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Abstract

Multiple, highly autonomous, satellite systems are envisioned in the near future because t
capable of higher performance, lower cost, better fault tolerance, reconfigurability and upgrad
This paper presents an architecture and multi-agent design and simulation environment t
enable agent-based multi-satellite systems to fulfill their complex mission objectives, t
ObjectAgentTM. Its application is shown for a distributed aperture radar mission, althoug
applicability spans many types of missions. Required spacecraft functions, software agen
multi-agent organisations are described for the radar mission, as well as their implemen
Agent-based simulations of mission case studies show the autonomous operation of the
agent architecture, which can then be used to build, evaluate and compare autonomous
architectures for multiple satellite systems.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A new paradigm shift in spacecraft design is sweeping the space industry, inc
the science [17], defense [6], and commercial sectors [24]. The shift is from single
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satellites working in tandem. The redundancy of the “cluster” is now in the large nu
of satellites rather than in the individual subsystems. Satellite clusters include s
smaller satellites that collaboratively work together on a satellite mission, thus form
“virtual” satellite. The reasons for this paradigm switch are many, including the incre
usage of micro-electromechanical (MEMS) based components to reduce mass, in
production rates to decrease unit cost, and better performance in terms of mission s
fault tolerance, reconfigurability and upgradability. With these far reaching ben
however, comes a new set of challenges, including relative navigation, control, and e
propulsion. The key technology that will enable multiple, distributed satellites to ac
their potential, however, is coordinated intelligent autonomy.

The cost of operating asingle spacecraft after launch is a considerable portion
the overall mission cost. For commercial satellites, operations consist of monitorin
spacecraftŠs health and status, taking corrective measures when necessary, and pe
maneuvers. Military and scientific satellites require additional ground personnel to p
the tremendous amount of payload data gathered. Automating these activities thro
use of agents will reduce the cost of missions and make spacecraft more robust, r
and efficient. In addition, the use ofmultiple satellites distributed over a small cluster w
require much higher levels of autonomy than those that exist today.

There is very little “intelligence” on today’s satellites. Current space flight software
measures sensors, acts on ground commands, and gracefully reboots when an
occurs. In 1999, the first attempt to use agents for satellite autonomy was launc
NASA’s Deep Space 1 (DS1) mission. The DS1 researchers developed Remote Age
an autonomous agent architecture based on model based programming, on-board d
and search, and goal-directed closed loop commanding. The complexity of autom
activities in space systems to the level that owners/operators will use the auton
software was shown when, because of technical difficulties, much of the Remote
software was stripped off the satellite prior to launch, although portions of the sof
were uplinked at a later date [8]. The DS1 work is slightly different than this work
several reasons. First, it was for one satellite, not a group of satellites. Second, DS
still based on traditional flight software rather than a hierarchy of intelligent agents.

Some of the most relevant work in autonomy for distributed systems has be
robotics and autonomous underwater vehicles. There has been recent work in em
behavior [1], where robot colonies work together, even though no single robot k
the group objectives. Though this approach has had much success for robots and
tasks, many useful tasks for multiple satellites will require the ability to plan.
MAUV/CoDA Project [25] focuses on controlling autonomous oceanographic netw
including autonomous underwater vehicles. The work uses two organizations: a
level organization to control the system during the actual mission, and a meta
organization to self-organize the system. Much of this work has been in simul
although experiments will be used to evaluate the work.

Intelligent autonomy for multiple satellite systems, however, is different than m
other systems being developed because of its many unique challenges, including:
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• There will typically be many vehicles that must coordinate to achieve the desired goals
[16].
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of the fleet, thus making it much more complex than architectures such as DS-1
• The dynamics and close proximity of multiple satellites create more challen

control and fault detection problems as compared to multiple rover systems [2,9
• The cost and far proximity of space based systems require reliability to be much

than ground based systems, such as distributed robotics for environmental cl
operations [23].

• The complexity of the trajectory planning and resource allocation are not prob
that many traditional AI technologies, such as the subsumption approach, u
address [2].

The use of agent-based software architectures represents a new technique in the
space applications. The individual spacecraft and/or its sub-components are now
agents, that is, individual, independent autonomous entities. Agent based software
from traditional space based approaches both in the modularity (i.e., the organiz
structure) as well as in the intelligence (functional distribution). Agent based appro
also allow different agent organizations with varying levels of autonomy to be e
developed and tested.

The objective of this work is to create a software infrastructure for simulating
comparing architectures for multiple satellite systems; each architecture will cre
different “virtual” satellite and therefore allow multi-satellite systems to fulfill th
complex mission objectives at a lower cost. That is, the cluster is now seen as a
entity rather than several or many individual satellites. The software infrastructure
be adaptable in both its low level code (such as changing planning approaches) an
level code (such as adding or subtracting satellites to the cluster). This differs fro
traditional approach both in the way they act together (i.e., the organisational structu
well as in the “intelligence” they have (functional distribution).

This paper presents the agent based software infrastructure to enable auton
multiple satellite systems. More specifically, the paper shows how low level agen
be developed and combined into spacecraft level agents, which can then be combin
an agent based software architecture for clusters of satellites. Examples of agen
levels are given, along with several simulations to show how the architecture(s) c
developed. It is noted that Ref. [22] details a full comparison of different types of a
based organizations. This paper details the software infrastructure, and is unique i
areas: (1) integration of (formal) control and AI technologies into a multi-agent framew
(2) a message passing software approach that easily allows comparisons of techn
and multi-agent organizisations, and (3) the application of the multi-agent approa
multiple satellite systems.

2. Distributed satellite systems

Many future space systems in Earth and space science, defense, and com
industries will utilize multiple satellites systems. NASA’s Origins program is intere
in spaceborne interferometry to image far off planets for possible life forms [17]. Th
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Fig. 1. Left: TechSat21—a revolutionary approach to space based sensing. Right: a 3D-animation
TechSat21 mission, where ‘*’ is the virtual center of the cluster, and the spacecraft ‘�’s are in two planes o
four.

Air Force is interested in distributed space based radar because of increased perfo
and decreased cost [6]. Future commercial space based systems, such as Teledesic
many satellites for global telecommunications coverage [24].

The TechSat21 mission is an Air Force mission designed to explore the bene
a distributed approach to satellite design. The initial demonstration is currently
designed for a space based distributed radar [6]. The ability to perform a space
radar mission, which historically has required very large, high-power satellites, is se
an extreme test of this concept. TechSat21 takes advantage of the distributed sate
using a sparse aperture array for radar imaging, which allows improved resolution b
of the satellite spacing (Fig. 1).

The function of imaging (radar or others) with multiple aperture is done through th
of interferometry techniques, where different spatial frequencies that make up the
are recorded by pairwise interference of signals from selected satellites. In the c
an imaging radar such as TechSat21, the radar moves along a flight path and an
illuminated by the radar, termed thefootprint. Each spacecraft in the cluster illuminat
the same footprint simultaneously. The antenna receives the return echoes from th
(area) and stores them. This return signal is the composite of each spacecraft in the
The data is then processed to resolve a single pixel in the footprint.

In order to accomplish distributed aperture radar imaging, the satellites in the c
must cover the Earth’s surface area of particular interest with a more or less un
distribution. Given the very strict constraints on the fuel available, the only concei
approach for the cluster is to have the satellites be inforce free orbits while in formation.
The current configuration for TechSat21 has focused on clusters of spacecraft in tw
ellipses, tilted at±30 degrees from the verticalz-axis. The center of the cluster, or al
called the Hill frame with, is shown as a ‘*’ in Fig. 1 and rotates about the Earth as
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polar orbit. The Hill’s equations [11] describe the relative motion of spacecraft by th
of linearized equations.

x = −R0

2
cos(wnt + ϕ),

y = R0 sin(wnt + ϕ),
z = R0 cos(wnt + ϕ + φ), (1)

whereR0 corresponds to the major axis of the elliptical motion along they-axis andR0/2
to the minor axis along thex direction. The phasing angleϕ describes the phase of th
spacecraft within each of the two ellipses andφ the rotation about they-axis of the two
ellipses. For ease and simplicity, a constellation of eight satellites was chosen, wit
satellites placed in each ellipse. The central concept in planning for clusters is to c
the size of the ellipse (R0) and phasing of the ellipse (ϕ,φ) as the spacecraft maneuv
from one target to the next.

3. Functional agent definitions

Agents are defined slightly differently in many texts, but one that is appropriate t
work is from Ref. [26]: “An agent is a computational entity that can viewed as perce
and acting upon its environment and that is autonomous in that its behavior at least p
depends on its own experience”.

In the following section, the ObjectAgent infrastructure is introduced to aid in
development of agents and their interconnects for multiple satellite systems. T
followed by a detailed description of the agents and their skills. The ObjectA
framework enables the primary contributions of this work: (1) development of a
that can be easily integrated into the multi-agent system even after implementatio
development and comparison of different organizations of agents, such as usin
different coordination schemes: centralized and distributed. The subsequent sectio
describes how they are integrated into spacecraft level agents and autonomous hier

3.1. ObjectAgent infrastructure

ObjectAgent is a MATLAB toolbox [19] for the design and simulation of mu
agent systems, especially spacecraft. In ObjectAgent,agents are software processes th
represent software algorithms and remote terminals.Remote terminals (RT) are software
objects that connect agents with hardware.

ObjectAgent is based on amessage passing architecture, meaning that all agent-to
agent and agent-to-RT communication is done through messages that pass through
centers (MC) or post offices. The functions of the MC are:

• register and validate agents,
• process messages for itself,
• pass messages to registered agents, RT’s, and other MC’s for processing,
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• allocate processor time for each agent.
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Messages can be passed over several MC’s; therefore it does not matter where th
or RT is located. The MC functional process is shown in Fig. 12. Note that while the
is explicitly used in the work presented here, an alternate real time implementatio
integrate the message passing into the operating system level.

Skills are the basic building blocks of agents and remote terminals within ObjectA
Agents and RT’s are created in ObjectAgent by assigning to them a set of skills.
are special MATLAB files that represent agent functions. For example, a skill requir
all agents is to register with the MC, represented by theRegisterSkill.m function.
Generally, each skill corresponds to one basic function, has inputs and outputs, and
one or more actions. The primary action for each skill is anupdate action that the skill
runs periodically based on a pre-defined update period. Each skill contains a data st
field that describes the assigned priority, the update period, the input and output inte
and the communication method.

There are several structures within ObjectAgent that allow communication be
agents.Messages are exchanged between agents anddata are blocks of information
exchanged between agents within the messages.Tasks are the activities that an age
performs and each agent maintains a dynamic list of the tasks it is currently run
Messages and tasks each have the same structure in ObjectAgent; hence, a mes
cause the receiving agent to take a particular action. Theverb of the message or tas
dictates the particular action taken.

As described previously, each skill has at least one task associated with it—update.
When skills are added to an agent, tasks associated with that skill are automa
generated. These tasks, when processed, can cause a message to be created and s
actions to be taken by agents that change its internal state.

Fig. 2 shows an example, where the task “update CollAvoidSkill” creates the
message “MoveCollAvoid sc_4|To: OrbitManAgent4(OrbitManSkill4)
(m1), because a possible collision involving spacecraft #4 was detected. The m
m1, which tells “OrbitManAgent4” to command a maneuver, is then sent to MC
When “OrbitManAgent4” receives the message, the verb functionMoveCollAvoid
is called which triggers the command generation for an avoidance maneuver
the OrbitManeuverSkill. Additionally, message m2 (the state of spacecraft #2
transmitted back to the collision avoidance agent 1.

3.2. Lower level functional agents and skills

In order to demonstrate the usefulness of multi-agent systems applied to m
satellite clusters in general, and TechSat21 specifically, four high-level tasks are de

• HT1: Performing science (Imaging),
• HT2: Formation maintaining and control,
• HT3: Cluster reconfiguration,
• HT4: Cluster upgrade.
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Fig. 2. Example of the relationship between skills, messages, and verbs.

These high-level tasks were then used to identify all necessary sub-level tasks, alon
the elementary functional blocks required to implement these tasks. Fig. 3 show
functional breakdown from high level tasks to lower level agents. The columns corre
to four high level tasks, and the rows to sub-tasks and functional blocks/agents
particular agents are denoted with a two digit number. The first digit refers to the
category (i.e., 2-decision-making function) and the second to the sub-partition with
task category (i.e., 3-failure/loss).

Table 1 shows the implemented skills for the corresponding agents. Shown ar
the priority assignments, the update period and tools which are used by the corresp
skills. These skills are also related to the spacecraft level agents,I1–I4, to be discusse
subsequently. A variety of state of the art tools are used for these skills, including
logic for decision-making [18], the Cornwell Metric for cluster positioning based on r
imaging [12], contract net bidding and negotiation algorithms for planning [7,10],
linear programming for optimal trajectory generation [4]. Each of these agents and
associated skills are described next.

3.3. Interaction agents

SensingAgent (F11) continuously obtains and updates the state and health
the spacecraft, and makes it available for the entire cluster. This agent requiresSens-
ingSkill.m, which continuously reads the required spacecraft statex i and healthhi
for eachi spacecraft. The state includes satellite position xand velocity v, and the health
h includes the status of the sciencehs , powerhp , and thrustht subsystems, as well a
the remaining fuelhf . Other important parameters include the velocity increment f
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Fig. 3. Functional breakdown of the task structure specifically for TechSat21.

maneuver,�Vij , error in the position and velocity state,err i , thrust sequence,uff , and
current formation summary,ci. Some states are measured, while others can be estim
from measurements.

3.4. Decision making agents

Decision-making agents periodically make decisions or monitor specific sy
parameters for changes. Most of these agents use fuzzy logic as the base alg
ScienceAgent (F20) decides which satellites acquire which targets, and how m
satellites are required to monitor changing points of interest.StatKeepAgent (F21)
decides whether it is necessary to station keep (maintain position) or to pe
an orbit correction maneuver due to external disturbances. This agent requir
StatKeepSkill.m, which is implemented using fuzzy logic. The agent uses one in
the relative errorerri for each spacecraft position from the nominal reference positionyrefi
minus the actual positionyi ; and two outputs: dynamic allocation of the update period
of the priority of the corresponding taskRejectDist (m21). Dynamic allocation of bot
the update period and the priority is based on the magnitude of the errorerri .

CollAvoidAgent (F22) detects when collisions may occur between the spacecr
the cluster, and can be implemented in a centralized or distributed framework. This
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Examples of implemented software agents

# “Agent” Description Priority Tool s/c agent

I1 I2 I3 I4

F11 Sensing retrieving s/c state, health fix – x x x x
F12 Xcommunicate exchange data with other s/c fix – x x x x
F13 Communicate exchange data with ground fix – x
F20 SciencePlan which s/c, which targets fix Fuzzy Logic x x
F21 DecStatKeep monitor for station keeping var Fuzzy Logic x x x
F22 CollAvoid∗ collision monitoring (C) var Fuzzy Logic x x

collision monitoring (D) var Fuzzy Logic x x
F23 DecMakFail health monitoring fix Fuzzy Logic x
F24 DecMakAdd cluster upgrade fix Fuzzy Logic x
F30 Schedule Scheduler fix Prioritize using logic x x x
F31 PlanReconfig∗ plan cluster reconfig (C) fix Symmetric placement x

plan cluster reconfig (C) fix Cornwell Metric x
plan local reconfig (D) fix Cornwell Metric x x

F32 PlanAssign∗ cluster assignment (C) fix Fuzzy Logic x
local cost (D) fix Contract Net x x
local cost (D) fix Negotiation x x

F33 TaskAlloc∗ task allocation(C) fix Fuzzy Logic x x
local cost(D) fix Contract net x x

F34 PlanFF trajectory planning for s/c fix Linear Program x x x
F35 Propulsion thruster logic fix Fuzzy Logic x x x x
F40 ClusterHealth maintain cluster record var – x x
F50 Science perform radar fix – x x x x
F51 OrbitMan orbit maneuvering var LQR control x x x x

∗—those agents that are implemented using two or more coordination schemes.
C—centralized.
D—distributed.

requiresCollAvoidSkill.m, which implements a fuzzy logic controller for collisio
detection. Because the spacecraft fly in close formation (less than 250 m separation
type of collision checking and avoidance functionality on board is required. Based o
current position xand velocity vof each spacecraft, the future relative positions of
spacecraft can be predicted in the near term for one update time steptupdateof the collision
avoidance task (Fig. 4). This is given as

�xij = min
0�ts�tupdate

(
xj − x i + (vj − v i) · ts

)
, (2)

where�xij is a scalar number used to evaluate how close to a collision two satellite
be. If this number is smaller than a predefined limit, action is taken. A fuzzy variabl
be defined based on three cases: SMALL, MEDIUM, OR LARGE. These are sho
Fig. 4. The possible actions are:DeltaX(LARGE)—no action, just continue to monito
DeltaX(MEDIUM)—simple action such as a small thruster firing or sending a war
to the other satellite; orDeltaX(SMALL)—drastic action such as an orbit maneuver
the latter is the case, a corresponding collision avoidance taskMoveCollAvoid (m22) is
triggered consisting of a bang-bang control that “moves” the spacecraft apart.

The priority of the collision avoidance task, which is used by theScheduleAgent,
also increases as the satellites move closer. As a collision becomes more likely (DeltaX
tends to 0), the priority of the collision avoidance agent increases, and the time u
of its information,tupdate, decreases (i.e., it receives information more frequently).
implemented fuzzy controller has one input (DeltaX), two outputs (UpdateTime and
TaskPriority), and three rules, which are shown in Table 2. The collision avoid
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possible

utput
for the
Fig. 4. Calculating of the minimum distance between spacecraft 1 and 2. The “star” symbol denotes a
collision between the two spacecraft. Also shown is the fuzzy decision variable for collision monitoring.

task is only activated if the input variableDeltaX is SMALL. The fuzzy controller then
regulates over the membership function HIGH of the output variableTaskPriority the
priority of the collision avoidance task. Membership functions used for the input and o
variables are triangular or Gaussian, as shown in Fig. 4. The membership functions
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Fuzzy inference rules for the collision avoidance agent

Input variable Output variable

Update time? Collision detected?

DeltaX(LARGE) HIGH NO,TaskPriority (LOW)
DeltaX(MEDIUM) MEDIUM NO, TaskPriority (MEDIUM)
DeltaX(SMALL) SMALL YES, TaskPriority (HIGH)

input variableDeltaX are plotted on the left and for the output variablesUpdateTime
andTaskPriority in the middle and on the right.

The centralized implementation of this agent is based on one satellite (the l
using all monitored/sensed information to calculate all possible collisions. The distri
implementation requires all satellites to monitor collisions to itself using its own agen
then broadcast warnings if there are potential problems. With each satellite monitor
own potential collisions by monitoring the distances between each individual spacecr
potential collisions within the cluster are evaluated, but now using a distributed app
Assuming that there aren spacecraft in the cluster, the total number of distances to che
then(n− 1)n/2. If each spacecraft must check their own possible collisions, then(n− 1)n
must be calculated; therefore, there is a penalty for distribution (more total computa
but benefits as well (no computational bottlenecks on the leader satellite, less inform
exchanged).

DecMakFailAgent (F23) monitors the health statush of the spacecraft to dete
failures on-board, and, if required, starts a cluster reconfiguration. This agent re
theDecMakFailSkill.m, and is also implemented with a fuzzy logic controller. T
fuzzy logic has four inputs: the healthhs , hp , ht of the science, power, thrust su
systems andhf for the remaining amount of fuel; and three outputs: a variable indica
the status of the particular spacecraft (i.e., ‘0’: spacecraft has failed and ‘1’: spac
is working); a decision variable indicating the need for a cluster reconfiguration
� 0.5: ‘NO’ and> 0.5: ‘YES’); and a decision variable indicating the need for a de-o
maneuver of the particular spacecraft (i.e.,� 0.5: ‘NO’ and> 0.5: ‘YES’). Both update
period and the priority of the corresponding tasksReconfigureCluster (m23) and
AllocateRole (m24) are fixed. TheDecMakAddAgent (F24) is developed similarly

3.5. Organizational agents

TheSchedulerAgent (F30) uses aTaskPrioritize.m skill that orders items
according to their assigned priority. This priority is set by other agents. Resoluti
conflictual relationships between tasks is solved by having the task that is the
dominant inhibit the output of the less dominant tasks. A task with a higher pri
value therefore suppresses a task with a lower priority. The science task and the
reconfiguration task have a fixed priority, whereas collision avoidance and distur
rejection have a dynamic priority.

PlanReconfigAgent (F31) optimizes new spacecraft positions within the clu
based on maximizing usefulness for science (imaging). This agent, which is called
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and calculates new optimal positions within the cluster for reconfigurations. Ther
several approaches to implementing this agent based on the science of radar and two
approaches are presented here: (1) symmetric placement, where the phasing b
the satellites is the same, or (2) using the Cornwell metric [12], a numerical app
based onN radar targets,M satellites, and the type of target (moving or not). The la
skill can be implemented in a distributed or centralized fashion, based on the num
algorithm. More details on the algorithm and its implementation can be found in Ref.
The PlanReconfigSkill is run only on demand; i.e., is triggered by the mess
ReconfigureCluster (m23) from the decision-making agent cluster reconfigura
(F23).

PlanAssignAgent (F32) assigns new spacecraft positions within the cluster b
on locations from thePlanReconfigAgent (F31), and can be implemented in
centralized or distributed fashion. The assignments are based on a cluster lev
function, which could be a function of fuel, time or other factors that may be impo
to the particular application. The agents developed here utilize fuel as the basis
assignments as that is one of the most important factors. The normalized fuel requ
maneuver theith satellite to thej th location is given as

dij = �Vij

hf,i
, (3)

wherehf,i is the remaining fuel on each satellite. The velocity increment can be f
by using either a linear program (to be described later in this paper), or classical o
control and optimization [5]. The agent uses the skillffplanner.m to calculate the fue
required for each maneuver.

The centralized implementation of this agent is based on the leader satellite h
approximate knowledge of the remaining fuel for each satellite, using scheduled sha
health information between satellites. The leader satellite then calculates the fuel re
to maneuver to each location using a linear program. For instance, Fig. 5 shows th�V

required for different orbital reconfiguration maneuvers over all phasing anglesϕ within
the ellipse for a fixed duration timetfinal of 1000 sec. The�V continuously increase
from ϕ = 0◦ to 180◦ and decreases fromϕ = 180◦ down to 360◦. The plot also show
an anomaly betweenϕ = 190◦ and 250◦, a result from the lack of convergence to t
absolute minimum in the linear program. For the case of changing the phasing aϕ
from ϕ = 0◦ to 180◦ (i.e., from one elliptical trajectory to another), the required�V is
approximately bounded between 0.0075 m/s and 0.01 m/s over all phasing anglesϕ.
After calculation of thedij cost factors, satellite assignments are made using a res
minimization algorithm, or Fuzzy logic if the variables are uncertain.

There are two approaches to implementing thePlanAssignAgent agent in a
distributed fashion. The first is using a contract net protocol, or bids from each o
satellites. In this case, the agent (F32) acts as contractor and the remaining spacec
the trajectory planner agents F34) as bidders. The bids arrive at a leader satellite
form of the normalized cost,dij . The contract net protocol attempts to assigns location
satellites in order to best equalize the cost over the full cluster (or among all agents
search space consists of the initial location of each satellite (initial station) and the po
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Fig. 5.�V requirements for different configuration changes. Each of these make up the bids for the cont
protocol for cluster reconfiguration.

goal locations (new stations) to which the satellite can move. For each satellite thern
possible stations to occupy. Thus, the search spaceD consists of an× n array

Goal Statej−→

D =



d11 d12 . . . d1n
d21 d22 . . . d2n
... · · · dij

...

dn1 dn2 . . . dnn


 ↓ Initial Statei. (4)

The approach here is based on scarce resources [14,21], where the following fiv
occur:

Step 1: Find the minimum bidder. For each of the goal statesj , the bidder correspondin
to dmin(j) is

dmin(j)=
n∑
i=1

min
1�i�n

(dij ). (5)
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dmin(j), the maximum (of the minimum) bidderdmax is

dmax= max
1�j�n

(
dmin(j)

)= max
1�j�n

(
n∑
i=1

min
1�i�n

(dij )

)
. (6)

Step 3: Task Assignment. For the bidder wheredij = dmax is true, assign the goal statej
(i.e., new cluster station of spacecraftj ).

Step 4: Reduce the search space. After the bidderi and goal statej are assigned, th
corresponding rows and columns inD (Eq. (4)) are deleted, and

n→ n− 1.

Step 5: Check if all bidders are assigned. If all bidders are assigned finish, else go
Step 1.

The second distributed approach is a negotiation technique [10], which is us
conjunction with one of the two coordination techniques above. The approach here
once a nominal plan for cluster assignment is put forth, each of the individual sat
can negotiate based on parameters of each of the maneuvers. For instance, one
could optimize its own plan by delaying the start of the maneuver, in an effort to save
This type of calculation is best suited in a distributed fashion because it will require
complex models and therefore more computation. Consider the case when an initial
reconfiguration plan has been developed. Fig. 6 shows an example of how the total a
of fuel for a maneuver (�V ) varies as a function of the maneuver duration timetfinal using
the linear program and thePlanTrajectAgent. The amount of control force require
increases as the duration time of the configuration maneuver decreases. Therefore
amount of fuel must be used in order to speed up the reconfiguration maneuver. Ind
satellites may use this information to reduce their own fuel usage without inhibitin
cluster as a whole. As long as the overall cluster characteristics and requirements
change, distributed negotiation can work quite well.

ThePlanAssignSkill is run only on demand; i.e., it is triggered by the mess
AssignCluster (m31) from the cluster reconfiguration planner agent (F31).

TaskAllocAgent (F33) distributes tasks for the cluster when there is a pote
failure with the leader satellite, based on a predefined cost, and can be implemente
a centralized or distributed approach. The centralized approach is based on a log
base. For instance, if there is one passive I1 agent in each cluster, then the logic rule b
could contain several priority levels for the nomination, such as:

IF (passive I1 agent is alive in cluster of failed I1 agent)
THEN (nominate new active I1 in own cluster)

ELSEIF (passive I1 agent is alive in other cluster)
THEN (nominate active I1 (old passive) agent in other

cluster)
ELSEIF (active I1 agent from other cluster is alive)

THEN nominate active I1 (old passive) agent from other
cluster
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Fig. 6. Fuel-Time tradeoff using the LP-maneuver planer for the case of an in-plane configuration chan
ϕ = 0◦ to 90◦. This can be used to negotiate an individual satellites plan.

The decentralized approach makes use of distributed task allocation technique
as the contract net protocol [7], or negotiation [10] to nominate the “optimal” cand
spacecraft-level agent. The contract net protocol is described here to reconfigure the
As an example, consider an eight satellite cluster, and there is a failure within spa
#1 (the leader). In this case, spacecraft #5 acts as contractor in nominating a new
agent, and the other (passive) spacecraft-level agents I1 act as bidders. The following step
detail the contract net protocol to this problem:

1. The task allocation planner agent (F33) spacecraft #5 is nominated as contrac
the contract net protocol using a logic based rule base.

2. The contractor sends out requests (Allocate) to the sensing agents (F11) on
passive spacecraft-level agents I1 in the cluster, i.e., to spacecraft #2, #6, and #8, wh
act as bidders.

3. The bidders can either (AcceptTask) or deny (DenyTask) the request. The acce
or denial is based on the status of the health of the power subsystemhp . Spacecraf
with a health valuehp < 50% deny the request and spacecraft withhp � 50% accept
it. In the case of an accept, the bidder transmits the bid in the form of their spac
health valuesh, i.e., health values for science, power, thrust and the remaining fu
the contractor.

4. The contractor selects a new active spacecraft-level agent I1 based on the smallest co
from the bidders. An example could be
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C = c1 · c2 · c3 · c4 , (7)
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where c1–c4 are weighting factors, chosen on the importance of the diffe
subsystems and/or normalization, and theh’s correspond to the health values of t
different monitored spacecraft subsystems. In this case, spacecraft #8 is chose
the new leader.

5. The contractor transmits anUpdateClusterInformation message with a new
value for theClusterInformation.ScActiveMaster entry to all spacecraf
(i.e., representational agents (F40)) in the cluster, which then update their in
cluster description.

6. The new active master spacecraft-level agent begins its operation.

The TaskAllocSkill is run only on demand; i.e., it is triggered by the mess
AllocateRole (m24) from the decision-making agent cluster reconfiguration (m23

PlanTrajectAgent (F34) generates a fuel and/or time optimized control mane
for a spacecraft. This agent requiresPlanFFSkill.m, which is implemented using a lin
ear program to calculate a thruster command sequencesuff (d32) and velocity increment
�V (d31) for time and fuel optimal trajectories. The linear program is implemented i
external functionffcontroller.m. Theffcontroller function has the following
inputs: the start and end time of the orbital maneuver (t0, tfinal) and the orbital paramete
for the start and final trajectories (initial and final phase anglesϕ andφ and major axisR0
of the elliptical trajectories).

The linear program [15] is a very flexible approach to planning a trajectory mov
a distributed satellite system. A cost function is used, such as minimizing the time
fuel of the maneuver, with added constraints. The minimum fuel cost is given as:

J (x)=
n∑
j=1

|uj | (8)

whereuj is the thrust used at timej . Minimizing this cost is subject to an initial positio
y(t0), desired final statey(tfinal) = y

ref
, and total number of time stepsn. Additional

constraints include the maximum thrust, such as that imposed by future precision
type thrusters [20], maximum position error attfinal, and minimum satellite separation
prevent collisions. These are added to the problem as linear inequality constraints,∣∣u(t)∣∣� umax on-off thruster,∣∣y

ref
− y(t)∣∣� ε minimum separation, (9)∣∣y

ref
− y(tfinal)

∣∣� εF minimum final separation.

A final added benefit of the linear program is that the final position,y(tfinal), can be
time varying, which it is in the TechSat21 case where each satellite is rotating abo
virtual center (Fig. 1). Because no classical method in calculus or linear algebra o
closed form solution to this problem, numerical techniques for solving linear program
problems have been developed such as theSimplex Method [15]. Details on this trajectory
planner and its implementation in a closed loop formation flying control for mul
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triggered by the messagesCalculateFFcontrol (m50) from the orbit maneuver age
(F51) orCalculateDeltaV (m32) from the cluster allocation planner agent (F32).

OrbitManAgent (F40) keeps and continuously updates the internal cluster des
tion. This agent requires theOrbitManSkill.m, which is also implemented in F5
(orbit maneuver agent). The cluster description contains the number of active space
the cluster; the particular tasks that each spacecraft are capable/allowed to carry o
passive, partial active and active); and the relative position for each spacecraft with
cluster. In addition, the health status of the satellite cluster is monitored, which is c
to many other agents. The health status of the satellite cluster can be formulated asn×m
arrayH , wheren indicates the number of satellites in the cluster andm the number of
health values to consider. In this work, subsystems to be tracked include science d
power generating modules, propulsion modules including thrusters, and the remaini
of each spacecraft. Therefore,H can be written as

H =



h1s h1p h1t h1f
h2s h2p h2t h2f
... · · · · · · · · ·
hns hnp hnt hnf


 , (10)

where the subscriptss, p, t and f correspond to the science, power, thrust and
subsystems respectively. The health variableshix can take on values in the range from
to 1, where a ‘0’ indicates 0% health and a ‘1’ for 100% health.

3.6. Operative agents

ScienceAgent (F50) performs the radar imaging task, whileOrbitManAgent
(F51) performs the physical orbital maneuver commands (i.e., thrusting). For
maneuvering, the agent uses the thruster command sequenceuff (d32), or a closed
loop linear quadratic (LQR) controller [13]. The controller is triggered by set
the appropriate disable/enable flags. TheOrbitManSkill uses an internal dat
structure array to store the current cluster description. TheOrbitManSkill is run
only on demand; i.e., it is triggered by the messagesRejectDist (m21) from the
decision-making agent station keeping (m21),MoveNewPos (m34),DeOrbit (m35) or
UpdateClusterInformation from the cluster allocation planner agent (F32).

4. Agent based software architectures for multiple satellite systems

With the functional agents and their skills defined, they can be integrated into
based hierarchies for autonomous control of the satellite clusters. Obviously,
different organizations exist with many levels of autonomy. A detailed compariso
several organizations is given in Ref. [22].

This section presents spacecraft level agents, which is the hierarchical integra
agents on each spacecraft. There are fourspacecraft level agents presented based on th
level of intelligence within the hierarchy of functional agents. This is done primari
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Fig. 7. Identification of spacecraft-level agents based on levels of capable intelligence.

narrow the scope of study. This is followed by a brief section on the agent organiz
for clusters along with an example of an actual architecture and the information flow

4.1. Spacecraft-level agents

In order to narrow the scope of study of agents for multiple spacecraft, spacecraf
agents are defined as a function of their level of intelligence. Based on the sum of c
spacecraft functions, four levels of intelligence have been identified, where I1 denotes the
highest level of intelligence and I4 the lowest level (Fig. 7).

The spacecraft-level agent I4 represents the most “unintelligent” agent. It can o
receive commands and tasks from other spacecraft-level agents in the organisation
the ground and execute them. An example includes receiving and execution of a c
command sequence to move to a new position within the cluster. This type of intelli
is similar to what is being flown on most spacecraft today.

The next higher spacecraft-level agent is I3, which has local planning functionalitie
on board. “Local” means the spacecraft-level agent is capable of generating and ex
only plans related to its own tasks. An example includes trajectory planning for o
maneuvers in case of a cluster reconfiguration. This type of intelligence is simi
DS1 [16].

Spacecraft level agent I2 adds a capability to interact with other spacecraft-level ag
in the organisation. This usually requires the agent to have at least partial knowle
the full agent-based organisation, i.e., of other spacecraft-level agents. It must the
continuously keep and update (or receive) an internal representation of the cluster
based organisation). An example includes coordinating/negotiating with other spac
level agents in case of conflicting requirements or enhancing performance.
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difference between I1 and other spacecraft-level agents is that it is capable monito
all spacecraft-level agents in the organisation and planning for the organisation as a
This requires planning capabilities on the cluster level as well as having full knowled
all other spacecraft-level agents in the organisation. An example includes calculatio
new cluster configuration and assigning new satellite positions within the cluster.

4.2. Organizations of spacecraft level agents

In order to develop a coherent working community within the cluster such tha
of the necessary capabilities can be achieved, the organization must be design
carefully. In addition, it must be adaptable to prevent faults, avoid bottlenecks, and
reconfiguration. It must be efficient in terms of time, resources, information exchang
processing. And it must be distributed in terms of intelligence, capabilities and resou

Again in order to narrow the scope of multi-agent systems on multiple space
several generic organizational levels are defined. The possible organizations for spa
level agents include:

• Top-down coordination architecture,
• Centralized coordination architecture,
• Distributed coordination architecture,
• Fully Distributed coordination architecture.

Fig. 8 shows a summary of the four possible coordination options mentioned abo
a spacecraft-level agent team, as afunction of individual, capable spacecraft-level agent
intelligence. The blocks represent the spacecraft-level agents labeled according to th
ble level of intelligence required for the organization. As can be seen, the number an
position of the different spacecraft-level agents I1–I4 determines the organizational arch
tecture. The top-down coordination architecture includes only one single spacecra
agent I1 and the other spacecraft are I4 agents. The centralized coordination architect
requires at least local planning and possibly interaction capabilities from each spac
Thus spacecraft-level agents I3 or I2 are required instead. The distributed coordinat
architecture consists of several parallel hierarchical decision-making structures, e
which is “commanded” by spacecraft-level agent I1. Note that the different spacecraft-lev
agents I1 can interact with each other as well as with their lower level I2 or I3 spacecraft-
level agents. In the case of a fully distributed coordination architecture, each space
the organization represents a spacecraft-level agent I1, resulting in a totally “flat” organi-
zation.

Note also that the specific functional agents that make up the spacecraft level age
shown in Table 1.

4.2.1. Top-down coordination architecture
In a simple top-down coordination architecture, similar to a Master-Slave Organiz

agents are coordinated in a hierarchical fashion where the spacecraft-level agents I1 at the
top of the hierarchy make the majority of the intelligent group decisions. Then, dec
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Fig. 8. Coordination architectures for coordination of multiple spacecraft-level agents.

are passed down to the rest of the spacecraft-level agents that are I4 agents where th
commands are executed. This organization is fairly rigid since it has one centr
intelligent spacecraft-level agent. But it is also the most straight-forward to imple
as it requires almost no communication between the spacecraft-level agents I4 (agents at
the bottom of the hierarchy) because these agents exercise no group intelligence.

Applied to the TechSat21 example, one of the eight spacecraft is considered t
higher “intelligence” and therefore acts as a spacecraft-level agent I1. (Even though they
may be exactly the same for redundancy purposes, one is chosen as the leader.) Fig.
this scenario. Tasks of the I1 spacecraft include high-level decision making, planning
scheduling for the cluster as well as performing all lower level tasks for the cluster.

In addition, the spacecraft-level agent I1 serves as the communication center
information flow within the cluster. The remaining seven spacecraft form slaves
are “unintelligent” spacecraft-level agents I4, and therefore only receive and exec
commands. Note that each of the individual spacecraft-level agents I4 transmits its state
vectorxn and its healthhn to the spacecraft-level agent I1 at a particular sampling rate
The master spacecraft then evaluates, plans and schedules for the cluster, and se
the particular control outputyn to each spacecraft-level agent I4.

4.2.2. Centralized coordination architecture
With new developments in on-board planning and reasoning, a new organization

developed, termed “centralized coordination architecture”, where a centralized hiera
still used, but now the underlying agents have increased intelligence and can intera
higher level agents for the betterment of the intelligent agent team. For instance,
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Fig. 9. Top-down coordination architecture with I4 spacecraft-level agents with little intelligence and an1
spacecraft-level agent with high intelligence.

level agents may formulate plans for a part of or the entire organization to follow and
these up the chain of the organization. Then, a centralized spacecraft-level agent I1 decides
on the best plans. This organization is more complex and requires more commun
between agents, but the intelligence is better distributed throughout the system. This
for a more flexible, adaptive, and efficient organization.

Fig. 10 shows this organization as applied to the TechSat21 mission. In comp
to the previous organization, the lower level spacecraft agents are at the I2 level. These
spacecraft now have increased intelligence to allow them to perform low-level de
making and planning of basic tasks, as well as to interact with other agents. Thes
include rejecting disturbances or performing the science task (i.e., imaging). The I1 level
agent still performs the higher-level planning and decision making for the cluster
whole, then sends particular tasks to the lower level spacecraft agents I2. As an example
of a high level task, the I1 level spacecraft will plan a new reference positionyref for each
spacecraft in the case of a reconfiguration of the cluster or position vectorsyk in the case
of collision avoidance. Each I2 spacecraft-level agent is then responsible to perform
control tasks, low level decision making and planning.

Lower level spacecraft-level agents I2 can now send results and other informat
pertaining to their tasks or reasoning processes back to the higher level I1 agent. Conside
the case when a higher level spacecraft-level agent I1 has sent out a list of possible clust
positions for relative reconfiguration. The task of the lower level spacecraft-level a
I2 is then to calculate the required velocity increment�V for each position and send
back to the I1 level spacecraft agent, along with information about its remaining fuelhf .
The high-level planner of the spacecraft-level agent I1 then attempt to equalize the fuel u
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Fig. 10. Centralized coordination architecture with lower level agents having the capability to perform low
tasks, including decision making, planning and control. They can also interact with the higher level agent

across the cluster when assigning each spacecraft to a particular position within the
In this way, the planner is now distributed.

4.2.3. Distributed coordination architecture
The next type of organization allows the agents to coordinate together in a distr

coordination architecture. This is a more ideal case for an intelligent team of agen
they take full advantage of their capabilities in terms of adaptability, distribution
intelligence. The distributed organizations make full use of the distributed coordin
algorithms presented in Table 1, such as using the contract net protocol or nego
techniques for assignments and reconfiguration. The advantages of using these t
that both performance and robustness can be improved, communications bottlene
be elimited, and computations can be distributed. The disadvantages are that th
computation increases.

The contract net protocol is an excellent example for utilizing the distrib
coordination architecture. If an agent has a goal which it is trying to realize, it may at
to enlist other agents with unused resources to help it accomplish its plan. Agen
contract other agents that are available, so that a small group works to fulfill the g
a single agent. This approach requires large communication costs between agent
allows high-level planning of goals, flexibility in achieving the goals, and natural
balancing within the multi-agent system.

Once a group has determined a plan for all the agents of the group, another ap
is to allow each agent to try to improve the overall group plan. Each individual a
attempts to modify the group plan so that it can achieve its goals more efficiently
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plan among all agents within an organization, but it is complicated in that it requires
levels of intelligence in each agent and substantial communication between all agen

4.2.4. Fully distributed coordination architecture
One can extend these organizational ideas to the point where each agent in the

has “full group intelligence” where any agent has intelligence equal to any other a
In this “fully distributed coordination” architecture, there is no hierarchy, meaning
organization is flat and fully distributed. But in order to achieve this, there mus
extensive communication between all agents in the system. This has the advantage
highly adaptable and very reliable, as any agent can exercise intelligence for the
system as well as any other agent (so a decision never has to be passed to other
But the organization is complex and requires elaborate inter-agent communic
Fig. 11 shows this concept applied to the TechSat21 mission. Each spacecraft repre
spacecraft-level agent I1 and there is no fixed structure that defines information flow
distribution of functionality. Instead, the agents now must coordinate between each
in order to achieve goals or perform tasks.

A final important issue with agent hierarchies for multiple spacecraft is redund
Spacecraft, unlike many other applications, requires very high reliability because of t
proximity of the system. Thus, most systems are usually very redundant. With the
software complexity of agent based systems, there must also be redundancy in the s
architecture. Therefore, within the organizations, passive I1 agents are used to increase

Fig. 11. Fully distributed coordination architecture. Each agent represents a spacecraft-level agent I1 and has the
same “intelligence” and capabilities.
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4.3. Architectures and information flow

Information flow between the agents are based on thedata required to perform thei
actions and/or themessages that trigger corresponding tasks. Fig. 12 shows the informa
flow architecture for a distributed architecture, and the distribution of the funct
agents onto spacecraft-level agents. A “passive” spacecraft level agent (such as pas1)
indicates a redundant agent, or an agent with more intelligent capability (I1), but acts with
lower intelligence (I3). Also, “m” refers to a message, and “d” refers to data.

Fig. 12. Information flow architecture for a distributed coordination architecture, with active and p
spacecraft-level agents I1, and spacecraft-level agent I2.
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Messages within ObjectAgent with corresponding verbs, sources and sinks

Identification Verb required Action Source Sink

m21 RejectDist Station keeping F21 F51
m22 MoveCollAvoid Collision avoidance F22 F51
m23 ReconfigureCluster Cluster reconfiguration F23 F31
m24 AssignRole Assigning of roles/tasks F23 F33
m31 AssignCluster Cluster assignment F31 F32
m32 CalculateDeltaV �V calculation F32 F34
m33 UpdateClusterInformation Update internal state F32, F33 F40
m34 MoveNewPos Move to new position F32 F51
m35 DeOrbit De-orbit S/C F32 F51
m40 CalculateFFControl FF control generation F51 F34

Table 4
Extract of defined data with corresponding content, sources and sinks

Ident. Content Description Source Sink

d11 x State vector F11 F20, F22
d12 h Health F11 F23, F24
d13 err Position error F11 F21
d31 �V Velocity increment F34 F32
d32 u ff Feed forward control sequence F34 F51
d40 ci Internal cluster description F40 F2X

Each lower level spacecraft agent performs local planning and decision-makin
interacts with the higher-level agent I1 when a reconfiguration is required. Each spacec
level agent performs its own station keeping, F21, monitors the relative position error
and produces, if required, aRejectDist message (m21) that triggers a station keep
task. Additionally, each spacecraft-level agent runs its own trajectory planner agent
for the generation of the feed forward control sequence (d32). The primary differenc
in the case of a cluster reconfiguration, where each spacecraft-level agent interacts w
central spacecraft-level agent I1. To assign new positions within the cluster, the spacec
level agent I1 requests bids from each spacecraft by transmitting aCalculateDeltaV
message (m32). Each spacecraft then submits a bid to the cluster allocation planne
(F32) on the central spacecraft-level agent I1 in form of the velocity increment (d31
required to move to these new positions. The latter then decides upon an optimal
assignment based on the received bids. If a failure within an intelligent I1 level agent
occurs, a dynamic reconfiguration mode is used to create a new organization of spa
level agents using the task allocation planner agents (F33).

A summary of messages, data and agents is given in Tables 3 and 4.

5. Simulation results

A series of simulations have been developed to test and evaluate the contrib
of this work, including the functional agent development, hierarchical agent integr



172 T. Schetter et al. / Artificial Intelligence 145 (2003) 147–180

and the message passing concept. This implementation is a very important first step in
DS1

o its
pment
ferent

The
specific
mands,
Three
ed and
) Fuel

ligent
ted
,

dance,
ibed in
wing
n

craft #1
the realization of the agent based software for multiple satellites. As shown by the
experience, however, a full real time implementation of the software is critical t
eventual success. The work here not only is an important initial step in the develo
of software for multiple satellite systems, but also allows easy comparisons of dif
software architectures.

A spacecraft simulator was developed in the MATLAB/Simulink environment.
agent based software was also developed in this environment, and there are
interfaces between the two based on a real spacecraft system (thruster com
communication cross-link, uplink, and downlink, sensor measurements, etc.).
examples are shown to demonstrate specific technologies and compare centraliz
distributed organizations: (1) Failure of a spacecraft and cluster reconfiguration, (2
Savings using Negotiation, and (3) Task priorities in collision avoidance.

5.1. Reconfiguration: Failure of a spacecraft component

The first case study is the reconfiguration of a system when a high level, intel
spacecraft agent I1 has failed. This is shown in Fig. 13 for both centralized and distribu
organizations. In both cases, the active spacecraft-level agent I1 (spacecraft #1) has failed
and the organization must be reconfigured.

The centralized case makes use of the centralized agents for collision avoi
reconfiguration, assignments, and task allocation, as shown in Table 1 and descr
the previous section. Most of these algorithms are rule based, with information flo
from the leader satellite (I1) to the lower level satellites (I3). The distributed organizatio

Fig. 13. Centralized (a) and distributed (b) coordination architecture for TechSat21. In both cases, space
has failed and the cluster must be reconfigured.



T. Schetter et al. / Artificial Intelligence 145 (2003) 147–180 173

ributed

agents,

and
shows
cations
average
Fig. 14. Leader satellite CPU workload and cluster total CPU time comparing the centralized and dist
organizations.

makes use of the distributed approaches (such as the contract net protocol) to these
as shown in Table 1 and described in the previous section.

As part of the simulation and comparison, the workload (i.e., CPU time)
communication effort (i.e., transmitted bytes) are compared for both cases. Fig. 14
the average and total CPU time, while Fig. 15 shows the average and total communi
load. The centralized case has a higher peak computational usage, but a lower
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Fig. 15. Communication data rates and total data sent for the centralized and distributed organizatio

because the lower level spacecraft do not perform intense computational function
communications, however, is larger in the case of the centralized coordination beca
higher level spaceraft must send specific commands as a function of time to each
lower level spacecraft. Note that if the bidding mechanism of the distributed case re
more bids, or negotiation was allowed to run more often, the communication load
distributed case would be higher.
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Fig. 16. Fuel usage for cluster reconfiguration for the distributed organization using contract net protoco
and a centralized case using simple assignments (bottom).

5.2. Reconfigurations: Fuel savings

The simulation for the reconfiguration case shows that the agent architecture
well. Although the benefit of the distributed case is not explicitly clear in the prev
example, it is in the case of nominal operations, where reconfigurations of the clust
different formations for the science take place frequently. Fig. 16 shows the fuel
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centralized and distributed cases. Notice that the contract net protocol described
previous section works well to (1) equalize resources across the cluster, and (2) mi
the total fuel usage across the cluster. The CPU and communication histories are
to those in Figs. 14 and 15. Therefore, the two examples show that advantages
savings and similar metrics are traded for computational and communication effo
general, it appears that satellite clusters ruled by distributed organisations are more
and adaptive to changes. It does, however, increase the complexity of the softwa
this must be traded against the higher lifetime that results from equalizing the fuel a
the satellites. The interaction between the satellites in an intelligent manner also op
other possibilities, such as exchanging and using overall satellite health information.
example, consider the case when multiple new target are to be imaged. The clust
dynamically group themselves for the targets based on health, fuel, and image qual
then move on to the next set of targets.

5.3. Conflict resolution: Collision avoidance

The final simulation shows the autonomous operation of the multi agent syste
the case of a collision avoidance maneuver between two spacecraft, followed by a
reconfiguration. This case studies a conflict resolution between more than one
for a distributed organization. Conflictual relationships between tasks and agent
when they can be run in parallel. The sub-level tasks ST11 (science), ST21 (re
disturbances), ST22 (collision avoidance) and ST23 (orbit maneuvering) occasi
require execution at the same time. A conflict resolution is therefore required. In this
the monitoring for a collision and subsequent orbit maneuver must override the prio
the science (radar processing).

The simulation considers one cluster with one active master spacecraft (spacec
and three slave spacecraft (spacecraft #2–4). Fig. 17 shows the steps of this sim
including the trajectories for the spacecraft #1 and #2. The following steps are simu

Step A A failure occurs within spacecraft #2, and it begins to drift towards spacecr
in the cluster.

Step B The collision checking agent detects the possible collision between spacec
and #2 and initiates a collision avoidance maneuver between the two spacecraf

Step C A deorbit of the failed spacecraft #2 is performed (meaning that it is placed
elliptical trajectory with a larger major axis).

This is a difficult task for traditional approaches where spacecraft command
received only from the ground. The close proximity of the satellites requires
autonomy with collision avoidance.

The resolution of conflictual relationships between tasks is implemented usin
approach similar to the subsumption architecture [2,3]. When a conflict occurs, th
with a higher priority suppresses a task with a lower priority.

Fig. 18 shows the priority for the tasksPerformScience (m20), RejectDist
(m21),MoveCollAvoidance (m22), andReconfigureCluster (m23) as a func
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Fig. 17. A 3D animation of the collision avoidance simulation with a cluster reconfiguration. Shown ar
snapshots of the scenario for the agent based organisation: (A) Close to collision, (B) Collision avoidan
De-orbit of S/C #2, and (D) Final situation.

tion of the degree of membership of a fuzzy output variable. This variable is the p
factor within the decision-making skill. The science task and the cluster reconfigu
task have a fixed priority because the science is always performed in a healthy sit
and the cluster is always reconfigured as new targets arise. The collision avoidan
disturbance rejection tasks, however, have a dynamic priority, depending on whethe
lision is imminent or if a disturbance has been measured and requires action. Co
avoidance and cluster reconfiguration can have a higher priority than disturbance re
or science because they must be accomplished prior to all other tasks.

Using different values for membership functions, the intersection points for the
priorities (points “A” and “B” in the figure) can be regulated. For example, it is natural
the relative distance between two spacecraft can become smaller during a reconfig
maneuver. However, the collision avoidance task is activated only when the re
distance between the spacecraft reaches a certain limit (A). Similarly, the science tas
be canceled if the error between actual and reference position of the spacecraft re
point at which the radar imaging task is not possible (B).

Fig. 19 shows the CPU and communication workload. The CPU workload obvi
increases near the collision avoidance detection and maneuver generation. The co
cation increases only slightly near the maneuver time.
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Fig. 18. Resolution of the conflictual relationships between different tasks using dynamic allocation of the
of the corresponding tasks.

As a final note, Ref. [22] gives a very detailed comparison of these four t
organizations using this multi-agent approach, along with a more traditional sy
that is highly dependent on specific commands from the ground. Ref. [22] inclu
description of metrics for comparison (such as communication, computation, relia
and a variety of scenarios (nominal operations, reconfiguration, collision avoidance
paper addresses the underlying technologies of the agents, the software infrast
and the details of each of the organizations. Based on the results in Ref. [22], the
indicate that the distributed organization is the best for multiple satellite systems. P
see Ref. [22] for more details.

6. Conclusions

A software architecture for multiple satellite autonomy using a message pa
simulation environment (ObjectAgent) for multi-agent systems has been presente
required functional software agents have been developed and integrated into a co
yet enabling software architecture for multiple spacecraft systems. Tools such as
control, linear programming and the contract net have been used for the implementa
the functional agents and agent-based organisations. Conflict resolution between the
is accomplished by using of a dynamic priority allocation for the tasks. ObjectAgent is
suited for the simulation of multi-agent based systems applied to the space domain
quick comparisons and design evaluations are critical, all of which can be accomp
in the environment. Initial results show that the multi-agent approach is promisin
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ributed
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Fig. 19. CPU workload and total communication data for the collision avoidance maneuver using a dist
agent based organization.

these systems because it can prolong lifetime and enhance performance. Further st
software reliability, especially for multiple spacecraft systems in closed proximity,
important future issue to address.
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