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1 INTRODUCTIONUnrestricted exchange rules of Girard's linear logic [8] force the commutativityof the multiplicative connectives 
 (times, conjunction) and &(par, disjunc-tion), and henceforth the commutativity of all logic. This a priori commuta-tivity is not always desirable | it is quite problematic in applications like lin-guistics or computer science |, and actually the desire of a non-commutativelogic goes back to the very beginning of LL [9].Previous works on non-commutativity deal essentially with non-commutativefragments of LL, obtained by removing the exchange rule at all.At that point, a simple remark on the status of exchange in the sequent cal-culus is necessary to be clear: there are two presentations of exchange in com-mutative LL, either sequents are �nite sets of occurrences of formulas andexchange is obviously implicit, or sequents are �nite sequences of formulasand the (unrestricted) exchange rule is explicit:1 Research supported by an INRIA post-doctoral fellowship. This work was partlycarried out while the author was at LIENS - CNRS, Ecole Normale Sup�erieure(France).Preprint submitted to Elsevier Preprint May 1998



` A1; : : : ; An � any permutation of f1; : : : ; ng.` A�(1); : : : ; A�(n)Now, removing the exchange rule in LL is possible because, in the second stylecalculus, the cut elimination procedure of LL preserves crucially the absenceof exchanges 2 .The resulting non-commutative fragment enjoys an important and rather un-expected property [3]: provability is closed under the rule of cyclic exchange:` A1; : : : ; An � cyclic permutation of f1; : : : ; ng.` A�(1); : : : ; A�(n)So the right name for the non-commutative fragment of LL is cyclic linearlogic, cyLL. CyLL has been proposed by Girard [9] and expounded by Yetter[19], but presented with cyclic exchange as a rule of the sequent calculus | andthe �rst wrong impression has been that cyLL is not really non-commutative!The above result on the provability in cyLL leads naturally to a nice formu-lation of cyLL obtained by de�ning sequents as �nite cycles of occurrences offormulas. Cyclic proof structures can also be de�ned, and a correctness crite-rion is obtained very easily from [2]: cyclic proof nets are usual proof nets ofLL satisfying a certain additional condition.It is also possible to consider two negations instead of one [1], but this intro-duces complications, both in the sequent calculus, in proof nets and in thephase semantics (for associativity, as noticed by Girard in [10] Appendix F),not to speak about the \semantics" of proofs. In both cases, the intuitionis-tic version is the extension of Lambek's syntactic calculus (introduced thirtyyears before LL [12] for linguistic needs: categorial grammars) with additivesand exponentials. Remark indeed that the multiplicative fragment of cyLL isa conservative extension of Lambek's calculus [3].However purely non-commutative fragments of LL are too limited in practice.We must �nd a non-commutative logic that is more general than commutativelogic. Retor�e shows in [16] that LL enlarged with the Mix rule contains aself-dual non-commutative connective which is intermediate between 
 and&: the connective < (before); he gives proof nets and a coherent semantics,the drawback being the complicated sequent calculus and (up to now) theabsence of a sequentialization theorem. There have also been attempts to addmodalities in order to recover commutativity in a non-commutative framework(e.g., [14]), but there are too many possibilities and these modalities introducemany complications.A simple solution arised recently through the interaction of two independentworks:2 A nice topological study of proof nets with explicit exchange rule has been carriedout by Fleury [7]. 2



{ The �rst author found a direct characterization of proof nets of CyLL asgraphs satisfying a geometrical property which implies (but does not presup-pose) that cyclic proof nets are proof nets of LL. Let � (next) denote thenon-commutative conjunction and r (sequential) the non-commutative dis-junction. The idea is to consider only one switching position, say the rightone, for �-links and to introduce a new switching position for r-links. Thenthere is a simple de�nition of proof nets by a trip condition, which can begeneralized in presence of commutative connectives.{ The second author introduced a mixed non-commutative / commutative se-quent calculus enjoying cut elimination and a corresponding phase semantics[17], starting from the intuitionistic version of De Groote [6] and questionsarising in the theory of concurrency [18]. The main technical ingredient is thestructure of order varieties, which enable to express symmetry constraints ina sequent. An order variety is a structure which, provided a point of view (anelement x in the base set), can be seen as a partial order on the complement offxg. Order varieties can therefore be presented in di�erent ways by changingthe viewpoint, of course they are invariant under the change of presentation.In the sequent calculus, this idea of presentation corresponds to the ability offocusing on any formula to apply a rule. A good analogy is with cyclic per-mutations in cyLL, which enable to move the desired formula to the positionwhere the rule is applicable, typically avoiding the problems of the 2-negationsfragment.Still a di�culty: the name for the resulting logic? \Mixed non-commutative /commutative linear logic" is too long. On the other hand non-commutativitypractically implies linearity and it includes commutativity as a particular case,so our choice has been to call it simply non-commutative logic, NL.The present paper introduces the multiplicative fragment MNL of non-commu-tative logic, which extends both linear logic and cyclic linear logic: proof netsand cut elimination (section 2), order varieties (section 3), sequent calculusand sequentialization (section 4 and appendix A).2 PROOF NETS AND CUT ELIMINATION2.1 LanguageDe�nition 2.1 (Formulas of MNL) The formulas (of MNL) are built fromatoms p; q; : : : , p?; q?; : : : and the following multiplicative connectives:{ the non-commutative conjunction �, next,{ the non-commutative disjunction r, sequential,3



{ the commutative conjunction 
, times,{ the commutative disjunction &, par.De�nition 2.2 (Negation) Negation is de�ned by De Morgan rules:(p)? = p? (p?)? = p(A� B)? = B?rA? (ArB)? = B? � A?(A
 B)? = B? &A? (A &B)? = B? 
 A?Negation is then an involution: for any formula A, A?? = A.De�nition 2.3 (Formulas of MLL, McyLL) { The formulas of MLL (resp.McyLL) are built from atoms p; q; : : : , p?; q?; : : : and the connectives 
 and&(resp. � and r).{ For every formula A of MNL, we de�ne the formula A� of MLL, called thecommutative translation of A, by induction: A� = A if A is atomic, (A
B)� =A� 
B�, (A &B)� = A� &B�, (A� B)� = A� 
 B�, (ArB)� = A� &B�.2.2 Proof netsDe�nition 2.4 (Links) Links of MNL are the following graphs where thevertices are labeled by formulas of MNL:{ identity links: A? Awith two conclusions A? and A and no premisse;{ cut links: A? Awith two premisses A? and A and no conclusion;{ 
, &,�,r-links:A B A B A B A BA
 B A &B A� B ArB4



where the formula A is the �rst premisse, the formula B is the second pre-misse and the third formula is the conclusion of the link.De�nition 2.5 (Proof structures) { A proof structure (of MNL) is a graphbuilt from links of MNL such that every occurrence of formula is the conclu-sion of exactly one link of MNL and the premisse of at most one link.{ If � is a proof structure of MNL, the conclusions of � are the occurrences offormulas in � which are not premisses of a link.{ A proof structure of MLL (resp. McyLL) is a proof structure labeled withonly MLL (resp. McyLL) formulas.De�nition 2.6 (��) If � is a proof structure of MNL, then its commutativetranslation �� is the proof structure of MLL obtained by replacing every oc-currence of formula A by A�, every �-link by a 
-link and every r-link by a&-link.We consider as [8] formulas with decorations: " (question) or # (answer). Adecorated formula is of the form A" or A#, where A is a formula of MNL. De�ne�" =# , �# =". For each link l of MNL, we can consider two sets of decoratedformulas:{ lin is the set of all decorated formulas Ax, where A is a premisse of l and xis #, or A is a conclusion of l and x is ";{ lout is the set of all Ax, where A is a premisse of l and x is ", or A is aconclusion of l and x is #.De�nition 2.7 (Switchings) For each link l of MNL we de�ne a set S(l)of (partial) functions from lin to lout, called the switching positions of l, asfollows:{ if l is an identitylink A? A, then S(l) = fidg whereid : (A?)" 7! A#; A" 7! (A?)#;{ if l is a cut link A? A, then S(l) = fcutg wherecut : (A?)# 7! A"; A# 7! (A?)";
{ if l is a 
-link A BA
B , then S(l) = f
R;
Lg where
R : (A
B)" 7! A"; A# 7! B"; B# 7! (A
 B)# and
L : (A
B)" 7! B"; A# 7! (A
 B)#; B# 7! A";{ if l is a &-link A BA &B , then S(l) = f &R; &Lg where&R : (A &B)" 7! B"; A# 7! A"; B# 7! (A &B)# and&L : (A &B)" 7! A"; A# 7! (A &B)#; B# 7! B";5
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{ if l is a �-link A BA�B , then S(l) = f�Rg where�R : (A�B)" 7! A"; A# 7! B"; B# 7! (A� B)#;{ if l is a r-link A BArB , then S(l) = frR; rL; r3g whererR : (ArB)" 7! B"; A# 7! A"; B# 7! (ArB)#,rL : (ArB)" 7! A"; A# 7! (ArB)#; B# 7! B" andr3 : (ArB)" 7! A"; B# 7! (ArB)#.

� r r rrL r3�R rR
Given a proof structure �, a switching for � is a function s such that for everylink l of �, s(l) 2 S(l). A switching s for � is r3-free if for every r-link l,s(l) 6= r3.De�nition 2.8 (Trips) { Let � be a proof structure and s a switching for�. The switched proof structure s(�) is the oriented graph with vertices thedecorated formulas labeling �, and with an oriented edge from Ax to By i�either By = s(l)(Ax) for some link l in �, or Ax = C# and By = C" for someconclusion C of �.{ A trip in s(�) is a cycle or a maximal path in s(�).Remark. Let � be a proof structure of MNL and s a switching for �. If v is atrip in s(�) and not a cycle, v begins with B" where B is the second premisseof a r-link l with s(l) = r3, and ends with A# where A is the �rst premisseof a r-link l0 with s(l0) = r3.Facts 2.9 (i) If v and v0 are di�erent trips in s(�), then v and v0 are disjoint.(ii) If s is r3-free, then every trip in s(�) is a cycle.We can now de�ne proof nets for MNL, a class containing all the usual proofnets of MLL and McyLL.De�nition 2.10 (Long trips and bilateral trips) Let � be a proof struc-ture of MNL and s a switching for �. { A trip v in s(�) is a long trip if v isa cycle and in v every occurrence of formula A in � occurs twice, once as A"once as A#.{ A cycle v in s(�) is bilateral (see [5]) if v is not of the formAx; : : : ; By; : : : ; A�x; : : : ; B�y; : : : ; Ax where A and B are occurrences of for-6



mulas in �.De�nition 2.11 (Proof nets) � is a proof net (of MNL) i� � is a proofstructure of MNL and for every switching s for �:(1) there is exactly one cycle � in s(�),(2) � contains all the conclusions,(3) � is bilateral.Facts 2.12 (i) If � is a proof net of MNL, and s is a r3-free switching for�, then the unique cycle � in s(�) is a long trip.(ii) If � is a proof net of MNL and s a switching for �, then the oriented graphwith vertices the conclusions of � and an oriented edge from a conclusion Ato a conclusion B i� there is no conclusion between B" and A# in the uniquecycle in s(�), is an oriented cycle, called the cycle of the conclusions in s(�).De�nition 2.13 (Proof nets of MLL (McyLL)) A proof net of MLL (resp.McyLL) is a proof structure of MLL (resp. McyLL) that is a proof net of MNL.Proposition 2.14 (i) � is a proof net of MLL i� for every switching s for �there is a long trip in s(�).(ii) If � is a proof net of MCyLL and s and s0 are switchings for �, then thecycle of the conclusions in s(�) is equal to the cycle of the conclusions in s0(�).Proof. (i) If � is a proof structure of MLL, and s is a switching for �, all thetrips in s(�) are cycles (facts 2.9); but since � is a proof net, there is exactlyone cycle �, whence � is a long trip. Conversely, assume that there is a longtrip in s(�) for every switching s for �: if s is a switching for �, the long trip� in s(�) is the unique cycle in s(�) and satis�es (2) (obvious) and (3) (seeDanos-R�egnier [5]).(ii) If � has no r-link, the result is obvious. If � has r-links, and l is a r-linkin � with conclusion ArB, then for every switching s, no conclusion occurs inthe unique cycle � in s(�) between B" and A#: indeed, otherwise, by takingthe switching s0 such that s0(l) = r3 and s0(l0) = s(l) for every link l0 6= l,we get a contradiction with the fact that � is a proof net. This gives what isstated in the lemma. �Examples.�  1 = B? BAA? A�BB?rA?1 2is a proof net (in fact a proof net of McyLL). The two trips for s(l1) = r3 are:7



v1 = (B?rA?)"B?"B#(A� B)#(A� B)"A"A?#(B?rA?)#(B?rA?)", a cyclecontaining both conclusions and bilateral, andv2 = A?"A#B"B?#.�  2 = B? BAA?B? &A? A�Bis a proof net, but B? BAA?B?rA? A
B1 2
is not a proof net: with s(l1) = r3 and s(l2) = 
L, the trips areA?"A#(A
 B)#(A
B)"B"B?# and(B?rA?)"B?"B#A"A?#(B?rA?)#(B?rA?)", a cycle which does not containthe conclusion A
 B, contradicting condition (2).�  3 = A? B? A B CC?A? �B? B � CA &C?is a proof net. For every switching s, the cycle of the conclusions in s( 3) isB � C ! A &C? ! A? �B? ! B �C. But the proof structure obtained byreplacing &by r is not a proof net (even though, of course, its commutativetranslation is a proof net of LL): to see why, take r3 for the r-link.�  4 = 8



1 23B C C? E?D? B? D E
�C? 
 E? D? 
B?

is a proof net. Call A the conclusion (C? 
 E?) � (D? 
 B?). The cycle ofthe conclusions in s( 4) isA! B ! D ! E ! C ! A if s(l1) = s(l2) = 
R,A! D ! B ! E ! C ! A if s(l1) = 
R and s(l2) = 
L,A! B ! D ! C ! E ! A if s(l1) = 
L and s(l2) = 
R,A! D ! B ! C ! E ! A if s(l1) = s(l2) = 
L.2.3 An equivalent de�nition of proof netsTheorem 2.20 tells that the correctness criterion in de�nition 2.11 is equivalentto the correctness in the commutative sense plus some conditions on the innerparts of r links. To prove it, we need a few de�nitions.De�nition 2.15 Let � be a proof structure of MNL.{ Let s be a r3-free switching for �. De�ne a switching s� for �� by: for everylink l of �, s�(l�) = (s(l))�where for x = R or x = L, (
x)� = 
x, ( &x)� = &x, (rx)� = &x and(�R)� = 
R.For every trip v in s(�), v� is obtained from v by replacing each decoratedoccurrence of formula Ax in v by (A�)x.{ Let s be a switching for �� such that for all the �-links l in �, s(l�) 6= 
L.De�ne a r3-free switching s� for � by: for every �-link or r-link l of �,s�(l) = (s(l�))� if l is a �-link or a r-link,s�(l) = s(l�) otherwise,where (
R)� = �R, ( &R)� = rR and ( &L)� = rL.For every trip v in s(��), v� is obtained from v by replacing each decoratedoccurrence of formula (A�)x in v by Ax.Facts 2.16 Let � be a proof structure of MNL.(i) Let s be a r3-free switching for �.{ s�� = s. 9



{ If v is a trip in s(�), then v� is a trip in s�(��).{ If v is a cycle (resp. a long trip, a bilateral trip, a trip containing all theconclusions), then so is v�.(ii) Let s be a switching for ��, such that for all the �-links l in �, s(l�) 6= 
L:{ s�� = s{ If v is a trip in s(��), then v� is a trip in s�(�).{ If v is a cycle (a long trip, a bilateral trip, a trip containing all the conclu-sions), then so is v�.De�nition 2.17 (Inner, outer, inf parts of r; &-links. Overlapping)Let � be a proof structure of MNL, s a switching for �, v a trip in s(�).{ Let l be a &-link or a r-link of �, with �rst premisse A, second premisse Band conclusion C. When it exists, the part of v from B" to A# (resp. the partof v from A" to B#, the part of v from C# to C") is called the inner (resp.outer, inf) part of l in v. The sup part of l in v is the union of the inner andouter parts of l in v.{ Let l1 = A1 B1A1rB1 and l2 = A2 B2A2rB2 be two r-links of �. The inner parts of l1and l2 in v overlap if v is of one of the following forms:
A#2A#1 A#2B"2 B"1 B"2

B"1B"1A#1 B"2 A#1A#2
in other terms they do not overlap if either one is included into the other, orthey are disjoint.De�nition 2.18 (Deletion and insertion of inner parts) Let � be aproof structure of MNL, and l = A BArB be a r-link of �.(i) If s is a switching for �, then sl3 is the switching for � de�ned as follows:sl3(l0) = s(l0) if l0 6= l;sl3(l) = r3:If v a trip in s(�) containing the inner part of l, vl3 is obtained from v bydeleting the inner part of the r-link l.(ii) If s is a switching for � such that s(l) = r3, then slR is the switching for� de�ned as follows: slR(l0) = s(l0) if l0 6= l;slR(l) = rR:10



If v a trip in s(�) and there is a trip v0 in s(�) containing the inner part ofl, then vlR is obtained from v by inserting between (ArB)" and A" the innerpart of the r-link l (contained in v0). (If (ArB)" and A" are not in v, thenvlR = v.)Facts 2.19 Let � be a proof structure of MNL, and l = A BArB be a r-link of�.(i) Let s be a switching for �, and v a trip in s(�) containing the inner partof l.- If s(l) = rR, then (sl3)lR = s.- vl3 is a trip in sl3(�).- If v is a cycle (resp. a bilateral trip), then so is vl3.- If v contains all the conclusions, and no conclusion is in the inner part of l,then vl3 contains all the conclusions.(ii) Let s be a switching for � such that s(l) = r3, and v a trip in s(�), andassume there is a trip v0 in s(�) containing the inner part of l.- (slR)l3 = s.- vlR is a trip in slR(�).- If v is a cycle (resp. a cycle containing all the conclusions), then so is vlR.Theorem 2.20 � is a proof net of MNL i� � is a proof structure of MNLsuch that(i) �� is a proof net of MLL,(ii) for every r3-free switching s for �, the inner parts of r-links in the uniquecycle � in s(�) contain no conclusion and do not overlap.Proof. ()) Assume � is a proof net of MNL.(i)We prove that �� is a proof net of MLL. Let s be a switching for ��, and nbe the number of �-links l in � such that s(l�) = 
L. We prove, by inductionon n, that there is a bilateral long trip in s(��).If n = 0, then s� is a r3-free switching for �; since � is a proof net of MNL,there is a unique cycle � in s�(�) which is a bilateral long trip; but then �� isa bilateral long trip in s(��) by facts 2.19.If n > 0, then let l = A BA�B be a �-link in � such that s(l�) = 
L: change sinto s0 by taking s0(l�) = 
R and s0(l0�) = s(l0�) for all the links l0 6= l. Byinduction hypothesis, there is a unique bilateral long trip � in s0(��): since� is a long trip, in � we �nd the following adjacent decorated occurrences offormulas:(A� 
B�)"; A�"A�#; B�"B�#; (A� 
 B�)#and since � is bilateral the cycle � must have the following form:11



(A� 
B�)"; (A�)"; 1� � �; (A�)#; (B�)"; 2� � �; (B�)#; (A� 
B�)#; 3� � �; (A� 
B�)":Therefore, by taking the switching s, we get the following long trip in s(��):(A� 
B�)"; (B�)"; 2� � �; (B�)#; (A�)"; 1� � �; (A�)#; (A� 
B�)#; 3� � �; (A� 
B�)"which is a bilateral trip as well.(ii)We prove that for every r3-free switching s for � the inner parts of r-linksin the unique cycle � in s(�) contain no conclusion: this is immediate. Indeed,by absurdum, let s be a r3-free switching for � and assume the inner part ofa r-link l contains a conclusion: by facts 2.12, � is a long trip in s(�), so theinner part of l is included in �; but then �l3 is a cycle in sl3(�), whence theunique cycle in sl3(�) (since � is a proof net of MNL), and it does not containall the conclusions: contradiction.Finally, we prove that for every r3-free switching s for � the inner parts ofr-links in the long trip � in s(�) do not overlap. By absurdum, assume s is ar3-free switching for �, and l1 = A1 B1A1rB1 and l2 = A2 B2A2rB2 , are two r-links in �such that, in the long trip, the inner parts of l1 and l2 overlap. So, s(l1) ands(l2) are not r3 and we have two possible cases:a) in the inner part of l1 there is B2" but not A2#,b) in the inner part of l2 there is B1" but not A1#,c) the union of the two inner parts is �.In case a) we have four possible subcases, depending on s(l1) and s(l2):a1) the unique cycle � is(A1rB1)"; B1"; 1� � �; (A2rB2)"; B2"; 2� � �; A1#; A1"; 3� � �; A2#; A2"; 4� � �; (A1rB1)";a2) the unique cycle � is(A1rB1)"; B1"; 1� � �; B2#; B2"; 2� � �; A1#; A1"; 3� � �; A2#; (A2rB2)#; 4� � �; (A1rB1)";a3) the unique cycle � is(B1)#; B1"; 1� � �; (A2rB2)"; B2"; 2� � �; A1#; (A1rB1)#; 3� � �; A2#; A2"; 4� � �; B1#;a4) the unique cycle � is(B1)#; B1"; 1� � �; B2#; B2"; 2� � �; A1#; (A1rB1)#; 3� � �; A2#; (A2rB2)#; 4� � �; B1#:Now, consider (sl13)l23: it is easy to see that there is no cycle in (sl13)l23(�);for instance, in the case a1), there are only the following two trips (none ofthem being a cycle):(B1)"; 1� � �; (A2rB2)"; (A2)"; 4� � �; (A1rB1)"; (A1)"; 3� � �; (A2)#(B2)"; 2� � �; (A1)#.But this contradicts the hypothesis that � is a proof net of MNL.The case b) is very similar.The case c) is impossible here because inner parts do not contain conclusions.12



(() Assume � is a proof structure of MNL such that:(i) �� is a proof net of MLL, and(ii) for every r3-free switching s for �, the inner parts of r-links in the uniquecycle � of s(�) contain no conclusion and do not overlap.Properties (i) and (ii) imply:(ii') for every switching s for �, the inner parts of r-links in the unique cycle� of s(�) contain no conclusion and do not overlap.Indeed, let s be a switching for �, and assume for a contradiction that thereare inner parts of r-links containing conclusions or overlappings. Consider ther-free switching sl1R;��� ;lnR where l1; : : : ; ln are the r-links such that s(li) = r3.Then (sl1R;��� ;lnR)� is a switching for the proof net �� of MLL, so there is along trip �� in (sl1R;��� ;lnR)�(��), and therefore by facts 2.19, � is a long trip insl1R;��� ;lnR(�) where there are inner parts of r-links containing conclusions oroverlappings: contradiction.Now let s be a switching for �. By induction on the number n of the r-linksl such that s(l) = r3, we show that:a) in s(�) there is exactly one cycle �,b) � contains all the conclusions,c) � is bilateral,d) for every r-link l, there is a trip in s(�) containing the inner part of l.If n = 0, then s is r3-free, so s� is a switching for ��. Since �� is a proof netof MLL, there is a unique bilateral long trip �� in s�(��), and therefore � isthe unique bilateral long trip in s(�), thus that a),b),c),d) are satis�ed.If n > 0, take a r-link l such that s(l) = r3, and consider the switching slR for�. By induction hypothesis, there is exactly one cycle � in slR(�), � is bilateraland contains all the conclusions, and d) is satis�ed. Since slR(�) satis�es d),either the inner part of l is in � or the inner part of l is outside �. If theinner part of l is in �, then �l3 is the unique cycle in s(�), it contains all theconclusions (since by hypothesis the inner part of l contains no conclusion)and it is bilateral; moreover s(�) satis�es d) because the inner parts of r-linksdo not overlap. If the inner part of l is outside �, then the inner part of lis contained in some trip v, since slR(�) satis�es d); therefore �l3 = � is theunique cycle in s(�), and it contains all the conclusions and is bilateral, ands(�) satis�es d) again, because the inner parts of r-links do not overlap. �Remarks.� Let � be a proof net of MLL, with atomic identity links, satisfying thefollowing property: there exist 
-links l1; : : : ; ln, and &-links l01; : : : ; l0m, suchthat for every switching s with s(li) = 
R, the inner parts of l01; � � � ; l0m containno conclusion and do not overlap. Then by theorem 2.20, if we replace l1; : : : ; ln13



by �-links and l01; : : : ; l0m by r-links, and the occurrences of formulas in acorresponding way, then we get a proof net �0 of MNL.The reader may check for instance that  1 : : :  4 come from proof nets of MLLsatisfying conditions stated in theorem 2.20.� Theorem 2.20 tells in particular that condition (3) is necessary. Without it aproof net can even not be correct in the commutative sense. For instance, thefollowing structure satis�es (1) and (2) for every switching, but is obviouslynot correct:
� � �

Condition (3) is in fact equivalent, modulo the other conditions, to the usualconstraint on the order of passage through � links (see lemma 2.9.7 of [8]where this constraint is given for commutative times links).2.4 ReductionDe�nition 2.21 Reduction rules of proof structures are the following localrules:{ identity link: AAA A?{ commutative links:
A &BB? A
BA B B? A? A BA?

{ non-commutative links: 14



ArBB? A�BA B B? A? A BA?
Theorem 2.22 (Stability of proof nets by reduction) If � is a proof netand � ! �0, then �0 is a proof net.Proof. Let � be a proof net and �0 the structure obtained by eliminating thecut bearing on the pair of links A BAtB and B? A?B?t?A? (t 2 f
;�g and 
? = &,�? = r). We show the stability of conditions (1), (2) and (3) using theequivalent formulation given by theorem 2.20.1. Correctness of �0�. It has already been proved: see [8].2. Absence of conclusions in the inner parts of r-links. Let s be a r3-freeswitching for �, C DCrD be a link in �0, and s0 be the restriction of s to �.{ t = �. Depending on the position of the link B? A?B?rA? , the (long) trip v ins(�) goes either like:A?" 1: : : B?#B?" 2: : : A?#(B?rA?)#(A � B)"A" 3: : : A#B" 4: : : B#(A �B)#(B?rA?)": : :A?" or likeB?" 2: : : A?#A?" 1: : : B?#(B?rA?)#(A � B)"A" 3: : : A#B" 4: : : B#(A �B)#(B?rA?)": : :B?".After reduction, the long trip v0 in s0(�0) is:B#B?" 2: : : A?#A" 3: : : A#A?" 1: : : B?#B" 4: : : B#:By hypothesis 1 contains no conclusion. The condition of non-overlap-ping of inner parts of r-links in � implies that D" is in 1 i� C# is in 1i� D" : : : C# is in 1, and in this case the inner part D" : : : C# contains noconclusion. Otherwise D" and C# are in 2; 3; 4: now the segments 2; 3 and4 are in this order in the long trip, before and after reduction, so D" : : : C#contains a conclusion in v0 i� it contains a conclusion in v, and this is falseby hypothesis, qed.{ t = 
. With the same notations as above for the 4 segments of the cycle,the trip v in � is 1; 2; 3; 4 or 2; 1; 3; 4 or 1; 2; 4; 3 or 2; 1; 4; 3 up to cyclicpermutation, and the trip v0 in �0 is always 1; 4; 2; 3 up to cyclic permuta-tion 3 . Assume D" : : : C# contains a conclusion � in �0. The position of thesethree formulas in 1; 4; 2; 3 is a triple (D"; �; C#) 2 f1; 2; 3; 4g3. But for anytriple (x; y; z) 2 f1; 2; 3; 4g3 such that (x; y; z) is in the order variety (1423),3 We shall refer to \1; 4; 2; 3 up to cyclic permutation" as \the order variety (1423)".Although it should be intuitive enough in this case, precise de�nitions are in sec-tion 3. 15



(x; y; z) is in at least one of the order varieties (1234) or (2134) or (1243)or (2143): if two positions among x; y; z are equal, it is obvious; besides(1; 4; 2) 2 (2134), (1; 4; 3) 2 (1243), (1; 2; 3) 2 (1234) and (4; 2; 3) 2 (2134).So some trip in � contains a conclusion �: contradiction.3. Non-overlapping of the inner parts of r-links. Let s be a r3-free switching.Let C1 C2C1rC2 and D1 D2D1rD2 be two others links.{ t = �. We use the above notations. In �0, D"2 is in 1 i�D#1 is in 1 i�D"2 : : : D#1is in 1, it is therefore also the case in �, and then for every position of C"2and C#1 , an overlapping in �0 comes from an overlapping in at least one ofthe trips 1; 2; 3; 4 and 2; 1; 3; 4 in �.The case when C"2 : : : C#1 is in 1 is similar.Otherwise all of D"2, D#1, C"2 and C#1 are in 2; 3; 4, and the overlapping ispreserved, as the order of the segments 2; 3 and 4 is preserved.{ t = 
. Let C"2 ; D"2; C#1 ; D#1 be an overlapping in �0 (the other case is abso-lutely similar), let us show that it comes from an overlapping in �. If the 4formulas are spread over 1, 2 or 3 segments (among the segments 1; 2; 3 and4), then it is clear by the same argument as above. Besides, they cannotbe spread over the 4 segments. Indeed, if for instance C"2 ; D"2; C#1 ; D#1 are re-spectively in 1; 4; 2; 3, then the trip of the form 2; 1; 4; 3 in � forbids on onehand any conclusion in 3 and 4 (no conclusion in the inner part C"2 : : : C#1in �), and on the other hand any conclusion in 1 and 2 (no conclusion inD"2 : : :D#1), what is impossible, because �� is a proof net of MLL and musttherefore have at least one conclusion. The others cyclic permutations ofC"2 ; D"2; C#1 ; D#1 in 1; 4; 2; 3 give rise to an analogous argument. �Theorem 2.23 Reduction of proof nets is strongly normalizing and con
uent.Proof. Obviously � ! �0 i� �� ! �0�, therefore see [8]. �Example.
 5 = A B B? A? A B B? A?
 & �

=  50BA B? A?�16



The cycle of the conclusions in s( 5) is: A ! B ! B? � A? ! A or B !A! B? � A? ! B, depending on the switching s.In s( 05), the cycle of the conclusions is: A ! B ! B? � A? ! A for everyswiching s.3 ORDER VARIETIES3.1 Order varieties and partial ordersOrder varieties are structures that can be presented as partial orders in severalways, the idea being that of the oriented circle which becomes a total orderas soon as an origin is �xed.De�nition 3.1 (Order varieties) Let E be a set. An order variety on E isa ternary relation � which is{ cyclic: 8x; y; z 2 E;�(x; y; z)) �(y; z; x),{ anti-re
exive: 8x; y 2 E, :�(x; x; y),{ transitive: 8x; y; z; t 2 E, �(x; y; z) ^ �(z; t; x)) �(y; z; t),{ spreading: 8x; y; z; t 2 E, �(x; y; z)) �(t; y; z) _�(x; t; z) _�(x; y; t).An order variety � on E is said total when 8x; y; z 2 E, x 6= y 6= z 6= x )�(x; y; z) _�(z; y; x).Ternary relations satisfying the �rst three axioms have been studied by Nov�ak[15] and called cyclic orders, but only the spreading condition gives a satis-factory connection between order varieties and their presentations by orders(theorem 3.8).A few elementary properties and examples:Lemma 3.2 (i) Transitivity of an order variety � implies �(x; y; z)^ �(z; t; x))�(t; x; y) as well.(ii) An order variety � on a set E is anti-symetrical: 8x; y; z 2 E, :�(x; y; z)_:�(z; y; x).Proof. (i) .
. ..t x yz
17



(ii) Let � be an order variety. �(x; y; z) ^ �(z; y; x) implies �(y; x; y) (tran-sitivity) i.e. �(y; y; x) (cyclicity), and this does not hold. �Examples.� As expected, if � is a total order variety, �(x; y; z) can be read as \y isbetween x and z".� The empty ternary relation on any set E is an order variety on E, called theempty order variety on E, denoted by ;E, or simply ; if there is no ambiguity.� The cyclic closure of f(a; b; c)g sati�es the �rst three axioms, but it is notan order variety on fa; b; c; dg (only on fa; b; cg).De�nition 3.3 (!�) Any order variety � on E induces an oriented graph!� on E with an oriented edge between x and y 2 E i� 8z 2 E; z 6= x ^ z 6=y ) �(x; y; z).Any oriented cycle G induces a ternary relation r(G) on jGj by: r(G)(x; y; z)i� y is between x and z in G.Facts 3.4 (i) If � is a total order variety on E, then!� is an oriented cycle.(ii) If G is an oriented cycle, then r(G) is a total order variety.(iii) The set of �nite oriented cycles is isomorphic to the set of �nite totalorder varieties.Notation. The �nite total order variety corresponding to the oriented cyclea1 ! � � � ! an ! a1 will be simply denoted (a1 : : : an).De�nition 3.5 (i) Let � be an order variety on E and x 2 E. De�ne thebinary relation �x on E n fxg by: �x(y; z) i� �(x; y; z).(ii) Let (E; !) be a strict order and z 2 E. De�ne the binary relation z<! by:{ x z<! y i� x <! y and z is comparable with neither x nor y,and the ternary relation ! on E by:{ !(x; y; z) i� x <! y <! z _ y <! z <! x _ z <! x <! y _x z<! y _ y x<! z _ z y<! x.Proposition 3.6 If � is an order variety on E and x 2 E, then �x is a strictorder on E n fxg. It is called the order induced by � and x.Proof. If � is an order variety , then �x indeed is{ anti-re
exive: �x(y; z) i� �(x; y; z), and this implies y 6= z (anti-re
exivityof �),{ anti-symmetrical: �x(y; z)^�x(z; y) i� �(x; y; z)^�(x; z; y), and this doesnot hold (lemma 3.2),{ transitive: �x(y; z)^�x(z; t) i� �(x; y; z)^�(x; z; t), i� �(x; y; z)^�(z; t; x)18



(cyclicity of �), and this implies�(t; x; y) (transitivity of �), whence �(x; y; t)i.e. �x(y; t). �Notation. We shall make use of the familiar notions of serial and parallelcompositions of orders: let !1 and !2 be orders on disjoint sets E and Frespectively; de�ne two orders on E[F , their serial and parallel compositions,!1<!2 and !1 k!2 respectively, by:� (!1<!2)(x; y) i� x <!1 y or x <!2 y or (x 2 E and y 2 F ),� (!1 k!2)(x; y) i� x <!1 y or x <!2 y.Proposition 3.7 (i) If (E; !) is a strictly ordered set, then ! is an ordervariety on E.(ii) If (E1; !1) and (E2; !2) are two strict orders on disjoints sets E1 and E2,then !1<!2 = !1 k!2 = !2<!1:Proof. (i) If (E; !) is strictly ordered, then ! is indeed:{ cyclic: it is clear;{ anti-re
exive: as ! is a strict order, :x <! x and :x x<! y, thus :!(x; x; z);{ transitive: !(x; y; z) and !(z; t; x) i� (x <! y <! z _ y <! z <! x _ z <!x <! y _ x z<! y _ y x<! z _ z y<! x) ^ (z <! t <! x _ t <! x <!z _ x <! z <! t _ z x<! t _ t z<! x _ x t<! z). If x <! y <! z, thent <! x <! y <! z or x <! y <! z <! t or t incomparable with x; y and z, andin all cases !(t; x; y). The cases when y <! z <! x or z <! x <! y are similar(cyclic permutation).If x z<! y, then z x<! t _ t z<! x. In the �rst case, x <! y and t is incomparablewith x and y (t <! y ) z <! y contradicts x z<! y, and y <! t ) x <! tcontradicts z x<! t), whence x t<! y. In the second case, t <! x <! y, thusonce again !(t; x; y). The cases when y x<! z or z y<! x are similar (cyclicpermutation).{ spreading: assume !(x; y; z) and let t 2 E. If x <! y <! z, then eithert <! y (so t <! y <! z, whence !(y; z; t)), or y <! t (so x <! y <! t, whence!(x; y; t)), or y and t are comparable (and in that case either t is incomparablewith x, so !(x; y; t), or t is incomparable with z, so !(y; z; t), or x <! t <! z,so !(z; x; t)).If x z<! y, then either t <! x <! y (whence !(x; y; t)), or x <! t <! y (whencex z<! t and also t z<! y), or x <! y <! t (whence !(x; y; t)), or x <! t and tand y are incomparable (whence !(z; x; t) if :z <! t, or !(y; z; t) if z <! t),or t and x are incomparable and t <! y (and apply the same argument asabove), or t is incomparable with x and y (so !(x; y; t)).19



(ii) If x; y 2 E1, then x(!1<!2)y i� x <!1 y, thus if x; y; z 2 E1,!1<!2(x; y; z) i� !1(x; y; z) i� !1 k!2(x; y; z).Similarly for x; y; z 2 E2.If x; y 2 E1 and z 2 E2, then !1 k!2(x; y; z) i� x <!1 y i� x (!1<!2) y(!1<!2) z i� !1<!2(x; y; z). �Propositions 3.6 and 3.7 are essential: they express the possibility to focus onan arbitrary element x in an order variety (� 7! �x kx) to perform opera-tions (the usual operations on binary orders) and then come back to an ordervariety (! 7! !). They are at the core of the operations on order varieties, seesection 3.2.Partitions. Given an order variety � on E and a non-trivial bipartition E =F [ F c (F; F c 6= ;), one may ask whether there exist relations (necessarilyorders) !F and !F c respectively on F and F c such that � can be presented by(!F k!F c) (equivalently by (!F <!F c) or (!F c <!F ), cf. proposition 3.7), i.e.� = !F k!F c. Theorem 3.8 gives the existence of a presentation when F is asingleton. For an arbitrary partition, there is no such presentation in general;however, when it exists, the relations !F and !F c are easily seen to be unique.Theorem 3.8 Let � be an order variety on a set E, a 2 E, and ! be oneof the following three strict orders on E: (�a k a), (�a< a) or (a<�a). Then! = �.Proof. According to proposition 3.7 (ii), the three choices for ! give the sameorder variety !. Let us therefore just consider the case of (a<�a).If x = a _ y = a _ z = a, then �(x; y; z) i� !(x; y; z) by de�nition of �a.Let then x; y; z 2 E be all di�erent from a and such that �(x; y; z). As � isspreading, �(x; y; a) _ �(y; z; a) _ �(z; x; a), i.e. x �a y _ y �a z _ z �a x,whence a <! x <! y _ a <! y <! z _ a <! z <! x. For instance a <! x <! y(the other two cases are similar). If y <! z _ z <! x, then obviously !(x; y; z).On the other hand, if x <! z then �(a; x; z), and as �(x; y; z), then �(a; y; z)by transitivity, thus y <! z. Similarly if z <! y, then z <! x. Now the onlyremaining possible case is: z incomparable with x and y, and again !(x; y; z).Conversely, let x; y; z 2 E be all di�erent from a and such that !(x; y; z),i.e. x <! y <! z _ y <! z <! x _ z <! x <! y _ x z<! y _ y x<!z _ z y<! x. In the �rst case, �a(x; y) ^ �a(y; z) (by de�nition of !),whence �(a; x; y) ^ �(a; y; z) (by de�nition of �a), thus �(x; y; z) since � istransitive. Similarly for the other two cases.20



If x z<! y, then in particular�(a; x; y). As� is spreading, this forces�(a; x; z) _�(x; y; z) _ �(y; a; z). Besides x z<! y implies among others: :�(a; z; y) ^:�(a; x; z). Therefore �(x; y; z), qed. The cases y x<! z and z y<! x are iden-tical. �Remark. For the above theorem, the spreading condition is necessary: forexample, as already mentioned, the cyclic closure of f(a; b; c)g is not an or-der variety on fa; b; c; dg, and actually it does not come from any order onfa; b; c; dg.It turns out that theorem 3.8 can be very simply formulated in terms of speciesof structures (a branch of enumerative combinatorics introduced by Joyal [11]);this is not essential in the present paper, but we mention it since it might beexploitable in the future. Recall that a species of structures is a functor fromthe category B of �nite sets and bijections as morphisms to the categoryFinSet of �nite sets and functions. Two species F and G are said isomorphic,in symbols F ' G, when there is a natural isomorphism between F and G. IfF is a species, its derivative F 0 is the species de�ned by: F 0(x) = F (x [ f�g)where � 62 x and F 0(�) = F (� + �) for a bijection � : x! y.For instance the functor Ot that maps a set x to the set of total orders on x,the functor O that maps a set x to the set of all orders on x, and the functor Cthat maps a set to the set of its cyclic permutations, are species of structures.Ot and C are related by: C 0 ' Ot. Order varieties are an integral of (partial)binary orders:Theorem 3.9 The functor V that maps a set x to the set of all order varietieson x has derivative the species O of orders:V 0 ' O:Proof. The transformations � : V 0 ! O de�ned by �x(�) = �� for any ordervariety � on x[f�g, and � : O! V 0 de�ned by �x(!) = ! k � for any order !on x, are clearly natural in x. Besides they are inverse of each other because(! k �)� = ! (obvious) and �� k � = � (theorem 3.8), qed. �3.2 CompositionsWe will use the following constructions of order varieties.De�nition 3.10 Let � and � be order varieties on the sets E and F respec-tively, with E \ F = fxg. De�ne: 21



��x � = �x<x<�x and �
x � = �x kx k�x .Proposition 3.11 If � and � are order varieties on the sets E and F re-spectively, with E \ F = fxg, then ��x � and �
x � are order varieties onE [ F .Proof. According to proposition 3.6, �x and �x are strict orders on E n fxgand F n fxg, so by proposition 3.7 (i), ��x � and �
x � are order varietieson E [ F . �Example. If E \ F = fxg, ;E 
x ;F = ;E[F , but ;E �x ;F 6= ;E[F .The following is a straightforward calculation:Proposition 3.12 Let � and � be order varieties on the sets E and F re-spectively, with E \ F = fxg, and let y 2 E n fxg, z 2 F n fxg.(��x �)x = �x<�x (�
x �)x = �x k�x(��x �)y = �y[(x<�x)=x] (�
x �)y = �y[(x k�x)=x](��x �)z = �z[(�x< x)=x] (�
x �)z = �z[(�x kx)=x]
3.3 RestrictionProposition 3.13 (i) If � is an order variety on a set E and F � E, thenthe restriction ��F of � to F (as a set of triples) is an order variety on F .(ii) Let � be an order variety on E [ fxg with x 62 E. Then ��E= �x.(iii) Let ! be an order on E and F � E. Then (!)�F= ! �F .Proof. (i) � �F is cyclic (� �F (x; y; z) ) x; y; z 2 F ^ �(x; y; z) whence�(y; z; x), so � �F (y; z; x)), anti-re
exive (� �F (x; y; z) ) �(x; y; z) whencex 6= y^y 6= z^z 6= x), transitive (��F (x; y; z)^��F (z; t; x)) x; y; z; t 2 F ^�(x; y; z) ^ �(z; t; x) ) � �F (t; x; y)), and spreading (8x; y; z; t 2 F � E,�(x; y; z)) �(x; y; t) _ �(y; z; t) _ �(z; x; t)).(ii) Let � be an order variety on E [ fxg with x 62 E. ��E and �x are bothorder varieties on E, and by theorem 3.8 ��E= (�x kx)�E= �x.(iii) Obvious. �22



3.4 Intersections and interiorAn intersection of order varieties is obviously cyclic, anti-re
exive and transi-tive { hence a cyclic order {, but not necessarily an order variety: for instance(abcd) \ (abdc) \ (acbd) = (abd) is not an order variety on fa; b; c; dg.In section 4 we will be dealing with order varieties associated to proof nets(see also section 3.6), but on the other hand we shall also take intersectionsof order varieties. So we need a way to transform an intersection of ordervarieties, or more generally a cyclic order, into an order variety. This is thepurpose of the following:De�nition 3.14 Let � be a cyclic order on E. De�ne its interior \� by:\� = Tx2E �x kx .Example. If � = (xyzt) [ (xyu), then \� = (xyz) [ (xyt) [ (xyu).Proposition 3.15 Let � and � be cyclic orders on E.(i) \� is an order variety on E.(ii) \� � �.(iii) \\� = \�.(iv) \� is the largest order variety included in �.(v) � � � ) \� � \�.(vi) If F � E then (\�)�F� \(��F ).(vii) \(� \ �) � \� \ \�.(viii) \(\� \ \�) = \(� \ �).Proof. (i) As an intersection of order varieties, \� is a cyclic order. It isspreading because if (\�)(x; y; z) and t 2 E n fx; y; zg then �t(x; y; z), so atleast one of the pairs (x; y); (y; z); (z; x) is in �t, whence either �(x; y; t) or�(y; z; t) or �(z; x; t), qed.(ii) (\�)(x; y; z)) �x k x(x; y; z), (y; z) 2 �x , �(x; y; z).(iii) \� is an order variety so for any x 2 E, (\�)x k x = \� by theorem 3.8.(iv) Let � be an order variety on E included in�. If �(x; y; z), then for any t 2Enfx; y; zg, �t(x; y; z): indeed �(x; y; z), and � is spreading so either �(t; y; z)or �(x; t; z) or �(x; y; t), say for instance �(t; y; z) (the two other cases beingsimilar), so �(t; y; z) whence y <�t z; besides x <�t z ) x <�t y andy <�t x ) z <�t x by transitivity of �; this implies (�t k t)(x; y; z) as well.Furthermore, if �(x; y; z), then obviously for any t 2 fx; y; zg, (�t k t)(x; y; z).Therefore � � \�. 23



(v) Immediate consequence of (i), (ii) and (iv).(vi) If F � E then (\�) �F= (Tx2E �x kx) �F� (Tx2F �x k x) �F= Tx2F (�x k x)�F= Tx2F (��F )x k x = \(��F ).(vii) \(�\�) is an order variety (by (i)) included in � and � (by (ii)), so by(iv) \(� \ �) � \� and \(� \ �) � \�, qed.(viii) \(\� \ \�) � \(� \ �) is a consequence of (ii) and (v). Conversely,\(� \ �) � \� and \(� \ �) � \�, so \(� \ �) � \� \ \�; but \(� \ �) is anorder variety, so by (iv), \(� \ �) � \(\� \ \�), qed. �In the sequent calculus, we shall make extensive use of the relation !� ofde�nition 3.3. An essential property of \� is that it is basically a simpli�cationof � relative to !�: it is an order variety, and useless information has beenremoved, as shown by the following proposition.Proposition 3.16 Let � be a cyclic order. Then !\� = !�.Proof. Clearly!\� � !�. Now if a!� b, then the cyclic closure Ra;b of therelation f(a; b; x) j x 6= a; bg is included into � (by de�nition of !�) and it iscyclic, anti-re
exive, transitive (trivial) and spreading, hence an order variety,and therefore Ra;b � \� by proposition 3.15 (iv), so a!\� b. �3.5 PastingDe�nition 3.17 Let � be an order variety on a set E[fx; yg, with x; y 62 E,x 6= y, and let z 62 E. De�ne the pasting �[z=x; y] of x and y along z in � by:�[z=x; y] = \(��E[fxg [z=x] \��E[fyg [z=y]) .The following proposition is obvious:Proposition 3.18 (i) If � is an order variety, so is �[z=x; y].(ii) If � and � are order varieties on E [ fx; yg, with x; y 62 E, x 6= y, and� � �, then �[z=x; y] � �[z=x; y].Given a cyclic order �, we shall need to compute (\�)[z=x; y]:Lemma 3.19 Let � be a cyclic order on E [ fx; yg, with x; y distinct andnot in E, and let z 62 E [ fx; yg.Then (\�)[z=x; y] = \(��E[fxg [z=x] \ ��E[fyg [z=y]):Proof. (\�)[z=x; y] = \((\�)�E[fxg [z=x] \ (\�)�E[fyg [z=y]). Now:24



(\�)�E[fxg = (Ta2E �a k a \�x kx \�y k y)�E[fxg= Ta2E (��E[fxg)a k a \ (��E[fxg)x k x \ �y= \(��E[fxg) \ �y= \(��E[fxg) \ ��E[fyg,and similarly (\�)�E[fyg= \(��E[fyg) \��E[fxg. Hence:(\�)[z=x; y] = \(\(��E[fxg)[z=x] \ \(��E[fyg)[z=y]\��E[fyg [z=y] \ ��E[fxg [z=x])= \(\(��E[fxg [z=x]) \ \(��E[fyg [z=y])\��E[fyg [z=y] \ ��E[fxg [z=x])= \(\(��E[fxg [z=x]) \ \(��E[fyg [z=y]))= \(��E[fxg [z=x] \��E[fyg [z=y])by proposition 3.15 (viii), qed. �3.6 Order varieties and proof netsDe�nition 3.20 (��;s; ��) Let � be a proof net of MNL with conclusion �.(i) If s is a switching for �, ��;s is the total order variety on � correspondingto the cycle of the conclusions in s(�).(ii) �� = \(Ts ��;s).By de�nition, �� is always an order variety.Proposition 3.21 (i) If � is a proof net of MLL, then �� = ;.(ii) If � is a proof net of McyLL, then �� is a total order variety.Proof. (i) Assume ��;s(A;B;C) for some conclusions A;B;C of � and someswitching s. Deleting for each &-link l the left edge of l if s(l) = R or the rightedge of l if s(l) = L, produces a graph which is a tree (Danos-R�egnier criterion[5]), and therefore determines a ternary link l0 (which has to be a
-link) wherethe three paths between the three leaves A;B;C meet. Let s0 be the switchingobtained from s by changing the position of l0: then ��;s0(C;B;A).This proves that Ts ��;s = ;, so �� = ;.(ii) Corollary of proposition 2.14. �The following lemma is an immediate consequence of theorem 2.20.25



Lemma 3.22 Let � be a proof net, s a r3-free switching for � and s0 a switch-ing for � such that s0(l) = s(l) for any link l 6= r. Then ��;s = ��;s0.Proposition 3.23 If � is a proof net and � ! �0, then �� � ��0.Proof. We shall prove that Ts ��;s � Ts ��0;s, from which the result followsby proposition 3.15 (v).Assume that (Ts ��;s)(C;D;E) for some conclusions C;D;E of �. The proofis very similar to the proof of theorem 2.22, and we shall use the notations ofthis proof.If the reduction bears on an identity link, then the result is trivial.Assume the reduction bears on a pair of r=�-links, and let s0 be a r3-freeswitching for �0; considering the two positions L and R (not 3) for the cutr-link, we get two long trips in �: 1; 2; 3; 4 and 2; 1; 3; 4, the long trip in �0being 2; 3; 1; 4. As the inner part of a r-link, 1 contains no conclusion, soC;D;E are in 2; 3; 4. Now (2; 3; 4) belongs to the three total order varieties(1234), (2134) and (2314), hence ��0;s0(C;D;E) still holds after reduction, andby lemma 3.22, ��0;s00(C;D;E) for any switching s00 of �0, qed.Assume the reduction bears on a pair of &=
-links, and let s0 be a r3-freeswitching for �0; choosing positions for the cut links, we get a switching s for� and the long trip in � is 1; 2; 3; 4 or 2; 1; 3; 4 or 1; 2; 4; 3 or 2; 1; 4; 3, the longtrip in �0 being 1; 4; 2; 3. As (Ts ��;s)(C;D;E), we have (C;D;E) 2 (1234) \(2134)\(1243)\(2143), hence at least two formulas among C;D;E have to bein the same segment (1; 2; 3 ou 4), and therefore (C;D;E) 2 (1423) = ��0;s0.Again by lemma 3.22, this extends to non-r3-free switchings. �Examples. � 1 = ; and � 2 = ;, since ; is the order variety correspondingto the cycle of two elements (and is by the way the only order variety on atwo-elements set).� 3 = (B � C;A &C?; A? � B).(Ts � 4;s) = (C;A;D) [ (C;A;B) [ (E;A;D) [ (E;A;B) is already an ordervariety, so � 4 = (C;A;D) [ (C;A;B) [ (E;A;D) [ (E;A;B).(Ts � 5;s) = (A;B;B?�A?)\(B;A;B?�A?) = ;, so � 5 = ;. But  5 !  05and � 05 = (A;B;B? � A?). 26



4 SEQUENT CALCULUS AND SEQUENTIALIZATION4.1 Sequent calculusDe�nition 4.1 (Sequents) (i) A sequent (of MNL) ` � h�i is a set � ofoccurrences of formulas together with an order variety � on �.(ii) A sequent of MLL is a sequent ` � h;i where � is a set of occurrences offormulas of MLL. So ` � h;i can be denoted ` �.(iii) A sequent of cyLL is a sequent ` � h�i where � is a set of occurrencesof formulas of McyLL and � is total. So ` A1; : : : ; An h(A1; : : : ; An)i can bedenoted by ` (A1; : : : ; An).Notation. Let � and � be order varieties on disjoint sets of formula occur-rences � [ fAg and � [ fBg respectively. De�ne:��A;B � = �A<A�B <�B = �[A� B=A]�A�B �[A� B=B] and�
A;B � = �A kA
B k�B = �[A
 B=A]
A
B �[A
 B=B],two order varieties on �[�[fA�Bg and �[�[fA
Bg respectively, and:� �A;B � = (��A;B �)��[� = (�
A;B �)��[� = �A k�B;an order variety on � [�.The rules of the multiplicative sequent calculus are given in table 1.Examples.� A sequent calculus proof corresponding to  3 is` A?; A h;i ` B?; B h;i �` A? �B?; A;B h(A;A? �B?; B)i ` C?; C h;i �` A? �B?; B � C;A;C? h(A;A? �B?; B � C;C?)i &` A? �B?; B � C;A &C? h(A? �B?; B � C;A &C?)iNote that the last rule could also be an introduction of C?rA since C? ! A.� A sequent calculus proof corresponding to  5 is` A?; A h;i ` B?; B h;i 
` A;B;B? 
A? h;i ` A?; A h;i ` B?; B h;i �` A;B;B? �A? h(A;B? �A?; B)i &` A &B;B? �A? h;i cut` A;B;B? �A? h;i27



Identity - Cut` A?; A h;i ` �; A h�i ` A?;� h�i cut` �;� h� �A;A? �iNon-commutatives` �; A h�i ` B;� h�i �` �; A�B;� h��A;B �i ` �; A;B h�i r, if A!� B` �; ArB h�[ArB=A;B]iCommutatives` �; A h�i ` B;� h�i 
` �; A
B;� h�
A;B �i ` �; A;B h�i &` �; A &B h�[A &B=A;B]iTable 1Sequent calculus of MNL.4.2 Sequentialization theoremDe�nition 4.2 (D�) To a proof D of conclusion ` � h�i in sequent calculus,is associated in the obvious way a proof structure D� with conclusion �.Theorem 4.3 (Adequacy) IfD is a sequential proof with conclusion ` � h�i,then D� is a proof net and � = �D�.Proof. We prove by induction on D that D� satis�es the axioms of theo-rem 2.20 (�� is a proof net of MLL and for any switching, the inner parts ofr-links contain no conclusion and do not overlap) and � = \(Ts �D�;s). Forthe axioms of theorem 2.20, it is straightforward. For the order varieties:� D is an identity: there is only one switching s and �D�;s = ;fA?;Ag = �.� D is D1...` �; A h�i ...D2` B;� h�i` �; A�B;� h��A;B �i28



A switching in D� is a pair (s; t) where s is a switching of D1� and t isa switching of D2�, and �D�;(s;t) is then (�D1�;s)A<A�B < (�D2�;t)B =(�D1�;s)�A;B (�D2�;t).By induction hypothesis, � = \Ts �D1�;s and � = \Tt �D2�;t, therefore wehave to show: \Ts;t(�D1�;s)�A;B (�D2�;t) = (\Ts �D1�;s)�A;B (\Tt �D2�;t).| Let x; y 2 � [�: (��A;B �)(A� B; x; y) i� x 2 � and y 2 �. Besides(\Ts;t �D1�;s �A;B �D2�;t)(A� B; x; y)) Ts;t(�D1�;s �A;B �D2�;t)(A� B; x; y), x 2 � ^ y 2 �,but A� B < ;�< ;� is an order variety included in Ts;t(�D1�;s�A;B�D2�;t), soA� B < ;�< ;� � \Ts;t(�D1�;s�A;B�D2�;t). Therefore (��A;B�)(A�B; x; y)i� x 2 � and y 2 � i� \Ts;t(�D1�;s �A;B �D2�;t)(A�B; x; y).| Let x; y; z 2 �: (� �A;B �)(x; y; z) i� �A(x; y; z) i� �A kA(x; y; z) i��(x; y; z) as � is an order variety. Besides(\Ts;t �D1�;s �A;B �D2�;t)(x; y; z), (\Ts;t �D1�;s �A;B �D2�;t)��;A (x; y; z)) \(Ts;t(�D1�;s �A;B �D2�;t)��;A)(x; y; z) by proposition 3.15 (vi), �(x; y; z).because Ts;t(�D1�;s �A;B �D2�;t)��;A= Ts �D1�;s. But�(x; y; z), (\Ts �D1�;s)[;�; A=A](x; y; z)) \(Ts �D1�;s[;�; A=A])(x; y; z) by proposition 3.15 (vi)) (\Ts;t �D1�;s �A;B �D2�;t)(x; y; z) by proposition 3.15 (v)because (Ts �D1�;s[;�; A=A]) � Ts;t(�D1�;s �A;B �D2�;t). Therefore (� �A;B�)(x; y; z) i� \Ts;t(�D1�;s �A;B �D2�;t)(x; y; z).| For x; y; z 2 � apply the above argument.| Let x; y 2 � and z 2 �: (��A;B �)(x; y; z) i� �(x; y; A). Besides(\Ts;t �D1�;s �A;B �D2�;t)(x; y; z), (\Ts;t �D1�;s �A;B �D2�;t)��;z (x; y; z)) \(Ts;t(�D1�;s �A;B �D2�;t)��;z)(x; y; z) by proposition 3.15 (vi)29



but \(Ts;t(�D1�;s �A;B �D2�;t) ��;z) = \Ts;t (�D1�;s)A k z = �[z=A], so(\Ts;t �D1�;s �A;B �D2�;t)(x; y; z)) �(x; y; A). Now�(x; y; A), (\Ts �D1�;s)[;�; A=A](x; y; A), \(Ts �D1�;s[;�; A=A])(x; y; A) by proposition 3.15 (vi), \(Ts �D1�;s[;�; A=A])(x; y; z)) (\Ts;t �D1�;s �A;B �D2�;t)(x; y; z).Therefore (��A;B �)(x; y; z) i� \Ts;t(�D1�;s �A;B �D2�;t)(x; y; z).| For x 2 � and y; z 2 � apply the above argument.� D is D1...` �; A h�i ...D2` B;� h�i` �; A
B;� h�
A;B �i or D1...` �; A h�i ...D2` A?;� h�i` �;� h� �A;A? �iSimilar argument.� D is D1...` �; A;B h�i A!� B` �; ArB h�[ArB=A;B]i or D1...` �; A;B h�i` �; A &B h�[A &B=A;B]iA switching s0 in D� is a switching s of D1� together with a position of forthe link A BApB , p 2 fr; &g. Let us consider the introduction of &: Ts0 �D�;s0 =Ts(�D1�;s ��;A [A &B=A] \ �D1�;s ��;B [A &B=B]).Now by induction hypothesis � = \(Ts �D1�;s), so�[A &B=A;B]= (\(Ts �D1�;s))[A &B=A;B]= \((Ts �D1�;s)��;A [A &B=A] \ (Ts �D1�;s)��;B [A &B=B])by lemma 3.19= \Ts(�D1�;s ��;A [A &B=A] \ �D1�;s ��;B [A &B=B])= Ts0 �D�;s0.For the introduction of r, the proof is the same because D� is a proof net,30



so the internal part of A BArB contains no conclusion and we can concentrate onpositions R and L. �Theorem 4.4 (Sequentialization) Let � be a cut-free proof net with con-clusion �. There exists a sequent calculus proof D, with conclusion ` � h��i,such that � = D�.Proof. We proceed as in [8], with terminal r or &-links and splitting � or
-links.In the case of tensor links, remark that the absence of cut link ensures correct-ness of both proof structures. In the case of a terminal r-links, remark thatthat position 3 implies the required condition A!�� B. �Appendix A deals with sequentialization of proof nets with cuts. Let us �rstgive an application of theorem 4.4 to cut elimination in the sequent calculus.4.3 Cut eliminationTheorem 4.5 If D is a sequent calculus proof with conclusion ` � h�i, then` � h�0i is provable in the sequent calculus without the cut rule, with � � �0.Proof. By theorem 4.3, D� is a proof net, and by theorem 2.23 and propo-sition 3.23, D� ! � with � a cut-free proof net such that �D� � ��. Bytheorem 4.4 there exists a sequent calculus proof D0 such that � = D0�, andby construction D0 is cut-free.
D0

adequacy cut-eliminationsequentialization�
D D�

The inclusion of order varieties is a consequence of proposition 3.23. �Corollary 4.6 MNL is a conservative extension of both MLL and McyLL:(i) if � h�i is provable in the sequent calculus, and the formulas of � areformulas of MLL, then � = ;;(ii) if � h�i is provable in the sequent calculus, and the formulas of � areformulas of McyLL, then � is total. 31
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 &
 
 &&r

However this is not a serious problem (neither a very relevant one), and indeedthere are at least three possible solutions:33



1) An approach is to add a condition to the de�nition of proof nets, that ispreserved during reduction and implies sequentialization for all proof nets. Inthe above counter-example, the point is that the inner part of the r-link goesthrough a &-link which is \below" it, so that the two disjunction links on theleft block each other. It is straightforward to formalize this notion of \beingabove": we de�ne two orders <� and 
� between the disjunction links of aproof net 4 .De�nition A.1 (<�;
�) Let � be a proof net, and a and b be two arbitrarydisjunction links of �.Let s = sa;b be a switching �a la Danos-Regnier (cut one of the two branchesof a link) for all the disjunction links of � but a and b. The graph obtainedcontains exactly two independent cycles, and some pending edges. We note�sa;b the graph obtained by erasing these pending edges.De�ne the relation <� by : a <� b i� for some r3-free switching of �, both thesup part and the inf part of b go through a (i.e. they contain some premisse ofa), in other words i� for some switching s = sa;b �a la Danos-Regnier for alldisjunctions but a and b, �sa;b is the graph:b aDe�ne the relation 
� by : a 
� b i� a is a r-link and for some switching for�, the inner part of a goes through b (i.e. it contains a premisse of b).Lemma A.2 Let � be a proof net. Then <� and 
� are orders on disjunctionlinks.Proof. The result is very easy for <�. For 
�, use the facts that the inner partsof r-links do not overlap (theorem 2.20) and that the inf parts of disjunctionlinks do not cross (i.e., if one inf part contains the beginning or the end of theother one, then it contains both ends: this holds for commutative proof netsas well). �One can verify easily the following lemma:Lemma A.3 Let � be a proof net and a a disjunction link of �. a is minimalfor <� i� it is splitting, i.e. the graph obtained by erasing both edges of a hastwo connected components.4 <� can also be de�ned very simply via M�etayer's homological criterion [13] forproof nets of MLL. 34



Of course, the point here is that the two connected components may not bothbe proof nets in general, for instance in the following proof net (which issequentializable!) the cut and the right r-link are splitting but then the leftcomponent is no more a proof net:
r � rNow it is natural to prove sequentialization with splitting disjunctions (r and&), in a way similar to Danos [4]. We consider proof structures with non-logicalaxioms, and one can easily imagine the obvious necessary adaptations.De�nition A.4 (Condition 4) A proof net � will be said to satisfy condi-tion 4 if the two relations <� and 
� are orthogonal (i.e. <� [ 
� does notcontain a cycle).Lemma A.5 (i) If D is a sequential proof with conclusion ` � h�i, then D�satis�es condition 4.(ii) If � is a proof net and � ! �0, then <� � <�0 and 
� � 
�0.(iii) If � is a proof net satisfying condition 4, and � ! �0, then �0 is a proofnet satisfying condition 4.Proof. (i) Obvious induction on D.(ii) This is proved by pulling back con�gurations of 3 or 4 points beforereduction, as for theorem 2.22.(iii) Follows immediately from (ii). �Note that in the above counter-example, the cycle has lenght 2, but there arebigger counter-examples, and condition 4 cannot be reduced to the absence ofa simple con�guration.Proposition A.6 Let � be any proof net with conclusion � satisfying con-dition 4. There exists a sequent calculus proof D, with conclusion ` � h��i,such that � = D�.Proof. Proceed by induction on the number n of disjunction links. If n = 0, �is a tree: clear. If n > 0, then by lemma A.2 there is a link a which is minimalfor <� [ 
�; by de�nition of condition 4, a is minimal for <� so it is splitting(lemma A.3), and it is minimal for 
� so it is not in the inner part of anyr-link. Let �1 and �2 be the two components of � obtained by erasing thetwo edges of a: by [4], �1� and �2� are proof nets; we have chosen a so thatin particular no inner part of a r-link of �1 or �2 goes through a, thus the35



inner parts of r-links of �1 and �2 contain no conclusion; non-overlapping andcondition 4 for �1 and �2 are immediate. Therefore �1 and �2 are proof netssatisfying condition 4, and we can apply the induction hypothesis, qed. �2) Another approach is to keep the correctness criterion for proof nets, andtry and slightly modify the syntax. An obvious idea is to consider cuts asternary links (with a conclusion) both in the sequent calculus and in the proofstructures: then of course theorem 4.4 holds for all proof nets, and there isan interesting phenomenon, namely there are two kinds of cuts (the \parallelcuts" with conclusion A
A?, and the \sequential cuts" with conclusion A�A?) and they are no more innocuous (adding cuts may for instance destroythe planarity).Another possibility is to authorize some kind of revision in the sequent calculus(introduce a &a priori, then replace it by r if it is a posteriori possible),the idea being that there is essentially one disjunction and one conjunction,but di�erent ways to view them geometrically. One could add for instance a\purgatory" in sequents: a sequent then consists in an order variety� on � plusa set � of formula occurrences (with no structure), and the introduction of r isnot subject to a condition any more; on the contrary it can be performed freely,but the problematic formulas (those formulas C 2 � such that :�(A;B;C))are send to the purgatory. Formulas in the purgatory can be removed bycutting with proofs whose conclusion sequent has only one conclusion:` � h�i;�; A ` A? h;i cut,` � h�i;�and the usual sequents are those sequents which have empty purgatory.We leave the details to a further paper.

36


