
Managing Replicated Remote
Procedure Call Transactions

WANLEI ZHOU AND ANDRZEJ GOSCINSKI

School of Computing and Mathematics, Deakin University, Geelong, VIC 3217, Australia
Email: wanlei@deakin.edu.au

This paper addresses the problem of building reliable computing programs over remote procedure
call (RPC) systems by using replication and transaction techniques. We first establish the
computational model: the RPC transactions. Based on this RPC transaction model, we present the
design of our system for managing RPC transactions in the replicated-server environment. Finally,

we present some results of a correctness study on the system and two examples of the system.

Received 17 April, 1997; revised 30 August, 1999

1. INTRODUCTION

Two approaches are commonly used in supporting fault-
tolerant computing. The first approach provides program-
ming languages that are targeted at developing fault-tolerant
systems. Typical examples of this approach are the Ada
95 [1], the fault-tolerant concurrent C [2], and the fault-
tolerant version of the SR language [3]. The second
approach provides a fault-tolerant computing toolkit or a
model that can be used together with general programming
languages and standard operating systems. Typical exam-
ples of this approach are the ISIS toolkit [4], the ARGUS
system [5], the location-based replication paradigm [6],
the fulfilment transactions approach [7], and the RPC
transaction management system [8]. This paper follows the
second approach.

Remote procedure call (RPC) is perhaps the most popular
model used in today’s distributed software development
and has become ade facto standard for distributed
computing. The use of RPC facilitates the building
of distributed programs and removes concerns for the
communication mechanisms from the programs that use
remote procedures. Only fundamental difficulties of
building distributed systems such as synchronisation and
independent failure of components are left in RPC
programming.

Many leading computer companies have agreed on a
vendor-neutral distributed computing environment (DCE)
architecture proposed by the Open Software Foundation [9].
This architecture is designed under the client/server model,
and requires the interactions between its components to
follow the RPC paradigm. Although the DCE architecture
helps reduce the heterogeneity of server-access protocols
and provides a limited fault-tolerant support in the service
level, one important issue is still outstanding: the support
for fault-tolerant computing from the RPC level.

Since fault tolerance is not provided in the RPC level,
system services and user applications running on DCE have
to employ their own mechanisms for dealing with reliability

and availability of the system. This limitation has resulted in
a number of problems such as (1) adding another dimension
of difficulties (dealing with fault tolerance) in software
development; (2) repeated development of fault-tolerant
mechanisms in services and applications; and (3) less
efficient fault-tolerant mechanisms since they are running on
higher protocol levels.

For example, the Directory Service of the DCE uses a
primary copy and a number of read-only copies to provide
a distributed and replicated repository for information on
various resources of a distributed system. This mechanism
has the inconsistency and reconfiguration problems in the
case of failures, as described in [10] and [11]. Reference [11]
proposes an extension of the DCE Directory Service to
provide a better fault-tolerant service. However, it can only
solve the fault-tolerance problem on one service.

It has been suggested that the use of replication and
transaction techniques can provide an environment for
developing reliable programs [12]. Replication is the key
to providing high availability, fault tolerance, and enhanced
performance in a distributed system. However, although
considerable research efforts have been directed towards the
design of replication-control protocols, replication is still
viewed as a ‘necessary evil’ [6]. Reference [13] gives
a comprehensive overview of replication techniques and
annotated bibliographies of selected literature on replication
techniques and example systems.

Transaction managementis a well-established concept
in database system research. A transaction is defined as
a sequence of operations over anobject system(a system
with an associated collection of objects, where an object
can be a database file, an entry of a database file, or can
model a real-world entity such as printers or actuators of
a control system), and all operations must be performed in
such a way that either all of them execute or none of them
do [12]. Transactions are used to provide reliable computing
systems and a mechanism that simplifies the understanding
and reasoning about programs.

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

MANAGING REPLICATED RPC TRANSACTIONS 593

There have been some efforts to combine two of the three
techniques—RPC, replication, and transaction—together to
achieve reliable computing. However, none of the existing
systems/proposals are completely satisfactory.

The ISIS toolkit [4] is a distributed programming environ-
ment, including a synchronous RPC system, based on virtu-
ally synchronous process groups and group communication.
ISIS combines RPC and replication techniques to achieve
the goal of developing reliable programs. A special process
group, called afault-tolerant process group, is established
when a group of processes (replicated servers and clients) is
cooperating to perform a distributed computation. Processes
in this group can monitor one another and can then take
actions based on failures, recoveries or changes in the
status of group members. A collection of reliable multicast
protocols is used in ISIS to provide failure atomicity and
message ordering. The drawback of developing fault-
tolerant programs using ISIS is the performance penalties
incurred by using process groups.

The location-based paradigm for replication proposed
by Triantafillou and Taylor [6] addresses the problem of
combining reliability with performance issues. It uses
replication and transaction techniques to develop reliable
programs. The proposal provides reliability similar to
quorum-based replication protocols but with transaction
delay similar to a one-copy system. However, the proposal
cannot deal with network partitions properly. Another paper
by the same authors [14] addressed the issue of achieving
high availability in a partitioned distributed system through
the use of transaction and replication techniques.

The RPC transaction management system proposed by
Zhou and Molinari [8] uses RPC and transaction techniques
to develop reliable programs. RPCs are grouped into
transactions that are guaranteed to be atomic. However, the
proposed system does not work in a replicated environment.

The Coda file system [15] supports the replication of file
volumes, managing the resulting multiple-update problem
even in the presence of server failures. The replication of
file volumes produces a fault-tolerant service. The most
successful feature of the Coda system is its support for
disconnected operations. However, the reintegration of files
after a disconnection involves manual intervention in the
case of conflicting updates.

The fulfilment transactions approach adopted by the
Totem group [7] addresses the issue of reliable transaction
management in a replicated environment, through the use
of the Totem multicast group communication system [16].
Transactions normally commit even in the presence of
system failures (e.g. during a network partition), and
corresponding fulfilment transactions are generated to
record the details of these affected transactions. These
fulfilment transactions will then be processed by the system
when the failure is recovered in order to bring all replicas
to a consistent state. However, fulfilment transactions are
application-specific and in some cases, human intervention
is needed to reconcile the inconsistencies.

The purpose of this paper is to combine replication,
transaction management and RPC together to form a reliable

and efficient distributed computing environment. Fault-
tolerant programs developed in our environment should be
able to tolerate single failures such as a server failure, a site
failure or even a network partition without involving manual
intervention. These programs should also be efficient and
should not incur too much overhead compared with a non-
replicated system when there are no component failures.

The remainder of the paper is organized as follows.
Section 2 introduces the replicas, the RPC model, the
transaction model and the failure semantics. Section 3
presents the model and the algorithm for transaction
management. Section 4 describes the replica management.
Section 5 discusses the conflict-resolution algorithms.
Section 6 presents some results of a correctness study of
the proposed system. Section 7 describes an illustration
example and an application example of the system. Section 8
concludes the paper.

2. SYSTEM MODELS

2.1. Replicas

A distributed system with replicated servers consists of
many sites interconnected by a communication network. A
service is provided by a group of replicated servers (called
replicas) executing on some sites. These replicas manage
some common data objects that can be shared by many
clients. For simplicity, we assume that each replica knows
the location of other replicas that store the same data objects.
This assumption can be loosened if a replication directory
service is used.

When requesting a service, a client specifies the service
through, say, an attributed name [17]. The exact location of
the service and the server that provides such a service will
be determined by the system.

We model a service as a set of replicasS =
{S1, S2, . . . , Si , . . . , Sn}, wherei = 1,2, . . . , n, are called
the sequence numbersof these replicas. Each replicaSi
manages a set of data objectsOi = {di1, di2, . . . , dim}. The
consistency constraint requires that fori, j = 1,2, . . . , n
and for each serviceS,Oi ≡ Oj .

2.2. The RPC model

Each replica in our system provides a number of remote
procedures that can be called by clients for processing the
data objects managed by the replica. We useP to denote the
set of all remote procedures provided by all replicas of the
system:

P = {p | p is a remote procedure of the system}.
Our RPC model has the exactly-once call semantics in

the absence of failures and the at-most-once call semantics
otherwise [17]. In particular, after we make an RPC the
call may return successfully or fail. There may be several
reasons for the failure of a call such as ‘object not free’,
‘server error’ or ‘communication error.’ With some error
conditions it is clear to the client that the procedure was

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

594 W. ZHOU AND A. GOSCINSKI

not executed, while with other error conditions it is not
clear if the procedure was executed or not. For example,
on receiving an ‘object not free’ or a ‘server error’, we are
sure that the RPC was not performed. But on receiving a
‘communication error’, the client will not be able to tell if the
call was performed or not, because we do not know whether
the error happened before or after the calling request arrived
at the destination host.

We define the effects of an RPC as the processing of one
data item of the object system. Hence we can abstract an
RPC as a mapping of the followingtype:

c : P ×O → {OK,FL,US},

whereO is the union of all data objects managed by all
services of the system. The values of the target set have the
following meaning:

OK: This means that no failure occurred during the RPC’s
execution. Byc(p, d) = OK, wherep ∈ P is
a remote procedure andd ∈ O is the data object
processed by the call, we mean that the RPC call was
successful (i.e. the remote procedure performed the
job).

FL: This meansaccessing failure. By c(p, d) = FL
we mean that the destination server (the server that
exports the remote procedurep) could not perform
the job because, for example, the arguments between
the client and server do not match, the versions are
different, or the object managed by the server is not
free. This means that the RPC has not executed.

US: This meansunknown state. By c(p, d) = US we
mean that the client cannot tell if the RPC has or
has not been executed because, for example, the
destination host (the host that the server exporting
procedurep resides on) is down, or the server is
down, or the links between the client and server are
down (that is, the client host and the server host
belong to two partitioned sub-networks). In that case
the RPC request may be lost, or the return message
may be lost. So we do not know if the remote
procedure has been executed or not.

Without loss of generality we assume that all RPCs are
update-oriented operations. That is, ifc(p, d) is successful
it transforms the data objectd from the existing state to a
new state.

2.3. RPC transaction model

We define a (parallel)RPC transaction as T =
{c1(p1, d1), c2(p2, d2), . . . , ck(pk, dk)}, whereci(pi, di) is
an RPC andpi ∈ P , di ∈ O. The semantics of an RPC
transaction is that after issuing the transaction, allci of T
will be executed if no error occurs (commit or OK), or if
any one of them fails, all executed RPCs will be rolled back
(abort or FL). An RPCci(pi, di) ∈ T returns OK if and
only if all replicas ofdi have successfully performed the
procedurepi . Similarly, ci(pi, di) returns FL if and only

Synchronous

Asynchronous Commit Abort

conflict resolution

T is safe T is unsafe

Abort
(FL)

T{c1(p1, d1), c2(p2, d2), ..., ck(pk, dk)}

any ci(pi, di)=FLall ci(pi, di)=OK

Commit Partial commit
(PC)(OK)

(OK) (FL)

No FL but
any ci(pi, di)=PC

FIGURE 1. Semantics of the RPC transaction.

if some of its replicas ofdi failed to execute the procedure
pi ondi .

In addition to the two normal states (commit and abort),
we define apartial commit(PC) state. The real meaning
behind the PC state is that a replica is not accessible (e.g.
the replica is down or the network is partitioned), but there
are other replicas that can provide the same service. So the
transaction has only performed RPCs on all replicas that
are alive (can be reached now). For those replicas that are
not accessible now, the transaction effect will be resolved
when these replicas re-join the service (e.g. the failed replica
recovers or the network is reunited). During the conflict-
resolution phase, all the transactions that returned PC will be
checked. If the work of such a transaction does not conflict
with any other transactions (e.g. it does not use any common
data objects with other transactions), then it is considered
to be safe and will be committed. If a conflict is detected
between two transactions, then one of them is chosen as a
victim (unsafe) and will be aborted. The other will then be
safe and committed. This is done asynchronously.

Most existing RPC systems are synchronous in nature,
and hence fail to exploit fully the parallelism of distributed
applications. Our RPC transaction model is synchronous
when there is no failure and is asynchronous otherwise.
The model can achieve high parallelism while retaining the
simplicity of the RPC abstraction.

The execution of allci in T is in parallel. Some parallel
primitives can be built for parallel execution of remote
procedures [18]. Sequentially executed transactions can
be easily established from the parallel model. However,
if operations within a transaction are to be executed
sequentially, the serialisability [19] must be considered.
In this paper we only consider parallel RPC transactions.
Figure 1 indicates the semantics of an RPC transaction.

Parallel transactions exist in many applications. For
example, in a scheduling application a scheduler is
responsible to schedulek (k > 0) tasks concurrently and
the schedule is considered successful if and only if all the
tasks are successfully scheduled. Schedulers for meetings,
timetables, and even flight reservations (multi-hops) can be
modelled as scheduling applications.

If we do not need to distinguish individual RPCs within
an RPC transactionT , we then writeT = {ci(pi, di)} and
use|T | to represent the number of parallel RPCs withinT .

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

MANAGING REPLICATED RPC TRANSACTIONS 595

2.4. Failures

There are four classes of failures in a replicated-server
environment executing RPC transactions: transaction abort,
replica-is-down, site-is-down and network partition.

An RPC transactionT aborts if any of its RPC returns an
FL (e.g. the requested data object is not free, or if all replicas
of a service that the RPC accesses are down), orT was in
a PC state and then the conflict-resolution process identifies
thatT is unsafe. The usual treatment for a transaction failure
is to retry it after a random period of delay. The random de-
lay is necessary to avoid oscillation when two or more trans-
actions need to use the same data object at the same time.

A replica being down means that the replica is not acces-
sible. In this case, other replicas of the same service should
still provide the service to clients (an RPC returns FL if all
replicas of a service that it accesses are down). However,
when the failed replica recovers and rejoins the service, it
may have stale information because some data objects may
have been updated when the replica was down. To solve this
problem, we set all transactions on the live replicas of the
service to the PC state. These partially committed transac-
tions will be made to commit when the failed replica rejoins
the service and starts the recovery process. At the same time,
the failed replica will update all of its stale information.

A site being down means that the replica(s) that runs (run)
on it is (are) down. We assume that each site has only
one replica running on it. That reduces the problem into a
replica-is-down failure.

A network partition failure means that replicas of a service
may belong to two disconnected partitions. In this case, the
two sets of replicas should still provide the service to clients.
However, when the two partitions are reunited, the two sets
of replicas may have performed some conflicting operations.
To solve this problem, we also set all transactions performed
during the network partition on these two parts of replicas
to PC states. These partially committed transactions will be
resolved when the two parts are reunited.

We usesystem failuresto denote the latter three failures
and we assume a single failure for system failures. That is,
at any time only one of the replica-is-down failure, or the
site-is-down failure, or the network-partition failure occurs.
As discussed above, we can actually classify them into two
types of failures: thereplica failure and thepartition. A
replica failure means that a replica is down or the site that the
replica is running on is down. A partition means the network
is partitioned into two disconnected sets and both parts have
some replicas running on them. In both cases, we can divide
the replicas into two parts. For simplicity, we only assume
crash failures in this paper. Byzantine failures can also be
dealt with when the number of replicas of a service is more
than three and a majority voting scheme is used.

3. RPC TRANSACTION MANAGEMENT

3.1. The RPC transaction processing model

We define aprimary replicafor a data objectd as a replica
that is the best (e.g. the nearest site to theRPC transaction

manager(described below) that accepts the client request,
although the measure is left for individual applications) in
performing an RPCc(p, d). Any replica can be chosen as
the primary replica for a particular RPC. The management of
primary replica information is itself a difficult issue. We will
concentrate on the transaction management and therefore
will ignore this problem here.

Three system components are involved in processing a
transaction submitted by a client.

(i) An RPC transaction manager(RTM) accepts a transac-
tion T (c1(p1, d1), c2(p2, d2), . . . , ck(pk, dk)) from the
client. The RTM sends each RPCci(pi, di) ∈ T to
a primary replica ofdi and asks the primary replica to
check if the RPC can be performed or not. We denote
this operation asa(ci(pi, di)). The RTM then acts as
a coordinator for managing the atomicity ofT through
the help of the primary replicas. Section 3.2 describes
the RTM algorithm.

(ii) A primary replica accepts, from the RTM, an RPC
ci(pi, di) and the request to check the executability
of the RPC (the a(ci(pi, di)) operation). The
primary replica sends the RPC to all replicas of
data objectdi and asks all replicas (including itself)
to check if they can execute the RPC (e.g. ifdi
is free). We useb(ci(pi, di)) to represent this
operation. The primary replica acts as a coordinator
for managing the RPCci(pi, di) to be performed on
all replicas (including itself). Section 4.1 describes the
coordinating algorithm.

(iii) Each replica of the data objectdi accepts, from the
primary replica ofdi , the RPCci(pi, di) and the request
to check the executability of the RPC (theb(ci(pi, di))
operation). The replica then cooperates with the
primary replica by returning the executability check
and performing the RPC when requested. Section 4.2
describes the cooperating algorithm.

The request for checking the executability of an RPC is
essentially a request for a lock on the data object to be
updated by the RPC in most cases. However, in some cases
other factors can also affect the executability of an RPC.

The actual effect of ana(ci(pi, di)) call depends
on the associatedb(ci(pi, di)) calls. That is, if all
b(ci(pi, di)) calls return OK,a(ci(pi, di)) returns OK. If
any b(ci(pi, di)) call returns FL,a(ci(pi, di)) returns FL.
If no b(ci(pi, di)) call returns FL and there are PCs returned
byb(ci(pi, di)) calls, or no FL return but there are US or OK
returns (the primary replica must return OK or PC in this
case), thena(ci(pi, di)) returns PC. Ana(ci(pi, di)) may
also return US if the primary replica fordi is not accessible.

A client simply submits a transaction request to the RTM
and waits for the transaction result and the resulting state.
The resulting state returned at this stage can be one of OK,
FL or PC. As soon as the client receives a resulting state
of OK or FL, it can continue with its next operation. This
means that other operations, such as operations required for
consistency or for continuous committing, will be dealt with
by the system without the participation of the client.

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

596 W. ZHOU AND A. GOSCINSKI

RPC Transaction Manager

Primary Replica for
Processing ci(pi, di)

Non-Primary Replica
for Processing ci(pi, di)

Non-Primary Replica
for Processing ci(pi, di)

...

Client

...

T{c1(p1, d1), c2(p2, d2), ..., ck(pk, dk)}OK/FL/PC

OK/FL/US/PCOK/FL/US/PC OK/FL/US/PC...a(c1(p1, d1)) a(ci(pi, di)) a(ck(pk, dk))

b(ci(pi, di))b(ci(pi, di))OK/FL/US/PC OK/FL/US/PC

FIGURE 2. RPC transaction processing.

However, if no primary replica returns an FL but some
primary replicas return US (i.e. these replicas are not
accessible because of a site failure or a network partitioning),
then the RTM will retry to find new primary replicas for
those primary replicas that returned US. This process repeats
until either there are no more available replicas that can act
as primary replicas for some particular data objects, or the
newly found primary replicas return OK/PC/FL.

If the transaction returns a PC state, it should enable
an asynchronous receive procedure (similar to an exception
handler) to process the following asynchronous message
returned for the transaction. This message will come when
the partially committed transaction is resolved. In this case,
either a commit or an abort message will be returned. The
asynchronous receive procedure should then process this
accordingly. Figure 2 depicts the model for RPC transaction
processing.

The number of RTMs in a system depends on the
requirements of specific applications. Our examples
(Section 7) show two different configurations. The first
example (Section 7.1) uses one RTM for the whole system,
whereas the second example (Section 7.2) uses three RTMs.
A number of strategies, such as the twin-server model [20],
can be used to improve the reliability of the RTM.

3.2. The transaction manager

The transaction manager has three basic functions to
perform when it receives a transactionT .

(i) It submits operations to their primary replicas. The
manager is responsible for locating primary replicas
for each RPC and then sending these RPCs to their
corresponding primary replicas.

(ii) It manages the atomicity of the transactionT . It uses
the 2-phase-commit (2PC) protocol to ensure that if all
RPCs ofT to the primary replicas return OK,T asks
all primary replicas to commit and returns OK. If any
of these RPCs return FL, it asks all primary replicas
to abort and returns FL. In this case, any uncommitted
update will eventually be rolled back. If no operation
returns FL, but some operations return US, then the
manager will find new primary replicas for those that
returned US and try again. If all operations return OK

or PC (and there is at least one PC return), thenT asks
all primary replicas to partially commit and returns PC.

(iii) It sets up an asynchronous receive procedure if
a transaction returns a PC. The procedure awaits
messages from all primary replicas that returned PC.
If all of these primary replicas later return OK, then
the procedure will upgrade the transaction to a commit
state. If any of the primary replicas later returns an FL,
then the procedure will downgrade the transaction to an
abort.

We define a functionlocatePrimaryReplica()
which takes as its input an RPC and returns the primary
replica location of the RPC. If the function returns a
NULL, this means that there are no more available
replicas that can be a primary replica for the RPC
concerned (e.g. all replicas for processing a particular
object are cut off from the transaction manager). In this
case the transaction has to be aborted. This function
also guarantees that ifci(pi, di), cj (pj , dj) ∈ T and
di = dj , thenlocatePrimaryReplica(ci(pi, di)) =
locatePrimaryReplica(cj(pj , dj)) . This means that
the two RPCs of the same transaction will use the same
primary replica if they access the same data object.

The algorithmmanage rpc transaction() of List-
ing 1 implements the RTM. The constant MAXRPCS
defines the maximum number of RPCs allowed in an RPC
transaction.

LISTING 1. Algorithm 1—the RTM algorithm.

manage rpc transactions()

{
replicaaddresshandle primaryAddress[MAXRPCS];
int InComplete= TRUE;
while (TRUE) {
/* receive RPC transactions */
/* if more transactions come, queue up them until the
processing of the current transaction is over */

receive(client,T = {ci(pi, di)});
T ′ ⇐H T ;
while (InComplete){
COBEGIN
primaryAddress[i]= locatePrimaryReplica(di);
∀ci(pi, di) ∈ T ′;

COEND;
if ∃primaryAddress[i] = NULL,∀ci(pi, di) ∈ T ′ {
/* no more available replicas to choose forci (pi, di) */
COBEGIN
send(primaryAddress[i], “abort”),∀ci(pi , di) ∈ T ;

COEND;
tell the client the transaction returns FL;
InComplete= FALSE;
break;
}
COBEGIN
reti = a(ci (pi, di)),
execute on primaryAddress[i],∀ci(pi , di) ∈ T ′;

COEND;

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

MANAGING REPLICATED RPC TRANSACTIONS 597

SUS= {a(ci(pi , di)) | reti ≡ US};
SFL = {a(ci (pi, di)) | reti ≡ FL};
SPC= {a(ci (pi, di)) | reti ≡ PC};
SOK = {a(ci (pi, di)) | reti ≡ OK};
switch {
case(SOK 6= ∅ ∧ (SUS≡ SFL ≡ SPC ≡ ∅)):
/* all a(ci (pi, di)) executed and returned OK */
COBEGIN
send(primaryAddress[i], “commit”),∀ci(pi , di) ∈ T ;

COEND;
tell the client that the transaction returns OK;
InComplete= FALSE;
break;

case(SFL 6= ∅):
COBEGIN
send(primaryAddress[i], “abort”),∀ci (pi, di) ∈ T ;

COEND;
tell the client the transaction returns FL;
InComplete= FALSE;
break;

case(SFL ≡ ∅ ∧ SUS 6= ∅):
/* some of the primary replicas are not accessible */
T ′ ⇐H SUS;
break;

case(SFL ≡ SUS≡ ∅ ∧ SPC 6= ∅):
/* no failure, but there are PC returns */
set asynchronous receive procedure handler;
each primary replica is given the address of the handler
(pigybacked by the followingsend);

COBEGIN
send(primaryAddress[i], “partial commit”),
∀ci(pi , di) ∈ T ;

COEND;
tell the client that the transaction returns PC;
InComplete= FALSE;
break;
}
}
}
}

4. REPLICA MANAGEMENT

4.1. The coordinating algorithm for the primary
replica

When a primary replica receives an RPC requestci(pi, di)

from a transaction manager, it uses the coordinating
algorithm to maintain the consistency of all replicas in
terms of the RPC. This section describes the coordinating
algorithm.

In the coordinating algorithm the primary replica uses the
2PC protocol to ensure replication consistency. In the first
phase, the primary replica asks all replicas (including itself)
to check the executability of the RPC (i.e. theb(ci(pi, di))
operation). If all replicas return OK for such an execution,
the primary replica returns OK to the transaction manager. If
the transaction manager requests commit, then in the second
phase the primary replica asks all replicas to commit the

RPC execution. If any replica returns FL, then the primary
replica returns FL to the transaction manager and asks all
replicas to abort the operation in the second phase. If all
operations return either OK or PC or US (in this case, the
primary replica must return OK or PC and other non-primary
replicas may return OK, PC or US), the primary replica
returns PC to the transaction manager. The primary replica
also records the number of replicas that return OK and PC
and the smallest sequence number among these replicas.
These two numbers will be used in conflict resolution. If the
transaction manager requests partial commit in the second
phase, the primary replica asks all replicas to partially
commit. If the transaction manager requests an abort, the
primary replica then asks all replicas to abort, no matter what
was returned by the primary replica in the first phase. The
coordinating algorithm is listed in Listing 2. We assume that
Sj is the primary replica.

LISTING 2. Algorithm 2—the coordinating algorithm.

primary replica process

{
int k, NoOfPCs, smallestPC;
while (TRUE) {
/* receive RPCs from RTMs */
/* if more RPCs come, queue up them */
receive(RTM, a(c(p, d)));
k = n; /* n is the number of replicas ford */
Let Sj , j ≤ k be the primary replica;
COBEGIN
reti = b(c(p, di)),
wheredi is the copy ofd in replicaSi , i = 1, 2, . . . , k;

COEND;
RUS= {b(c(p, di)) | reti ≡ US};
RFL = {b(c(p, di)) | reti ≡ FL};
RPC= {b(c(p, di)) | reti ≡ PC};
ROK = {b(c(p, di)) | reti ≡ OK};
switch {
case(ROK 6= ∅ ∧ (RUS≡ RFL ≡ RPC ≡ ∅)):
tell the RTM that the first phase returns OK;
break;

case(RFL 6= ∅):
tell the RTM that the first phase returns FL;
NoOfPCs= |ROK|;
smallestPC= min(i|b(c(p, di)) ∈ ROK);
break;

case(RFL ≡ ∅∧(retj ≡ OK∨retj ≡ PC)∧(RPC 6= ∅∨RUS 6=
∅)):

tell the RTM that the first phase returns PC;
NoOfPCs= |RPC| + |ROK|;
smallestPC= min(i|b(c(p, di)) ∈ RPC∪ ROK);
break;
}
receive(RTM, command);
switch {
case(command is “commit”):
COBEGIN

send(Si , “commit”), i = 1, 2, . . . , k;
COEND;

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

598 W. ZHOU AND A. GOSCINSKI

break;
case(command is “partial commit”):
COBEGIN

send(Si , “partial commit”, NoOfPCs, smallestPC),
i = 1, 2, . . . , k;

COEND;
break;

case(command is “abort”):
COBEGIN

send(Si , “abort”), i = 1, 2, . . . , k;
COEND;
break;
}
}
}

In addition to the coordination work, the primary replica
has to do all the work of a non-primary replica. The
next section describes the role performed by a non-primary
replica.

4.2. The cooperating algorithm for all replicas

When a non-primary replica receives a request from a
primary replica, it checks whether the request can be
proceeded or not and acts accordingly.

(i) If the request can be performed, the non-primary replica
locks the required data object and returns OK. Later,
if the primary replica asks to commit the operation,
the non-primary replica performs the operation and
releases the lock. If the primary replica asks to abort
the operation, the non-primary replica releases the
lock. If the primary replica asks to partially commit
the operation, then the non-primary replica partially
commits the operation and records this event.

(ii) If the non-primary replica finds that the operation
cannot be executed (e.g. the required data object is not
free), it then returns an FL.

(iii) If the non-primary replica finds that the data item is
already in a partially committed state, then it returns
PC to the primary replica. Later, if the primary
replica asks to partially commit the operation, the non-
primary replica then partially commits the operation
and records the event. If the primary replica asks to
abort the operation, then the non-primary replica aborts
the operation.

The 2-phase-commit protocol used by the RPC trans-
action manager guarantees that the replicas will stay in a
consistent state if a transaction returns an OK or an FL.
However, to guarantee that all replicas do the same thing
to the transactions with PC pending, a consensus should
be reached among all replicas. This is a classic consensus
problem in fault-tolerant computing [21]. We use aneed-to-
do (NTD) table, which essentially is a checkpointing log, to
record the events of partially committed RPCs. Then, during
a recovery we let replicas exchange their NTD table entries
in order to reach a consensus for actions on the transactions
with PC returns. The NTD table of each replica is kept in

stable storage[22]. Therefore, information stored in the
NTD table will not be affected by system failures. The NTD
table structure is listed in Listing 3.

LISTING 3. The need-to-do table.

typedef struct ntd {
char *rpc; /* name of the partially committed RPC */
char *data; /* data object name used in this RPC */
int pc; /* No. of replicas partially committed this RPC */
int sm; /* smallest sequence # among all PC replicas */
void *ori; /* before image of the data object */
void *handler; /* asynchronous receive handler address */
NTD *pre; /* the previous PC RPC for this data object */
NTD *nxt; /* the next PC RPC for this data object */
} NTD;

When the primary replica asks for a partial commit for
an RPC, all replicas (including the primary replica) will
record this event into their own NTD tables as a new entry.
If t ∈NTD is such an entry, thent.rpc contains the name
of the RPC, t.data contains the data object used in the
RPC, t.pc stores the number of replicas that have partially
committed this RPC, andt.smstores the smallest sequence
number among all the replicas that have partially committed
the RPC. These two numbers (t.pc and t.sm) are sent by
the primary replica to each replica when it asks for partial
commit (see Listing 2). They are used later by the conflict
resolution algorithms to determine which partial commit
should be upgraded to a commit, and which partial commit
should be downgraded to an abort if a conflict occurs.

In order to downgrade a PC to an abort, abefore image
of the data object is kept in the NTD table.t.ori is used to
record the address of the before image.

The order of each partially committed RPC over a data
object is also very important when a recovering replica
carries out these RPCs. We use a pair of pointers to record
this order. Thet.prestores the previous partially committed
RPC and thet.nxt stores the next partially committed RPC
for the same data object. Thet.handlerstores the address of
the asynchronous receive handler if the replica is the primary
replica.

We associate with each data objectd a lock d.lock and
a partial commit flagd.pc. The actual effect ofb(c(p, d))
on d is to check or change the values ofd.lock and d.pc.
That is, if d.lock ≡ LOCKED (−1), b(c(p, d)) returns
FL. If d.lock ≡ d.pc ≡ FREE (0, free and not partially
committed), b(c(p, d)) returns OK and setsd.lock =
LOCKED. If (d.lock ≡ FREE) ∧ (d.pc ≡ n > 0) (free
but partially committed),b(c(p, d)) returns PC and sets
d.lock= LOCKEDandd.pc= n+ 1. If the replica is down
or the network is partitioned during the operation (i.e. the
replica is unreachable), a US is returned by the RPC system.

All RPCs of a transaction are actually performed in the
second phase of the algorithm. During this phase, each
replica has to release the lockd.lock (set to FREE) if the
c(p, d) has a normal commit or a partial commit. An entry
about this partial commit is also inserted into the NTD table.
The conflict resolution algorithms are then responsible for

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

MANAGING REPLICATED RPC TRANSACTIONS 599

upgrading it to a normal commit or for downgrading it to an
abort. The cooperating algorithm is given in Listing 4.

LISTING 4. Algorithm 3—the cooperating algorithm.

all replica process()

{
NTD t;
int myState;
while (TRUE) {
/* receive RPCs from primary replicas */
/* if more RPCs come, queue up them */
receive(PR,b(c(p, d)));
switch {
case(d.lock≡ FREE∧ d.pc≡ 0):
d.lock= LOCKED;myState= OK;
tell the primary replica that the first phase returns OK;
break;

case(d.lock≡ LOCKED):
myState= FL;
tell the primary replica that the first phase returns FL;
break;

case(d.lock≡ FREE∧ d.pc> 0):
d.lock= LOCKED;d.pc+ = 1;myState= PC;
tell the primary replica that the first phase returns PC;
break;

/* US is returned if a replica is unreachable */
}
receive(PR, command, NoOfPCs, smallestPC);
switch {
case(command is “commit”):
do (ret = c(p, d)) until ret ≡ OK;
d.lock= FREE;
break;

case(command is “partial commit”):
d.lock= FREE;
if myState≡ OK then d.pc= 1; endif;
t.rpc= c(p, d); t.pc= NoOfPCs;
t.sm= smallestPC; t.data= d;
t.ori = beforeImage(d); t.pre= previous(d); t.nxt= ∅;
if the replica is the primary replica of this RPCthen
t.handler= the asynchronous receive procedure handler

for this RPC;
endif;
do (ret = c(p, d)) until ret ≡ OK;
break;

case(command is “abort”):
if myState≡ OK then d.lock= 0;
else ifmyState≡ PC then d.lock= 0; d.pc− = 1;

endif;
break;
}
}
}

The algorithm will not cause deadlocks since there is no
waiting in the algorithm: a failure (FL) is returned as long as
a data object has been locked.

5. CONFLICT RESOLUTION

An RPC returns US only when the server is down or the
server is unreachable (e.g. the network is partitioned). If
the server is down, it will eventually be repaired and return
to service. In that case, the server missed all updates to its
data objects while it is down. Fortunately, we have set these
updates in ‘partial commit’ state and recorded them in NTD
tables. Therefore, the conflict resolution algorithms can use
this information and make the data objects managed by this
failed replica in line with all other replicas. If the network
is partitioned into two disconnecting parts, the two parts
will eventually be reunited again. In this case, replicas in
both partitions may have some partially committed updates.
The conflict resolution algorithms are also responsible for
making replicas in these two parts consistent.

Since the recovery process is highly critical, we assume
that during the recovery process (1) no system failures
will happen, and (2) no RPC transactions are allowed.
These assumptions can be loosened if more communication
and stable storage are used in conflict resolution. For
instance, if system failures do happen during the recovery
process, then we require that the recovery process logs
all its work in a stable storage where the next recovery
process can continue based on the stored information. If
RPC transactions are allowed to be submitted to a replica
during the recovery process, then these transactions will be
stored in a stable storage on the replica. The clients will
be notified of possible delays for the transactions. When the
recovery process completes, these stored transactions will be
processed immediately.

When recovering from a replica failure, we assume that
there is a process that deletes all entries of the NTD table of
the recovering replica, except those entries witht.handler 6=
∅. The reasons for doing this are: (i) those entries with
t.handler = ∅ are no longer useful—they will be dealt
with by other alive replicas; and (ii) those entries with
t.handler 6= ∅ have to be dealt with by the recovering replica
because it was the primary replica for the particular RPC.
This NTD table is sent to all alive replicas by the recovering
process.

Two algorithms are needed during the recovery of a
system failure. When recovering from a replica failure,
the recovering replica has to send a ‘reuniting’ message (it
includes the sequence number of the recovering replica) to
other alive replicas. This enables the alive replicas to send
outstanding NTD table entries to the recovering replicas by
using thesend out ntd() algorithm.

When recovering from a network partition, replicas of
each part of the partition have to send a ‘reuniting’ message
(it includes the sequence numbers of all replicas of the
partition) to replicas of the other part. This enables the
exchange of NTD tables among replicas in both parts by
using thesend out ntd() algorithm.

Once all replicas have received the NTD table from the
other part, theconflict resolution() algorithm is
used by all replicas to resolve possible conflicts and to
finalize the outstanding partially committed transactions.

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

600 W. ZHOU AND A. GOSCINSKI

The send out ntd() algorithm is very simple. It
detects the reuniting messages. If such a message comes,
it then sends all entries of the NTD table to all replicas
included in the reuniting message. Listing 5 describes the
algorithm.

LISTING 5. Algorithm 4—the algorithm for sending out an NTD
table.

send out ntd()

{
while (TRUE) {
/* detect the reuniting messages */
/* the process suspends until such a message comes */
reUnitSet= {sequence numbers of reuniting replicas};
while the NTD table is locked
wait;

COBEGIN
send(Si , NTD), i ∈ reUnitSet;

COEND;
}
}

The conflict resolution() algorithm is used by
all replicas to resolve potential conflicts for a data object.
The algorithm receives NTD entries from replicas of the
other part. Only the first arriving NTD table is accepted by
the algorithm and others are ignored. The algorithm then
checks the received NTD entries against its own NTD entries
to resolve potential conflicts.

We define aleader of an NTD table as the first partial
commit entry for a data objectd. That is, ift ∈ T is a leader
in an NTD tableT , thent.previous= ∅. The algorithm uses
three functions for processing NTD table entries led by a
leader:

(i) Theabort all(tme, q) function aborts all RPCs led
by the leaderq of the NTD tabletme.

(ii) The commit all own(tme, q) function commits all
RPCs led by the leaderq of the NTD tabletme. The
NTD tabletme is the replica’s own NTD table.

(iii) The commit all received(tot, t) function com-
mits all RPCs led by the leadert of the NTD tabletot .
The NTD tabletot is the received NTD table.

We first describe these three functions.
Listing 6 is theabort all(tme, q) function. It finds

the tail of the entries led byq and rolls back all RPCs from
the tail to the leader. If the replica is also the primary replica
of the RPC, an FL message is also sent to the asynchronous
receive procedure.

Listing 7 is thecommit all own(tme, q) function. It
finds the tail of the entries led byq and commits all RPCs
from the tail to the leader. If the replica is also the primary
replica of the RPC, an OK message is also sent to the
asynchronous receive procedure.

Listing 8 is thecommit all received(tot, t) func-
tion. It finds the tail of the entries led byt and commits all
RPCs from the tail to the leader.

Listing 9 describes theconflict resolution()
algorithm.

LISTING 6. Theabort all() function.

abort all (tme, q) /* abort all RPCs led byq */
{
NTD h, t;
h = q; t = the tail of the NTD entries led byh;
while (TRUE) {
d = t.ori;d.pc− = 1;
/* other activities for rolling back an RPC omitted */

if t.handler 6= ∅ then
send an FL message tot.handler;

endif;
t = t.pre; /* the previous entry */
if (t.pre≡ ∅) then break; endif;
}
delete all entries led byq;
}

LISTING 7. Thecommit all own() function.

commit all own(tme, q)
/* commit all RPCs led byq, own NTD table */
{
NTD h, t;
h = q; t = the tail of the NTD entries led byh;
while (TRUE) {
d.pc− = 1; t = t.pre;
if t.handler 6= ∅ then
send an OK message tot.handler;

endif;
if (t.pre≡ ∅) then break; endif;
}
delete all entries led byq;
}

LISTING 8. Thecommit all received() function.

commit all received (tot , t)
/* commit all RPCs led byt , received NTD table */
{
NTD h, a;
h = q; a = the tail of the NTD entries led byh;
while (TRUE) {
do a.rpc until an OK returns;
a = a.pre;
if (a.pre≡ ∅) then break; endif;
}
}

LISTING 9. Algorithm 5—the conflict resolution algorithm.

conflict resolution()

{
NTD t, q;
while (TRUE) {
/* receive NTD entries from alive/re-uniting replicas */
/* the process suspends until such a message comes */
/* if more such messages come, only accepts the first one
others ignored. Received NTD entries are stored intot */

receive(tot);
Let tme be the own NTD table of this replica;
for each leadert of tot do
if (∃ a leaderq ∈ tme such thatt .data ≡ q.data) then
/* conflict updates */

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

MANAGING REPLICATED RPC TRANSACTIONS 601

switch {
case (t.pc > q.pc) ∨ (t.pc ≡ q.pc ∧ (t.smallestPC>

q.smallestPC)):
/* abort all RPCs led byq in this replica */
abort all(tme, q);
/* commit all RPCs led byt for other replicas */
commit all received(tot , t);
break:

case (t.pc < q.pc) ∨ (t.pc ≡ q.pc ∧ (t.smallestPC<
q.smallestPC)):

/* commit all RPCs led byq in this replica */
commit all own(tme, q);
break:
}
elsecommit all received(tot , t); /* no conflict */

endif;
endfor;
for each leaderq of tme do
commit all own(tme, q); /* no more conflicts */

endfor;
}
delete all entries oftme (own NTD table);
}

6. CORRECTNESS

In this section we outline the informal analysis of the
correctness. We first assume the life-cycle of the system
entities (sites, links and replicas) is

work→ crash→ repair and restart→ work.

Without loss of generality, we assume that the maximum
down time (including crash, repair and restart time) is finite,
and it is denoted asTd .

ASSERTION1. If a transaction returnsOK, all its RPCs
have been executed successfully.

Proof. The only way that a transaction returns OK is that
in Algorithm 1 we have (SOK 6= ∅ ∧ (SUS ≡ SFL ≡
SPC ≡ ∅)). This means all RPCs to the primary replicas
have returned OK. A primary replica returns OK if and only
if in Algorithm 2 we again have (ROK 6= ∅∧ (RUS≡ RFL ≡
RPC ≡ ∅)). This means all RPCs to all replicas return OK.
A replica returns OK if and only if in Algorithm 3 the data
object involved is free and is not partially committed. If the
transaction returns OK, in the second phase of Algorithm
1 we order all primary replicas to commit the transaction.
In this case, all primary replicas will order their replicas to
commit in the second phase of Algorithm 2, and therefore
all replicas will successfully perform the real RPC in their
second phase of Algorithm 3.

ASSERTION2. If a transaction returnsFL, no RPCs of
the transaction have been executed.

Proof. There are two ways that a transaction could return
an FL. The first way that a transaction returns FL is that in
Algorithm 1 we have (RFL 6= ∅). This means some of the
primary replicas returned FL. A primary replica returns FL if

and only if in Algorithm 2 some of its replicas returned FL.
Furthermore, a replica return FL if and only if in Algorithm 3
it finds that the data object is not free. If the transaction
returns FL, in the second phase of Algorithm 1 we order
all primary replicas to abort the transaction. In this case,
all primary replicas will order their replicas to abort in the
second phase of Algorithm 2, and therefore in Algorithm 3
those replicas that returned OK will release their locks to
the data object. The replicas that returned PC will set the
associated integer of the data object to the free state. The
replicas that returned FL will do nothing. In any case, none
of the RPCs is executed.

The second way that a transaction returns an FL is that
in Algorithm 1 we cannot find any more replicas to be the
primary replica for a particular RPC. In this case all primary
replicas are ordered to abort the transaction. The rest of the
work done by Algorithms 2 and 3 is the same as described
above. Therefore, none of the RPCs is executed in any way.

ASSERTION3. The NTD table will not grow indefinitely
and any entry of the table will be deleted eventually.

Proof. An NTD table increases if and only if there is a
system failure, such as a replica or a site is down, or the
network is partitioned into two parts. From our life-cycle
assumption for system entities, we know that the maximum
time of a system failure isTd . After that, the replica or
the site will rejoin the service and the partitioned network
will be reunited. During the recovery, all replicas have to
execute Algorithm 5 and the algorithm will delete all NTD
table entries at the end of conflict resolution (it is easy to
show that Algorithm 5 terminates).

ASSERTION 4. After the conflict resolution, all
outstanding PCs will be either committed or aborted.

Proof. The conflict resolution is carried out by Algorithm 5
after the exchange of NTD tables between replicas of the two
parts (failed or alive replicas, or two parts of the partition).
The algorithm checks the replica’s NTD table against the
received NTD table to see if there are any update conflicts.
If no conflict is detected, all PC updates in both NTD tables
are committed. If there is a conflict for an update, the
algorithm determines the part that has more replicas, or has
the smallest sequence number if both parts have the same
number of replicas. Then the NTD update from this part
is committed, while the NTD update from the other part
is aborted. This process continues until all entries of both
tables (i.e. all outstanding PCs) are exhausted.

ASSERTION 5. If a transaction returns PC, the
transaction will be notified of anOK or an FL return in a
finite time.

Proof. The only way that a transaction returns PC is that
in Algorithm 1 we have (SFL ≡ SUS ≡ ∅ ∧ SPC 6= ∅).
This means there is no FL nor US return but some primary
replicas return PC. A primary replica returns PC if and only
if in Algorithm 2 we have (RFL ≡ ∅ ∧ (retj ≡ OK ∨ retj ≡
PC) ∧ (RPC 6= ∅ ∨ RUS 6= ∅)). This means there is no
FL return, and the primary replica returns OK or PC (this

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

602 W. ZHOU AND A. GOSCINSKI

guarantees that the primary replica is accessible), and there
may be PC or US returns from the replicas. A replica returns
PC if and only if in Algorithm 3 the replica finds that the
data object is already in a PC state. A replica returns US
if it is not accessible. If a transaction returns PC, in the
second phase of Algorithm 1 we set up an asynchronous
receive procedure and notify each primary replica of the
address of this procedure. Then we order all primary replicas
to partially commit the RPC. The real effect of a partial
commit is in Algorithm 3, where an entry is stored in the
NTD table of each involved replica. As we have shown in
Assertions 3 and 4, after a finite time all outstanding PCs
in all NTD tables will be either committed or aborted. At
the same time, these commit/abort messages will be sent
by relevant primary replicas to the relevant asynchronous
receive procedures (in functionscommit all own() and
abort all()). These asynchronous receive procedures
will then notify the relevant transactions of the final result.

ASSERTION6. After the recovery of a system failure, all
data objects managed by the replicas will be in consistent
states.

Proof. There are two types of system failure: replica failure
and network partition. During the recovery of a replica
failure, the recovering replica will receive the NTD entries
of an alive replica and all alive replicas will receive an NTD
table from the recovering replica. During the recovery of a
network partition, replicas of both parts of the partition will
exchange their NTD tables. During the conflict resolution,
all replicas will perform similar work because they all have
the same information (NTD tables of both parts). Entries
in these two tables are compared to check conflicts. If no
conflicts are found, RPCs in both tables will be committed
by all replicas. If any conflict of an RPC occurs, only the
RPC from one table will be committed; the other will be
aborted. In any case, the result will be consistent.

ASSERTION 7. The proposed system will not impose
too much overhead on the system compared with a non-
replicated system.

Proof. In our system, the transaction returns to the client as
soon as it has made the second phase order. The condition
for a transaction to make the second phase order is that all
primary replicas have returned their feasibility checks (i.e.
if the RPCs can be performed). Furthermore, the condition
for a primary replica to return the feasibility check is that all
replicas of the primary replica have returned the feasibility
checks. This means the transaction can return the resulting
state to the client without waiting for the RPCs of the
transaction to complete. The real RPCs of the transaction
are done after these feasibility checks have been returned.

It is anticipated that a feasibility check is faster than a real
RPC because the former only checks if the data object is
free. In this case, our system has a comparable response time
to a non-replicated system, where all real RPCs to all non-
replicated servers have to be returned before the transaction
can return to the client.

The system response time can even be improved by using

A1 B1

d2

RPC Transaction Manager

A2

d1

A3

d1

B2

d2

B3

d2

d1

T = {c1(p1, d1), c2(p2, d2)}

FIGURE 3. An example of RPC transaction processing.

the feasibility check results of all primary replicas instead of
waiting for the feasibility check result of all replicas of each
primary replica. A tentative decision can be made according
to these results. An asynchronous procedure is then set up
by the transaction manager to process the results returned
from all other replicas, and the final transaction result will
be decided according to these returns.

7. EXAMPLES

In this section we present two examples of the system. The
purpose of the first example is to illustrate the algorithms
described earlier, and the aim of the second example is
to (1) show that our system can be used in practical
applications, and (2) experiment with the system in a real
implementation to obtain some indications on performance
issues.

7.1. An illustrating example

In this example we assume that there are two data objects
d1 and d2. Data objectd1 is replicated in three replicas
A1, A2 andA3, and data objectd2 is replicated inB1, B2
andB3. An RPC transactionT = {c1(p1, d1), c2(p2, d2)}
is to be executed through the help of our RPC transaction
manager. Without loss of generality, we also assume that the
transaction manager has chosenA1 andB1 as the primary
replicas for the execution of the transaction. Figure 3 shows
the RPC transaction processing for this example.

Let us discuss the following three typical scenarios. Other
situations can be analysed in the same manner.

Case 1: No failures. The RPC transaction manager
uses Algorithm 1 to ask primary replicaA1 to check the
feasibility of c1(p1, d1) andB1 to check the feasibility of
c2(p2, d2) (the first phase). The two primary replicas then
use Algorithm 2 to check the feasibility of the work. Each
replica uses Algorithm 3 to do the job. Since there are no
failures, all replicas will return OK and the data objects
are locked by individual replicas. In the second phase, the
two primary replicas are asked to commit the transaction.
In turn, these primary replicas ask their replicas to commit
the transaction. In that case, all replicas will commit (the
second phase of Algorithm 3) the transaction and release
the locks. The transaction is then successfully executed.
Figure 4 shows the actions of the RPC transaction manager
and the replicas when there are no failures.

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

MANAGING REPLICATED RPC TRANSACTIONS 603

RTMA1, A2, A3

Feasibility Check

B1A1 B1, B2, B3

Lock d1 Lock d2
OK

OK OK

Commit

CommitCommit

c1(p1, d1) c2(p2, d2)
Release d1 Release d2

OK

Feasibility Check Feasibility Check

FIGURE 4. No failures.

φ

t.pc=2 t.sm=1 t.data=d1 t.ori=beforeImage(d1)
t:

t.handler=asyn. procedure addr t.pre= φ

t1: t1.pc=2 t1.sm=1 t1.data=d1 t1.ori=beforeImage(d1) t1.handler=asyn. procedure addr t1.pre=t

t.nxt=t1

t1.nxt=

(a) The NTD entry for A1 when process T={c1(p1, d1), c2(p2, d2)}

(b) The NTD entry for A1 when process T’={c3(p3, d1), c4(p4, d2)}

t.rpc=c1(p1,d1)

t1.rpc=c3(p3,d1)

t.pc=2 t.sm=1 t.data=d1 t.ori=beforeImage(d1)
t:

t.handler=asyn. procedure addr t.pre= φ t.nxt= φt.rpc=c1(p1,d1)

FIGURE 5. The NTD entries during the processing ofT andT ′.

Case 2:A2 is down and then recovers. Let us first look
at the situation thatA2 is down. In this case the feasibility
check byB1 will return an OK, but the feasibility check
by A1 will return a PC. All data objects (exceptA2’s data
object) are locked. In the second phase, the RPC transaction
manager will decide to partially commit the transaction
and each primary replica will be given the address of an
asynchronous handler (but onlyA1 stores the address). All
replicas (exceptA2) will then execute the RPC and release
the locks. Also, replicasA1 will set the partial commit
number ford1 (d1.pc) to 1 and will record the information
depicted in Figure 5a into their NTD tables.
A3, B1, B2 andB3 will also have a similar entry added

into their NTD tables.
WhenA2 recovers and is reunited into the system,A2’s

recovery process will clean up its NTD table and send a
reuniting message and the empty NTD table to all other
replicas ofd1 (i.e.A1 andA3). Upon receiving the reuniting
message,A1 and A3 will use Algorithm 4 to send their
NTD table entries toA2 (the first arrived NTD table will
be accepted, others discarded). Then, all three replicas will
use Algorithm 5 to resolve conflicts based on the same view
of the NTD tables. In that case,A1 andA3 will commit the
RPC that returned a PC previously by decreasing thed.pc
number by 1, and delete the entry from their NTD table.
SinceA1 was the primary replica for this RPC, it also has
to use itst.handlerfield to send an OK message to the RTM.
The RTM then can tell the client program that the transaction
is upgraded to a commit state. Figure 6 shows the actions of
this scenario.

If a second transactionT ′ = {c3(p3, d1), c4(p4, d2)}
is submitted to the RTM beforeA2 is recovered, then all

Feasibility Check
Feasibility CheckFeasibility Check

Lock d1 Lock d2
OKOKUS

PC OK

Asynchronous

Partial Commit
procedure

Partial CommitPartial Commit
c1(p1, d1)
Release d1

c2(p2, d2)
Release d2Asynchronous

handler

A2 recovers

re-unit/NTD

NTD NTD

c1(p1, d1) Delete t; d1.pc-=1 Asynchronous
handler OK

Asynchronous
procedure

Commit

... ...

A2 A1, A3 A1 RTM B1 B1, B2, B3

t=>NTD; d2.pc=1t=>NTD; d1.pc=1

Delete t; d2.pc-=1

FIGURE 6. A2 is down and then recovers.

A1

RPC Transaction Manager

A3

d1

B3

d2

A2

d1

B2

d2

RPC Transaction Manager

d1

B1

d2

T’={(c3(p3, d1), c4(p4, d2)}T = {c1(p1, d1), c2(p2, d2)} Network
partition

Partition 2Partition 1

FIGURE 7. The network is partitioned into two parts.

feasibility checks will return PC states and the RTM will
decide to do a partial commit. In that case, an entryt1 will
be added to all replicas’ NTD tables, with the new entry
linked to the previous entry, as shown in Figure 5b. The
di.pc, i = 1,2, fields are increased by 1. Both transactions
will be upgraded into the commit state whenA2 recovers.

Case 3: The network is partitioned into two parts.
Suppose that we have the situation depicted in Figure 7,
where the network is partitioned into two parts and a
transaction is submitted to each part of the partition.

The feasibility checks of both partitions will return PC
states and therefore both transactions will be partially
committed by their RTMs. When the two partitions are
reunited, both partitions will exchange information of their
NTD tables and use Algorithm 5 to resolve conflicts. Since
partition 1 has more partially committed replicas,T will
be committed in both partitions andT ′ will be aborted in
partition 2.

7.2. An application example

The system described in this paper has been used in
our implementation to improve the reliability of a loosely
integrated heterogeneous database system [23]. This section
describes the architecture of the system and some results of
our experiments.

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

604 W. ZHOU AND A. GOSCINSKI

Trading

Agent

Trading

Agent

Trading

Manager

Trading

Manager

Trading

Agent

Trading

Agent

Network

Primary
Trader

RTM

Application Program

User

Run-Time

Library

SUN

Trading

Manager

Trading

Agent

Trading

Agent

SUN

...

Ingres

Non-primary
Trader RTM

Run-Time

Library

Application Program

User

SUN

Non-primary
Trader RTM

...

Mini SQL

SUN

SUN

Oracle

...

Trading

Context

Location 1

Location 2

SUN

Location 3

Trading

Context
SUN

...

Trading

Context

SUN

FIGURE 8. Architecture of the loosely integrated system.

7.2.1. The architecture
Figure 8 depicts the architecture of our loosely integrated
heterogeneous database system.

The system consists of the following components:

(i) Database servers. Each individual database server
maintains database operations directed to it. Currently
three database servers (Oracle, MiniSQL and Ingres)
are running on three separate Sun workstations located
about 100 km apart.

(ii) The trader. A trader is a third-party object that
links clients and servers in a distributed system [24].
We use a trader to manage the shared information
among participating databases of the loosely integrated
database system. If a database system is willing
to share part of its information with other database
systems or outside applications, itexports (an update
operation) that information as aservice offerto the
trader. These service offers are managed by the trader
as trading context. Application programs (clients)
wishing to make use of the shared information have to
import (a read-only operation) such service offers from
the trader and then access the database(s) concerned.
Trading operations, including the export and import
operations, are implemented as RPCs.

(iii) The trading manager. Atrading manageris built on
every participating database system for performing all
common tasks of trading preparation and management.
It is responsible for such tasks as checking the validity
of trading requests, forming local offers, executing the
service, and returning request results.

(iv) Trading agents. Trading agentsare appointed by
database servers to manage some special service offers.
For example, if some schema translation is needed, or
if a service offer involves accessing multiple database
systems, then a trading agent can be appointed to
manage the offer. A trading agent exports the service
offer it manages to the trader. The client imports the

service offer from the trader and is given the agent’s
address (and the description of the service, of course).
It then calls the agent and obtains the service.

Individual databases in the heterogeneous database
system are allowed to maintain their autonomy, yet through
the use of traders, they provide a substantial degree of
information sharing. The trading manager executes on the
same host as the database server. The trader, trading agents
and user application programs can be executed on any Sun
workstations.

The trader is implemented as a server that manages
the trading context through RPCs. The trader is a key
component of the system—the system cannot function
once the trader fails and therefore it is replicated. That
is, each location has a trader (and the replicated trading
context) running on it. The trader on Location 1 (with
an Oracle database running in that location) is assigned
as the primary replica, whereas the other two traders are
assigned as non-primary replicas. An RPC transaction
manager (RTM) also runs on each location for managing
RPC transactions initialized from the location. These RPC
transaction managers have well-known addresses.

Our previous fault-tolerant RPC system [25] is used
to implement the reliable communications required by
various components of the RPC transaction management
system. The RPC transaction features are now manually
coded (using threads) and an extension of the interface
definition file is under way to include the expression of RPC
transactions.

In order to reduce the communication time, a commu-
nication channel (TCP stream) is established between the
primary replica and non-primary replicas (through the local
RTMs) during the lifetime of an RPC transaction.

7.2.2. Experiments
We have carried out a number of experiments using the
system. The first class of experiments is on the fault
tolerance of the system, especially the fault tolerance of the
replicated traders. These experiments include the situations
of (1) no failures, (2) a non-primary replica of the trader
server fails and then recovers, (3) the primary replica of the
trader fails and then recovers, (4) the combination of failures
of a trader and an RPC transaction manager, and (5) the
network is partitioned into two subnets (through software
simulation) and then recovers. These experiments have
shown that the system, when using algorithms described in
this paper, can tolerate these failures.

The second class of experiments is on the performance of
the replicated trader servers when there are no failures. As a
comparison, we measured the performance of a null RPC, a
single trader, two traders and three traders. Figure 9 depicts
the architecture of these experiments.

All clients and servers were executed on Sun SPARC
5 workstations running the Solaris operating system. For
Figures 9a and 9b, both the clients and server/trader
were executed on separate workstations within the same
subnet. For Figures 9c and 9d, the client and the primary

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

MANAGING REPLICATED RPC TRANSACTIONS 605

Network

Client

Read/Update

Trader

Primary
replica

Trader 1

Primary
replica

Trader 1

Non-primary
replica

Trader 2

Non-primary
replica

Trader 2

(a) Null RPC (b) A single trader

Network

Client

Null RPC

Server
Simple

(c) Two trader servers

Network

Client

Read/Update

(d) Three trader servers

Network

Client

Read/Update

Non-primary
replica

Trader 3

FIGURE 9. Performance tests.

TABLE 1. Performance comparison (no failure).

Service type Mean (ms) SSD (ms)

Null RPC 3.07 0.51
Single trader (Read-only) 5.24 0.84
Single trader (Update) 5.31 0.87
Two traders (Read-only) 5.23 0.73
Two traders (Update) 6.14 1.06
Three traders (Read-only) 5.25 0.88
Three traders (Update) 6.27 1.04

trader were executed on separate workstations of the same
subnet, whereas each non-primary trader was executed on a
workstation of another subnet. Workstations of each subnet
are linked through a 10-Mbit Ethernet network. The three
subnets (about 100 km apart) are linked through a 34-Mbit
ATM Backbone (the implication is that normally the ATM
Backbone will not be the bottleneck of the communication
during our tests).

All tests were carried out during the night when the traffic
was low. Each service type was tested 1000 times and then
the mean and the sample standard deviation (SSD) were
calculated. Table 1 lists the test results.

We can draw the following observations and explanations
from Table 1:

(i) The overhead of a single trader is not light compared
to a null RPC, even if it does not involve any fault-
tolerant issues. The table shows that for a simple trader
the overhead is more than 2 ms. Most of this overhead
was due to the implementation of the trading algorithms
and the access time for the trading context (stored as a
disk file). It is also interesting to see that the read-only
operations and update operations do not have much
difference in a single-trader case.

(ii) There is virtually no difference in read-only operations
when the number of traders increases from one to three.
This is simply because we implemented our traders in
such a way that all read-only operations are dealt with
by the local traders, no matter how many traders are
used in the system.

TABLE 2. Performance comparison (with failure).

Read-only (ms) Update (ms)

Service type Mean SSD Mean SSD

No failure 5.23 0.98 6.14 1.24
Non-primary fails 5.24 1.10 7.90 1.27

(iii) The mean response time for an update operation has
increased by 0.83 ms when the number of traders
increases from one to two. This overhead is mainly due
to the implementation of the algorithms for keeping the
two replicas consistent. The increase is not significant
since the communication between the two traders (a
TCP channel, implemented through our own RPC
system [25]) has been established before any update
operation can be accepted by the replicas.

(iv) The mean response time for an update operation only
increases by 0.13 ms as the number of traders increases
from two to three. The main reason for such a
small increase is due to the way we handle operations
involving multiple replicas (as shown in Algorithms 1,
2 and 3), i.e. all these operations are sent to involved
replicas concurrently (using threads). Since the traffic
was low, the synchronization of these operations did not
take too long.

Obviously, a different configuration will lead to a different
result. For example, if each subnet is changed to a 100-Mbit
Ethernet network, then the cost of communications among
each subnet will become a significant part of the total cost
since the speed of the ATM backbone is only 34 Mbits.
However, it is also worth noting that a configuration with
two replicas will perform similarly to a configuration withN
replicas (N > 2 and being small) if the networks are equally
fast. The main reason is that all replicas process and reply to
requests from the primary replica in parallel.

The third class of experiments is on the impact of failures
on the performance of the replicated traders. We carried out
our experiments on the system of two traders, as depicted in
Figure 9c, and measured the performance of export (update)
and import (read-only) operations when the non-primary
replica is faulty. In the case of the failure of the non-
primary replica, RPC transactions can be treated as partial
commit, and the primary replica has to record these partially
committed transactions in its NTD table. Table 2 shows the
result of the experiment.

It can be seen from Table 2 that the performance of read-
only operations virtually does not change when the non-
primary replica fails, since read-only operations are not
affected in our system as long as there is one alive replica.
However, the mean time of update operations has increased
by 1.76 ms. This increase is mainly due to the disk I/O used
to access the NTD table (which is stored as a disk file).

The last class of experiments is on the issues of recovery.
We used the same system architecture (Figure 9c) as we did

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

606 W. ZHOU AND A. GOSCINSKI

TABLE 3. Performance comparison (recovery).

1 update (ms) 10 updates (ms)

Recovery type Mean SSD Mean SSD

Non-primary failure 8.83 1.41 24.67 2.81
Partition (no conflict) 8.98 1.39 24.79 2.92
Partition (conflict) 12.35 1.56 45.91 5.30

in the third class of experiments. Here we consider two types
of recoveries: (1) a failed non-primary replica rejoins the
system, and (2) a recovery from a network partition.

In the first case, during the time the non-primary replica
is faulty, the primary replica may have carried out some
update operations on the trading context. These update
operations have been recorded in the NTD table of the
primary replica and should be executed by the non-primary
replica when it recovers. When the non-primary replica
recovers, it cleans up its NTD table and sends a reuniting
message to the primary replica. The primary replica will
then send the relevant NTD table entries to the recovering
replica and commit the outstanding partially committed
transactions. In the meantime, the non-primary replica will
carry out the missed operations. Here, we measured the
time from the point that the recovering replica sends out
the reuniting message to the time that it has completed all
missed operations.

In the second case, when the network is partitioned, the
two replicas are isolated from each other (we simulated this
failure by deliberately coding wrong addresses into the two
replicas). According to our algorithms, both replicas will
become the primary replica of their own subnet and will
be able to accept transactions. We have considered two
situations for the update operations carried out during the
network partition: (1) all of these update operations are not
conflict, and (2) all of them are conflict.

When the two replicas recover from the network partition
failure, they have to exchange their NTD tables and use
Algorithm 5 to resolve conflicts. For situation (1), since
there is no conflict, both replicas will execute the missed
operations and commit their own outstanding partially
committed operations. For situation (2), since the original
primary replica (Trader 1) has a smaller sequence number,
the original non-primary replica (Trader 2) has to abort all
its partially committed operations and execute the operations
carried out by Trader 1 according to Algorithm 5. Here,
we measured the time from the point that Trader 2 issues
the reuniting message to the time that it has completed all
missed operations.

In all cases of the experiments related to recovery issues,
the numbers of update operations during the failure time
were set to 1 and 10. Table 3 lists the test results.

We make the following observations from Table 3:

(i) The difference between the time used to recover from
a replica failure and the time for a network partition

failure is small when there is no conflict. This is
mainly because the same algorithms were used and
the recovering replica Trader 2 (the one where we
measured the time) had to perform the same operations
in both cases.

(ii) The mean recovery time increases significantly as the
number of update operations increases. This is mainly
due to the way that we process update operations: the
update operations were processed sequentially on the
trading context file. We have proposed an algorithm to
parallelize recovery operations [26], and it is planned to
embed the algorithm into the RPC transaction system.

(iii) The mean recovery time increases dramatically as the
number of conflict operations increases. This is mainly
due to the way we process conflict operations. For
each conflict operation, a replica has to perform two
disk I/O operations (one on the NTD table and one
on the trading context file) sequentially. Once again,
our proposed algorithm for parallelizing recovery
operations [26] can play an important role here in
improving the performance.

8. REMARKS

A system for building reliable computing over an RPC
system is described in this paper. The system combines
the replication and transaction techniques together and
embeds these techniques into the RPC system. The
paper describes the models for replicas, RPCs, transactions,
and the algorithms for managing transactions, replicas,
and resolving conflicts during system recovery. Finally,
an informal correctness analysis is carried out and an
illustration example and an application example are
described.

Although many ideas used in this paper are well known,
and some of them have been implemented in commercial
products, the paper does provide the following novel
contributions. The first major contribution of the paper
is the combination of replication, transaction management
and RPC techniques to form a system that supports the
development of reliable services in the RPC level. The
main advantages of supporting fault tolerance in the (lower)
RPC level instead of the (higher) application/service level
are: (1) efficiency, since failures can be dealt with in a
lower protocol level, (2) failure containment, since failures
can be dealt with quickly and can reduce the danger
of failure propagation, and (3) lower development cost,
since the lower-level support means that many higher-level
applications/services will be less likely to repeatedly develop
their own fault-tolerant protocols.

The second major contribution of the paper is the
introduction of a partial commit (PC) concept to facilitate
the processing of transactions in case of failures. The
motivation of using the PC state for a transaction is to let
the transaction proceed even if a replica is down or the
network is partitioned. Partially committed transactions will
be upgraded to commit states or downgraded to abort states

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

MANAGING REPLICATED RPC TRANSACTIONS 607

when the system recovers from the failure that affected the
transactions.

A similar work of combining replication, transaction
management and RPC techniques to support fault-tolerant
computing is the Encina toolkit [27, 28]. Encina extends
the basic DCE services to include facilities such as the
transactional RPC and the Encina Monitor (a transaction
processing monitor). The major difference between our
work and the Encina toolkit is that Encina only has two
states for a transaction: commit or abort. Our proposal uses
a partial commit concept to let transactions proceed even
during a replica failure or a network partition.

The fulfilment transaction approach [7] also allows
transactions to proceed during a network partition, by
generating some new transactions (fulfilment transactions)
that will be processed when the network partition failure
is recovered. The main difference between our work
and the fulfilment transaction approach is that our model
does not require the application-specific knowledge to build
those fulfilment transactions. That gives us a freedom
of implementing our model in a lower level of the
system hierarchy which can be shared by many different
applications. With enough business policies embedded into
the generation of fulfilment transactions, the chance of
manual intervention in these fulfilment transactions can be
greatly reduced. However, our method avoids the use of any
manual intervention.

The algorithms described in the paper have been used in
improving the reliability of traders used in an experimental
loosely integrated database system. A series of experiments
has been conducted on the implementation to test the
reliability of the system, the overhead for maintaining
replicas, the impact of failures on the system performance,
and the overhead during recovery. From these experiments
we have shown that the proposed algorithms can provide
reliability without incurring too much negative impact on the
system performance.

ACKNOWLEDGEMENTS

The authors would like to thank the referees for the helpful
comments.

REFERENCES

[1] Wellings, A. J. and Burns, A. (1996) Programming replicated
systems in Ada 95.Comp. J., 39, 361–373.

[2] Cmelik, R. F., Gehani, N. H. and Roome, W. D. (1988)
Fault tolerant C: A tool for writing fault tolerant distributed
programs. InDigest of Papers: The 18th Ann. Int. Symp. on
Fault-Tolerant Computing, Tokyo, Japan, pp. 56–61.

[3] Schlichting, R. D. and Thomas, V. T. (1995) Programming
language support for writing fault-tolerant distributed soft-
ware.IEEE Trans. Comput., 44, 203–212.

[4] van Renesse, R. and Birman, K. (1994) Fault-tolerant
programming using process groups. In Brazier, F. M. T. and
Johansen, D. (eds),Distributed Open Systems, pp. 96–112.
IEEE Computer Society Press, Los Alamitos, CA.

[5] Liskov, B. (1988) Distributed programing in ARGUS.
Commun. ACM, 31, 300–312.

[6] Triantafillou, P. and Taylor, D. J. (1995) The location-
based paradigm for replication: Achieving efficiency and
availability in distributed systems.IEEE Trans. Softw. Eng.,
21, 1–18.

[7] Melliar-Smith, P. M. and Moser, L. E. (1998) Surviving
network partitioning.Computer, 31, 62–68.

[8] Zhou, W. and Molinari, B. (1996) A system for managing
remote procedure call transactions.J. Syst. Softw., 34, 133–
149.

[9] Open Software Foundation (OSF) (1990)OSF Distributed
Computing Environment Rationale. Open Software Founda-
tion, Cambridge, MA.

[10] Acevedo, B., Bahler, L., Elnozahy, E. N., Ratan, V. and
Segal, M. E. (1995) Highly available directory services in
DCE. InProc. Symp. on Principles of Distributed Computing
(PODC’95). ACM Press, New York.

[11] Elnozahy, E. N., Ratan, V. and Segal, M. E. (1995)
Challenges in building highly-available software using DCE.
In Workshop on Parallel and Distributed Platforms in
Industrial Products, The 7th IEEE Symp. on Parallel and
Distributed Processing. IEEE Computer Society Press, Los
Alamitos, CA.

[12] Gray, J. and Reuter, A. (1993)Transaction Processing.
Morgan Kaufmann Publishers, San Mateo, CA.

[13] Helal, A. A., Heddaya, A. A. and Bhargrava, B. B. (1996)
Replication Techniques in Distributed Systems. Kluwer
Academic Publishers, Boston, MA.

[14] Triantafillou, P. and Taylor, D. J. (1996) VELOS: A
new approach for efficiently achieving high availability in
partitioned distributed systems.IEEE Trans. Knowl. Data
Eng., 8, 305–321.

[15] Kistler, J. J. and Satyanarayanan, M. (1992) Disconnected
operation in the Coda file system.ACM Trans. Comput. Syst.,
10, 3–25.

[16] Moser, L. E., Milliar-Smith, P. M., Agarwal, D. A., Budhia,
R. K. and Lingley-Papadopoulus, C. A. (1996) Totem:
A fault-tolerant multicast group communication system.
Commun. ACM, 39, 54–63.

[17] Goscinski, A. (1991)Distributed Operating Systems: The
Logical Design. Addison-Wesley Publishing Company, Read-
ing, MA.

[18] Zhou, W. and Molinari, B. (1990) A model of execution time
estimating for RPC-oriented programs. InLecture Notes in
Computer Science, vol. 468, pp. 376–384. Springer-Verlag,
Berlin.

[19] Bernstein, P. A. (1990) Transaction processing monitors.
Commun. ACM, 33, 73–86.

[20] Zhou, W. and Goscinski, A. (1997) Fault-tolerant servers for
RHODOS system.J. Syst. Softw., 37, 201–214.

[21] Barborak, M., Malek, M. and Dahbura, A. (1993)
The consensus problem in fault-tolerant computing.ACM
Comput. Surv., 25, 171–220.

[22] Lampson, B. W. (1981) Atomic transactions. InLecture Notes
in Computer Science, vol. 105, pp. 246–265. Springer-Verlag,
Berlin.

[23] Zhou, W., Hepner, P. and Wang, X. (1996) Using traders for
loosely integrating heterogeneous database systems. InProc.
1996 Int. Computer Symp.: Int. Conf. on Distributed Systems,
Software Engineering, and Database Systems, Kaohsiung,
Taiwan, December 18–21, pp. 25–32.

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

608 W. ZHOU AND A. GOSCINSKI

[24] ISO/IEC (1994)Working Document–ODP Trading Function.
ISO/IEC JTC1/SC21 N8409.

[25] Zhou, W. (1996) Supporting fault-tolerant and open dis-
tributed processing using RPC.Comput. Commun., 19, 528–
538.

[26] Zhou, W. and Wang, L. (1996) Parallel recovery in a
replicated object environment. InProc. 3rd Australasian

Conf. on Parallel and Real-Time Systems, Brisbane, Australia,
September–October 1996, pp. 172–177

[27] Umar, A. (1997)Application (Re)Engineering: Building Web-
Based Applications and Dealing with Legacies. Prentice-Hall
PTR, Upper Saddle River, NJ.

[28] Umar, A. (1997) Object-Oriented Client/Server Internet
Environments. Prentice-Hall PTR, Upper Saddle River, NJ.

THE COMPUTER JOURNAL, Vol. 42, No. 7, 1999

