
HAM: A General-Purpose
Hypertext Abstract Machine
Brad Campbell
Joseph M. Goodman

Tektronix, Inc.
Computer-Aided Software Engineering Division
P.O. Box 4600, M.S. 94-480
Beaverton, Oregon 97076

ABSTRACT

The Hypertext Abstract Machine (HAM) is a general-purpose, transaction-based, server for a

hypertext storage system. The sewer is designed to handle mult@e users in a networked

environment. The storage system consists of a collection of contexts, nodes, links, and attributes

that make up a hypertext graph. This paper demonstrates the HAM’s versatility by showing how

Guide’ buttons. lntermedia webs, and NoteCards FileBoxes czn be implemented using the HAM’s

storage model.

INTRODUCTION

Tektronix’ Hypertext Abstract Machine (HAM) is a general-purpose, transaction-based, multi-user server

for a hypertext storage system The HAM is based on the abstract machine Norm Delisle and Mayer

Schwartz used in their Neptune system developed at Tektronix’ Computer Research Laboratory iJIeli86].

The HAM is an underlying component of the Tektronix CASE Division’s Software Engineering Informa-

tion System development effort. Because the HAM is a low-level storage engine, it provides a general and

ff exible model that can be used in several different hypertext applications.

The HAM stores all of the information it manages in graphs, or databases, on a host machine’s file systems.

Graphs are stored in a centralized area and can be accessed in a distributed environment. If a distributed

file system is shared by a series of machines, the HAM does not reduce the file system’s functionality.

Applications normally communicate with the outside world through a common user interface. This inter-

face is window-based and highly interactive to provide a suitable environment for a hypertext system.

Figure 1 shows the typical organization of a system using the HAM.

1. Guide is a trademark of OWL International. Inc.

Permission to copy without fee all or pan of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy othenvise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-340-X/89/001 l/O021 $1.50

November 1987 Hypertext ‘87 Papers 21

I USER INTERFACE I

I APPLICATION TOOLS I

HYPERTEXT
ABSTRACT
MACHINE

HOST
FILE SYSTEMS

Figure 1. Generic hypertext system architecture.

In this paper, we describe the HAM’s functionality and discuss how it can be used by potential applica-

tions. First, we describe the major features of the HAM and provide an overview of HAM operations. We

then describe possible HAh4 representations for three hypertext data structures: Guide buttons, Inter-media

webs, and NoteCards FileBoxes.

HAM FEATURES

The HAM storage model is based on five objects: graphs, contexts, nodes, links, and attributes. The HAM

maintains history for these objects, allows selective access through a filtering mechanism, and can allow

for access restrictions through a data security mechanism.

HAM Objects

A graph contains contexts, nodes, links, and attributes. These objects are organized hierarchically. The

following paragraphs describe each of the objects.

Graphs. A graph is the highest-level HAM object. It normally contains all of the information regarding a

general topic, such as the information for a software project. A graph contains one or more contexts.

Contexts. Contexts partition the data within a graph. E&h context has one parent context and zero or

more child contexts. When a graph is created, a root context begins the tree. A context does not depend on

information contained in its parent context. A context contains zero or more nodes and links.

22 Hypertext ‘87 Papers November 1987

Nodes. A node contains arbitrary data. This data can be stored as text or as fixed-length binary blocks.

When a node is updated, a new version is created by replacing the previous contents with the new contents.

Previous versions of a node can be retrieved. A node can be an append onZy node. Updates to an append

only node am appended to its contents. Append only nodes are useful for logging the actions performed by

an application. A node’s contents can also be searched for the occurrence of user specified regular expres-

sions. Nodes are related by links.

Links. A link defines a relationship between a source node and a destination node and can be followed in

either direction. A cross-context link relates two nodes in different contexts. Crosscontext links are useful

for sharing data between two contexts. The generality provided by link atzibutes allows application writ-

ers to define their own notions of link types or link end-point attachment schemes.

Attributes. Attributes can be attached to contexts, nodes, or links. Attribute values can be strings,

integers, floating-point numbers, or user-defined types. Attribute/value pairs give semantics to HAM

objects. They can represent application-specific properties of objects or contain information that further

describes an object. Attributes are also used in the predicates that are part of the HAM filters.

Version History

The HAM provides an automatic version history mechanism. The version history for a HAh4 object is

updated each time that object is modified. Because each access to an object contains a version time, previ-

ous versions of objects can be viewed. The HAM also provides operations to destroy undesired versions.

Filters

The HAM provides a filtering mechanism that allows subsets of HAM objects to be extracted from large

graphs. Filters allow the user to specify visibility predicates, which are expressions relating attributes and

their values. HAM filters only return objects that satisfy the predicates. Filters also allow the user to

specify a version time so that earlier versions of a graph can be examined.

The HAM filters the following items:

l Contexts in a graph

l Nodes in a context

. Links in a context

. Instances of a node in specified contexts

November 1987 Hypertext ‘87 Papers 23

l Instances of a link in specified contexts

Data Security

The HAM provides security for the data contained in a graph through its access control list (ACL) mechan-

ism Attaching an AU to an object is optional. An ACL entry consists of a user or group natm and a set

of permissions. A UTCP is anyone who has access to the graph. A group is a list of users. The available

pennhim are access, arm&ate, update, and destroy.

The permissions associated with an AU entry are additive. Access permission allows the user or group to

view the data associated with the object Annotate permission allows links to be attached to a node.

Update permission allows the user or group to perform nondestructive updates on an object. Destroy per-

mission allows the destruction of an object.

HAM OPERATIONS

To provide a consistent, simple interface, HAM operations are grouped into seven categories. Operations

within a category behave similarly, regardless of the object on which they operate.

Create Operations

Create operations create new HAM objects. A create operation takes object-dependent data and retums an

object index and a version time. The object index represents a unique identier for the newly created

object, and the version tune denotes the time at which the object was mated.

Delete Operations

Delete operations ma& objects as deleted but retain historical information. A delete operation takes an

object index and a version time, and returns a new version time. The object in&x specifies the unique

identifier for the object being deleted. The returned version time represents the time the object was deleted.

Destroy Operations

Destroy operations free all space required for an object. The object does not have to be deleted to be des-

troyed. A destroy operation takes an object in&x and a version time, and returns a new version time. The

object index specifies the unique idemifier for the object being destroyed. The returned version time

represents the t-Em the object was destroyed.

24 Hypertext ‘87 Papers November 1987

Change Operations

Change operations modify data associated with an existing object. A change operation takes au object

index, a version time, and object-dependent data. These operations return a version time. The object index

specifies the unique identifier for the object being modified. The returned version time represents the tune

the object was moditied.

Get Operations

Get operations retrieve data from existing objects. A get operation takes an object index and a version

time, and returns the data that existed at the specified time. The object index specifies a unique identifier

for the object from which data is being retrieved. The version time is a time range for the data retrieval.

Filter Operations

Filter (and linearize) operations selectively retrieve information from a graph. A filter operation takes a

predicate, a version time, and a list of atttibutes. These operations return a list of objects that satisfy the

predicate and a list of requested attributes attached to each object The version time specifies the time at

which the filter is to search for the information. Each filter operation also has unique parameters in addi-

tion to those already specified.

Special Operations

Operations that do not fit into any of these categories are considered special. They include functions such

as searching for strings in node contents, merging contexts, and managing transactions.

EXAMPLE HAM APPLICATIONS

Because the HAM is a general-purpose hypertext engine., it can serve many types of hypertext systems. In

this section, we will model three hypertext structures using the HAM’s storage model: Guide buttons,

Intermedia webs, and NoteCards FileBoxes.

Guide Buttons

Guide is a hypertext product developed for the Macintosh2 by OWL International, Inc. of Bellevue, WA

[Guidf36]. It is a tool for writing and reading electronic documents. Guide uses buttons to represent links

in a document between the information on the screen and related information. A button is a special area on

2. Macintosh ir a trrdemah of Apple Cmputcr, Inc.

November 1987 Hypertext ‘87 Papers 25

the screen. When a button is selected, by clicking the mouse, Guide follows the link to display the related

informition.

Replacement buttons replace the button icon displayed on the screen with the information associated with

that button. Inquiries are sets of two or more mutually exclusive replacement buttons. Rejkrence buttons

display the information associated with the button in a new window. This window remains visible until the

user returns to the document window. Note buttons display information associated with the button in a new

window that disappears when the user releases the mouse button.

To model Guide, the HAM equates a document with a node. %The various button relationships are modeled

as links. Link attributes determine which type of button the link represents. The application uses these link

attributes to determine which type of window to open when a button is selected.

Guide: Document Br

The button type is stored in the
link attribute LinkType; its value
Is Replacement, Inquiry,
Reference, or Note.

,Cuide: Note Browser
1

Remember that the submission
deadline is August 1st.

All buttons also maintain the link
attributes Name and Document-
Locations.

Guide: Button Attribute Browser

Name Deadline
Owner Wilma
Updated July 2, 1987
Created March 31, 1987

1 DocumentLocation I 35

Figure 2. Possible representation for a Guide note button.

Figure 2 shaws an example of a note button. The Document Browser contains the text being examined; the

icon withi.~ the browser represents the note button. The Note Browser contains the note associated with the

note button. The Button Attribute Browser shows the attributes associated with the link representing the

note button, as well as the value of the LinkType attribute.

26 Hypertext ‘87 Papers November 1987

The button type is stored in the link amibuteLkkType; its value is Replacement, Inquiry, Refer-

ence, or Note. All buttons also maintain the link attributes Name and DocwnenfLmarion. Name

represents the name associated with the button, and DocwnenU,ocation defines the location relative to the

beginning of the document where the button was created The value of DocumenrL.ocution corresponds to

Guide’s location of its button icon. Guide considers the information associated with a button to be an

atomic entity. Therefore, the other end of the link representing the button can point to the entire node that

contains the button’s information.

If a replacement button is part of an inquiry, the value of LinkType is set to Inquiry. A link that

represents part of an inquiry also has an attribute named Grouping, which contains the identilication of a

special node. This node contains the identification of all links (replacement buttons) that make up the

inquiry.

I~xxmyM Appli~x k,de Buttbnr ,

\ r 1

-m -7
3,:tom A~lr:ku’e Brouror

1 -.-- -

Nemo Example Enquiry
Owner Joe
Update July 27. 1987
Created June 27, 1987
LinkType Inquiry

\ 1 IntermedIa Webs 1

NoteCards FileBoxes

Guide Buttons
Intrrmodia Webs
NoteCmrds FIleBoxes

Figure 3. Inquiry storage representation.

Figure 3 shows the HAM storage model for an inquiry named Example Inquiry. The Storage

Representation window shows the nodes and links involved in the inquiry. In this example, the links have

the same name as their destination nodes. The node Example HAM Applications is the document

node. The nodes Guide Buttons, Intermedia Webs,and NoteCards FileBoxescontain

the information associated with the replacement buttons that make up the inquiry. The node Ex.lmple

Inquiry contains the names of the replacement buttons in the inquiry; its contents are show I in the

Example Inquiry browser. The Button Attribute Browser displays the attributes attached to one of he links

involved inthcinqky and shows thatthevalueofthe Grouping amibuteis Example Inquiry.

November 1987 Hypertext ‘87 Papers 27

Intermedia Webs

Intermedia, the system developed at the Institute for Research in Information and Scholarship at Brown

University [Ga1~86, Yank851. is one of the newer and more innovative hypertext systems.

The basic hypertext concepts in Intermedia are very similar to those found in the HAM. Inter-media uses

the term web to refer to a database that contains both references to a set of documents and the links associ-

ated with those documents weyr86j. A block is the piece of a document to which a link is anchored and

can be any legitimate selection in the application. The attributes provided by the HAM allow the flexibility

to efficiently model these relationships.

To model an Intermedia web, the HAM represents a web as a collection of nodes and links. A document is

represented as a node. An Intermedia link is equivalent to a HAM link. Blocks are determined by using

link attributes to define the anchor selections for both the source and destination ends of each link.

UNM~ manual pages4 provide a convenient example of how the HAM can model Inter-media webs. The

manual page for the mail command is used to create a small web of information.

Each document (manual page) is represented as a HAM node. The web is &fined by attaching an attribute

named Web to each link. The value of this attribute contains the name of the web to which the link

belongs. A link filter is ap$ed using the predicate “Web = mail" to let users view a map of the web.

This filter returns only those nodes that are part of mail.

Figure 4 shows the mail web defined by creating links from the mail command to commands in the manual

page’s “SEE ALSO” section.

To define a block, the HAM uses the attribute pairs SourceOffser/SourceExrenr and

DestinationOffsetlDestinationExtent. A block is determined by the value of the attribute pair attached to

the link. For example, the source block of a link is represented by the attributes SourceOffset and Sour-

ceExrent. The values of these attributes are integers that contain the byte offset from the beginning of the

node and the length of the block.

Each block is defined by the offset and extent attributes. The offset provides an insertion point for the

block, and the extent determines the end point of the block.

Figure 5 shows the value of the SourceOffset and SourceExtent attributes attached to link Binhhil. The

highlighted area shows the block these attributes define.

3. UNIX is a registered trademark of \T&T Bell Laboratories.

4. %X~S from the UNIX Progm aers Manual, Berkeley Diaribution, are used for purposes of illustntion.

28 Hypertext ‘87 Papers November 1987

Intermedia: mail web I

newaliases

The Mail Reference Manual

1 sendmail 1

Figure 4. Mail web.

r

/
souro*
Offset

-
Inlcrmedls: HAIL CowmenI

FILES:

lucrlcpoollmelll*
-Imbox
-/.meilro
/Imp/R*
/usrlllb/Mell.holp*
/urr/llbIYcll.rc
Ywsago’

SEE ALSO

post offlw
your old mell
file glvhg lnltlrl mcll commend.
temporary for edlior wupe
help filoc
l yrlem Inltlel~retion file
temporary for l dltlng meauger

Sourw Extent

qji& . hIa(newrllacec(l), ellawc(5).

mellrddr(7). mdmeil(B)

me Msil Refrenw Matwar

Inlermmlie: Sinmrll Documenl 1

NAME
blnmd - md or realve melt emong unre

*

r
!Bmrm arm4
:s,..,, Esteat

:4421 i
11

- __.. a--.--*-.---.-.-

Deetinrtlon 011~1

I

122
Deotlnallon Extent 7

L

SYNOPSIS
Iblnlmell [+ 1 [-I I[pereon] .-
k4ln/meil[+)[-l) -IfIb

DESCRIPTION
Note: Thlr b the old vmion 7 UNIX
ryrtem mall progrem. The delrult mell
oommmd Is domlbed In mell(1). nd
it@ binary Is In the dteotcry /uw/ucb.

Figure 5. Defining a block.

November 1987 Hypertext ‘87 Papers 29

NoteCards FileBoxes

NoteCards is a general-purpose idea-processing hypertext system developed at Xerox PARC IHala871.

NoteCards supports the concept of FileBoxes. Every notecard must be stored in one or more FileBoxes. A

FileBox can contain notecards and other FileBoxes. The FileBox structure is arranged as a dimcted acyclic

PPh.

FileBoxes can be represented in the HAM using nodes, links, and attributes. Both FileBoxes and notecards

are equivalent to nodes. The model uses a node attribute to determine whether a node is a FileBox or a

notecard. Links show which notecards (or FileBoxes) are in a particular FileBox. Link attributes deter-

mine which links refer to other FileBoxes and notecards. This model allows nodes to reside in more than

one FileBox. The example shown in Figure 6 helps to clarify the NoteCards FileBox model.

Bmcmurm thm Hyporton Abmtrmct Mmchlno
Is doslgnmd n m gmnwml-purpose l nglno,
ltcanbmuwfJus bmmmmnglnmforahmr
hyportaxt systems.

Example HAM Appllcatlons

-.-
NolmCmrdr: NormCard Allflh~1o q rorwmr

NotrCmrdr: NotmCmrd AttrRutm 8rawmrr
Fosturmm

Nmmo
Ownor
Upda1.d
Crmmtmd
NodrTypo

Conolumlon
Fred
July 20. 1987
June 14, 1987
NotbCard

Figure 6. NoteCards representation.

Ihe FileBox named Hypertext 87 contains all of the FileBoxes and notecards that make up this paper.

As shown in the Features NoteCard Attribute Browser, the Features node is a FileBox. When a

user browses this node, the NoteCards-like application examines the no&Type attribute, determines that

the node is a FileBox, and opens a new FileBox browser. The contents of the Features node are links

to all of the FileBoxes and notecards that it contains. Note that References is contained in both File-

Boxes.

30 Hypertext ‘87 Papers November 1987

The Conclusion NoteCard Attribute Browser shows that the Conclusion node is a NoteCard.

When a user browses this node, the application examines the nodeType attribute, determines that the node

is a NoteCard, and opens a NoteCard browser.

CONCLUSION

Because the Hypertext Abstract Machine is &signed as a general-purpose hypertext engine, it can be used

as a base engine for other hypertext systems. Most current hypertext systems emphasize the application

and user interface layers. While these layers axe very important an appropriate storage model is essential.

We believe the HAM provides such a model.

Although the HAM is not a panacea for hypertext data storage problems, it is an important first step. As

new hypertext applications are developed, we will learn more about the data representation problems

hypertext presents. If a storage model standard develops from this work, it may lead to the development of

a standard terminology and base engine that could improve immeasurably the progress of hypertext tech-

nology.

ACKNOWLEDGEMENTS

We would like to thank Amy River0 and Rich Davenport for their editing and illustration assistance. We

wish to thank Norm Delisle and Mayer Schwartz of the Tektronix Computer Research Laboratory for their

helpful comments. We would also like to thank them for their patience during the past year as they helped

us learn about hypertext.

REFERENCES

@Deli861 Delisle, Norman and M. Schwartz. “Neptune: A Hypertext System for CAD Applications.”

Proceedings of ACM SIGMOD ‘86, Washington, D.C. (May 2%30,1986): 132-142.

[Garr861 Garrett, N., K. Smith, N. Meyrowia. “Intermedia: Issues, Strategies, and Tactics in the Design of

a Hypermedia Document System.” Proceedings of the Conference on Computer Supported

Cooperative Work, Austin, TX. (December 3-5, 1986): 163-174.

[Guid86] Guide: Hypertext for the Macintosh Manual. Bellevue, WA: OWL International, Inc., 1986.

tHaIa Halasz, F., T. Moran, R. Trigg. “NoteCards in a Nutshell.” CHI + GI Conference Proceedings,

Toronto, Ontario, Canada. (April 5-9, 1987): 45-52.

FIeyr861 Meyrowia, N. “Intermedia: The Architecture and Consauction of an Object-Oriented Hyper-

media System and Applications Framework.” OOPSLA ‘86 Proceedings, Portland, Oregon.

November 1987 Hypertext ‘87 Papers 31

(September 29 - October 2,1986): 186-201.

[Schw86] Schwartz, Mayer and N. Delisle. “Contexts - A Partitioning Concept for Hypertext.” Proceed-

ings of the Co@erence on Computer Supported Cooperative Work, Austin, TX. (December 3-5,

1986): 147-152.

Prank851 Yankelovich, N., N. Meyrowitz, A. van Dam. “Reading and Writing the Electronic Book.”

Computer 18, 10 (Oct. 1985): 15-30.

32 Hypertext ‘87 Papers November 1987

