
Fractals from Simple Polynomial Composite Functions

Ken Shirriff
571 Evans Hall

University of California
Berkeley, CA 94720

ABSTRACT

This paper describes a method of generating fractals by composing

two simple polynomial functions. Many common fractals, such as the

Mandelbrot set, the tricorn, and the forced logistic map, as well as new

fractals can be generated with this technique. In many cases, the sym-

metry of the resulting fractal can be easily proved.

August 23, 1995

Fractals from Simple Polynomial Composite Functions

Ken Shirriff
571 Evans Hall

University of California
Berkeley, CA 94720

Introduction

A common method of generating fractals is repeated iteration of a complex func-

tion: zn+1=F(zn), where the function F depends on a constant c. Pickover has described a

technique [1], [2] for creating the function F by composition of two simpler functions f1

and f2: F(z)=f2(f1(z)). This paper discusses fractals generated by composition of func-

tions that are simple polynomials in z:

fi(z)=zki+hi(c) (1)

This class of functions generates a wide variety of fractals, while being easily analyzable

mathematically. (This class includes the elemental polynomial processes mentioned in

[3].)

Fractals in the c-plane (or parameter plane) can be generated from (1) by using

common escape-time techniques. That is, for each c value, a sequence of z values is gen-

erated recursively from the following set of equations:

I
J
K
J
Lz2n+2=f2(z2n+1)

z2n+1=f1(z2n)

z0=0

(2)

If the resulting sequence diverges, c is outside the fractal; otherwise, c is inside the frac-

tal. Julia set fractals can be generated in the z-plane (or dynamical plane) by fixing c and

varying the starting z0 in Equation 2.

- 2 -

Symmetry results

In many cases, it is straightforward to determine the symmetry of fractals generated

from (2). The Appendix contains proofs of these results.

Result 1: If (1) satisfies, for all c:

a) h1(c
h
)=h1(c) and h2(c

h
)=h2(c), or

b) h1(c
h
)=h1(c)

hhhh
and h2(c

h
)=h2(c)

hhhh

then the resulting c-plane fractal is symmetrical by reflection in the real axis. (The over-

bar indicates the complex conjugate.)

Result 2: If there are rotations r, s, and t such that (1) satisfies, for all c:

h1(ei rc) = ei sh1(c), h2(ei rc) = ei th2(c), ei sk2 = ei t, and ei tk1 = ei s,

then the resulting c-plane fractal is symmetrical by rotation around the origin by r radi-

ans.

Result 3: A z-plane fractal (i.e. a Julia set) generated from (1) will be symmetrical by

rotation around the origin by 2π/k1 radians. That is, it will have k1-way symmetry.

Applications

As an example, the Mandelbrot set, as well as the generalization to arbitrary powers

(zn+1=zn
k+c), can trivially be expressed as a composite function fractals by setting

f1(z)=f2(z)=zk+c (for k an integer ≥ 2). Results 1 and 2 prove that the generalized Man-

delbrot set has k−1 way rotational symmetry and is symmetric by reflection in the real

axis. (Gujar et al. illustrated this symmetry in [4].) This symmetry can be seen by set-

ting r=s=t = 2π/(k−1). Result 3 shows the associated Julia sets have k-way rotational

symmetry, as claimed in [5] and [6].

A second example is the Mandelbar or tricorn fractal [7] and its generalizations,

generated by iterating zn+1=z
h

n
k+c. By taking the complex conjugate of even z terms, this

can be converted to a composite form: f1(z)=zk+c, f2(z)=zk+c
h
. Results 1 and 2 then show

- 3 -

that the generalized Mandelbar set has k+1 way rotational symmetry and is symmetric by

reflection in the real axis. This symmetry can be seen by setting r=s = 2π/(k+1) and

t = −2π/(k+1). Result 3 proves that Julia sets from the Mandelbar function are k-way

rotationally symmetric.

The symmetry results can be used to find fractals with a desired symmetry, such as

pentagonal symmetry. (A detailed exploration of pentagonal symmetry can be found in

[8].) Figures 1 through 3 show composite fractals with pentagonal symmetry. These

figures were generated by applying Equation (2) 300 times for each pixel on a

2000x2000 grid. If the magnitude of z ever exceeded 10, the iteration was considered to

diverge; otherwise the pixel was colored black. The formulas for these fractals were

determined by choosing a formula with several undetermined parameters and then using

the symmetry results to determine valid values for the parameters. For instance, suppose

we want a pentagonally symmetric fractal of the form: f1(z)=zk1+c, f2(z)=zk2+c2. Apply-

ing Result 2 for pentagonal symmetry, we have r=2π/5, which yields s=2π/5 and t=4π/5.

It is then straightforward to solve for suitable values of k1 and k2, such as k1=3 and k2=2.

Some other interesting pentagonally symmetric composite fractals are generated by:

f1(z)=z6+c, f2(z)=z6+c (A generalized Mandelbrot set.)

f1(z)=z4+c, f2(z)=z4+c
h

(A generalized Mandelbar set.)

f1(z)=z4+c3, f2(z)=z4+c2

f1(z)=z4+c, f2(z)=z4+c−1

f1(z)=z2+c5, f2(z)=z2+ | c | 2

Note that switching f1 and f2 generally results in a new fractal image, but both images

will have the same symmetry under Results 1 and 2.

A variant of the periodically forced logistic map discussed by Markus and Hess [9]

can be expressed as a composite fractal. The logistic map xn+1=rxn(1−xn) is forced by

alternating the parameter r between two values. We can use a change of variables to

- 4 -

express this in the form of (1): f1(z)=z2+Re(c), f2(z)=z2+Im(c). (Re and Im are the real

and imaginary parts of the complex value c.) The two real parameters to the forced logis-

tic map are replaced by the single complex value c, but f1 and f2 are now real-valued

functions.

One benefit of the composite fractal expression of the logistic equation is that it sug-

gests interesting generalizations, such as using different exponents. Figure 4 shows the

Lyapunov image for f1(z)=z2+Re(c), f2(z)=z3+Im(c). This figure was generated using

techniques similar to those in [9]. For each pixel, the routine

compute_lyapunov_pixel computed the Lyapuonv exponent lambda. Unstable

pixels (with positive lambdas) were colored black. Stable pixels with large negative

lambda values were colored dark and pixels with values near zero were colored white.

The parameter max controls the total number of iterations, while skip controls the

number of initial iterations that are skipped while the sequence stabilizes. Increasing

these parameter improves the accuracy of the lambda computation, but slows down

image generation.

Conclusions

Many interesting fractals can be generated from composition of simple polynomial

functions. In many cases, the symmetry of the resulting fractal can be easily proved.

Avenues for future work include composing more than two formulas, using more com-

plex composition sequences (e.g. F(z)=f1(f1(f2(z))), or using more complex formulas.

Acknowledgements

This research was supported by an IBM Graduate Fellowship. The Pbmplus pack-

age of image tools by Jef Poskanzer was of great assistance in generating the figures.

Photography was courtesy of Steven Lucco. The anonymous referee’s comments were

helpful.

- 5 -

Appendix: Outline proofs of the results

Results 1 and 2 can be proved by comparing the two sequences of z values obtained

from two parameters c and c′. That is, Equation (2) generates the sequence

{0,z1,z2,z3, . . . } from parameter c, and the sequence {0,z′1,z′2,z′3, . . . } from parameter

c′. If | zn | = | z′n | for all n, then either both sequences converge or both sequences

diverge. Thus, c is inside the fractal if and only if c′ is. (A similar argument is used in

[7].)

For Result 1, set c′=c
h
. In case (a), the sequences will be identical since hi (c

h
)=hi (c).

In case (b) each term in the second sequence will be the complex conjugate of the term in

the first sequence, as can be shown by induction. (If z′n = zn
hh

then

z′n+1 = (z
h

n)k+h(c
h
) = (zn)k+h(c)

hhhhhhhh
= zn+1

hhhh
.) In either case, corresponding z terms have the same

magnitude so c and c
h

are either both in the fractal or both outside the fractal. Since c
h

is

the reflection of c in the real axis, the resulting fractal will be symmetric in the real axis.

For Result 2, set c′=ei rc, corresponding to rotation by r radians. If the conditions of

Result 2 hold, then induction shows that z′2n=ei tz2n and z′2n+1=ei sz2n+1 for all n. (If

z′2n=ei tz2n, then z′2n+1=(z′2n)k1+h1(ei rc) =ei tk1(z2n)k1+ei sh1(c) =ei sz2n+1. Likewise, if

z′2n+1=ei sz2n+1, then z′2n+2=ei tz2n+2.) Thus | z′n | = | zn | for all n, proving the resulting

fractal is symmetric by rotation by r radians.

Result 3 is immediate, since (e2πi /k1z0)k1 = e2πi z0
k1 = z0

k1. Thus, the rotation of the

initial z value has no effect after the first iteration.

References

1. C. Pickover, Computers, Pattern, Chaos, and Beauty, St. Martin’s Press, New

York, 1990.

2. C. Pickover, Recursive Composite Functions, Leonardo 22, 2 (1989), 219-222.

3. A. Lakhtakia, Julia Sets of Switched Processes, Computers and Graphics 15, 4

(1991), 597-599.

- 6 -

4. U. G. Gujar and V. C. Bhavsar, Fractals from z←zα+c in the Complex c-Plane,

Computers and Graphics 15, 3 (1991), 441-449.

5. A. Lakhtakia, V. V. Varadan, R. Messier and V. K. Varadan, On the Symmetries

of the Julia Sets for the Process z→zp+c, Journal of Physics A: Mathematics and

General 20 (1987), 3533-3535.

6. U. G. Gujar, V. C. Bhavsar and N. Vangala, Fractals from z←zα+c in the Complex

z-Plane, Computers and Graphics 16, 1 (1992), 45-49.

7. W. D. Crowe, R. Hasson, P. J. Rippon and P. E. D. Strain-Clark, On the Structure

of the Mandelbar Set, Nonlinearity 2 (1989), 541-553.

8. I. Hargittai, ed., Five-Fold Symmetry, World Scientific, New York, 1992.

9. M. Markus and B. Hess, Lyapunov Exponents of the Logistic Map with Periodic

Forcing, Computers and Graphics 13, 4 (1989), 553-558.

- 7 -

Figure captions:

Figure 1: f1(z)=z3+c2, f2(z)=z2+c−1

Figure 2: f1(z)=z2+c3, f2(z)=z3+c
h

Figure 3: f1(z)=z6+c, f2(z)=z6+c/ | c |

Figure 4: Lyapunov exponents of the composite fractal f1(z)=z3+Im(c), f2(z)=z2+Re(c).

The bounds of c are -1.31 ≤ x ≤ -1.025, .285 ≤ y ≤ 1.017.

Pseudocode

function compute_lyapunov_pixel(x,y)
z = .5
lambda = 0
for i from 1 to max do

if i>skip then
lambda = lambda + log(abs(3*z*z)) Note: d/dz zˆ3+y = 3zˆ2

end if
z = z*z*z+y;
if i>skip then

lambda = lambda + log(abs(2*z)) Note: d/dz zˆ2+x = 2z
end if
z = z*z+x;

end for
lambda = lambda / 2 / (max-skip)
set_pixel(x,y,lambda)

