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Abstract

A new model of list processing is proposed which is more blétas a basic data
structure for architecture-independent programming laggs than the traditional model
of lists. Its main primitive functions areoncatenatewhich concatenates two listsplit,
which partitions a list into two parts; arldngth which gives the number of elements in
a list. This model contains a degree of non-determinism Wwhltows greater freedom to
the implementation to achieve high performance on bothllgheand serial architectures.

Keywords: data structures, functional programming, list processing, parallel programming.

1 Introduction

Lists have been used as basic data structures within programming languagehsih®50s.
The most elegant and successful formulation was in Lisp [9] with its prieftinctionscar,
cdr and cons often now referred to by the more meaningful name$e#éd, tailand cons
respectively. Lisp and its model of list processing based oméael, tailandconsprimitives
have given rise to a large number of programming languages over the three and aadésle
since Lisp was invented; for example, following closely to the pure Lisgition are ML[20],
Miranda[19] and Haskell[6].

The success of the Lisp model of list processing is due to a combination of itsisema
elegance on the one hand and its simplicity and efficiency of implementation ath&e
In the context of functional languages particularly, it has given rise to a stydeogfamming
which is clear, concise and powerful. This style is well documented in mabiications, for
example [3].

*Published inComputer Languagebkd(1), 1-12 (1993)

YIn the early development of Lisp, efficiency of implementation was a majocem, while the desire for an
elegant and coherent semantic model of list processing was much less prédsirggtheless, the reason that
Lisp was more successful than its list-processing competitors almdatrdghad a lot to do with McCarthy’s
perceptive choice of the basic routines that operated on lists[10].
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Despite the often proclaimed advantages of functional languages for parallelrprogrg
[13], there has been very little progress in constructing really worthwhileallea
implementations of them. A large part of the problem lies in the difficulty of obtgieificient
parallel representation of the traditional head-tail-cons model of list psogugsMany recent
functional languages such as Miranda and Haskell, as well as older functionaldgasguech
as List, have this model built intimately into the language. Although most modagubges
are quite powerful enough to allow the programmer to define any type of data strbgture
defining a suitable set of primitive functions, the built-in primitives Faad, tailandcons
typically execute approximately an order of magnitude faster than user-defijuegients.
For this reason, almost all programs in these languages use the traditionabtistsing
model as a matter of course. Hence, if this model cannot be implemented effimgoarallel,
most programs are unlikely to be any better.

There are, however, many high-level list operations for which it is easgnivisage a
very efficient parallel implementation, particularly those which opevatthe whole list, such
as map and reduce(sometimes calledold). Therefore, the problem is not inherent in the
semantics of list processing or the concept of a list itself, but rather ichbi&e of a set of
primitive functions, and the (usually implicit) assumption that the impleatém executes
these in constant time (i.e. independently of the lengths of the lists involved).

In this paper, we propose a new model of list processing based on a different set of
primitive functions, chosen to be efficiently implementable on parallehitgctures, but
preserving the usual semantics of lists. Programs that use pattern matchstg onexplicitly
refer to head, tailand conswill need major rewriting to use the new model, which is best
suited to a new style of programming based on the divide-and-conquer paradigm, rather tha
the usual recursiveliterative style of conventional list processing. Ootttee hand, programs
that do not use the primitives directly, but instead use purely high-levehjilfuactions may
not require any changes at all!

To achieve satisfactory parallel performance requires that the prasitf the new model
be builtinto the language and implemented directly by the compiler or interpiigterorder of
magnitude penalty typically suffered by user-defined primitives means that srie hahieve
ideal speedup on approximately ten parallel processors simply to equal thenpeantae of the
traditional model on a serial machine. This will usually be an unacceptabketprpay. At the
very least, all the primitive functions should be built in, and, preferablymioee commonly
used higher level functions as well.

2 The Model

The idea behind our model is a very old one: that of representing a list as a birafg ige

as in some sorting algorithms). There are, however, many different binegg that can
represent the same list. We abstract a set of primitive functions whelswtable for use
with binary tree representations, but which define list structures and na ibneugh these

primitives are well suited for use with binary tree representationsts,lthey do not permit the
programmer to see the full internal structure of the trees, hence they do ragyiparticular

tree representation, or even a tree representation at all. This elefmeoan-determinism in

the model is important, and is discussed more fully later.
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2.1 Informal Description

The following six functions are chosen as the primitive functions of the model (tteidi
actually a constant, or a function which takes no arguments).

@) [] Iisthe empty list.
(i) si ngl eton x (or, alternatively,[ x] ) is the list which contains a single elemexit,

(i) concatenate s t (or, alternatively, s++t ) is the list formed by concatenating the
listss andt .

(iv) split s isa pairoflists got by partitioning the listinto two parts. It is defined only
if s contains at least two elements. Both lists are non-empty.

If s contains more than two elements, the result of applysyg it is non-
deterministic, i.e. there is more than one acceptable solution and an imybdioe
is free to choose which of these to give as the result.

(v) ' engt h s (or, alternatively, #s) is the number of elements in the st

(vi) el enent s is the only element present in the singleton kst This function is
undefined for lists which contain either more or less than one element.

The primitivespl i t is non-deterministic. This is to allow the implementation to choose
the quickest way to implement it that the circumstances permit. Thiddraeds essential to
obtaining good parallel performance, as will be seen later. The reasons for mfp@sbn-
deterministic primitive are discussed later in Section 2.3.

The result of applyingpl i t is apair of lists (not to be confused with a list of two lists).
It is assumed that the language used in examples later in this paper allodsfitngon of
pairs of objects in a single statement, for example:

(s,t) =split u
Alternatively, if a pair of objects cannot be defined in a single statementignway, a
semantically equivalent approach is to define two primitive functisps, t 1 andspl i t 2:
split u = (splitl u, split2 u),
so that the definition of andt can be carried out separately:
s =splitlu
t =split2 u

2.2 Algebraic Specification

The algebraic properties of the primitive functions that can be used to spkeifsemantics
of the model are as follows:

1. #] =0
2. #[x] =1
3. #(s++t) = #s + #t

4. el ement [Xx] = X
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5.s++[] = []++s = s
6. s++(t++u) = (S++t)++u

7osplit([x]++[y]) = ([x].,[y])

8. #u >= 2, split u = (s,t) implies
S++t = u, #s >= 1, #t >=1

2.3 Non-Determinism

The primitive functionspl i t is non-deterministic as defined above. It is easy to modify the
specification to make it deterministic, but there are considerable afyesin keeping it the
way it is. Consider two obvious ways in which the non-determinism could be removed.

Firstly, we could replace the second line of Axiom 8 by:

s++t = u, #s = #u DIV 2, #t = (#u+l) DIV 2
This would mean thaspl i t always divides the list in half (or as close to that as feasible).
The disadvantage with this is that it constrains the implementation unnebeskas very
hard to find any representation of lists that makes this easy to do witheotliting other
inefficiencies elsewhere.

Secondly, we could replace Axioms 7 and 8 by the single axiom:

split (s++t) = (s,t)
provideds andt are each non-empty lists. However, while this certainly removes the non-
determinism, it changes the specification from one for lists into one for ttbesinternal
structure is now visible to the programmer, not just the order of the elements. A&iom
(associativity of concatenation) would have to be removed as it is consdbde&new axiom.
This is certainly not what we want. Two lists must always be equal if they oottia same
collection of elements in the same order. The way in which the list washatigiconstructed
should not be significant.

Of course, it could be argued: why not provide trees instead of lists as the baaic dat
structures, after all they are more general and include lists as simglg@as case? The
answer to this question is more subtle, but equally definite. No commonly-used ¢gnlgas
done this, although the argument in favour of trees has always been relevant and hag nothi
to do with parallelism. The argument against trees is simply that most pnslde not need
the extra internal structure that can be represented by a tree. Listglgr@dequate in the vast
majority of situations. Carrying around the excess baggage of the extra complexigesf t
when it is generally unnecessary is highly undesirable. The most successfuldaadweve
usually been the simplest ones, not the most complicated ones.

To maintain this simplicity, while at the same time giving sufficienteiem to the
implementor to vary the implementation to fit the computer architecturdéasle, it is worth
introducing non-determinism, provided that it can be kept strictly under contrdah &\ittle
extra care on the part of the programmer it is not difficult to write fully detarstic programs
using some operators or functions which are non-deterministic. Some of the higakr-lev
functions introduced later illustrate this well (ergeduce).

As a general principle, it seems very likely that some carefully setkeon-deterministic
operators will need to be introduced into most architecture-independent programming
languages. For example, if it is required to compute

a; +ag + ... +a,
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then it does not matter in which order the additions are carried out, the sumwalsbe the
same because addition is associative and commutative. However, a progremspecifies
that the numbers are added sequentially, one at a time from the left (as isl yproast
present-day programming languages) constrains the implementor quite unnecdssatily
highly inefficiently on most parallel machines). The best way to write a sati@m program
that can be run at optimum efficiency on all different types of machine archiee to use
a language in which the order in which the additions are to be performed is undefined. The
non-determinism becomes a problem only if such an order-undefined program is writtgn us
a non-associative operator instead of addition.

Hence the use of non-deterministic primitives does impose an obligation on the
programmer to verify that the operators used have the required propertiesssassociativity.

2.4 Representation in the Computer

There are many different ways to represent lists. The representatiorit@sbelow is not
claimed to be the only suitable representation, nor the best representatian).héiwever,
simple, well known, and suitable for high-performance parallel implementatioa shared
memory architecture, as well as allowing constant-time executionl di@lnew primitives.
Discussion of parallel execution is left until a later section, and for tbenent we simply
describe the representation.

A list is represented as a binary tree. Each node in the tree is eithemehbmade or a leaf
node. Each leaf node contains an element of the list. Each branch node contains terspoint
the left one points to the first part of the list, while the right points to the secoricbptre
list. Ideally these two parts of the list should be approximately equal in lefgththe tree
should be be balanced), but that is not a requirement for correctness of the repi@seitta
affects only the performance. Each branch node also contains the number of itiésrsuin
tree (i.e. the length of the list which that sub-tree represents). Againisthaely to improve
performance (so that the length primitive can be computed in constant time).

The representations of the empty lis} (), a singleton list[(a] ), and a list of two elements
([ a, b]) are:

O o o 1|. 2|——’b

l l

a a

The e denotes a nil pointer and occurs only in lists containing no elements, or just a single
element.
Two alternative representations of the [ist, b, c] are:

3, +Hc 3, +H{2, ¢

l l

2 —— b a b
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The more elements the list contains, the more different tree structurgmosséle. All are
equally valid and will give exactly the same results, although the perforenaha program
may depend upon how well-balanced the tree is.

With the above representation, it is easy to program implementations ox afimitive
functions that will execute in constant time, irrespective of the lengths ofigtseinvolved.
None of these primitives offers any scope for parallelism, however. Tdwates with the
implementation of higher-level list-processing functions.

3 High-Level List-Processing Functions

Most common high-level list-processing functions suchrmap andr educe can be easily
programmed in terms of the new primitives, using a divide-and-conquer strategge T
structure of divide-and-conquer programs makes them particularly well suitparedlel
implementations on a very wide variety of parallel architectures[1, 2].

Most of the functions defined in Section 3.2 are identical in specification toifurscin
the Haskell standard prelude[6]. The Haskell standard prelude has been ch@sstading
point because it includes a wide variety of useful list-processing functionsréhat @mmon
use in Haskell and many other functional languages (the standard functions of Mifanda
instance, are very similar). Nearly all of the list-processing fuorddiin the Haskell standard
prelude have been included. A few have been omitted and a few have been replaoaddry
(but not identical) functions for reasons discussed later.

3.1 The Language Used

All program fragments are expressed in a simple functional language pseudocode which
is essentially a very small subset of Miranda and Haskell, but withhanfiinor syntactic
changes. The usual arithmetic operators are used, the relational operatoresthfdr t
equality and inequality are denoted by and! = (as in C) and a humber of other relational
and logical operators are borrowed from C also. Conditional expressions are denoted by
| F. . THEN. . ELSE. . FI . Each program line begins with the symiyolnd all other lines
are regarded as comments.

As the code for each of the functions is quite brief and easy to understand, the ctide itse
serves as both a formal specification of the function and its implementatiorattmpt is
made to include separate formal specifications of the functions. The commengslipgec
the code give a brief informal description of each function, and most of these funetiens
familiar to programmers of functional languages anyway.

Pattern matching is often used in modern functional programming languages &® mak
programs more readable. It is easy to incorporate the new list primitiveshet patterns
that can be used. For example, instead of writing the definition of the funicdad as:

> head s =

> | F #s==0 THEN L

> ELSI F #s==1 THEN el enrent s
> ELSE head s1 F

> WHERE (sl1,s2) = split s

The same program can be written using pattern matching as:
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> head [] = L
> head [x] = X
> head (s++t) = head s

These two programs would be executed in almost exactly the same way, battdredrm
is shorter and clearer. Pattern matching is used throughout this paper for tlasemse
Undefined parts of functions will be omitted completely instead of making themoixplth
the symbolLl.

3.2 Code for the Functions

head andt ai | extract the first element and the remaining sub-list, respectively, tom
non-empty list.I ast andi ni t are the dual functions, extracting the last element and the
preceding sub-list.

> head [x] = X
> head (s++t) = head s

> last [x] =X

> |last (s++t) = last t
> tail [x] =1]
> tail (s++t) =tail s ++t

>init [x] =11
>init (s++t) = s ++ init t

(:) adds a new element to the beginning of a list.
append adds a new element to the end of a list:

> X : s =[x] ++ s

> append s x = s ++ [X]

(..) creates a list made up of a sequence of consecutive integers:

> i =1i]

>ji .. jJ =I1Fi <j THEN (i..md) ++ ((md+1)..j) FI
> WHERE mid = (i +j) DIV 2

(DI Vis integer division)

s!li isthe i-th elementin the lig (counting from 0):

> [x] ' 0 =x

> (s++t) 'l i =1F1 <#s THEN s !! |

> ELSE t !'! (i - #s) FI

bal ance is the identity function on lists, but has the useful effect of creating a bathnc
representation:

> balance s = map f (0..(#s-1)) WHERE f i = s!!i
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map f s appliesf to each element f independently:

>mp f [] =[]
>mp f [x] = [f X]
>map f (s++t) = map f s ++ map f t

filter p sisthelistof all those elements efwhich satisfy the predicate:

> filter p[] =1]
> filter p [x] =1F p x THEN [x] ELSE [] FI
> filter p (s++t) = filter ps ++ filter pt

partition p sisthe pairof lists such that the first is all elements &atisfyingp, while
the second is all elements ®fwhich do not satisfy:

> partition ps = (filter ps, filter (not.p) s)

reduce f z s reduces the liss, using the binary operatdr, and the starting value;
while r educel is a variant with no starting value, that must be applied to non-empty lists.
The functionf must be associative fareduce f andreducel f to give deterministic
results.r educe andr educel replace the Haskell functiorisol dl , fol dl 1, foldr

andf ol dr 1.

> reduce f z [] =z
> reduce f z [X] = X
> reduce f z (s++t) =f (reduce f z s) (reduce f z t)

> reducel f [Xx] = X
reducel f (s++t) = f (reducel f s) (reducel f t)

\%

r educemap is simply the functional composition ofeduce andnap:
> reducemap f g z s =reduce f z (map g s)

concat , when applied to a list of lists, gives a single list which is the concaitemaf all the
element lists:

> concat = reduce (++) []

t ake i s returnsthe first elements o (or the whole ofs if i is greater thass), where
i >0:

> take 0 s =[]
>take i [] =]
> take i [x] = [X]
> take i (s++t) = IFi <= #s THEN take i s
> ELSE s ++ take (i - #s) t FlI

drop i s returns all but the first elements ok, wherei > 0:

> drop 0 s =s

drop i [] =TI

drop i [x] =[]

drop i (s++t) = IF i <= #s THENdrop i s ++ t
ELSE drop (i - #s) t FlI

V V V V
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splitAt i s does both jobs atonce:

> splitAt i s = (take i s, drop i s)
t akeWhi | e p s returns the longest prefix gf containing elements satisfying the predicate
p:

> takeWhile = first . span WHERE first (x,y) =

dropWhi | e p s returns the remainder &f;

x

> dropWhil e = second . span WHERE second (X,Y) y

span p sisequivalenttqtakeWhile p s, dropWwile p s):

>span p [] = ([1.[1])

> span p [x] = 1F p x THEN ([x],[]) ELSE ([],[x]) FI

> span p (s++t) = I F #s2 == 0 THEN (s1++t1, t2) ELSE (sl1, s2++t) FI
> VWHERE

> (sl,s2) = span p s

> (t1,t2) = span p t

break p s is similar but uses the negation jof
> break p = span (not . p)

| i nes s breaks the string at each newline character (which is removed) and returns a list of
separate lines. A string consisting of a single newline character givsisad tivo empty lines.
Any string that terminates with a newline character will give a lidtreés in which the last line
is empty. A string containing no newline characters will give a list of lio@staining only one
line (which is the original string exactly). The third line of the code belowikeasubtle, and
best understood by considering the situation in which the last characesafot a newline,
nor is the first character df. In that case, the last line &f and the first line ot are just
two parts of the same line gf++t , hence the need for the tefphast ss ++ head tt]
which concatenates the last lineofand the first line ot into a single line. Notice that the
other occurrences of the operatot in the definition ofl i nes( s++t) concatenatésts of
lines.

> lines [] = [[]]

> lines [X] =IF x == newine THEN [[],[]] ELSE [[x]] FI

> lines (s++t) = init ss ++ [(last ss) ++ (head tt)] ++ tail tt
> VWHERE

> ss = lines s

> tt = lines t

wor ds s acts similarly, but splits the string at every occurrence of white siabéch is
removed), returning a list of words.

> words [] = [[]]
> words [X] = IF isSpace x THEN [[],[]] ELSE [[x]] FI

> words (s++t) = init ss ++ join (last ss) (head tt) ++ tail tt
> VWHERE

> join p q=1F #p==0 && #q==0 THEN [] ELSE [ p++q] FlI

> SsS = words s

> tt = words t
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unl i nes andunwor ds perform the inverse operations:

> unlines s
> unwords s

concat (map f s) WHERE f p
concat (map f s) WHERE f p

p ++ [new i ne]
p ++ [space]

nub s returns the list consisting of the elementssofvith all repeated occurrences of the
same element removed:

> nub [] =[]
> nub s = (head s) : nub (filter ((!=)(head s)) (tail s))

rever se s returns the list got by reversing the order of the elements in

> reverse = reduce (flip (++)) []
> WHERE flip f xy =f y x

and s returns the result of logically ANDing together all the elements of
or s performs the similar logical OR operation:

> and = reduce (&&) True
> or = reduce (||) False

(&& denotes the logical AND operator, whil¢ denotes logical OR)

any p s istrue if and only if at least one element®fatisfies the predicate
al | p sistrue if every element of satisfies the predicate

> any p
>all p

reducemap (||) p Fal se
reducemap (&&) p True

el em x s istrue if and only ifx is an element o$.
not El em x s is true if and only ifx is not an element of:

> elem= any . (==
> notElem=all . (!=)
where( . ) denotes function compositioqf . g) x = f(g x)

sum s returns the sum of all elements ®f

product s returns the product of the elements.
maxi mum s is the maximum value of the elements.
m ni mum s is the minimum value of the elements:

> sum = reduce (+) O

> product reduce (*) 1
> maxi rum = reducel max
> mni rum = reducel mn

zi p combines two lists to create a list of pairs:

zip [x1,x2,...] [ylLy2,...] =[(x1,yl), (x2,y2), ...]
zi p3 combines three lists to create a list of triples in a similar way:
> zip =zipWth f WHEREf a b = (a, b)
> zip3 = zipWth3 f WHEREf a b ¢ = (a, b, c)
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zi pWt h is a generalisation ati p in which corresponding elements are combined using
any given function:

ZipWth f [x1,x2,...] [yl,y2,...] = [f x1 yl, f x2vy2, ...]
zi pW t h3 combines three lists in a similar way:

> zipWth f st = map g (0 .. (n-1))

> VWHERE

> gi =1 (sthi) (t'ri)

> n =mn (#s) (#t)

> zipWth3 f st u=mp g (0 .. (n-1))
> VWHERE

> gi =f (stlhi) (t'ri) (ulli)

> n=mn(#s) (mn (#) (#u))

t ranspose, when applied to a list of lists (interpreted as a list of rows of a mpatgives
that list with rows and columns interchanged:

> transpose [] =[]

> transpose [[X]] = [[X]]

> transpose [s++t] = transpose s ++ transpose t

> transpose (s++t) = zipWth (++) (transpose s) (transpose t)

3.3 Discussion

We set out to implement the full set of list-processing functions defined in tekdigtandard
prelude to see if the new list primitives can cope adequately with a wide @nhg@mmon
programming problems. The set of functions included in the previous section is cltse to
set of functions in the Haskell standard prelude, but some functions have beeedoamtt
some others added. The reasons for these changes are discussed below.

The first six functions Kfead, last, tail, init, (:), append) are the
primitives of the traditional model of lists and their duals (operating on the ahdrof
the list). The implementation of each is straightforward. If the list argoirof each is
balanced, then the result will be very nearly balanced also. Howevemtszgpapplication
of these functions can easily produce unbalanced lists. For examglas ibalanced, then
tail(tail(tail(tail(tail s)))) wil be badly unbalanced. For this reason, the
use of these functions should be avoided if at all possible. Often, this will not be aprobl
as many things can be done in other ways which do not use these low-level lisbhscti
(examples later).

The function (..) which creates a list of consecutive integers is not in the ddask
standard prelude, but is included here because it is used several timescimdéhéor later
functions. It has the advantage that the code given always creates balargednitsthe
performance of most of the functions in this list is best for balanced listsicpkatly for
parallel implementations, as we will see later.

The functionbal ance is functionally equivalent to the identity function, but the code
given creates a balanced representation no matter how unbalanced the inpoturex,
this function does not occur in the Haskell standard prelude as it serves no purplosieevi
traditional representation of lists.



ANTUTU & JUY 7 Llot T 1TULLoOllTYy

The next four functions((!!), map, filter, partition) are all functionally
the same as in Haskell. Our implementation of each of them uses the dividmaqder
paradigm, in each case splitting the list into two parts and calling thaibmeecursively on
each part, then combining the two results (in the casg!df) alone, only one of the two
parts needs to be solved as the other is not required).

The two functiong educe andr educel are introduced to replace the Haskell functions
foldl, foldr, foldl1andfol dr1whichperformthe same reduction butin a defined
order, rather than in an undefined order ag @aguce andr educel. This means that both
reduce andr educel are non-deterministic (i.e. they may give non-unique results) unless
the first argumentf , is associative. In effect, this means that there is a proof obligation on
the programmer to show thétis associative, otherwise the program may give unpredictable
results. Although programmers are not used to having to cope with such proof obligations,
they are generally not too onerous and will become much easier and more genarapyeal
as formal methods and program verification techniques become more widely usedtand be
supported by appropriate software tools.

The payoff is considerabler educe and reducel are much easier to implement
efficiently in parallel than thé ol d- family of functions. The important question, however,
is: are they as useful? It is very difficult to find a sound answer to this gquestiort of
acquiring years of experience programming with them in a wide variety of apipinsa The
best answer we can give here is to look at all the other functions in the Has&etlard
prelude that are programmed using th&l d- family. There are, in fact, 17 such functions.
All but 3 of these are easily programmed usingduce instead (because, in each case, the
reduction function is associative). This suggests that in the great mapbrityses educe
is a convenient replacement fiool dl andf ol dr . The three functions which are not easily
programmed usingeduce are(\\), suns andpr oduct s, all of which require that the
list elements be scanned in order from left to right. These three functionsieaveomitted
from the previous section because we have not found any better way of implementing the
than that given in the Haskell standard prelude, which is serial only.

The Haskell functionscanl , scanl 1, scanr andscanr 1, which scan lists either
from the left or from the right, are omitted for the same reason.

The functionr educemap has been introduced as a useful combinationeduce and
map, although itis not included in Haskell.

The functionsconcat, take, drop, splitAt, takeWiile, dropWwile,
span, break, |ines, words, unlines, unwords, nub, reverse, and, or,
any, all, elem notEl em sum product, nmaxi nrum m ni mum zi pWth,
zi pWt h3, zip, zi p3 andtranspose are all functionally equivalent to the Haskell
functions of the same name. In all these cases a simple and efficient dividmaagqader
implementation is possible. The Haskell functiarisp4, zi p5, etc. andzi pW't h4,
zi pWt h5, etc. have been omitted purely to save space. All are very simildnaazip
functions that have been included.

4 Parallel Performance

4.1 Parallel Implementation

The most obvious way of implementing the divide-and-conquer style of programming in
parallel is to assume a shared memory architecture. In theoretidgsanthis usually means
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the PRAM model (Parallel Random Access Machine) as it is commonly caltbe literature
(e.g. [5]). In such a shared memory architecture, after the divide-and-corigoétlan has
divided the problem into a number of independent sub-problems, these subproblems can run
concurrently. There is no added overhead for data transmission betweensprscas all
processors can access the shared memory to obtain their input data, whésulie written
into shared memory are also available (at no added cost) to the procdssaseed to use
them. The performance analysis given in the next section is based on this approach.

A distributed implementation (on an architecture without shared memoigssseasily
achieved. Possible approaches are being investigated, but it is too soorhtmsayccessful
these will be.

4.2 Theoretical PRAM Performance

Complexity analysis of the programs given in Section 3.2 gives the results showe i
table. The analysis is for asymptotic performance for laxgesheren is the problem size,
generally the length of the list which is one of the arguments of the function concemed. |
the case of the last functionr anspose, the matrix being transposed is assumed toba.
The parallel performance figures are all for the CRCW (Concurrent Read, ConcWie)
PRAM model.

The first column (after the function itself) is the parallel time for bakxhlists. The second
column is the parallel time for the worst case (usually for maximally unbaldfists). The
third column gives the number of processors required to achieve maximum panalldihe
fourth column gives the serial time for balanced lists, while the fifth colusrthe serial time
for maximally unbalanced lists. Finally, the last column is the semaétior the conventional
head-tail-cons model of lists (as programmed in the Haskell standard pré&udestance).
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Table of Complexity Analysis Results

Concatenation Model Cons
Parallel Serial Serial
Function Balanced Worst | Procs.| Balanced | Worst
S+t o) |o@ |o@ |o@ O(1) | O(n)
split s o1) |o@ |o@) |ow o(1) | O(n)
#s 0(1) 0(1) O(1) | 0() O(1) | O(n)
head s Ofogn) | O(n) | O@) | OCogn) |O(M) | O1)
last s O@ogn) | O(n) | O@) | OCogn) | O(M) | OM)
tail s Ofogn) | O(n) | O@) | OCogn) |OM) | O1)
init s Ofogn) | O(n) | O@) | OQogn) | O(M) | OM)
cons X s o1) |o@ |o@) |ow o@1) | o)
append s x o1) |o@ |o@) |o@) O(1) | O(n)
1..n O(logn) | Ofogn) | O(n) | O(n) o(n) | o(n)
bal ance s Ofogn) | O(M) | O(M) | O(nlogn) | O(?) | —
S| Ofogn) | O(n) | O@) | OCogn) | OM) | O()
map f s O(logn) | O(n) O(n) | O(n) O(n) | O(n)
filter p s O(logn) | O(n) O(n) | O(n) O(n) | O(n)
partition p s O(logn) | O(n) O(n) | O(n) O(n) | O(n)
reduce f z s Ofogn) | O() | O(M) | On) o(n) | o(n)
reducel f s Ofogn) | O(M) | OM) | On) o(n) | O(n)
reducemap f z s | O(logn) | O(n) O(n) | O(n) O(n) | O(n)
concat s Ofogn) | O() | OM) | On) o(n) | O(n)
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take i s

drop i s
splitAt i s
takeWhile p s
dropWiile p s
span p s
break p s
lines s

words s
unlines s
unwords s

nub s

reverse s

and s

or o

any p s

all ps
elemx s
notElemx s
sum s

product s

O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(nlog n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)
O(log n)

O(log n)

O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
o(?)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)

O(n)

o)
o(1)
o(1)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)

o(n)

O(log n)
O(log n)
O(log n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
o(r?)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)

o(n)

O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
o)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)

o(n)

o)
e10)

0()

O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
o(?)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)

O(n)
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maxi num s O(logn) | O(n) O(n) | O(n) O(n) | O(n)
M ni mum s O(logn) | O(n) O(n) | O(n) O(n) | O(n)
ZipWth f s t O(ogn) | O(n) o(n) | O(nlogn) | O(?) | O(n)
ZipWth3 f s t u|O(ogn) | On) o(n) | O(nlogn) | O(r?) | O(n)
zip st O(logn) | O(n) O(n) | O(nlogn) | O(¥) | O(n)
zip3 st u O(logn) | O(n) O(n) | O(nlogn) | O(r*) | O(n)
transpose s O(og? n) | O(nlogn) | O(r?) | O(nlog n) | O(?) | O(r?)

It is clear from the table that most of the functions considered fall into one ofal sm
number of categories.

The first category includes the primitives and other very simple functionst) ,
split, #, head, last, tail, init, cons, append.None ofthese offerany
parallelism. Some are faster than the equivalents in the traditional roblits, while others
are slower. On average they are faster for balanced lists and abountkespaed or slower
for unbalanced lists.

The second main category includes the functiorep, filter, partition,
reduce, reducel, reducemap, concat, takeWile, dropWile, span,
break, |ines, words, unlines, unwords, reverse, and, or, any, all,
el em not El em sum product, maxi nrumandm ni nrum All of these execute in
O(log n) parallel time for balanced lists ard(n) time for serial execution and for parallel
execution of worst-case unbalanced lists. Provided the program is writémasthe lists are
always approximately balanced, all of these functions offer excellent speedup.

A third category is the ‘zip’ functionszi p, zi p3, zipWth, zi pWth3. These
all haveO(log n) parallel time for balanced list§(n) parallel time for worst-case unbalanced
lists and for serial execution with the usual head-tail-cons list presti For serial execution
with the concatenate-split list primitives, however, these functioaskawer.

The remaining functions need to be considered separatelfp andt r anspose are
more complex than most, but both offer excellent parallel speedup for balarsted Tihe
function( . . ) always produces a balanced list as its output and hence always gives excellent
parallel speedup. The functidral ance has no counterpart in the head-tail-cons model, so
the comparison cannot be made (although it gives good parallel speedup within the context of
the concatenate-split model of lists).

Overall, most of these functions offer very substantial parallel speedupsiprbthat the
list representations are reasonably well balanced. This is very dependent algahém
design; some functions may cause lists to become unbalanced, while others do not. Much
more experience of programming with this model of lists is needed before we ggnsta
how easy it is to write programs which offer large amounts of parallelisenwide range of
typical applications.

Nevertheless, in many common applications highly parallel programeseasy to
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construct. In a later section, we consider three very different applicatsamsng, ray tracing,
and finding the convex hull of a set of points. All three can be easily programméd imetw
model in ways which are potentially highly parallel.

4.3 Parallel Simulation

The model of list processing has been implemented within a functional programenigigdge
and the performance of a simulated parallel implementation investigatdde parallel
simulation is for a shared memory architecture that falls within the @RERAM category.
The implementation method is combinator graph reduction.

Input to the reducer is the low-level functional language, FLIC [14], which i$ §ifs
all translated to an acyclic graph representing an equivalent lambdaseigre This graph
also contains primitives (integers, reals and sum-products) and operatoich (laroadly
correspond to the FLIC set of operators), together with the Y combinator to ied@airsion.

The standard abstraction algorithm [17] is then performed to translate thik gri@ one
containing the Turner combinators (S, K, I, B, C, B, C') and no lambdas. Acyclic graph
reduction is then used to evaluate the resulting graph.

The graph is assumed to reside in shared memory so that all availablesgooEean
work on reducing different parts of it simultaneously. The performance resdtsrdirely
consistent with the analysis given earlier. Details of this simulatiamkware published
elsewhere[7].

5 Three Applications

Three different applications are outlined below to illustrate the use of the Intodemewhat
more complex situations than those considered previously.

5.1 Quicksort

Hoare’s quicksort algorithm can be programmed quite easily in the new model nijaicty,
we assume that the input data is in the form of a list of distinct numbers whicegueed to
be sorted into increasing numerical order. Also for simplicity, a ratheéle method is used to
estimate the median value. Neither of these simplifications affectringture of the program
for our purposes. A much better and more general quicksort program could be written with
exactly the same overall structure, but it would be longer and offer no new issiglbtthe
list-processing aspects of the problem.

Our simple version of quicksort is:

> quicksort [] =[]

> quicksort [x] = [X]

> qui cksort s = quicksort sl ++ quicksort s2

VWHERE

(sl,s2) =reducemap f g [] s

g X =1F x <= nmedian THEN ([x],[])
ELSE ([].,[x]) FI

f (t1,t2) (ul,u2) = (tl++ul, t2++u2)

median = (head s + last s)/2

VVVYVYVYV



ATUTU X JU Y 7 Liot I TULL ool Yy

The use of educemap is safely deterministic because the functfors associative (by the
associativity of++).

The PRAM performance of this program @(log® n) because there are lagstages to
the whole program and each requires the executianeafucermap which isO(log n). This
assumes that the list is well balanced initially and that the estinohtbe median are always
exactly right. While this is unlikely to be precisely the case, for typicéhdmicksort behaves
nearly as well as for the ideal case. Worst case situations are exyremiétely to occur
for large data sets. As the programmer has full control of the way in which the imgbut |
is generated, it should be easy to ensure that it is balanced, and hence optimuei paral
performance is attained.

5.2 Ray Tracing

Suppose we have a list of objects and a list of rays (representing physical olrjddigrd
rays in three dimensional space). The problem is to compute the first impactafagaan an
object.

Each ray is represented as a starting point and a direction. An impacawitbject is
simply represented as a distance, which is the distance the ray tremelst$ starting point
before it hits the object. The first impact for a given ray is then the impaesented by
the minimum distance. We do not go into the details of how objects are represenkexsly or
the point of impact of a ray with an object is computed, but concentrate solely owenallo
structure of the program.

One possible solution is as follows, expressed as a program for the fumapactswhich
takes two arguments, a list of rays and a list of objects, and gives a listpafats as its result
(this list is in the same order as the input list of rays):

> inpacts rays objects = map firstinpact rays

> VWHERE

> firstinpact ray = reducemap mn inpact infinity objects
> VWHERE

> i npact object =

Distance travelled by ay to hitobj ect
> mn xy = 1F x<=y THEN x ELSE y FlI

The program usesap to apply the functiorii r sti npact to each separate ray in the list.
This function takes a single ray as its argument and finds the first impact obthatith any
of the objects. This is done by first applyingrpact to each separate object. The function
i mpact takes a single object as its argument and finds the impact of the current ray with
that object. When the list of impacts of one ray with all the objects has been fdatdist
is reduced withm n to find the first impact of that ray on an object. The valud i ni ty
denotes a very large value which is used to represent no impact at ahé @istance travelled
by the ray is infinite).

An alternative approach is to first find the the list of impacts of all raysh i single
object, and do this independently for each of the objects. These results can tleniieed
to give the first impact of each ray with an object. This program is:

> i npacts2 rays objects = reducemap (zi pWth m n) inpactson z objects
> VWHERE
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> I npact son obj ect = map inpactby rays
> VWHERE
> i npactby ray =

Distance travelled by ay to hitobj ect
> mnxy =I1F x<=y THEN x ELSE y FI
> z = map noi npact rays
> WHERE noi npact ray = infinity

This program is a little more difficult to understand. The functi@ducemap firstly applies

I mpact son to each object in the list of objects. This gives a list of lists, one for eapbct.
Each inner list contains the impacts of all rays with that object. Thesedisimpacts are
then combined by finding the first impact for each ray, i.e. the minimum impaetraist The
value ofz, the ‘zero’ argument of educemnap is the result if the list of objects is empty;
in which case no ray hits anything, 2ois simply a list containing the valuenf i ni ty
repeated as many times as there are rays.

The first program gives PRAM performance ©flog m) + O(log n) = O(log mn) for
balanced lists, wheren is the number of rays and is the number of objects. The term
O(log m)is for the execution ofrap overr ays, while the termO(log n) is for the execution
of r educemap overobj ect s. For optimum performance, the programmer must ensure that
balanced representations are generated for both the list of rays and the listctsofjhis is
easy to do and it is hence quite reasonable to assume that the lists aredhalance

The second program gives poorer performance. There amredtages to theeducenap
function in the first line, but each involves the executionzofpW t h which is O(log m)

(as the lists whiclzi pW t h operates on contain one element for each ray). So the overall
performance i©(log m x log n), which is less good than for the first program.

5.3 Convex Hull

The convex hull of a set of points in a plane is the smallest enclosing convex polygon. For
example, the set of eleven points shown in the diagram has the convex hull iddicate

A program for finding the convex hull of a set of points can be written using a divide-and-
conquer algorithm, using the fact that it is relatively easy to combine two merlapping
convex polygons into a single convex polygon which encloses the original two[15]. (This
involves much less work than combining two overlapping convex polygons.) We kan ta
advantage of this if we divide the original set of points into non-overlapping subsetagyn
way to do this is to order the points in order of their X-coordinates (and if two pbiave
equal X-coordinates, they are ordered on their Y-coordinates). If this ordistenf [points
is now divided into sublists, each sublist will have a convex hull which does restagp/the
convex hull of any other sublist.

For the example given above, the points can be divided into two sets with conisxasul
shown:
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A suitable program to do this is shown below. The data is assumed to be in thefflarm
list of points (calledpoi nt s) which have already been ordered in the required manner.

> convexhul | points = reducenap conbine g z points

> VWHERE
> conbine hulll hull2 =

Convex hull enclosingul | 1 andhul | 2
> g point =

Polygon consisting of that one point
> Z =
The empty polygon

We can easily represent a polygon as an ordered list of points (its veréiods] is easy to
write programs forg andz. The functionconbi ne which combines two convex hulls is
harder, but the details do not really matter here, as we have sufficient ofrticguse of the
program to show the overall structure and the potential for parallel impleatient

A more efficient program is likely to result if we combine the sorting and the/eoihull
computation into a single application of divide-and-conquer. This is easy to do, using the
quicksort algorithm for the sorting:

> convexhul | points = pol ygon

> VWHERE
> pol ygon =
> | F #points == 1 THEN points
> ELSE conbi ne (convexhull s1) (convexhull s2) FI
> VWHERE
> (sl1l,s2) = partition p points
> p X = (x<=medi an)
> medi an =
Estimate the median value of the elementggafnt s
> conbine hulll hull2 =

Convex hull enclosingul | 1 andhul | 2

In this single application of the divide and conquer paradigm, the divide phase effedbes
the sorting, while the final recombination phase does the convex hull computation.

Assuming that the two recursive applications (cenvexhul I s1 andconvexhul |
s2) are always done in parallel, the complete program @ésg n) stages, each of which
requires the execution gfarti ti on over a list which isO(n) in length, takingO(log n)
time in parallel (assuming the list of points is balanced, which is easyrange). Thus, the
total time isO(log” n) in the PRAM model.
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6 Related Work

It is well known that ordered data (i.e. lists) can be represented bytiestiges (e.g. in tree
sorting), and also that the divide-and-conquer paradigm applies naturally tortreeists, as

well as being very suitable for parallel implementation. Recently, thasbeen increasing
interest in using the divide-and-conquer approach as a basis for the parallel empéeion of
functional languages|[1, 4, 8, 12, 16]. Yet these pieces have not been brought togethanbefore
the way proposed in this paper, to suggest an alternative model for lists aslhtsstructures

for parallel (and architecture-independent) programming languages.

George Mou has adopted an alternative approach in his language Divacon[11], m whic
arrays are used as the basic data structures, but with additional prenitveupport the
divide-and-conquer style of programming. In Divacon, the primitive operations on arrays
are designed primarily to support a distributed representation on the Connileatrnne, and
the representation does not make use of binary trees.

7 Conclusions

The proposed new model of list processing overcomes one of the major obstaclegwnachi
good parallel implementations of functional programming languages. It supports a style of
programming in which most common list operations can be implemented using divide-a
conquer algorithms which are easily and efficiently parallelised, unlikedhgentional style
of list processing in which list operations are usually defined to step throudistihestrictly
sequential order.

For example, the conventional approach to summing a list of numbers is illusbatbae
program:

>sum|[] =0
> sum (X:s) = x + sums

while the equivalent program in our new model is:

>sum|[] =0
> sum|[X] = x
> sum (s++t) = sumx + sumt

The latter program takes advantage of the associativity of the addition opesatitrat the
precise order in which the additions are performed does not matter.

At an even higher level, if the functianeduce is regarded as a basic primitive&ymcan
be programmed in a yet more general form:

> sum = reduce (+) O s

which presupposes no particular model of lists whatsoever and gives even ewxderfr to
the implementor to optimise to suit the architecture on which the program willrne

Although all three programs above can be written in most common functional languages
(and other languages which support general data structures) by simply defining thedequir
data structures from first principles, this will not give acceptable leveddficiency. Typically,
operations on user defined data structures are an order of magnitude slower thtgnvaleet
operations on built-in data structures. This is a very powerful incentitbeégrogrammer
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to use the built-in data structures whenever possible. Most programmers wweidaven
comtemplate replacing the built-in model of lists in languages such as LispM#tanda or
Haskell with their own user-defined model of lists.

With parallel implementation, this difference in efficiency is likétybe even greater, so
it is important that the basic model of lists and/or other data structures uskd lartguage
is capable of efficient implementation on all the architectures for whiclietiguage will be
used.

A new generation of much more architecture-independent programming languages is
needed in which more suitable models are provided for basic data structurasastice
concatenation model of lists proposed here. This may be either instead of, or fiodiol)
the traditional head-tail-cons model of lists. Furthermore, languages should lp@et$o
encourage programmers to use even higher-level primitives, suchdsce, which do not
specify any particular model and so are even more implementation (and amtcture)
independent.
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