+ A - (SRR
(] [ [N} y, I 1 (NN [ |
2 1 1 A, .51;" 1 LI N B A ) [N 1 LI e R |
S 5L oo o Y UoldBbaH
> 1 | LI R B B B | 1 1 [ N N ) ch V ' am¢e|
.‘E 1 [ N ] 1 [ R R ] | [ N ] 1 [ I A AT
1 1 [N [ [N 1 1
2 b © PLB o IR
n. 1 I LI R I B B | 1 L L B N ) I W L R B 1 1 L B B
o v gritical'value forsscience ' 1111 [ IR
1 1 LI B B B B 1 1 L B B ) I I IIN\[\I:\:*I [ |
1 | LI R I B B | 1 1 [ N ) I 1 [ ) 1 l ' e
10F T P T e R A
1 1 LI I B B B | 1 1 [ N N ) I I L N I O 1 1 LI R |
1 1 LI B B B B ) 1 1 e 1 1 Ak TR 1 1 [ I R N
1 | LI B I B R | 1 1 [ N N ) 1 1 U 1 1 LI R R |
1 ! LI R B B B ) 1 1 L R R ) ¥ L B R 1 1 [ N N
1 I LI R B B B | 1 1 LI N o s | 1 I LI N ] 1 1 L A i |
1 1 LI R I B B | 1 U % L 1 I LI R ] 1 1 L I R |
1 1 LI R ¥ T e 1 I L B R 1 1 [ N R N
1 1 Ve e = 4,5 = 1 1 LI N I B N | 1 1 LI B B B B I 1 1 L R |
i i S N 1 1 I T N 1 I I I3 1 I N B §
4 -3 2 -1 0
10 10 10

Degree of membership of the decision variable -->

Fig. 18. Resolution of the conflictual relationships between different tasks using dynamic allocation of the priority
of the corresponding tasks.

As a final note, Ref. [22] gives a very detailed comparison of these four types
organizations using this multi-agent approach, along with a more traditional system
that is highly dependent on specific commands from the ground. Ref. [22] includes a
description of metrics for comparison (such as communication, computation, reliability)
and a variety of scenarios (nominal operations, reconfiguration, collision avoidance). This
paper addresses the underlying technologies of the agents, the software infrastructure,
and the details of each of the organizations. Based on the results in Ref. [22], the trends
indicate that the distributed organization is the best for multiple satellite systems. Please
see Ref. [22] for more details.

6. Conclusions

A software architecture for multiple satellite autonomy using a message passing
simulation environment (ObjectAgent) for multi-agent systems has been presented. The
required functional software agents have been developed and integrated into a complex,
yet enabling software architecture for multiple spacecraft systems. Tools such as fuzzy
control, linear programming and the contract net have been used for the implementation of
the functional agents and agent-based organisations. Conflict resolution between the agents
is accomplished by using of a dynamic priority allocation for the tasks. ObjectAgentis well
suited for the simulation of multi-agent based systems applied to the space domain. Thus,
quick comparisons and design evaluations are critical, all of which can be accomplished
in the environment. Initial results show that the multi-agent approach is promising for



T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180 179

102 T T T I T I T T
— High-level agent | 1 (S/C #1)
=== Lower level agent |, (S/C #3) [ |
Cluster reconfiguration
MAX I1:33.045 / MEAN I1 11.2203
% 101 MAX L;1.25/ MEAN 1, :0.39828
3
e Cottistor
< Ay
o T
< 1] Station keeping  Health-monitoring
=
§ I ] 1
5
(&
100
Tijagg '}
Y i F FEPYS 1Y ST PSS N N BE
Egp o Biaacef: ] HR IR RERT BRI g
b [] HH i
R i l-_ii i ' £1Y 1l
; i i i i!i h [ i
10.1 1 ! I 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
Number of orbits
3 x10°

~ High Level Agent |,
=== Low Level Agent |,
25

Transmitting new feedforward

/
E 2 control commands
> P
o)
e === !
2 jm———=- ’
= —a
G15 . !
© P
= 1
° '
9] Y
Qo -y
£ i
Z .
______ 1
0.5
Collision avoidance
0 I 1 I 1 I 1 1 1 J
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8
Number of orbits

Fig. 19. CPU workload and total communication data for the collision avoidance maneuver using a distributed
agent based organization.

these systems because it can prolong lifetime and enhance performance. Further study into
software reliability, especially for multiple spacecraft systems in closed proximity, is an
important future issue to address.



180 T. Schetter et al. / Artificial Intelligence 145 (2003) 147-180

Acknowledgements

This work is supported under an United States Air Force SBIR contract with Princeton
Satellite Systems, Contract Number F29601-99-C-0098.

References

[1] R.A. Brooks, A robust layered control system for a mobile robot, IEEE J. Robotics and Automation RA-2v1
(1986) 14-23.
[2] R.A. Brooks, Achieving Artificial Intelligence through building robots, MIT Al Lab Memo 899, 1986.
[3] R.A. Brooks, Elephants don't play chess, Robotics and Autonomous Systems 6 (1990) 3—15.
[4] M.E. Campbell, T. Schetter, Formation flying mission for UW Dawgstar Satellite, in: IEEE Aerospace
Conference (Big Sky, Montana), 2000.
[5] M.E. Campbell, Planning algorithm for large satellite clusters, in: Proceedings, AIAA Guidance, Navigation
and Control Conference (Monterey, CA), 2002.
[6] A. Das, R. Cobb, M. Stallard, A revolutionary concept in distributed space based sensing, in: AIAA Defense
and Civil Space Programs Conference & Exhibit (Huntsville, AL), 1998, pp. 1-6.
[7] R. Davis, R. Smith, Negotiation as a Metaphor for distributed problem solving, Artificial Intelligence (1983)
63-109.
[8] M.A. Dornheim, Deep space 1 launch slips three months, Aviation Week and Space Technology (April 27
1998) 39.
[9] K.S. Evans, C. Unsal, J.S. Bay, A reactive coordination scheme for a many-robot system, IEEE Trans.
Systems Man Cybernet. 27 (4) (1997) 598-610.
[10] S. Green, L. Hurst, B. Nangle, D.P. Cunningham, F. Somers, D.R. Evans, Software Agents: A Review,
version 1.0 ed., Trinity College Dublin, Broadcom Eireann Research Ltd., May 1997.
[11] G. Hill, Researches in the Lunar theory, Amer. J. Math. 1 (1) (1878) 5-26.
[12] E.M. Kong, M.V. Tollefson, J.M. Skinner, J.C. Rosenstock, Techsat 21 cluster design using Al approaches
and the Cornwell metric, AIAA Paper AIAA-99-4635, 1999.
[13] H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, 1972.
[14] D.B. Morton, N. Weininger, D.J.E. Tierno, Collective management of satellite clusters, in: Proceedings of
the AIAA Conference on Guidance, Navigation and Control (Portland, OR), 1999, pp. 1576-1584.
[15] K.G. Murty, LINEAR Programming, Wiley, New York, 1983.
[16] N. Muscettola, P.P. Nayak, B. Pell, B.C. Williams, Remote agent: To boldly go where no Al system has gone
before, Artificial Intelligence 103 (1-2) (1998) 5-47.
[17] NASA Origins Program, http://origins.jpl.nasa.gov/.
[18] T.H. Nguyen, M. Sugeno, R. Tong, R.R. Yager, Theoretical Aspects of Fuzzy Control, Wiley, New York,
1995.
[19] Princeton-Satellite Systems Web-Page, http://www.psatellite.com.
[20] C. Rayburn, M. Campbell, A. Hoskins, J. Cassady, Development of a micro-PPT for the Dawgstar
Nanosatellite, in: AIAA Joint Propulsion Conference, 2000.
[21] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, Englewood Cliffs, NJ,
1995.
[22] T. Schetter, M. Campbell, Comparison of agent organizations of multiple satellite autonomy, AIAA J.
Spacecraft and Rockets Nov-Dec (2001).
[23] M. Schneider-Fontan, M. Mataric, Territorial multi-robot task division, IEEE Trans. Robotics and
Automation 14 (5) (1998) 815-822.
[24] Teledesic’s “Internet-in-the-Sky”, http://www.teledesic.com/.
[25] R. Turner, E. Turner, D. Blidberg, Organization and reorganization of autonomous oceano-graphic sampling
networks, in: IEEE Robotics and Automation (ICRA'98) (Leuven, Belgium), 1998.
[26] G. Weiss (Ed.), Multiagent Systems: A Modern Approach to Distributed Atrtificial Intelligence, MIT Press,
Cambridge, MA, 1999.



