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Abstract

This paper gives a brief high-level description of what has been done in the Disjunctive
Logic Programming-project (funded by Deutsche Forschungs-Gemeinschaft), undertaken by the
University of Koblenz since July 1995. We present the main ideas, cite the relevant papers and
point to the implemented systems and how to access them. This paper also serves as a brief survey
of the current status of disjunctive logic programming by highlighting important developments
and providing enough pointers for further reading.

1 Introduction

The research project on Disjunctive Logic Programming, referred to as DisLoP, was initiated in July
1995 at the University of Koblenz, Germany by Jiirgen Dix and Ulrich Furbach. An initial funding
for two years has been provided by DFG (“Deutsche Forschungs-Gemeinschaft” which translates to
“German Science Foundation”) under grant Fu 263/3-1. After an evaluation of the whole project
by DFG, a regular two years extension has been granted in July 1997. Two research scientists
Chandrabose Aravindan and Ilkka Niemeld have been working exclusively on this project since July
1995.

The key idea of this project is to develop semantics and procedures for dealing with disjunction
and non-monotonic negation in logic programming. On the procedural side, instead of starting from
scratch, the aim is to exploit the techniques that have been developed for yet another project on
Automated Reasoning (that was started 3 years ago in Koblenz by Ulrich Furbach as a part of
the German “Schwerpunkt-Programm” Deduction). One important consequence of this is that the
PROTEIN theorem prover [BF94b] developed during the course of the Deduction project can be used
for (positive) disjunctive logic programming with little modifications. DisLoP also aims to apply the
developed concepts and systems in real world applications such as information management systems.
This, by itself, has been conceived as a separate project, and thus there are three inter-related and
co-operating projects at the University of Koblenz.

In this report, we highlight the salient aspects of the DisLoP project and summarize the results.
Interested readers are welcome to visit the project home page at <URL:http://www.uni-koblenz.de/
ag-ki/DLP/> to get more information on this and related projects. Though there are a lot of related
works and projects, in this report we concentrate mainly on the DisLoP project and the research
carried out by its members. This, in fact, is reflected in the bibliography and the reader is assumed
to be familiar with research works on logic programming and non-monotonic reasoning in general.
Nevertheless, to make this paper self-contained and also readable to the non-specialist, we have added
some remarks and references about classical notions in this field. For more detailed investigations
and overview articles we refer the reader to [AB94, BG94, Min93, Min96, Dix95c, BDK97, DPP97b,
BD98c, DFN98, Dun95a, Dun95b].



2 Normal Programs

Although our aim is to create a disjunctive logic programming system, many problems already occur
for negation with respect to non-disjunctive programs. There are two main competing approaches
to provide semantics for negation in logic programming, namely the stable (STABLE) and the well-
founded semantics (WFS). STABLE was introduced in [GL88, GL91] and WFS at about the same
time in [vGRS88, vGRS91].

Let us shortly explain the stable model semantics. An important notion is the reduct of a ground
program P with respect to a set of ground atoms S. This reduct is a (definite) program obtained
from P by deleting (i) each rule that has a negative literal —a in its body with a € S and (ii) all
negative literals in the bodies of the remaining rules. Now a set of ground atoms S is a stable model
of a ground program P if and only if S is the unique minimal model of the reduct of P with respect
to S. For example, program P with two clauses p + —q,r and ¢ < —p has a stable model S; = {q},
because the reduct of P with respect to S; is ¢ + and S; is its unique minimal model. For instance,
Sa = {p,r} is not a stable model of P because the reduct is p + r and its unique minimal model is
{}. In fact, Sy is the unique stable model of P. For a non-ground program P, the stable models are
those of the ground instantiation of the program with respect to its Herbrand universe.

The definition of the well-founded semantics is too technical to be presented here. It may suffice
to state that every program P is associated with a unique three-valued model, in contrast to the
set of stable models that are two-valued. In our example P above, WFS coincides with STABLE.
But if we add a clause s < —s to P, then no stable models exist, whereas the well-founded model is
{q, —p, —r}, which leaves s undefined.

The relationship between these two semantics have been thoroughly studied by works like [Dun92].
While WFS is consistent (model always exists), allows for goal-directed computation and has at-
tractive complexity (quadratic in the number of atoms), STABLE can become inconsistent (pro-
grams may have no stable models), answering queries can not be restricted to the call-graph be-
low that query, and the complexity of STABLE lies one level higher in the polynomial hierarchy
(see [MTOI1, Got92, MT93]). Another difference of STABLE and WFS is that for a given program
there might be sewveral stable models. Each stable model represents a particular consistent view of
the world, while the union of any two is inconsistent. This is much like the extensions in default
logic [Rei80] and this viewpoint is called credulous in general. In contrast, the WFS is much more
cautious. WFS can be seen as an approximation to the intersection of all stable models: if an atom
is considered true, it is contained in all stable models (dually for the atoms considered to be false).
This is called the sceptical viewpoint.

Let us note that whether the sceptical or the credulous viewpoint is the more appropriate one
depends on the problem at hand. For problems (see Section 5) having multiple solutions each of
which has its own right (like colorings of a graph), the credulous viewpoint is more suited. In fact,
problems of this kind can be naturally formulated in such a way that solutions correspond to stable
models of the formulation. Whereas for other problems (are two distinguished nodes always colored
the same?) only the intersection of all solutions are of importance, not the whole set of solutions.
This is exactly the sceptical viewpoint and therefore the well-founded semantics (which computes one
single model, an approximation of the intersection of all stable models), is more appropriate.

The most sophisticated and general system for computing WFS is the XSB-system of David
Warren and his colleagues which is based on tabulation-techniques. Its underlying calculus is SLG-
resolution due to Weidong Chen and David Warren. XSB should not be confused with the SLG-
system [CW93, CW95], which implements SLG-resolution as a meta-interpreter on top of existing
Prolog systems. The SLG-system also implements (a kind of) stable model semantics and is still
developed further by W. Chen. In contrast to the SLG-system, XSB implements SLG-resolution on
the WAM-level and behaves like an ordinary Prolog system (not like a meta-interpreter) if ordinary
Prolog negation and no tabulation is used. In addition, it is of comparable performance (about 4
times slower than the best systems). It is free and is available by anonymous ftp from <URL:ftp:
//ftp.cs.sunysb.edu/pub/XSB/>. This is the first time that a negation different from negation-as-
finite failure (well-founded semantics) has been incorporated into a complete PROLOG-system. We



refer the reader to [CSW95, CW95, CW96, SSW96] for more detailed information.

SLG-resolution is very procedural in nature because it is based on tabling-techniques. Roughly,
given a query and a program it first computes a residual program with respect to the query. Under
some assumptions (bounded term size property and similar concepts) which imply non-floundering',
this residual program is ground and the query can be checked against this program.

Let us emphasize the fact that although XSB handles non-propositional theories, termination is
only guaranteed if the computed residual program is finite and ground. Consequently, it is important
to consider the propositional case. The approaches we present in this section cover propositional
programs.

Many more semantics than considered in this paper have been defined for normal programs. Dix
developed in [Dix95a, Dix95b] methods for classifying these semantics according to their properties.
This work was followed by Brass and Dix and we consider it a very nice result that the transformations
introduced in [BD97, BD98b, BD95b, BD98a] for general disjunctive programs can be used to explain
SLG-resolution totally declaratively, without hiding effects in low-level data structures. We explain
this in Subsection 2.2.

We start with a discussion on an efficient approach to compute STABLE for range-restricted
function-free normal programs, developed during the course of our project by I. Niemeld and P. Si-
mons. The method compares very favourably to other proposed methods because of its novel technique
for approximating stable models and its over-all low space complexity.

2.1 An Efficient Approach to Compute STABLE Semantics

We have developed a system for computing the stable model and the well-founded model semantics for
range-restricted function-free normal programs [NS96]. It is based on new implementation techniques
for general non-monotonic reasoning developed in [Nie95a, Nie95h, NS95, Nie96a]. The goal has been
to devise an implementation of the stable model semantics that can handle realistic size programs
(tens of thousands of ground rules) with a potentially large number of stable models. The system
can be obtained from <URL:http://saturn.hut.fi/pub/smodels/>.

Our system includes two modules: an algorithm for implementing the two semantics for ground
programs and an algorithm for computing a grounded version of a range-restricted function-free nor-
mal program. The latter algorithm does not produce the whole set of ground instances of the program
but a subset which is sufficient in the sense that the stable models are preserved. The emphasis has
been on developing efficient methodology for computing stable models of ground programs. OQur ap-
proach is based on bottom-up backtracking search. It works in linear space and employs a powerful
method for pruning the search space which is based on approximating stable models. The approxi-
mation technique is closely related to the well-founded semantics and provides an efficient algorithm
for computing the well-founded model of a ground program. The system has been tested extensively
and compared with a state of the art implementation of the stable model semantics, the SLG system
of Chen and Warren [CW93, CW95]. In tests involving ground programs our implementation clearly
outperforms SLG.

Figure 1 provides an example of the tests performed. The test cases are generated from planar
graphs by translating the graphs into ground programs such that the stable models of the programs
correspond exactly to the 3-colorings of the graph. The figure shows the minimum, maximum and
average times for ten different runs on a pseudo-randomly shuffled set of rules. All times are in
seconds and they represent the time to find one stable model if one exists, or the time to decide that
there are no stable models. For more details and further test cases, see [NS96].

The test results clearly show that our implementation, smodels, computes stable models signif-
icantly faster and is able to handle substantially larger examples than SLG. The key to our success
appears to lie in the new approximation technique for stable models which is closely related to the
well-founded semantics. This semantics is also exploited in SLG but in a different way. The SLG
system performs goal-directed query-evaluation and the well-founded semantics is employed only in

IThis means that whenever a negative literal is selected, it is grounded, i.e it does not contain free variables.



Planar graphs, 3-colouring
SLG smodels
Vertices | Rules min max ave | min | max | ave
10 73 7.57 34.45 23.81 | 0.03 | 0.11 | 0.04
12 87 | 2.68 140.01 82.53 | 0.03 | 0.04 | 0.03
14 101 | 35.09 | 657.48 | 390.56 | 0.03 | 0.06 | 0.04
16 115 3.75 | 2444.90 | 1421.19 | 0.04 | 0.06 | 0.05

100 703 0.19 | 0.23 | 0.21
300 | 2103 0.63 | 0.86 | 0.71
500 | 3503 1.03 | 1.35 | 1.12

Figure 1: SLG vs. smodels

the beginning where the SLG system computes a residual program for a given query using SLG-
resolution. The query can then be evaluated with respect to the well-founded semantics against the
residual program. The SLG system evaluates the query with respect to the stable model semantics
by computing the stable models of the ground residual program with an assume-and-reduced algo-
rithm. The better performance of our method for computing stable models of ground programs when
compared to the assume-and-reduce algorithm in SLG can be largely contributed to the fact that we
use the well-founded type approximation recursively during the whole search for stable models. This
keeps the search space substantially smaller in smodels.

These results lead to an interesting idea of combining SLG-resolution and our method for com-
puting stable models of ground programs. An implementation of SLG-resolution, like XSB [SSW96],
could be used for implementing the well-founded semantics and for computing the residual program
for a query. When continuing towards the stable model semantics, our system could be employed
starting from the ground residual program. However, there is a difference when using our grounding
algorithm or SLG-resolution for computing a grounded version of a program with variables. The
ground program computed by our algorithm is typically larger than the residual program given by
SLG-resolution. On the other hand, it has exactly the same stable models as the original program
whereas the use of the residual program can led to unsound results: the stable models of the residual
program are not necessarily stable models of the original program [CW95].

2.2 An Approach to Compute WFS based on Computing Normal Form

There are various ways to compute the well-founded semantics of a program P. Most methods are
based one way or the other on van Gelder’s alternating fixpoint procedure and therefore directly
compute the three-valued well-founded model. Our approach is quite different: it applies certain
program-transformations to P and eventually reaches a normal form, referred to as the residual
program res(P). This normal form res(P) is such that answering queries with respect to it is extremely
simple. The transformations we apply are very natural. For example, if a rule A « is in P, then we
replace every occurrence of A in the body of clauses in P by true. Dually, if an atom A does not
occur in the head of any rule in P, we replace every occurrence of =A in P by true and remove all
remaining rules containing A (because we know that A is false by the closed world assumption). We
also remove non-minimal rules and allow unfolding of clauses.

We do not give here a complete description of our transformations, because this whole approach
is investigated in more depth in Section 4. The reason is that it applies to arbitrary disjunctive
programs and restricting these transformations to non-disjunctive programs is immediate. Also the
main results carry over ([BD96, BD98a]):

e The calculus of program transformations is confluent, so any program is associated with a
unique normal form, called the residuum. The order in which the transformations are applied
does not matter: we always arrive at the same normal form.



e Answering a query with respect to the residuum is very easy: A is true iff the residuum contains
arule A «+ , and —A is true iff no rule in the residuum contains A in its head.

One main drawback of this approach is that, due to the unfolding of clauses, the residuum could
be exponential in the size of the original program. Therefore one might argue that our approach
is not very efficient for computing WFS. But recently, Brass, Freitag, and Zukowski have shown
([BZF97]) that the unfolding rule can be restricted so that unfolding of certain atoms are delayed.
This results in a quadratic procedure to compute WFS which is provably better than, for example, the
alternating fixpoint procedure on all inputs. The resulting normal form is different from the original
residuum. It is called the program remainder. Both of these approaches have been implemented as
Prolog-programs.

Other works related to well-founded semantics based on program transformation include [AD95b,
AD94].

3 Positive Disjunctive Programs

In this section, we restrict ourselves to positive programs (where no negative literals appear in the
body of a clause), and discuss how answer computation and answering negative queries can be carried
out. Though answering positive queries for positive programs is a monotonic problem, it turns out
that most classical theorem provers can only compute trivial answers and are unable to find definite
(i.e. non-disjunctive) answers. In subsection 3.1, we briefly review a theorem proving calculus that
can be successfully employed for computing answers.

Answering negative queries is generally carried out through Generalized Closed World Assumption
(GCWA) which is equivalent to minimal model reasoning [Min82]. GCWA allows one to assume an
atom to be false if it does not appear in any minimal model of the program. A weak form of GCWA,
referred to as WGCWA, has also been proposed [RLM89, RT88]. Unlike GCWA, WGCWA is defined
using the notion of derived clauses, and an atom A is assumed to be false if there is no positive clause
K s.t. AV K is derivable from the program.

With the aim of merging theorem proving (computing answers for positive queries) and logic
programming paradigms [ABDT96, Ara96b] two approaches to handling query evaluation for positive
disjunctive programs with respect to minimal model semantics have been studied. Subsection 3.2
discusses the first method which is based on abduction and restart model-elimination ([Ara96a]). The
second method is explained in Subsection 3.3: it is based on extending the hyper tableau calculus of
[BFN96] (see [Nie96c, Nie96b]).

3.1 Computing Answers using Restart ME

In [BFS97], it has been shown that theorem provers using a special calculus, referred to as restart
model elimination calculus, can be used as answer complete interpreters for positive disjunctive logic
programs. On the declarative side, given a disjunctive logic program D and a query < @, a disjunction
Q61 V -V @0, of instances of @) is a correct answer iff P =V (Q6; V ---V Q§,). On the procedural
side, restart model elimination calculus is used to build a tableau and the disjunction of all the
instances of the query in the tableau is given as a computed answer. This process is illustrated by a
very simple example below. More details can be obtained from [BFS97].

ExamMpPLE 3.1

Consider a disjunctive logic program with the following clauses: on(a,b), on(b, ¢), co(a, gr), co(c, bl),
and co(b, gr)Vco(b, bl). This program describes a block world in which there are three blocks a, b, and
c. It is known that @ is on b and b is on ¢. The colour of a is green, c¢ is blue, and that of b is either
blue or green. Now consider a query + on(X, Y), co(X,gr), co(Y,bl). The answer computation
process based on restart model elimination is shown in Figure 2. As shown a non-definite answer for

the given goal is computed. ]



—goal

-on(X,Y) —co(X, gr) =co(Y, bl)

on(a,b) co(a, gr) co(b, bl) co(b, gr)
* * * ‘
—goal

Substitution: /’\

{g((li__ab” 1);,2__[2} —on(X',Y") —co(X', gr) =co(Y', bl)
Answer: ‘ * ‘

(on(a,b) A co(a, gr) A co(b,bl)) on(b, c) co(c, bl)

(on(b, c) A co(b, gr) A co(c, bl)) * *

Figure 2: Answer computing with Restart ME calculus

The main result here is that for every correct answer there exists a computed answer that subsumes
it and thus restart model elimination is an answer complete calculus for positive programs with
positive queries. With respect to definite answers, the completeness result can be stated as follows:
if Q0 is a correct definite answer, then this calculus can compute an answer Qo s.t. Qod = Q8 (for
some substitution §). To focus only on definite answers or to compute answers with less number of
disjuncts, a variant of restart model elimination referred to as ancestry restart model elimination has
been introduced and the details are in [BFS97].

3.2 Minimal Model Reasoning based on Negation by Failure to Explain

In [Ara96a], we have developed an abductive framework for positive disjunctive logic programs that
captures minimal model reasoning wrt both GCWA [Min82] and WGCWA [RLM89, RT88]. Given
a program D and a goal GG, an abductive explanation A for G consists only of negative literals s.t.
DUA = G and DUA is consistent. We have introduced an inference rule, referred to as negation by
failure to explain, that allows us to infer negation of an atom A if there is no abductive explanation
for A wrt D. It is also shown that negation by failure to explain is equivalent to negation by GCWA.

To generate abductive explanations of a given goal G wrt D, we have modified the restart model
elimination calculus of [BF94a, BFS97]. The modified calculus is used to generate all necessary
(possibly empty) potential candidates A s.t. DUA = G, and consistency checks are then carried out
to verify if D U A is consistent or not. If {) is found to be an explanation of G, then obviously G is a
logical consequence of D and hence declared to be true. In case if no abductive explanation for G is
found, then G is declared to be false under GCWA. If G has an abductive explanation and ) is not
an explanation, then it is declared to be indefinite under GCWA.

Reasoning wrt WGCWA is relatively easier and requires no consistency check. G is declared to
be false under WGCWA if there exists no potential candidate (possibly empty) to explain it. If G
is not true (or alternatively () is not a potential candidate) and has at least one potential candidate,
then it is declared to be indefinite under WGCWA. Note that no consistency checks are performed
to verify if the found potential candidates are indeed abductive explanations.

This approach to minimal model reasoning has been incorporated into the theorem prover PRO-
TEIN? [BF94b]. The following example illustrates the above ideas and how to use the system.

2 Available on the web at <URL:http://www.uni-koblenz.de/ag-ki/Protein/>.



% protein_flag(mmr,wgcwa) . =bird(s(s(s(0))))
protein_flag(mmr,gcwa) .

number (0) . bird(s(s(s(0)))) number(s(s(s(0))))
number (s(X)) :- number (X). *
number (X); bird(X).

72— bird(s(s(s(0)))). A = {=number(s(s(s(0))))}

% 7- bird(tweety).

Figure 3: Minimal model reasoning based on abduction

ExAMPLE 3.2
The left half of the Figure 3 lists a PROTEIN input file, a disjunctive logic program, and a query.
PROTEIN uses Prolog like syntax with the symbol “;” in the head of a clause that denotes disjunction.
There are two flags “gcwa” and “wgcwa” for performing minimal model reasoning wrt GCWA and
WGCWA respectively. Any line starting with the character “)” is discarded as comment.

In this example, given the query bird (s(s(s(0)))) and the flag gcwa, PROTEIN first constructs
a potential candidate for explaining this. As shown in the right half of the Figure 3, PROTEIN finds
that s(s(s(0))) could be a bird if it is not a number. However, after a consistency check this is
discarded, and since no more potential candidates can be generated, PROTEIN declares the given
goal to be false. If the same query is run with wgcwa flag, PROTEIN declares the goal to be indefinite
since it has found a potential explanation. No consistency check is carried out in this case. [ |

3.3 Minimal Model Generation and Reasoning

We have developed a method for handling a very general form of minimal model reasoning (parallel
circumscription with both fixed and varying predicates) [Nie96c, Nie96b]. The method is based on
a new technique for extending a tableau calculus to generate minimal models. As the underlying
tableau method we have used a novel hyper tableau calculus [BFN96] which merges features from
tableau techniques and hyper resolution. This calculus is extended to minimal model generation by
employing the new technique which exploits a groundedness property of minimal models and enables
a one branch at a time approach to constructing tableaux for minimal model reasoning. The calculus
is sound for general first-order circumscription and complete when no function symbols are allowed.
In contrast to other methods for minimal model reasoning, the new technique leads to low space
complexity and, e.g., in the ground case polynomial space complexity is obtained. We are not aware
of any other implementation of minimal model reasoning with this property. The method can be used
for both query-answering and minimal model generation and it can handle examples with hundreds of
thousands of minimal models. The method has been implemented in Eclipse Prolog and is available
at <URL:http://www.uni-koblenz.de/ag-ki/DLP/>.

EXAMPLE 3.3
The mm module of DisLoP is illustrated by the following two cases demol and demo2. demol consists
of the following statements and instructs the mm module to compute all the minimal models of the
given clauses:

minimized(rest).
query_mode (all).

al;bl;cl;dl;el<-true. a2 <- a3.
a2;b2;c2;d2;e2<-true. a3 <- a4.
a3;b3;c3;d3;e3<-true. a4 <- ab.
a4d;b4;c4;d4;ed<-true. ab <- al.

ab;bb;ch5;d5;eb<-true.



demo? consists of all the above statements plus the following additional query statement

?7- bl;cl;dl;el;(al,a2,a3,as,ab).

which instructs the mm module to verify whether the query is true in every minimal model. Now, a
session with mm generates all 1365 minimal models for demol and answers affirmatively to the query
of demo?2:

[eclipse 1]: [mm].

mm version 0.71

mm.pl compiled traceable 42604 bytes in 0.08 seconds
yes.

[eclipse 2]: mm(demol).

1. MINIMAL MODEL: [el, e2, e3, e4, e5]

2. MINIMAL MODEL: [el, e2, e3, e4, d5]

3. MINIMAL MODEL: [el, e2, e3, e4, cb]
1363. MINIMAL MODEL: [bl, a2, a3, a4, bb]
1364. MINIMAL MODEL: [bl, a2, a3, a4, ab]
1365. MINIMAL MODEL: [al, ab, a4, a3, a2]
mm minimal model reasoner

Results:
1365 model(s) found.
6300 ms. of CPU time used.

yes.
[eclipse 3]: mm(demo?2).
mm minimal model reasoner

Results:

Query succeeded.

0 countermodel(s) found.
0 ms. of CPU time used.

yes.
[eclipse 4]:

4 General Disjunctive Programs

For general disjunctive programs we have focused on STATIC [BDP96] and the D-WFS semantics
[BD95a, BD99, BD95b] and on generalizations of the abductive approach to incorporate negation.
We have studied their mutual relationships, implementation methods and relationship to minimal
model reasoning.

There are of course more semantics for disjunctive programs around. The first book on this
topic was [LMR92] which introduced many different versions most of which have been implemented
by D. Seipel (visit <URL:http://www-infol.informatik.uni-wuerzburg.de/database/DisLog/



introduction.html> for more information). Also the stable semantics generalizes obviously to dis-
junctive programs ([GL91]) and there are also frameworks based on autoepistemic logic ([BDP96])
as well as approaches to reduce the disjunctive case to normal programs [DGM96]. In addition,
there are works where different sorts of disjunction, ranging from ezxclusive to inclusive are allowed
([Sak89, S194, Cha93]).

The reason why we focused on D-WFS is that (1) some of the semantics mentioned above are
not well-behaved (see [Dix95a, Dix95b, Dix95¢]) and (2) there is strong evidence that this semantics
is the natural disjunctive counterpart of WFS. Also we can show that any semantics satisfying some
natural conditions is an extension of D-WFS: any query decided under D-WFS gets the same truth
value for stronger semantics. This means that in order to compute any of the stronger semantics, we
can safely start first with D-WFS. Also the STATIC semantics is strongly related to D-WFS.

In Subsection 4.1 we present our transformation approach for ground programs. There is also
a corresponding bottom-up computation which works for range-restricted Datalog programs and is
closely related to our transformations. Subsection 4.2 describes an implementation of D-WFS using
hyper tableaux. To our knowledge, it is the first implementation of disjunctive semantics which only
requires polynomial space. Finally, we mention the approach [DS97] of Dix and Stolzenburg which
generalizes the transformations from the ground to the non-ground case. This is ongoing work and
subject to further research.

4.1 D-WPFS Based on Transformations

Brass and Dix define in [BD96, BD98a] the semantics D-WFS as a confluent calculus of program
transformation as well as a bottom-up computation using certain fixpoints. Both methods have been
implemented with various settings (which transformations should be given higher priority and so on)
and are available on the web? as Prolog programs.

All the transformations are defined for ground programs (see Subsection 4.3 for an extension to
non-ground rules). The Tautology-transformation allows us to delete rules that contain the same
atom in their head and in the body. The Non-Minimal-transformation deletes non-minimal rules: if
both the head and the body of a rule r are contained in another rule r’, then ' can be deleted.

Positive Reduction allows us to simply skip all occurrences of negative literals = A if A does not
occur in the head of any rule. Negative Reduction allows us to delete a rule with an occurrence of
—A in its body, if there is a rule A <+ in the program.

The Unfolding-Transformation is the most costly operation. It allows us to select any positive
occurrence of an atom A in the body of a clause, and to replace this clause by resolving it with all
definitions of A (these are all rules having A in their heads). Obviously, this transformation should
only be applied when all others are no more applicable.

The main result then is that our calculus of transformations is confluent and terminating. This
implies that any program has a normal form, called the residuum. This residuum contains sufficient
information to answer a query immediately:

A1V Ay...VA,is true in P iff  the residuum contains a rule A « ,
with A Q {Al,AQ, e ,An}

—A1V-Ay. .. VoA, istruein P iff Jig: 1 <ip < n such that A4;, does not
occur in any head of the residuum

In addition, sub-calculi suitable for positive disjunctive programs (GCWA) and normal programs
(WFS) (described in [BD96, BD98a]) have been implemented. In particular, the Brass, Freitag and
Zukowski method for WFS, which works in quadratic time and computes a slightly different residuum,
is available.

ExaMPLE 4.1
Consider the following disjunctive logic program:

3<URL:http://www.uni-koblenz.de/ag-ki/DLP/>



a;b <- ¢, not c, not d. c;d <- not e.
a;c <- b. b <- not c, not d, not e.

Our implementation of the transformation approach described above computes the residuum of this
program as follows:

Positive reduction: replacing c; d <- not e
by c; d <-
Positive reduction: replacing b <- not c, not d, not e
by b <- not c, not d
Negative reduction: removing a; b <- c, not c, not d
Negative reduction: removing b <- not c, not d
GPPE: replacing a; c <- b by nothing

residual program:
c ; d <-

In [BD95b, BD99] we have also developed a bottom-up approach to compute the residuum. In this
approach, the fixpoint of conditional facts is computed first and later the transformations are applied
to the computed fixpoint. This approach works also for range-restricted function-free disjunctive
programs. In [BD95a] we showed how to compute the stable semantics given the residuum. We are
currently comparing these methods with the others described above.

ExXAMPLE 4.2
Consider the same program as in Example 4.1. The bottom-up fixpoint approach to compute the
residuum is carried out as follows:

Fixpoint computation: new conditional facts
c; d <- not e

b <- not ¢, not d, not e

Fixpoint computation: new conditional facts
a; b; d <- not c, not d, not e

a; c <- not c, not d, not e

Fixpoint computation: new conditional facts
b; a <- not c, not d, not e

c; a; d <- not ¢, not d, not e

Nonminimal rule: removing b; a <- not c, not d, not e
Smaller rule is b <- not c, not d, not e

Nonminimal rule: removing c; a; d <- not c, not d, not e
Smaller rule is a; c <- not c, not d, not e

Nonminimal rule: removing a; b; d <- not c, not d, not e
Smaller rule is b <- not c, not d, not e

Positive reduction: replacing a; c <- not c, not d, not e
by a; ¢ <- not c, not d

Positive reduction: replacing c; d <- not e

by c; d <-

Positive reduction: replacing b <- not c, not d, not e
by b <- not c, not d

Negative reduction: removing a; c <- not c, not d
Negative reduction: removing b <- not c, not d
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4.2 Implementing D-WFS with Polynomial Space

Although D-WFS is defined using a calculus of program transformation without any reference to
models, a connection between D-WFS and minimal models has been established [BD96, BD98a]. It
has been further shown that if the notion of a model of a disjunctive program is strengthened, then D-
WFS can be defined iteratively using standard parallel circumscription [BDNP97]. This enables us to
develop a novel implementation method for D-WFS which, in contrary to most other implementations
of disjunctive semantics, works in polynomial space in the ground case?. For related work towards
polynomial space implementation of disjunctive semantics we refer to [Stu94, LRS97] where the stable
semantics is addressed.

The idea is to implement D-WFS as an iterative reduction on disjunctive logic programs. The
reduction employs parallel circumscription and classical reasoning. It starts with the original program
and leads to a reduced program with the property that every query can be answered from this program
with one call to a theorem prover for parallel circumscription. This can be seen as a compilation
or a partial evaluation of the program leading to a smaller program from which all queries can be
answered. The polynomial space complexity is obtained by combining the reduction approach with
the new technique for minimal model reasoning described in Section 3.3. The method is also applicable
to a restricted form of the STATIC semantics (referred to as flat STATIC), which follows from our
result that flat STATIC coincides with D-WFS [BDNP97].

ExAMPLE 4.3
Consider the same program as in Example 4.1. The dwfs_mm module of DisLoP first computes the
following partial evaluation of the program:

c ; d <- true

a; c<-b

b <- not ¢, not d

a; b<-c, not c, not d

Now a query can be answered through a theorem prover call (with parallel circumscription) with this
compiled program. For example, the query 7- ¢ ; d. succeeds with this program. [ |

4.3 D-WFS for arbitrary first-order programs

One of the most important advantages of the logic programming paradigm and therefore the success
of Prolog is its ability to compute answer-substitutions for a given query. Although semantics for
logic programs with negation are undecidable if function symbols and variables are allowed, we are
convinced that query answering mechanisms for the non-ground-case have significant advantages
over the propositional case. Of course, such procedures can only be sound and not complete. But
completeness can hold for certain restricted classes of programs as well as for certain queries.

Recently ([DS97], an extended version to appear as [DS98]), Dix and Stolzenburg have extended
the transformation calculus presented in the previous subsection to non-ground programs with func-
tion symbols. The problem here is the Unfolding-Transformation, which is not sound for rules with
variables because of the occurrence of unifiable atoms in the heads of rules.

However, we can make Unfolding sound (which allows us to use the results of [BD96, BD98a]) by
introducing inequality constraints. This immediately leads us to introduce constraint disjunctive logic
programs and consequently to extend our transformations to this class of programs. Surprisingly,
this extended framework retains the same nice properties as our original calculus. In fact we can lift
the results of [BD96, BD98a] to the non-ground case: (1) the new calculus is confluent for arbitrary
programs, (2) for finite ground programs it is equivalent to the terminating calculus introduced in
Subsection 4.1, and (3) it approximates a generalization of D-WFS for arbitrary programs.

In principle, any constraint theory known from the field of constraint logic programming can
be exploited in the context of non-monotonic reasoning, not only equational constraints over the

4For an implementation, see <URL:http://www.uni-koblenz.de/ag-ki/DLP/>.
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Herbrand domain. However, the respective constraint solver must be able to treat negative constraints
of the considered constraint domain.

In this respect, this work yields the basis for a general combination of two paradigms: constraint
logic programming and non-monotonic reasoning ([DS98]).

4.4 Comparison with the STATIC Semantics

The STATIC semantics ([BDP96]) for disjunctive logic programs is stronger than D-WFS: there are
queries that are answered yes or no by the STATIC semantics while they are undetermined under
D-WES.

EXAMPLE 4.4 (STATIC 1S STRONGER THAN D-WFS)
Consider the following disjunctive logic program:

P: avVe < -d

c — -c
d — ¢
Now STATIC concludes —a but D-WFS does not. [ |

The reason for this behaviour is that in STATIC, a program is translated into a belief theory.
Negative literals —=A in such programs are translated into B(—A). But such theories are treated in
a modal logic, where we usually have the well-known (K) axiom Be(F — G) — (BaF — BaG).
This axiom implies in our example —¢ < —d in the corresponding belief theory.

However, STATIC is still weaker than STABLE, even for stratified programs. Nevertheless,
STATIC is strongly related to D-WFS as shown in [BDNP97] (D-WFS coincides with flat STATIC).

We are currently investigating how the method from Subsection 4.2 can be used to implement full
STATIC. Another implementation for STATIC (done by Stefan Brass) is also available. It is based
on the model-theoretical characterization [BDP96, Theorem 4.1].

5 Test Case Generation

We have developed a system for generating test cases for disjunctive logic programming systems and
for theorem provers. Currently, the test cases are positive ground programs (sets of ground clauses)
and they are generated using the following idea: a graph and an NP-complete problem are selected
and then from the graph a set of clauses is produced so that the clause set has a model if and only if
there is a solution for the given problem for this particular graph. The advantages of the approach
include that families of test cases with similar structure but increasing size and complexity can be
easily generated, a large variety of different types of test cases are available, and test cases can be
grounded to realistic data by choosing interesting graphs representing real-life information.

These kinds of test cases are particularly useful for developing an automated reasoning system.
They provide a systematic way of analyzing experimentally effects of different design decisions on
the performance. Families of similar test cases with increasing complexity are also important for
evaluating the scalability of the implementation and for determining the limits of its performance.

Our system can be seen as an extension of the TheoryBase system [CMMT95] which generates
test default theories and normal logic programs using the same idea of creating test cases from graph
problems. For generating graphs, TheoryBase uses Knuth’s Stanford GraphBase [Knu93] which is
a portable collection of programs and data that serves as a platform for combinatorial algorithms
and that is capable of generating and manipulating very many different kinds of graphs. TheoryBase
provides a nice interface to producing graphs using GraphBase. We employ this interface for creating
graphs and extend the scope of TheoryBase to disjunctive programs by providing new translations
from graph problems to disjunctive programs.

12



We have developed a web interface for our system through which test cases can be generated by
filling out a form describing the parameters of the desired test case. To visit the interface, see the
project home page at <URL:http://www.uni-koblenz.de/ag-ki/DLP/>.

6 Other Activities

During the course of the DisLoP project, we have organized several workshops that are related to the
aims of the project:

e IJCAI ’95 Workshop on Applications and Implementations of Non-monotonic Reasoning Sys-
tems, Montreal, Canada, August 21, 1995 [BEN95].

e Dagstuhl Seminar 9627: Disjunctive Logic Programming and Databases: Non-monotonic As-
pects, Schlofi Dagstuhl, Germany, July 1-5, 1996 [DLMW96]°.

e ECAI '96 Workshop on Integrating Non-monotonicity into Automated Reasoning Systems, Bu-
dapest, Hungary, August 12, 1996 [Nie96d].

e JICSLP 96 Postconference Workshop on Non-monotonic Extensions of Logic Programming,
Bad Honnef, Sep 5-6, 1996 [DPP97a] (see also [DPP95]).

An important outcome of the Dagstuhl Seminar 9627 is that we volunteered to construct a web
page to collect and disseminate information on various logic programming systems that concentrate
on non-monotonic aspects (different kinds of negation, disjunction, abduction etc.). This web page
is actively maintained at <URL:http://www.uni-koblenz.de/ag-ki/LP/>.

We are also organizing two major international conferences:

e LPNMR ’97 (see <URL:http://www.uni-koblenz.de/ 1pnmr97/> and [DFN97]),
e JELIA °98 (see <URL:http://www.uni-koblenz.de/ jelia98/> and [DACF98]).
as well as workshops and tutorials related to our work:

e TAB ’97 Tutorial on Clause Normal Form Tableauz, Pont-a-Mousson, France, May 13, 1997.
(see <URL:http://www.loria.fr/ galmiche/>)

e ESSLLII ’97 Tutorial on Knowledge Representation with Extended Logic Programs, Aix-en-
Provence, France, August 11-16, 1997.
(see <URL:http://www.lpl.univ-aix.fr/~ess11i97/> and [BD98c|)

e KI ’'97 Workshop on Inference-systems from a logical and a cognitive viewpoint, Freiburg, Ger-
many, September 9, 1997.
(see <URL:http://www.coling.uni-freiburg.de/workshop97/WS-10.html>)

e ILPS ’97 Workshop on Logic Programming and Knowledge Representation, Port Jefferson, NY,
USA, October 16, 1997.
(see <URL:http://www.cs.ucr.edu/ teodor/cfp-97.html> and [DPPI7c]).

7 Applications

We live in a constantly changing and uncertain world and this reflects in the knowledge/infor-
mation/data that we have at hand. More often the knowledge is indefinite and in a constant state of
flux. Disjunctive logic programming is a natural way of representing and dealing with such knowl-
edge. One real-world example is the set of rules used by a bank to calculate banking fees. Because

5<URL:http://www.uni-koblenz.de/ag-ki/dag9627/>
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Figure 4: Applications of Disjunctive Logic Programming

of the indefiniteness of the rules, it is not obvious whether a banking fee can be calculated for any
given situation and whether only one fee exists for a given situation. We successfully used constraint
disjunctive logic programs to deal with such questions [ST96].

The disjunctive techniques that we have developed during the course of this project (such as
minimal model reasoning, abduction, semantics of negation etc.) are useful in various applications
such as diagnosis and database updates. For example, [BFFN97b, BFFN97a] explores how hyper
tableau calculus [BFN96] for disjunctive programs along with the minimal model reasoning technique
of [Nie96¢c, Nie96b] can be exploited for diagnosis. In a diagnosis setup [Rei87], we have a logical
description of the system which clearly describes the behaviour of the system when all components
are functioning normally. For a given input vector an observation of the output is made. If this
observation contradicts the expected behaviour, the purpose of the diagnosis process is to identify
those components that could be faulty. To carry out this task, the key idea of [BFFN97h, BFFN97a|
is to transform the given system description, input vector, and the observation into a disjunctive
logic program in such a way that minimal model reasoning (minimal wrt the abnormality of the
components) with the transformed program provides diagnosis for the original system. Note the use
of disjunctive techniques even when the system description does not have any disjunctions!

The diagnosis task is not very different from carrying out view updates in deductive and relational
databases (see for example [AD95a]). Especially, it is very closely related to the problem of deleting
a view atom. So, disjunctive techniques can also be used for updating databases and this aspect has
been explored in detail in [AB97]. The algorithm presented there employs a transformation approach
whereby the given database together with the update request is transformed into a disjunctive logic
program in such a way that the (minimal) models of the transformed program correspond to the
update possibilities. We have studied two variants of our algorithm, where both the variants run in
polynomial space and one variant (which needs off-line pre-processing) runs in polynomial time too.
An important aspect of both these variants is that they are rational with respect to certain postulates
that are justified from the philosophical works on belief dynamics (see for example [AD95a]).

Another important application of disjunctive techniques in the database area is to glue together
different heterogeneous databases to provide a single unified view to the user. With the ever expanding
world wide web technology, millions and millions of data in thousands of different formats are thrown
at a user who clearly needs some tools to put together information of interest. We have initiated a
separate project to address such issues and are beginning to use ideas and concepts developed for the
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DisLoP project. For example, the system that integrates different heterogeneous databases needs to
know what kinds of external database calls are necessary to answer a particular query from a user.
Abduction naturally solves such problems and the system looks for abductive explanations for the
query in terms of external calls. There are many other aspects where disjunctive techniques could be
employed and we are currently studying them in detail.

Other areas for applications of disjunctive techniques include robotics, planning, hypothetical
reasoning etc. We plan to explore such areas in the near future.
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