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We introduce proof nets and sequent calculus for the multiplicative
fragment of non-commutative logic, which is an extension of both
linear logic and cyclic linear logic. The two main technical novelties
are a third switching position for the non-commutative disjunction,
and the structure of order variety.

1 INTRODUCTION

Unrestricted exchange rules of Girard’s linear logic [8] force the commutativity
of the multiplicative connectives ® (times, conjunction) and % (par, disjunc-
tion), and henceforth the commutativity of all logic. This a priori commuta-
tivity is not always desirable — it is quite problematic in applications like lin-
guistics or computer science —, and actually the desire of a non-commutative
logic goes back to the very beginning of LL [9].

Previous works on non-commutativity deal essentially with non-commutative
fragments of L1, obtained by removing the exchange rule at all.

At that point, a simple remark on the status of exchange in the sequent cal-
culus is necessary to be clear: there are two presentations of exchange in com-
mutative LL, either sequents are finite sets of occurrences of formulas and
exchange is obviously implicit, or sequents are finite sequences of formulas
and the (unrestricted) exchange rule is explicit:
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AL A,
H A”(l),... ,Ag(n)

o any permutation of {1,... ,n}.

Now, removing the exchange rule in LL is possible because, in the second style
calculus, the cut elimination procedure of LL preserves crucially the absence
of exchanges? .

The resulting non-commutative fragment enjoys an important and rather un-
expected property [3]: provability is closed under the rule of cyclic exchange:

AL LA,
|—AU(1),... aAU(n)

o cyclic permutation of {1,... ,n}.

So the right name for the non-commutative fragment of LL is cyclic linear
logic, cyLL. CyLL has been proposed by Girard [9] and expounded by Yetter
[19], but presented with cyclic exchange as a rule of the sequent calculus  and
the first wrong impression has been that cyLL is not really non-commutative!
The above result on the provability in cyLL leads naturally to a nice formu-
lation of cyLLLL obtained by defining sequents as finite cycles of occurrences of
formulas. Cyclic proof structures can also be defined, and a correctness crite-
rion is obtained very easily from [2]: cyclic proof nets are usual proof nets of
LL satisfying a certain additional condition.

It is also possible to consider two negations instead of one [1], but this intro-
duces complications, both in the sequent calculus, in proof nets and in the
phase semantics (for associativity, as noticed by Girard in [10] Appendix F),
not to speak about the “semantics” of proofs. In both cases, the intuitionis-
tic version is the extension of Lambek’s syntactic calculus (introduced thirty
years before LL [12] for linguistic needs: categorial grammars) with additives
and exponentials. Remark indeed that the multiplicative fragment of cyLL is
a conservative extension of Lambek’s calculus [3].

However purely non-commutative fragments of LI are too limited in practice.
We must find a non-commutative logic that is more general than commutative
logic. Retoré shows in [16] that LL enlarged with the Mix rule contains a
self-dual non-commutative connective which is intermediate between ® and
%: the connective < (before); he gives proof nets and a coherent semantics,
the drawback being the complicated sequent calculus and (up to now) the
absence of a sequentialization theorem. There have also been attempts to add
modalities in order to recover commutativity in a non-commutative framework
(e.g., [14]), but there are too many possibilities and these modalities introduce
many complications.

A simple solution arised recently through the interaction of two independent
works:

2 A nice topological study of proof nets with explicit exchange rule has been carried
out by Fleury [7].



The first author found a direct characterization of proof nets of CyLL as

graphs satisfying a geometrical property which implies (but does not presup-
pose) that cyclic proof nets are proof nets of LL. Let ® (next) denote the
non-commutative conjunction and v (sequential) the non-commutative dis-
junction. The idea is to consider only one switching position, say the right
one, for ®-links and to introduce a new switching position for v-links. Then
there is a simple definition of proof nets by a trip condition, which can be
generalized in presence of commutative connectives.
— The second author introduced a mixed non-commutative / commutative se-
quent calculus enjoying cut elimination and a corresponding phase semantics
[17], starting from the intuitionistic version of De Groote [6] and questions
arising in the theory of concurrency [18]. The main technical ingredient is the
structure of order varieties, which enable to express symmetry constraints in
a sequent. An order variety is a structure which, provided a point of view (an
element x in the base set), can be seen as a partial order on the complement of
{z}. Order varieties can therefore be presented in different ways by changing
the viewpoint, of course they are invariant under the change of presentation.
In the sequent calculus, this idea of presentation corresponds to the ability of
focusing on any formula to apply a rule. A good analogy is with cyclic per-
mutations in cyLL, which enable to move the desired formula to the position
where the rule is applicable, typically avoiding the problems of the 2-negations
fragment.

Still a difficulty: the name for the resulting logic? “Mixed non-commutative /
commutative linear logic” is too long. On the other hand non-commutativity
practically implies linearity and it includes commutativity as a particular case,
so our choice has been to call it simply non-commutative logic, NL.

The present paper introduces the multiplicative fragment MNL of non-commu-
tative logic, which extends both linear logic and cyclic linear logic: proof nets
and cut elimination (section 2), order varieties (section 3), sequent calculus
and sequentialization (section 4 and appendix A).

2 PROOF NETS AND CUT ELIMINATION

2.1 Language

Definition 2.1 (Formulas of MINL) The formulas (of MNL) are built from
atoms p,q, ..., p-,q*, ... and the following multiplicative connectives:

the non-commutative conjunction ®, next,
— the non-commutative disjunction v, sequential,



the commutative conjunction ®, times,
the commutative disjunction %%, par.

Definition 2.2 (Negation) Negation is defined by De Morgan rules:

(p)* =p* (ph)t =
(A® B)* = BtvAt (AvB)t = Bt o A+
(A® B): = B'13AL  (ABB)L =Bl Al

Negation is then an involution: for any formula 4, At = A.

Definition 2.3 (Formulas of MLL, McyLL)  The formulas of MLL (resp.
McyLL) are built from atoms p,q,..., p*,q",... and the connectives ® and
X (resp. © and v).

— For every formula A of MNL, we define the formula A* of MLL, called the
commutative translation of A, by induction: A* = A if A is atomic, (AQB)* =
A*® B*, (A®B)* = A*®¥B*, (A® B)* = A*® B*, (AvB)* = A*3B*.

2.2 Proof nets

Definition 2.4 (Links) Links of MNL are the following graphs where the
vertices are labeled by formulas of MNL:

identity links:

At A

with two conclusions At and A and no premisse;
cut links:

AL A

with two premisses AL and A and no conclusion;
®,%,0,v-links:

A B A B A B A B
A® B AR B A®B AVB



where the formula A is the first premisse, the formula B is the second pre-
misse and the third formula is the conclusion of the link.

Definition 2.5 (Proof structures) — A proof structure (of MNL) is a graph
built from links of MNL such that every occurrence of formula is the conclu-
siton of exactly one link of MNL and the premisse of at most one link.

If 7 is a proof structure of MNL, the conclusions of m are the occurrences of
formulas in ™ which are not premisses of a link.
— A proof structure of MLL (resp. McyLL) is a proof structure labeled with
only MLL (resp. McyLL) formulas.

Definition 2.6 (7*) If m is a proof structure of MNL, then its commutative
translation 7* is the proof structure of MLL obtained by replacing every oc-

currence of formula A by A*, every ®-link by a ®-link and every v-link by a
N-link.

We consider as [8] formulas with decorations: T (question) or | (answer). A
decorated formula is of the form A" or A*, where A is a formula of MNL. Define
1+ =], ] =7. For each link ! of MNL, we can consider two sets of decorated
formulas:

'™ is the set of all decorated formulas A*, where A is a premisse of [ and z
is |, or A is a conclusion of [ and z is 1;

— [°u! is the set of all A*, where A is a premisse of [ and z is 1, or A is a
conclusion of [ and z is |.

Definition 2.7 (Switchings) For each link | of MNL we define a set S(I)
of (partial) functions from 1™ to 1°“*, called the switching positions of I, as
follows:

if 1 is an identitylink AT A, then S(l) = {id} where
id : (AL)T = AY AT (A1)
—if L is a cut link a+_a, then S(I) = {cut} where
cut : (AT)Y = AT AV — (AT

=0 =)

—if | is a @-link %, then S(I) = {®R,®L} where
QR : (A® B)!— Al At — B Bt — (A® B)t and
®L: (A® B)' — B!, AY = (A® B)', Bt s AT;

—af 1 is a B-link %75,%, then S(I) = {®R, XL} where
¥R : (AXB)' — B! At — AT BY — (A®B)* and
BL: (ABB)T — A", At — (ABB)Y, B¥ — BT;



® ® / \
3 3
if lis a ©-link 4 Ssh, then S(1) = {OR} where
OR: (A® B)'w— AT AY — B! Bt — (A® B)Y;
if L is a v-link 4<%, then S(l) ={vR,vL, v3} where
vR: (AvB)!— B' AY — A" Bt — (AvB),
vL: (AvB)!— AT Al (AVB) BY — B and
v3: (AvB)" — AT Bi — (AvB)*.

Y /wv

Given a proof structure m, a switching for 7 is a function s such that for every
link 1 of m, s(I) € S(I). A switching s for w is v3-free if for every v-link I,

s(l) # v3.

Definition 2.8 (Trips) Let m be a proof structure and s a switching for
m. The switched proof structure s(m) is the oriented graph with vertices the
decorated formulas labeling 7, and with an oriented edge from A" to BY iff
either BY = s(1)(A®) for some link | in 7, or A® = C* and BY = C" for some
conclusion C of .

A trip in s(m) is a cycle or a mazimal path in s(m).

Remark. Let 7 be a proof structure of MNL and s a switching for 7. If v is a
trip in s(7) and not a cycle, v begins with BT where B is the second premisse
of a v-link / with s(I) = v3, and ends with A¥ where A is the first premisse
of a v-link I' with s(I") = v3.

Facts 2.9 (i) If v and v' are different trips in s(r), then v and v' are disjoint.
(i1) If s is v3-free, then every trip in s(m) is a cycle.

We can now define proof nets for MNL, a class containing all the usual proof
nets of MLLL and McyLL.

Definition 2.10 (Long trips and bilateral trips) Let m be a proof struc-
ture of MNL and s a switching for m. — A trip v in s(m) is a long trip if v is
a cycle and in v every occurrence of formula A in 7 occurs twice, once as A’
once as A¥.

A cycle v in s(m) is bilateral (see [5]) if v is not of the form
A ..., BY, ... A" ... ,BY,... A" where A and B are occurrences of for-



mulas in 7.

Definition 2.11 (Proof nets) 7 is a proof net (of MNL) iff © is a proof
structure of MNL and for every switching s for m:
(1) there is exactly one cycle o in s(),

(2) o contains all the conclusions,
(8) o is bilateral.

Facts 2.12 (i) If w is a proof net of MNL, and s is a v3-free switching for
7, then the unique cycle o in s(m) is a long trip.

(i1) If w is a proof net of MNL and s a switching for m, then the oriented graph
with vertices the conclusions of m and an oriented edge from a conclusion A
to a conclusion B iff there is no conclusion between BT and A in the unique
cycle in s(m), is an oriented cycle, called the cycle of the conclusions in s(7).

Definition 2.13 (Proof nets of MLL (McyLL)) A proof net of MLL (resp.
MecyLL) is a proof structure of MLL (resp. McyLL) that is a proof net of MNL.

Proposition 2.14 (i) 7 is a proof net of MLL iff for every switching s for m
there is a long trip in s(m).

(i1) If 7 is a proof net of MCyLL and s and s' are switchings for m, then the
cycle of the conclusions in s(m) is equal to the cycle of the conclusions in s'(m).

Proof. (i) If 7 is a proof structure of MLL, and s is a switching for 7, all the
trips in s(m) are cycles (facts 2.9); but since 7 is a proof net, there is exactly
one cycle o, whence o is a long trip. Conversely, assume that there is a long
trip in s(m) for every switching s for 7: if s is a switching for 7, the long trip
o in s(m) is the unique cycle in s(7) and satisfies (2) (obvious) and (3) (see
Danos-Régnier [5]).

(ii) If 7 has no v-link, the result is obvious. If 7 has v-links, and [ is a v-link
in 7 with conclusion AvB, then for every switching s, no conclusion occurs in
the unique cycle o in s(7) between BT and A%: indeed, otherwise, by taking
the switching s’ such that s'(I) = v3 and §'(I') = s(l) for every link I" # I,
we get a contradiction with the fact that 7 is a proof net. This gives what is
stated in the lemma. [ |

Examples.

o Yy =

Btvat AG®B

is a proof net (in fact a proof net of McyLL). The two trips for s(l;) = v3 are:



vy = (B*vAY)'BHBYA® B)Y(A® B)TATAN (B vA ) (BT vAN)T a cycle
containing both conclusions and bilateral, and
= ALt A BB

° Yy =

BL At A B

Bt®At A®GB

is a proof net, but

Btvat A®B

is not a proof net: with s(l;) = v3 and s(ly) = ®L, the trips are

A AY A ® B)*(A® B)'B'B'" and

(B*vAY )BT BYATAH (BEv AL )H(BTvAM)T, a cycle which does not contain
the conclusion A ® B, contradicting condition (2).

® 3=

At e Bt ARCH BoC

is a proof net. For every switching s, the cycle of the conclusions in s(t3) is
BoC = ABCt - A ® BY = B ® C. But the proof structure obtained by
replacing % by v is not a proof net (even though, of course, its commutative
translation is a proof net of LL): to see why, take v3 for the v-link.

* 1y =



is a proof net. Call A the conclusion (C' @ E') ® (D' ® B'). The cycle of
the conclusions in s(1),) is

A—-B—-D—FE—-C—Aifs(l
A—-D—->B—-FE—-C—Aifs(l
A—-B—-D—-C—FE—Aifs(l
A—-D—->B—-C—FE—Aifs(l

s(ly) = QR,
®R and s(ly) = L,
®L and s(ly) = ®R,
s(ly) = ®L.

1
1
1

)
)
)
)

1

2.8  An equivalent definition of proof nets

Theorem 2.20 tells that the correctness criterion in definition 2.11 is equivalent
to the correctness in the commutative sense plus some conditions on the inner
parts of v links. To prove it, we need a few definitions.

Definition 2.15 Let w be a proof structure of MNL.
Let s be a v3-free switching for m. Define a switching s* for m* by: for every
link 1 of m,

where for x = R or x = L, (®z)* = Qx, (Bz)* = Dz, (ve)" = Dz and
(OR)* = ®R.

For every trip v in s(m), v* is obtained from v by replacing each decorated
occurrence of formula A™ in v by (A*)".

— Let s be a switching for ™ such that for all the ®-links | in 7, s(I*) # QL.
Define a v3-free switching s* for m by: for every ®-link or v-link [ of m,

*

s*(l) = (s(I*)* if l is a ®-link or a v-link,
s*(l) = s(I*) otherwise,

where (QR)* = OR, (¥R)* = vR and (¥L)* = vL.
For every trip v in s(n*), v* is obtained from v by replacing each decorated
occurrence of formula (A*)* in v by A*.

Facts 2.16 Let m be a proof structure of MNL.
(i) Let s be a v3-free switching for m.
- " =3,



If v is a trip in s(m), then v* is a trip in s*(7*).

If v is a cycle (resp. a long trip, a bilateral trip, a trip containing all the
conclusions), then so is v*.
(ii) Let s be a switching for m, such that for all the ®-links | in 7, s(I*) # QL.

s =35

If v is a trip in s(m*), then v* is a trip in s*(7).

If v is a cycle (a long trip, a bilateral trip, a trip containing all the conclu-
sions), then so is v°®.

Definition 2.17 (Inner, outer, inf parts of v, %-links. Overlapping)
Let w be a proof structure of MNL, s a switching for m, v a trip in s(m).

Let | be a B®-link or a v-link of w, with first premisse A, second premisse B
and conclusion C. When it exists, the part of v from BT to A% (resp. the part
of v from A" to BY, the part of v from C% to C') is called the inner (resp.
outer, inf) part of [ in v. The sup part of | in v is the union of the inner and
outer parts ofl nv.

Let I, = " vgl and ly = févBZ be two v-links of m. The inner parts of
and ly in v overlap if v is of one of the following forms:

B] A} B]
BJ@ : BJ@ v *
At Bl B!

in other terms they do not overlap if either one is included into the other, or
they are disjoint.

Definition 2.18 (Deletion and insertion of inner parts) Let 7 be a

proof structure of MNL, and | = m be a v-link of .

(i) If s is a switching for w, then s is the switching for © defined as follows:

s = s(l') if ' #£1,
(1) = v3.

If v a trip in s(m) containing the inner part of I, v'3 is obtained from v by
deleting the inner part of the v-link [.

(ii) If s is a switching for m such that s(1) = v3, then s'¥ is the switching for
7 defined as follows:

s = s(I) if 1 #1,
s'"%(l) = vR.

10



If v a trip in s(7) and there is a trip v' in s(mw) containing the inner part of

I, then v'® is obtained from v by inserting between (AvB)T and A" the inner

part of the v-link | (contained in v'). (If (AvB)" and A" are not in v, then
IR

vt =)

Facts 2.19 Let 7 be a proof structure of MNL, and | = QTE be a v-link of
.

(i) Let s be a switching for m, and v a trip in s(7) containing the inner part
of L.

- If s(I) = VR, then (s"¥)'E = s.

- v s a trip in s (7).

- If v is a cycle (resp. a bilateral trip), then so is v
- If v contains all the conclusions, and no conclusion is in the inner part of I,
then v contains all the conclusions.

(i1) Let s be a switching for m such that s(l) = v3, and v a trip in s(7), and
assume there is a trip v’ in s(mw) containing the inner part of I.

C(s'P)B = s,

- vl s a trip in s'% ().
IR

- If v is a cycle (resp. a cycle containing all the conclusions), then so is v'".

13

Theorem 2.20 7 is a proof net of MNL iff © is a proof structure of MNL
such that

(i) T is a proof net of MLL,

(1) for every v3-free switching s for m, the inner parts of v-links in the unique
cycle o in s(m) contain no conclusion and do not overlap.

Proof. (=) Assume 7 is a proof net of MNL.

(i) We prove that 7* is a proof net of MLL. Let s be a switching for 7*, and n
be the number of ®-links [ in 7 such that s(I*) = ® L. We prove, by induction
on n, that there is a bilateral long trip in s(7*).

If n = 0, then s*® is a v3-free switching for 7; since 7 is a proof net of MNL,
there is a unique cycle ¢ in s*(7) which is a bilateral long trip; but then o* is
a bilateral long trip in s(7*) by facts 2.19.

If n > 0, then let | = % be a ®-link in 7 such that s(I*) = ®L: change s
into s’ by taking §'(I*) = ®R and s'(I'"*) = s(I"*) for all the links I # [. By
induction hypothesis, there is a unique bilateral long trip o in s'(7*): since
o is a long trip, in o we find the following adjacent decorated occurrences of
formulas:

A+ gt
B*‘I’, (A* ® B*)‘I’

and since o is bilateral the cycle ¢ must have the following form:

11



(A* @ BT, (A9, -1, (A9 (B, 2 (B, (A* @ BY), -1+, (A* @ BY).
Therefore, by taking the switching s, we get the following long trip in s(7*):

2

(A* ® B*)T, (BT, -, (B, (A%)1, -+, (A", (A* @ B, *-, (A* @ B!

which is a bilateral trip as well.

(ii) We prove that for every v3-free switching s for 7w the inner parts of v-links
in the unique cycle o in s(7) contain no conclusion: this is immediate. Indeed,
by absurdum, let s be a v3-free switching for 7 and assume the inner part of
a v-link [ contains a conclusion: by facts 2.12, o is a long trip in s(7), so the
inner part of [ is included in o; but then ¢! is a cycle in s3(r), whence the
unique cycle in s3(7) (since 7 is a proof net of MNL), and it does not contain
all the conclusions: contradiction.

Finally, we prove that for every v3-free switching s for 7 the inner parts of
v-links in the long trip o in s(7) do not overlap. By absurdum, assume s is a
v3-free switching for 7, and [, = ﬁ;vgl and [, = ﬁ;vgz, are two v-links in 7
such that, in the long trip, the inner parts of /; and I, overlap. So, s(l;) and
s(ly) are not v3 and we have two possible cases:

a) in the inner part of [y there is B,' but not Agﬂ

b) in the inner part of Iy there is B;" but not A,

¢) the union of the two inner parts is o.

In case a) we have four possible subcases, depending on s(l;) and s(ly):
al) the unique cycle o is

(A1 B, By, (AwBo)t, Byt e A AT A A (Aye BT
a2) the unique cycle o is

(A vB) ', B, Byt Byt P A AL A (AavBy), - (A v BT
a3) the unique cycle o is

(B4, Byt b, (AgwBo)t, Byl - A (A vB), -1 At AT B,

ad) the unique cycle o is

(B4, By, LB B A, (A;vB;)Y, A A (AyvB,), B

Now, consider (s''3)!23: it is easy to see that there is no cycle in (s"3)23(7);
for instance, in the case al), there are only the following two trips (none of
them being a cycle):
1 4 3
(BI)TJ Y (AQVB2)TJ (A2)T7 Y (Al VBI)T: (AI)TJ Y (142)i
2
(BQ)T7 S (AI)J’-
But this contradicts the hypothesis that 7 is a proof net of MNL.
The case b) is very similar.
The case c) is impossible here because inner parts do not contain conclusions.

12



(<) Assume 7 is a proof structure of MNL such that:

(i) 7* is a proof net of MLL, and

(ii) for every v3-free switching s for 7, the inner parts of v-links in the unique
cycle o of s(m) contain no conclusion and do not overlap.

Properties (i) and (ii) imply:

(ii’) for every switching s for 7, the inner parts of v-links in the unique cycle
o of s(m) contain no conclusion and do not overlap.

Indeed, let s be a switching for 7, and assume for a contradiction that there
are inner parts of v-links containing conclusions or overlappings. Consider the
v-free switching s" %t where [y, ... [, are the v-links such that s(l;) = v3.
Then (si1f )% ig a switching for the proof net 7* of MLL, so there is a
long trip o* in (sl B)* (%) and therefore by facts 2.19, o is a long trip in
ghtfrlnB(71) where there are inner parts of v-links containing conclusions or
overlappings: contradiction.

Now let s be a switching for 7. By induction on the number n of the v-links
[ such that s(I) = v3, we show that:

a) in s(m) there is exactly one cycle o,

b) o contains all the conclusions,

¢) o is bilateral,

d) for every v-link [, there is a trip in s(7) containing the inner part of [.

If n =0, then s is v3-free, so s* is a switching for 7*. Since 7* is a proof net
of MLL, there is a unique bilateral long trip ¢* in s*(7*), and therefore o is
the unique bilateral long trip in s(7), thus that a),b),c),d) are satisfied.

If n > 0, take a v-link / such that s(I) = v3, and consider the switching s'* for
7. By induction hypothesis, there is exactly one cycle o in s'(7), o is bilateral
and contains all the conclusions, and d) is satisfied. Since s'¥(7) satisfies d),
either the inner part of [ is in o or the inner part of [ is outside o. If the
inner part of [ is in o, then o3 is the unique cycle in s(), it contains all the
conclusions (since by hypothesis the inner part of [ contains no conclusion)
and it is bilateral; moreover s() satisfies d) because the inner parts of v-links
do not overlap. If the inner part of [ is outside o, then the inner part of [
is contained in some trip v, since s!f(r) satisfies d); therefore o'3 = o is the
unique cycle in s(7), and it contains all the conclusions and is bilateral, and
s(m) satisfies d) again, because the inner parts of v-links do not overlap. W

Remarks.

e Let m be a proof net of MLL, with atomic identity links, satisfying the

following property: there exist ®-links ly,... ,l,, and #¥-links I}, ... I/ | such
that for every switching s with s(l;) = @R, the inner parts of [}, --- | I/ contain
no conclusion and do not overlap. Then by theorem 2.20, if we replace [y, ... , 1,

13



by ®-links and [},... Il by v-links, and the occurrences of formulas in a
corresponding way, then we get a proof net 7’ of MNL.

The reader may check for instance that ¢ ..., come from proof nets of ML,
satisfying conditions stated in theorem 2.20.

e Theorem 2.20 tells in particular that condition (3) is necessary. Without it a
proof net can even not be correct in the commutative sense. For instance, the
following structure satisfies (1) and (2) for every switching, but is obviously
not correct:

Condition (3) is in fact equivalent, modulo the other conditions, to the usual
constraint on the order of passage through ® links (see lemma 2.9.7 of [8]
where this constraint is given for commutative times links).

2.4 Reduction

Definition 2.21 Reduction rules of proof structures are the following local
rules:

— sdentity link:

— commutative links:

BY At Al

\/ _—
ABB A® B

non-commutative links:

14



”

AVB

Theorem 2.22 (Stability of proof nets by reduction) If is a proof net
and m — 7', then 7' is a proof net.

Proof. Let m be a proof net and 7’ the structure obtained by eliminating the
1 1

cut bearing on the pair of links 22 and 24+ (t € {®,®} and @ = %,

®+ = v). We show the stability of conditions (1), (2) and (3) using the

equivalent formulation given by theorem 2.20.

1. Correctness of ©'*. It has already been proved: see [8].

2. Absence of conclusions in the inner parts of v-links. Let s be a v3-free

switching for , % be a link in 7/, and s’ be the restriction of s to .

BL A+t

srear: the (long) trip v in

— t = ®. Depending on the position of the link
s(m) goes either like:
AT 1 BH BT 2 A (BLvALYY (A © B)TAT 3. AVBT 4. BYA®
B)¥(B*vA*H).. AT or like
BT 2 attalt 1 BLY(BLvAL)Y (A e B)TAT 3. ABY 4 BHA©
B){(BtvAL)t. B,
After reduction, the long trip v" in §'(7) is:

BB 2 Att At 3 4balt 1 glipt 4 Bl

By hypothesis 1 contains no conclusion. The condition of non-overlap-
ping of inner parts of v-links in 7 implies that D' is in 1 iff C* is in 1
iff DT...C% is in 1, and in this case the inner part D'...C" contains no
conclusion. Otherwise DT and C* are in 2,3, 4: now the segments 2,3 and
4 are in this order in the long trip, before and after reduction, so D'...C*
contains a conclusion in o' iff it contains a conclusion in v, and this is false
by hypothesis, qed.

— t = ®. With the same notations as above for the 4 segments of the cycle,
the trip v in 7w is 1,2,3,4 or 2,1,3,4 or 1,2,4,3 or 2,1,4,3 up to cyclic
permutation, and the trip v’ in 7’ is always 1,4, 2,3 up to cyclic permuta-
tion?. Assume D' ...C% contains a conclusion ¢ in 7. The position of these
three formulas in 1,4,2,3 is a triple (D', ¢, C*) € {1,2,3,4}?. But for any
triple (z,y, 2) € {1,2,3,4}3 such that (z,y, 2) is in the order variety (1423),

3 We shall refer to “1,4,2, 3 up to cyclic permutation” as “the order variety (1423)”.
Although it should be intuitive enough in this case, precise definitions are in sec-
tion 3.
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(x,y,2) is in at least one of the order varieties (1234) or (2134) or (1243)
or (2143): if two positions among x,y, z are equal, it is obvious; besides
(1,4,2) € (2134), (1,4,3) € (1243), (1,2.3) € (1234) and (4,2, 3) € (2134).
So some trip in 7 contains a conclusion ¢: contradiction.

3. Non-overlapping of the inner parts of v-links. Let s be a v3-free switching.

Let % and givgj be two others links.

t = ©. We use the above notations. In 7/, DI isin 1 iff DV isin 1iff D} ... D}
is in 1, it is therefore also the case in 7, and then for every position of C’2T
and C’f, an overlapping in 7’ comes from an overlapping in at least one of
the trips 1,2, 3,4 and 2,1,3,4 in 7.

The case when CJ ...CY} is in 1 is similar.

Otherwise all of Dg, D%, C’QT and C’li are in 2,3,4, and the overlapping is
preserved, as the order of the segments 2,3 and 4 is preserved.
t = ®. Let CJ, DI, C}, D} be an overlapping in 7’ (the other case is abso-
lutely similar), let us show that it comes from an overlapping in 7. If the 4
formulas are spread over 1, 2 or 3 segments (among the segments 1,2, 3 and
4), then it is clear by the same argument as above. Besides, they cannot
be spread over the 4 segments. Indeed, if for instance C3, DI, C}, DV are re-
spectively in 1,4, 2, 3, then the trip of the form 2,1,4,3 in 7 forbids on one
hand any conclusion in 3 and 4 (no conclusion in the inner part C’2T e C’li
in 7), and on the other hand any conclusion in 1 and 2 (no conclusion in
Dg . D%), what is impossible, because 7* is a proof net of MLL and must
therefore have at least one conclusion. The others cyclic permutations of
C’QT, Dg, C%, D1i in 1,4, 2,3 give rise to an analogous argument.

[ |
Theorem 2.23 Reduction of proof nets is strongly normalizing and confluent.
Proof. Obviously m — 7' iff 7* — 7", therefore see [8]. |

Example.

Y5

AL
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The cycle of the conclusions in s(¢5) iss: A - B — B*© At - Aor B —
A — Bt ® At — B, depending on the switching s.

In s(3%), the cycle of the conclusions is: A — B — B+ ® A+ — A for every
swiching s.

3 ORDER VARIETIES

3.1  Order varieties and partial orders

Order varieties are structures that can be presented as partial orders in several
ways, the idea being that of the oriented circle which becomes a total order
as soon as an origin is fixed.

Definition 3.1 (Order varieties) Let E be a set. An order variety on E is
a ternary relation o which is
- cyclic: Vz,y,2z € E, a(z,y,2) = a(y, 2, 1),

anti-reflexive: Vo, y € F, ~a(z, z,y),

transitive: Vz,y, 2, t € E, a(z,y,2) A a(z,t,2) = a(y, 2, t),

spreading: Vz,y, z,t € E, a(x,y,2) = a(t,y,2) V a(x, t,z) V a(z,y,t).
An order variety o on E is said total when Vr,y,z € E, x £y # 2 # v =
a(r,y,z)Va(z,y,x).

Ternary relations satisfying the first three axioms have been studied by Novak
[15] and called cyclic orders, but only the spreading condition gives a satis-
factory connection between order varieties and their presentations by orders
(theorem 3.8).

A few elementary properties and examples:

Lemma 3.2 (i) Transitivity of an order variety a implies a(z,y, 2)A\ a(z,t,x) =
a(t,z,y) as well.

(i1) An order variety a on a set F is anti-symetrical: Va,y, z € E, ~a(z,y, )V

—a(z,y, ).

Proof. (i)
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(ii) Let a be an order variety. a(x,y, z) A a(z,y, z) implies a(y, z,y) (tran-
sitivity) i.e. e(y,y, z) (cyclicity), and this does not hold. [ |

Examples.

e As expected, if a is a total order variety, a(z,y, z) can be read as “y is
between x and 2”.

e The empty ternary relation on any set F is an order variety on E, called the
empty order variety on E, denoted by ()5, or simply ) if there is no ambiguity.
e The cyclic closure of {(a,b,c)} satifies the first three axioms, but it is not
an order variety on {a, b, c,d} (only on {a,b,c}).

Definition 3.3 (—4) Any order variety o on E induces an oriented graph
—a on E with an oriented edge between x andy € E iff V2 € E,z £ x Nz #
y = a(z,y,z).

Any oriented cycle G induces a ternary relation r(G) on |G| by: r(G)(z,y, )
iff y is between x and z in G.

Facts 3.4 (i) If v is a total order variety on E, then — is an oriented cycle.
(i1) If G is an oriented cycle, then r(G) is a total order variety.

(iii) The set of finite oriented cycles is isomorphic to the set of finite total
order varieties.

Notation. The finite total order variety corresponding to the oriented cycle
a; — -+ — a, — a; will be simply denoted (a; ...a,).

Definition 3.5 (i) Let « be an order variety on E and © € E. Define the
binary relation o, on E\ {x} by: a.(y,2) iff a(z,y, 2).

(ii) Let (E,w) be a strict order and z € E. Define the binary relation <, by:

x <Zw y iff v <,y and z is comparable with neither x nor y,

and the ternary relation @ on E by:

O(z,y,2) iff z<,y<wz V y<,z2<,2 V z2<,2<,y V

1 T Yy
T <,y V o y<, 2z V z<,T.

Proposition 3.6 If « is an order variety on E and x € E, then o is a strict
order on E \ {z}. It is called the order induced by e and z.

Proof. 1If a is an order variety , then a, indeed is
— anti-reflexive: o, (y, 2) iff a(z,y, z), and this implies y # z (anti-reflexivity
of a),

anti-symmetrical: o, (y, 2) A a,(z,y) iff a(x,y, z) Aa(z, z,y), and this does
not hold (lemma 3.2),
— transitive: o, (y, 2) A (2, 1) iff a(x,y, 2) Ne(x, 2, 1), iff a(z,y, 2) Ne(2, 1, )
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(cyclicity of ), and this implies (¢, x, y) (transitivity of ), whence a(z, y, t)
i.e. a,(y,t). |

Notation. We shall make use of the familiar notions of serial and parallel
compositions of orders: let w; and wy be orders on disjoint sets F and F
respectively; define two orders on EUF, their serial and parallel compositions,
wy <ws and wy || wy respectively, by:

o (W <wy)(z,y) iff x<,,yorz<,,yor(ze€FEandyeckF),

o (wy ||wo)(z,y) iff =<, yora<,,y.

Proposition 3.7 (i) If (E,w) is a strictly ordered set, then W is an order
vartety on E.

(i1) If (B, wq) and (Fy,ws) are two strict orders on disjoints sets Fy and Es,
then W1 <w; = wy ||wy = Wy < wy.

Proof. (i) If (E,w) is strictly ordered, then @ is indeed:
— cyclic: it is clear;
anti-reflexive: as w is a strict order, =z <, z and -z <, y, thus —w(z, z, 2);

transitive: W(x,y, z) and W(z,t,z) iff (t <,y <, 2 V y<,z2<,z V z<,
r <,y V J:<Zwy Vv U<Tu,z Vv z<yw3:) AN (z<,t<,z Vt<,z<,
2V o <,z2<,tV z<mwt Vv t<zu,3: Vv :L"<th).lf3:<wy<wz,then
t<,x<,y<gpzorzx<,y<,z<,tortincomparable with z,y and z, and
in all cases @W(t, z,y). The cases when y <, z <, x or 2z <, © <, y are similar
(cyclic permutation).
If z <Zw y, then z <mw tVit <zw x. In the first case, x <, y and t is incomparable
with z and y (t <, y = 2z <, y contradicts z <Zw y,and y <, t = x <, t

. x t
contradicts z <, t), whence = <, y. In the second case, t <, x <, y, thus

. z y . :
once again w(t,z,y). The cases when y <, z or z <, x are similar (cyclic
permutation).

spreading: assume wW(z,y,z) and let ¢t € E. If x <, y <, z, then either
t <,y (sot<,y<,z whence @W(y, z,t)), or y <, t (so x <, y <, t, whence
w(x,y,t)), or y and ¢ are comparable (and in that case either ¢ is incomparable
with z, so W(z,y,t), or t is incomparable with z, so @W(y, z,1), or © <, t <, 2,
so W(z, x,t)).
Ifz <, y, then either t <, z <, y (whence W(z,y,t)), or z <, t <, y (whence

z <, tand also t <, y), or & <,y <, t (whence w(x,y,t)), or x <, ¢t and ¢
and y are incomparable (whence @W(z, x,t) if =z <, t, or W(y, z, ) if z <, t),
or t and x are incomparable and ¢t <, y (and apply the same argument as
above), or t is incomparable with = and y (so W(z,y,t)).
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(ii) If z,y € Ei, then z(w <wo)y iff x <, y, thus if z,y,2 € Ej,
w1 <w2(3:,y,z) 1ffw_1(x,y,z) iff w1 ||w2(3:,y,z).

Similarly for z,y, z € Fj.

If x,y € Ey and z € Es, then w ||wa(z,y,2) iff © <., y iff 2 (wi<wsy) y
(w1 <ws) z iff Wy <wa(z,y, 2). |

Propositions 3.6 and 3.7 are essential: they express the possibility to focus on
an arbitrary element x in an order variety (a — a, || =) to perform opera-
tions (the usual operations on binary orders) and then come back to an order
variety (w +— w). They are at the core of the operations on order varieties, see
section 3.2.

Partitions. Given an order variety a on E and a non-trivial bipartition £ =
FUF* (F,F¢ # (), one may ask whether there exist relations (necessarily
orders) wr and wge respectively on F' and F'° such that a can be presented by
(wp || wre) (equivalently by (wp <wpe) or (wpe <wp), cf. proposition 3.7), i.e.
a = wy ||wge. Theorem 3.8 gives the existence of a presentation when F'is a
singleton. For an arbitrary partition, there is no such presentation in general;
however, when it exists, the relations wp and wge are easily seen to be unique.

Theorem 3.8 Let a be an order variety on a set E, a € F, and w be one
of the following three strict orders on E: (o ||a), (ag <a) or (a<ay). Then
W= a«.

Proof. According to proposition 3.7 (ii), the three choices for w give the same
order variety @. Let us therefore just consider the case of (a < ).

lfxr=a V y=a V z=a, then a(z,y, z) iff W(z,y, z) by definition of a,.

Let then z,y, 2z € E be all different from a and such that a(z,y, 2). As a is
spreading, a(z,y,a) V a(y, z,a) V a(z,z,a),ie.z2a,y Vya, zV z a, z,
whencea <, z <,y Va<,y<,zVa<,z<,z Forinstancea <, z <, vy
(the other two cases are similar). If y <, z V z <, z, then obviously @(z, y, z).
On the other hand, if z <, 2z then a(a,z, 2), and as a(z,y, z), then a(a,y, 2)
by transitivity, thus y <, z. Similarly if z <, y, then 2z <, . Now the only
remaining possible case is: z incomparable with z and y, and again @(z, y, 2).

Conversely, let z,y,z € E be all different from a and such that @(z,y, 2),
le. 1 <, Yy<,2 Vy<,z2z<,2V 2<,2<,y V m<zwy V y<mw

z V z <yw z. In the first case, a,(z,y) N a,(y,z) (by definition of w),
whence a(a, z,y) N a(a,y,z) (by definition of a,), thus a(z,y, z) since a is
transitive. Similarly for the other two cases.
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Ifr <, y, then in particular e(a, =, y). As e is spreading, this forces a(a, =, 2) V
a(z,y,z) V a(y,a,z). Besides x <, y implies among others: —a(a, z,y) A

T Y .
—a(a,z, z). Therefore a(z,y, z), qed. The cases y <, z and z <, x are iden-
tical. |

Remark. For the above theorem, the spreading condition is necessary: for
example, as already mentioned, the cyclic closure of {(a,b,c)} is not an or-
der variety on {a,b,c,d}, and actually it does not come from any order on

{a,b,c,d}.

It turns out that theorem 3.8 can be very simply formulated in terms of species
of structures (a branch of enumerative combinatorics introduced by Joyal [11]);
this is not essential in the present paper, but we mention it since it might be
exploitable in the future. Recall that a species of structures is a functor from
the category B of finite sets and bijections as morphisms to the category
FinSet of finite sets and functions. Two species F' and GG are said isomorphic,
in symbols F' ~ (G, when there is a natural isomorphism between F' and G. If
F is a species, its derivative F' is the species defined by: F'(z) = F(x U {x})
where % € x and F'(0) = F(0 + %) for a bijection o : x — y.

For instance the functor O; that maps a set x to the set of total orders on =z,
the functor O that maps a set x to the set of all orders on x, and the functor C
that maps a set to the set of its cyclic permutations, are species of structures.
O, and C are related by: C' ~ O,. Order varieties are an integral of (partial)
binary orders:

Theorem 3.9 The functor V' that maps a set x to the set of all order varieties
on x has derivative the species O of orders:

V'~ O.

Proof. The transformations 0 : V' — O defined by 0,(a) = e, for any order
variety a on z U {x}, and : O — V' defined by 7, (w) = w|| * for any order w
on z, are clearly natural in x. Besides they are inverse of each other because
(w| %), = w (obvious) and a, || * = a (theorem 3.8), ged. |

3.2 Compositions

We will use the following constructions of order varieties.

Definition 3.10 Let o and B be order varieties on the sets F and F respec-
tively, with ENF = {x}. Define:
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a®, B = a,<z<f, | and | a®,0 = o, |z| B, |

Proposition 3.11 If a and B are order varieties on the sets E and F re-
spectively, with ENF = {x}, then a ®, B and o ®, B are order varieties on
FEUF.

Proof. According to proposition 3.6, a, and 3, are strict orders on E \ {z}
and F'\ {z}, so by proposition 3.7 (i), @ ®, B8 and a ®, (3 are order varieties
on FUF. [

Example. If ENF = {2}, 0p ®, 0p = Opur, but O @, Op # Dpup.
The following is a straightforward calculation:

Proposition 3.12 Let a and 3 be order varieties on the sets E and F re-
spectively, with ENF = {x}, and let y € E\ {z}, z € F\ {z}.

(x©:B), = a,l(z<B,)/7] (x®:B8), = olz|B,)/7]
(@0, 8). = B.llas<z)/z]  (a®:8). = B.llas|=z)/r]

3.8  Restriction

Proposition 3.13 (i) If a is an order variety on a set E and F C E, then
the restriction o [r of a to F' (as a set of triples) is an order variety on F.
(i1) Let a be an order variety on EU{z} with x ¢ E. Then a|p= a.

(11i) Let w be an order on E and F C E. Then (@) [p=w [p.

Proof. (i) a |p is cyclic (a [p (z,y,2) = z,y,2 € F AN a(z,y,z) whence
a(y,z,x), so alr (y,2 x)), anti-reflexive (a [ (z,y,2) = a(x,y, z) whence
x # yANy # zAz # x), transitive (a [p (2,9, 2) AN [p (2, t,2) = z,y,2,t € F A
a(r,y,z) N a(zt,r) = alfr (t,2,y)), and spreading (Vz,y,2,t € FF C F,
a(r,y,z) = a(r,y,t)Valy zt)Valz,x,t).

(ii) Let a be an order variety on £ U {2z} with z ¢ E. e [ and @; are both
order varieties on F, and by theorem 3.8 a[p= (o, || 7) [r= @.

(iii) Obvious. |
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3.4 Intersections and interior

An intersection of order varieties is obviously cyclic, anti-reflexive and transi-
tive — hence a cyclic order —, but not necessarily an order variety: for instance
(abed) N (abde) N (acbd) = (abd) is not an order variety on {a,b,c,d}.

In section 4 we will be dealing with order varieties associated to proof nets
(see also section 3.6), but on the other hand we shall also take intersections
of order varieties. So we need a way to transform an intersection of order
varieties, or more generally a cyclic order, into an order variety. This is the
purpose of the following:

Definition 3.14 Let « be a cyclic order on E. Define its interior ta by:

Example. If a = (zyzt) U (zyu), then ja = (xyz) U (zyt) U (zyu).

Proposition 3.15 Let v and B be cyclic orders on E.
(i) s is an order variety on E.

(i1) te C .

(111) tha = fov.

(iv) 1 is the largest order variety included in o.

(v)a C B =taCi1B.

(vi) If FF C E then (3a) [rC 1(a|r).

(vii) (@ N B) C 1N EB.

(viii) (1 N 3B8) = t(e N B).

Proof. (1) As an intersection of order varieties, ta is a cyclic order. Tt is
spreading because if (fa)(z,y,2) and t € F \ {z,y, z} then &;(z,y, 2), so at
least one of the pairs (z,y), (v, 2), (2, ) is in oy, whence either a(z,y,t) or
a(y, z,t) or a(z, x,t), qed.

(i) (ba)(z,y,2) = e || 2(z,y,2) & (y,2) € aw & a(r,y, 2).
(iii) g is an order variety so for any z € E, (fa), || © = 1 by theorem 3.8.

(iv) Let 8 be an order variety on F included in a. If 3(x, y, 2), then for any ¢ €
E\{z,y, 2z}, @;(z,y, 2): indeed a(z, y, z), and 3 is spreading so either 3(t,y, 2)
or B(z,t,z) or B(x,y,t), say for instance B(t,y, z) (the two other cases being
similar), so a(t,y,z) whence y <q, z; besides © <o, 2 = = <4, y and
Y <ay T = z <q, © by transitivity of a; this implies (e || t)(z,y, z) as well.
Furthermore, if B(z,y, z), then obviously for any t € {x,y, z}, (ay || t)(z, y, 2).
Therefore 3 C ta.
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(v) Immediate consequence of (i), (ii) and (iv).

(vi) It ¥ C E then (1) [r= (Mwepl®) [#C (Mier@all) [r
= Maer(ew || 2) 1= Noep (@ [r)s | = t(a]p).

(vii) g(an @) is an order variety (by (i)) included in e and 3 (by (ii)), so by
(iv) (N B) C 1 and 3N B) C 1B, qed.

(viii) t(ta NtB) C 1(a N B) is a consequence of (ii) and (v). Conversely,

{(@nB) C 10 and 11 B) C £B, 50 t(een B) C 180 36 but (e M B) s an
order variety, so by (iv), f(aN @) C t(ta N tB), qed. |

In the sequent calculus, we shall make extensive use of the relation —, of
definition 3.3. An essential property of ja is that it is basically a simplification
of ¢ relative to — | : it is an order variety, and useless information has been
removed, as shown by the following proposition.

Proposition 3.16 Let o be a cyclic order. Then —yq = —4.
Proof. Clearly =4 C —4. Now if a —4 b, then the cyclic closure R, of the
relation {(a,b,z) | x # a, b} is included into e (by definition of —,) and it is

cyclic, anti-reflexive, transitive (trivial) and spreading, hence an order variety,
and therefore R,;, C ja by proposition 3.15 (iv), so a —4 b. [ |

3.5 Pasting

Definition 3.17 Let « be an order variety on a set EU{x,y}, with z,y ¢ F,
x # vy, and let z ¢ E. Define the pasting a|z/z,y| of x and y along z in o by:

alz/r,y] = 1(@lpug [2/2] 0 alpug) [2/3) |

The following proposition is obvious:

Proposition 3.18 (i) If « is an order variety, so is az/x,y].
(i1) If o and B are order varieties on FE U {x,y}, with z,y ¢ E, x # y, and

a C 3, then alz/x,y] C Blz/z,y].
Given a cyclic order e, we shall need to compute (ta)[z/z, y]:

Lemma 3.19 Let o be a cyclic order on E U {x,y}, with x,y distinct and
not in E, and let 2 ¢ EU{z,y}.

Then (500)[2/, 5] = £(e Irugey [2/2) 0 @ Loogyy [2/3).

Proof. (t0)[2/2, 5] = £((t@) Tuiey [2/7] 0 (50) Trugyy [2/9]). Now:
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(te) [Eu{zy = (Neer allaNeg ||z ay,|ly) [ EU{z)

= Neer (@lpugay)allaN (@ Tuup)a |7 Nagy
= h(a rEU{m}) Moy

= talpugy) Nalpug,

and similarly (1&) [sugyy= (e [pufy)) N @ [ By Hence:

(ta)[2/z,y] = (e lpuE)lz/2] N i(a louyy)[2/Y]
Na [rugyy [2/y] N el pugey [2/2])
= tt(alpog [2/2]) N1l leog [2/Y])
Mo pugyy [2/y]l N ol pugay [2/2])
= Bl [2/2]) Ni(aleow [2/9])
= ey [2/2] 0 elsug [2/y])

by proposition 3.15 (viii), qed. [ |

3.6 Order varieties and proof nets

Definition 3.20 (. s, o) Let © be a proof net of MNL with conclusion 7.
(1) If s is a switching for m, oy s is the total order variety on ? corresponding
to the cycle of the conclusions in s(m).

(ii) o = §(1, ).
By definition, «, is always an order variety.

Proposition 3.21 (i) If 7 is a proof net of MLL, then o, = ().
(ii) If 7 is a proof net of McyLL, then o, is a total order variety.

Proof. (i) Assume a, (A, B, C) for some conclusions A, B, C' of m and some
switching s. Deleting for each %-link [ the left edge of [ if s(I) = R or the right
edge of [ if s(I) = L, produces a graph which is a tree (Danos-Régnier criterion
[5]), and therefore determines a ternary link [y (which has to be a ®-link) where
the three paths between the three leaves A, B, C meet. Let s’ be the switching
obtained from s by changing the position of /: then a, o (C, B, A).

This proves that N, s = 0, so a; = 0.

i1) Corollary of proposition 2.14. [ |
(ii) y of prop

The following lemma is an immediate consequence of theorem 2.20.
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Lemma 3.22 Let 7 be a proof net, s a v3-free switching for m and s' a switch-
ing for m such that s'(1) = s(l) for any link | # v. Then o s = o

Proposition 3.23 If 7 is a proof net and m — «', then a, C a,.

Proof. We shall prove that N, oz s C g a5, from which the result follows
by proposition 3.15 (v).

Assume that (N, a,5)(C, D, E) for some conclusions C, D, E of 7. The proof
is very similar to the proof of theorem 2.22, and we shall use the notations of
this proof.

If the reduction bears on an identity link, then the result is trivial.

Assume the reduction bears on a pair of v/®-links, and let s’ be a v3-free
switching for 7'; considering the two positions L and R (not 3) for the cut
v-link, we get two long trips in 7: 1,2,3,4 and 2,1, 3,4, the long trip in =’
being 2,3,1,4. As the inner part of a v-link, 1 contains no conclusion, so
C, D, E are in 2,3,4. Now (2,3,4) belongs to the three total order varieties
(1234), (2134) and (2314), hence o, »(C, D, E) still holds after reduction, and
by lemma 3.22, o o (C, D, E) for any switching s” of 7', qed.

Assume the reduction bears on a pair of %/®-links, and let s’ be a v3-free
switching for 7’; choosing positions for the cut links, we get a switching s for
7 and the long trip in wis 1,2,3,40r 2,1,3,40r 1,2,4,3 or 2,1,4, 3, the long
trip in 7’ being 1,4,2,3. As (N, ax5)(C, D, E), we have (C,D, E) € (1234) N
(2134)N(1243)N(2143), hence at least two formulas among C, D, E have to be
in the same segment (1,2, 3 ou 4), and therefore (C, D, E) € (1423) = o 4.
Again by lemma 3.22, this extends to non-v3-free switchings. |

Examples. oy, = 0 and ay, = 0, since () is the order variety corresponding
to the cycle of two elements (and is by the way the only order variety on a
two-elements set).

= (Bo C,ARC, A @ B).

(Ms ) = (€A, D) U

(C is already an order
variety, so ay, = (C,A, D)u (C, A, B)

(Ns s s) = (A, B,B*©AN)N(B, A, B- @A) =0, so ay, = 0. But o5 — ¢/;
and ay_ = (A, B,B+© At).
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4 SEQUENT CALCULUS AND SEQUENTIALIZATION

4.1 Sequent calculus

Definition 4.1 (Sequents) (i) A sequent (of MNL) - 7 (a) is a set ? of
occurrences of formulas together with an order variety o on 7.

(i1) A sequent of MLL is a sequent =7 (Q) where 7 is a set of occurrences of
formulas of MLL. So F= 7 (0) can be denoted 7.

(11i) A sequent of cyLL is a sequent = 7 () where 7 is a set of occurrences
of formulas of McyLL and e is total. Sot Ay, ... A, ((A1,...,An)) can be
denoted by = (A1, ..., Ay,).

Notation. Let a and 3 be order varieties on disjoint sets of formula occur-
rences 7 U {A} and A U {B} respectively. Define:

aOapfB=as<AOB<Bz=alA® B/A]l®iwp B[A® B/B] and
a®spB=0asr|ARB||Bs = a[A® B/A]®asp B[A® B/B,
two order varieties on 7 UAU{A® B} and ? UAU{A® B} respectively, and:

a=apPB = (xOapf)lrva = (@®apB)Irua = aall Bg,
an order variety on 7 U A.

The rules of the multiplicative sequent calculus are given in table 1.

Examples.
e A sequent calculus proof corresponding to 15 is

- AL A () F B, B (D)
FAY"®B'A,B ((A,A" ® B',B)) -CH e ()
FA'®@BY,B®C,AC" (A, A @B, BoC,Ch))
FAt® Bt BoC, ABRCt (At o BY,Be C,ABCY))

Note that the last rule could also be an introduction of C+vA since C+ — A.

e A sequent calculus proof corresponding to 5 is

FAL A (D) - BY, B ()
- AL A () F B+, B (0) o A B,Bt® At ((A,B+® A',B))
A, B,B+® At () - A%B, B+ o At ()
A, B, B+ o At ()

cut
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Identity - Cut

€
- AL,A <w> = Fafr<z> <a :A‘L:ia §> <IB> cut

Non-commutatives

FT,A () FB,A (B) FT,A B {(a) Cif A gy B
FT,A® B,A (a®a,5 ) FT,AvB (a[AvB/A, B])
Commutatives
FT,A () FB,A (B) FT,A, B (a) 3
FT,A® B,A (a®a,p0) FT,A%B (a]|A%B/A, B])
Table 1

Sequent calculus of MNL.

4.2 Sequentialization theorem

Definition 4.2 (D) To a proof D of conclusion = ? {a) in sequent calculus,
is associated in the obvious way a proof structure D+ with conclusion ? .

Theorem 4.3 (Adequacy) If D is a sequential proof with conclusiont 7 {(a),
then D™ is a proof net and o = ap.

Proof. We prove by induction on D that D" satisfies the axioms of theo-
rem 2.20 (7* is a proof net of MLL and for any switching, the inner parts of
v-links contain no conclusion and do not overlap) and a = (N, apL ). For
the axioms of theorem 2.20, it is straightforward. For the order varieties:

e D is an identity: there is only one switching s and ap1 ; = @{ALyA} = a.

e Dis

Dy ‘D
FT,A (a) FB,A (B)
FT,A® B,A (a®a,p0)
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A switching in D' is a pair (s,t) where s is a switching of D, and ¢ is
a switching of Dy, and apt sy is then (ap 1 Ja<AO B<(ap, ;) =

(G{D1L,s) ®A,B (G{Dgi,t)'

By induction hypothesis, o = § N\ ap, 1, and B = 1N, ap,r,, therefore we
have to show: bﬂs,t(a[)]{s) ®aB (osz’t) = (1N, G{D1Lvs) Oan (BN, osz’t).

— Let 7,y € ? UA: (¢ ©ap B)(AO B,z,y) iff € A and y € 7. Besides
(1Nssap,t s Oapap,t,)(AC B, x,y)

= Nsilap,tsOapap,)(AG B, x,y)

&S Tz eANye?,

but A® B <0a <0 is an order variety included in N ,(ap,+ ;@ Bap,: ), 50
AOB<la<0r CtNsy(ap,t Oapap,t ). Therefore (a®a58)(AOB, z,y)
iff € Aandye? iff tN,,(ap,1sOanap,,)(AC B, 2,y).

Let z,y,2 € 7: (a ©ap B)(z,y,2) iff @a(z,y,2) iff aal| Az, y,z) iff
a(z,y, z) as a is an order variety. Besides

(b ﬂs,t Op,Ls ®A,B (ani,t)(.’l,‘, Y, Z)
<~ (h ns,t aDll,s ®A,B aDzl,t) rF,A (.Z', Y, Z)
= 1(Nsu(ap,r s Oasap, ) Ira)(z,y,z) by proposition 3.15 (vi)
f=

a(r,y, z).

because N, ;(ap, 1, Oap ap,t ) [r,a= Nsap,t . But

a(z,y, 2)
& (1Nsap, ) [0a, A/A(2,y, 2)
= 4(Nsap,t,0a, AJA]) (2, y, 2) by proposition 3.15 (vi)
= (4Nssap,t s Oapap,t,)(x,y,2) by proposition 3.15 (v)

because (N, ap,1 ,[0a, A/A]) C Nyilap,t, Oap ap,t ). Therefore (o ®4p

B)(z,y,z)iff ﬂs,t(anli,s ©a,B anzi,t)(xa Y 2).
For z,y, z € A apply the above argument.
— Let z,y €? and z € A: (¢ ©a.5 08)(z,y, 2) iff a(z,y, A). Besides

(b ﬂs,t Op,Ls ®A,B O{Dgi,t)(ma Y, Z)
And (b ﬂs,t Op,Ls ®A,B O{Dzi,t) fr,z (.’I,‘, Y, Z)
=

1(Nsi(ap,t s Oapap,t ) Ir,:)(w,y,2) by proposition 3.15 (vi)
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but 4(Nss(ep,ty Oap ap,ry) Irz) = 4N lapt)allz = afz/A] so
(ENst p 2 s @ap op, ) (2,y,2) = oy, A). Now
a(z,y, A)
& (GNsap,)[0a, A/Al(z,y, A)
& 1(Nsap,t 0a, AJA])(x,y, A) by proposition 3.15 (vi)
& (N ap,: [0a, A/A]) (2, y, 2)

= (h ms,t aDll,s ®A,B O{DQL’t)(nyJZ)'

Therefore (o ©a,8 B)(z,y, 2) iff t N, (ap, s Oasap, )z, y,2).
For z € 7 and y, z € A apply the above argument.

e [is
Dy ‘D D, D
FT,A (@) FBA(B) OF FT,A(a)  FALA (B)
FT,A® B,A {a®a.B) FT,A (=<, 40 B)
Similar argument.
o Dis
DlE D]
FT,A, B {(a) A B or FT,A, B {a)
-T,AvB (a[AvB/A,B)) “ T, ABB (a[ABB/A, B))

A switching §' in D™ is a switching s of D;* together with a position of for

the link %, p € {v,%}. Let us consider the introduction of ¥: Ny apr g =

Ns(ap,t s ra [ABB/AlNap, 1, Iv,s [ABB/B]).
Now by induction hypothesis a = §(N; ap, 1 ), so
a|ANB/A, B
= (4Nsap, ,))ANB/A, B]

= 4((Nyap,+s) [ra [ABB/AIN (N ap,+ ) Iv,s [ABB/B))
by lemma 3.19

= hﬂs(anli,s Ir,a [ABB/A]N Op,ts Ir,B [ABB/B])

= ﬂs/ OLDL’S/.

For the introduction of v, the proof is the same because D is a proof net,
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so the internal part of ﬁx‘Tg contains no conclusion and we can concentrate on

positions R and L. [ |

Theorem 4.4 (Sequentialization) Let m be a cut-free proof net with con-
clusion 7. There ezists a sequent calculus proof D, with conclusion =7 {a,),
such that T = D*.

Proof. We proceed as in [8], with terminal v or #-links and splitting ® or
®-links.

In the case of tensor links, remark that the absence of cut link ensures correct-
ness of both proof structures. In the case of a terminal v-links, remark that
that position 3 implies the required condition A —,_ B. |

Appendix A deals with sequentialization of proof nets with cuts. Let us first
give an application of theorem 4.4 to cut elimination in the sequent calculus.

4.8  Cut elimination

Theorem 4.5 If D is a sequent calculus proof with conclusion 7 {a), then
=7 {a') is provable in the sequent calculus without the cut rule, with o C o'.

Proof. By theorem 4.3, D+ is a proof net, and by theorem 2.23 and propo-
sition 3.23, D' — 7 with 7 a cut-free proof net such that apr C a,. By
theorem 4.4 there exists a sequent calculus proof D’ such that 7 = D'*, and
by construction D' is cut-free.

adequac
p— 20 o pu

cut-
elimination

Y
Dete———r
sequentialization

The inclusion of order varieties is a consequence of proposition 3.23. |

Corollary 4.6 MNL is a conservative extension of both MLL and McyLL:
(i) if 7 {a) is provable in the sequent calculus, and the formulas of 7 are
formulas of MLL, then o = ();

(ii) if 7 (@) is provable in the sequent calculus, and the formulas of 7 are

formulas of McyLL, then a is total.
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A APPENDIX: ON THE SEQUENTIALIZATION OF PROOF
NETS WITH CUTS

So far, the theorems of section 4 say that given a sequent calculus proof D
with cuts, D' is a proof net and can therefore be reduced to its normal form,
a cut-free proof net m which in turn comes from a sequent calculus proof. We
might also wonder what happens during intermediate steps of reduction: are
proof nets still sequentializable during cut elimination D+ —* ¢ —* 7 ? More
generally we may ask whether theorem 4.4 can be extended to proof nets with
cuts, as in commutative LL.

Sequentialization of proof nets with cuts fails in general, with our definition
of proof nets and sequent calculus; for instance the following structure y is a
proof net but does not come from the sequent calculus:

However this is not a serious problem (neither a very relevant one), and indeed
there are at least three possible solutions:
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1) An approach is to add a condition to the definition of proof nets, that is
preserved during reduction and implies sequentialization for all proof nets. In
the above counter-example, the point is that the inner part of the v-link goes
through a %-link which is “below” it, so that the two disjunction links on the
left block each other. It is straightforward to formalize this notion of “being
above”: we define two orders <, and I, between the disjunction links of a
proof net* .

Definition A.1 (<,,IF;) Let m be a proof net, and a and b be two arbitrary
disjunction links of .

Let s = sqp be a switching a la Danos-Regnier (cut one of the two branches
of a link) for all the disjunction links of m but a and b. The graph obtained
contains exactly two independent cycles, and some pending edges. We note
T, the graph obtained by erasing these pending edges.

Define the relation <, by : a <. b iff for some v3-free switching of w, both the
sup part and the inf part of b go through a (i.e. they contain some premisse of
a), in other words iff for some switching s = s, @ la Danos-Regnier for all
disjunctions but a and b, m, , is the graph:

Define the relation |-, by : a -, b iff a is a v-link and for some switching for
7, the inner part of a goes through b (i.e. it contains a premisse of b).

Lemma A.2 Let 7 be a proof net. Then <, and |, are orders on disjunction
links.

Proof. The result is very easy for <. For I, use the facts that the inner parts
of v-links do not overlap (theorem 2.20) and that the inf parts of disjunction
links do not cross (i.e., if one inf part contains the beginning or the end of the
other one, then it contains both ends: this holds for commutative proof nets
as well). |

One can verify easily the following lemma:
Lemma A.3 Let 7 be a proof net and a a disjunction link of 7. a is minimal

for <, iff it is splitting, i.e. the graph obtained by erasing both edges of a has
two connected components.

4 <. can also be defined very simply via Métayer’s homological criterion [13] for

proof nets of MLL.
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Of course, the point here is that the two connected components may not both
be proof nets in general, for instance in the following proof net (which is
sequentializable!) the cut and the right v-link are splitting but then the left
component is no more a proof net:

v

Now it is natural to prove sequentialization with splitting disjunctions (v and
%), in a way similar to Danos [4]. We consider proof structures with non-logical
axioms, and one can easily imagine the obvious necessary adaptations.

Definition A.4 (Condition 4) A proof net m will be said to satisfy condi-
tion 4 if the two relations <, and |k, are orthogonal (i.e. <, U Ik, does not
contain a cycle).

Lemma A.5 (i) If D is a sequential proof with conclusion =7 (), then D*
satisfies condition 4.

(ii) If © is a proof net and m — 7', then <, O <p and Iz D k.

(iii) If w is a proof net satisfying condition 4, and m — «', then ©' is a proof
net satisfying condition 4.

Proof. (i) Obvious induction on D.

(ii) This is proved by pulling back configurations of 3 or 4 points before
reduction, as for theorem 2.22.

(iii) Follows immediately from (ii). |

Note that in the above counter-example, the cycle has lenght 2, but there are
bigger counter-examples, and condition 4 cannot be reduced to the absence of
a simple configuration.

Proposition A.6 Let m be any proof net with conclusion 7 satisfying con-
dition 4. There ezists a sequent calculus proof D, with conclusion = 7 {c),
such that m = Dt

Proof. Proceed by induction on the number n of disjunction links. If n = 0, =
is a tree: clear. If n > 0, then by lemma A.2 there is a link a which is minimal
for <, U lF,; by definition of condition 4, a is minimal for <, so it is splitting
(lemma A.3), and it is minimal for I, so it is not in the inner part of any
v-link. Let 7m; and 75 be the two components of m obtained by erasing the
two edges of a: by [4], m* and mo* are proof nets; we have chosen a so that
in particular no inner part of a v-link of m; or my goes through a, thus the
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inner parts of v-links of 7y and 75 contain no conclusion; non-overlapping and
condition 4 for m; and m, are immediate. Therefore m; and m, are proof nets
satisfying condition 4, and we can apply the induction hypothesis, qed. |

2) Another approach is to keep the correctness criterion for proof nets, and
try and slightly modify the syntax. An obvious idea is to consider cuts as
ternary links (with a conclusion) both in the sequent calculus and in the proof
structures: then of course theorem 4.4 holds for all proof nets, and there is
an interesting phenomenon, namely there are two kinds of cuts (the “parallel
cuts” with conclusion A ® A', and the “sequential cuts” with conclusion A ®
A') and they are no more innocuous (adding cuts may for instance destroy
the planarity).

Another possibility is to authorize some kind of revision in the sequent calculus
(introduce a @ a priori, then replace it by v if it is a posteriori possible),
the idea being that there is essentially one disjunction and one conjunction,
but different ways to view them geometrically. One could add for instance a
“purgatory” in sequents: a sequent then consists in an order variety a on ? plus
a set A of formula occurrences (with no structure), and the introduction of v is
not subject to a condition any more; on the contrary it can be performed freely,
but the problematic formulas (those formulas C' € 7 such that —a(A, B, C))
are send to the purgatory. Formulas in the purgatory can be removed by
cutting with proofs whose conclusion sequent has only one conclusion:

FT (a);A A AL (D)
FT{a);A

cut,

and the usual sequents are those sequents which have empty purgatory.

We leave the details to a further paper.
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