
Cache Digests�Alex RousskovDuane WesselsNational Laboratory for Applied Network ResearchApril 17, 1998AbstractThis paper presents Cache Digest, a novel protocol and optimization technique for coopera-tive Web caching. Cache Digest allows proxies to make information about their cache contentsavailable to peers in a compact form. A peer uses digests to identify neighbors that are likelyto have a given document. Cache Digest is a promising alternative to traditional per-requestquery/reply schemes such as ICP.We discuss the design ideas behind Cache Digest and its implementation in the Squid proxycache. The performance of Cache Digest is compared to ICP using real-world Web caches oper-ated by NLANR. Our analysis shows that Cache Digest outperforms ICP in several categories.Finally, we outline improvements to the techniques we are currently working on.1 IntroductionOne of the most di�cult problems in the design of Web cache hierarchies is e�ciently locatingobjects held in neighbor caches. When a cache needs to forward a request, how does it knowwhether to use a sibling, a parent, or perhaps the origin server directly? Many caches in operationtoday utilize the Internet Cache Protocol (ICP)[1, 2] for this purpose.Although ICP works reasonably well, it can add signi�cant delays to cache misses. When neighborcaches are located close to each other (e.g. within an organizational LAN), ICP delays are usuallynot signi�cant. In a wide-area environment, however, ICP becomes troublesome.This paper proposes an alternative to ICP, which we call Cache Digests. A cache digest, based onBloom Filters, is essentially a lossy compression of all cache keys with a lookup capability. Digestsare made available via HTTP, and a cache downloads its neighbor's digests at startup. By checkinga neighbor's digest, a cache knows (with some uncertainty) whether or not that neighbor holds agiven object.Of course, nothing comes for free, and Cache Digests have some drawbacks which must be taken intoconsideration. Bloom Filters do not perfectly represent all of the items they encode. Occasionallythe Bloom Filter will incorrectly report some item is present, when in fact it is not. For Web caches,this means we generate a remote cache miss when we were expecting a cache hit. Another penaltycomes from the additional memory required to store cache digests.�This work is supported by grants of the National Science Foundation (NCR-9521745, NCR-9616602).1



In this paper we describe our design and implementation of Cache Digests in Squid 1.2, and how wemeasure their e�ectiveness. We ran Squid with cache digest support on the NLANR caches for aperiod of six days. A special modi�cation was made such that Squid used Cache Digests for half ofthe cache misses, and ICP for the other half. During the study period, we collected measurementson service times, network tra�c, hit/miss ratios, and memory usage.Our results show that Cache Digests successfully eliminate the ICP delays, at the expense of somefalse misses. For our study, Cache Digests consumed lower network bandwidth overall, but withmuch more bursty tra�c compared to ICP. Memory usage increases because Cache Digests requireadditional memory, but ICP does not.2 The ProblemConnecting a Web cache into a hierarchy or mesh o�ers additional bene�ts from Web caching tech-nology. To determine which member of a cache group (if any) a cache miss should be forwarded to,many caches use the lightweight Internet Cache Protocol (ICP)[1, 2]. ICP messages are transmit-ted via UDP. A message consists of a 20 byte �xed-format header plus a URL. A cache sends anicp query message to one or more neighbor caches. The neighbors reply with icp hit or icp missmessages to indicate the presence or absence of the named object in their cache.The most signi�cant disadvantage of ICP is the additional delay introduced by the query/replyexchange. Because caches can process ICP queries very quickly, the delay is a little more thanthe network round-trip time (RTT) between a pair of caches. Obviously the delay penalty causedby ICP will depend upon the cache's proximity to each other. For LAN-connected caches, ICPdelays should be acceptable, but not necessarily for WAN caches. Figure 1 shows the ICP delaysexperienced by the NLANR caches.

0

50

100

150

200

250

300

350

400

04/1404/1304/1204/1104/1004/0904/08

M
ill

is
ec

on
ds

Date

pb
uc

bo1
bo2

sv
sd

Figure 1: ICP delays experienced by theNLANR caches for a week in April, 1998.These values are the �ve-minute medians ofthe amount of time elapsed between sendingout ICP queries and choosing the next-hopcache. The �ve at curves are from the vBNS-connected caches where the network round-trip time between nodes ranges from 40{60milliseconds. The other curve (sv) is from ourcache at FIX-West. This cache only uses ICPwith overseas caches in Asia, Australia, andNew Zealand. NLANR operates other caches(pa, sj) which are not shown on this plot be-cause they do not utilize ICP at all.Another disadvantage is that ICP's e�ectiveness drops o� noticeably when sending more than fourqueries per cache miss. ICP scales poorly because the number of network messages is proportionalto the product of the number of neighbors and the number of HTTP requests.ICP does provide a couple of important advantages as well. Because of its UDP transport, ICPreplies (or lack of them) inherently indicate current network conditions. If a network path is2



congested, ICP replies will be delayed longer than normal, or perhaps dropped entirely. Similarly,receipt of an ICP reply indicates the neighbor cache is up, running, and serving requests.Another advantage of ICP is its src rtt feature. When this feature is enabled, ICP replies willinclude an ICMP-based measurement of the network RTT between the neighbor cache and theorigin server (if available). This provides a logical tie-breaking mechanism if all neighbors returnicp miss. The request can be forwarded to the neighbor which is closest (i.e. lowest RTT) to theorigin server.In the next section we present an alternative method of object location which eliminates thequery/reply step and its associated delays.3 Cache DigestsInstead of a query/reply scheme, we are in search of a technique which allows caches to e�cientlyinform each other about their contents without any per-request delays. One approach might be totransfer the entire list of cache keys (i.e. URLs) from one cache to another. For a cache holding1 million objects, and an average URL length of 50 bytes1, this results in a data transfer ofapproximately 50 MBytes. We might, instead, use MD5 hashes of the URLs, but this still resultsin a transfer of 16 Mbytes.To reduce the \cache directory" size even further, we might select a subset of the standard 128MD5 bits, at the expense of some accuracy. Using only 8 of the MD5 bits reduces our directorysize to a more reasonable 1 MB. But then we have only 256 possible hash values, and the numberof collisions is unacceptably large. However, there is still hope for a small directory size withrelatively low occurrence of collisions. Bloom Filters[3] have been been well-established in the �eldof databases for many years, and o�er small directory sizes with low collision probabilities.3.1 Bloom FiltersA Bloom Filter is an array of bits, some of which are on and some of which are o�. To add an entryto the bloom �lter, a small number of independent hash functions are computed for the entry's key(e.g. URL). The hash function values specify which bits of the �lter should be turned on. To checkwhether a speci�c entry is in the �lter, we calculate the same hash function values for its key andexamine the corresponding bits. If one or more of the bits is o�, then the entry is not in the �lter.If all bits are on, there is some probability that the entry is in the �lter.The size of a Bloom Filter determines the probability an \all-bits-on" lookup is correct. A smaller�lter size will result in more errors than a larger one for the same data. We use the terms hit andmiss to indicate whether or not the bits of the Bloom Filter predict that a given object is in the�lter. Furthermore, the terms true and false describe the correctness of the prediction. Thus, wehave:true hit: The �lter correctly predicts an entry is in the cache.false hit: The �lter incorrectly predicts the entry is in the cache.true miss: The �lter correctly predicts the entry is not in the cache.1The average URL length calculated from ftp://ircache.nlanr.net/Traces/sv.sanitized-access.980413.gzis 48.57 bytes. 3



false miss: The �lter incorrectly predicts the entry is not in the cache.The distribution of these numbers will indicate the e�ectiveness of our algorithms. Obviously, wewant to maximize the true values (thus minimizing the false ones). By its very nature, a BloomFilter will always have a non-zero number of false hits. This is the price paid for its compactrepresentation. When the Bloom Filter is perfectly synchronized with its source, there will be zerofalse misses. In our implementation, cache digests are not always perfectly synchronized, so weshould expect some number of false misses.Our Cache Digest design has several layers which are further described below.3.2 Building the Bloom FilterWhat are the tradeo�s between cache digest size and e�ectiveness? False miss probabilities can becalculated, but do they hold in practice? When we use more bits per object, the percentage of falsehits should decrease. A related question is the optimal density of the Bloom Filter. As objects areadded to the �lter, its density will increase.Should all cached objects be treated equally in the digest? We might be able to decrease the cachedigest size (or decrease the false hit ratio) by allocating fewer bits to objects which are less likelyto be requested. The penalty for using a variable number of hash functions is a higher false missprobability. Note that the peer that checks our cache digest will always use the same (maximum)number of hash functions.For example, when hashing a fresh object that has been accessed at least twice, we can use four hashfunctions. On the other hand, for stale objects that were accessed only once, we could use only twohash functions. The number of possible optimizations is virtually unlimited because many objectproperties can be used for determining the likeliness of future requests to the object. However, itis not yet clear how e�ective those optimizations will be.3.3 Local StorageCache Digests are relatively large data structures (e.g. 200 KB to 2 MB). It may be tempting tokeep local digests entirely on disk. A proxy generates its cache digest only for the bene�t of itsneighbors. If digests are kept only on disk, they must be rebuilt from scratch to be updated.Rebuilding a digest may be CPU intensive. Thus, we have a tradeo� between memory utilizationand CPU overhead. To make things even more interesting, note that rebuilding a digest also requiresallocating temporary memory for storing the new digest while it is being built. Consequently, onehas to choose between having periodic peaks in memory and CPU usage and constant lower memoryutilization.Finally, if deleting from the digest is not supported, even a memory-resident digest must be rebuiltfrom scratch on a periodic basis to erase stale bits and prevent digest pollution (see next subsection).3.4 Local Updates and DeletesThere are two kinds of updates to a local digest. First, new entries need to be added as they enterthe cache. Second, if an object gets purged from the cache, it is desirable to undo its e�ect on thelocal digest. 4



Adding new entries to a local digest is simple. If these updates will be propagated to neighbors,the application must keep a history of recent updates.It is not possible to delete entries from a standard bloom �lter. Any bit in the array which is onmay have been set due to any number of entries. In other words, two or more unique keys may turnon the same bit. One way to support deletes is to use integer counters instead of single bits. Thiswould necessarily increase the digest size, and we might need to check for overows. The updatehistory should also include deletions if they are supported.3.5 Digest Dissemination and Update PropagationWhich transport protocol is best for exchanging digests? ICP is fairly well established as alightweight alternative to HTTP for cache-to-cache communications. If Cache Digests are transmit-ted as ICP messages (via UDP), the design must either be able to tolerate gaps from lost packets,or implement a message retransmission scheme. If reliability is important, TCP would make a bet-ter choice. For TCP we might either develop a customized digest exchange protocol, or exchangedigests via HTTP.In exchanging cache digests, should we employ a push or pull technique? The push model puts theserver in control of distributing updates to its clients. We might like to use push because the serverknows exactly how rapidly its cache contents changes. However, this also requires that the serverknow which of its clients are digest-aware caches, and which are browsers, or caches which do notsupport digests. Additionally, the digest-aware client must be able to receive some data which itdid not speci�cally request.Once a digest has been given to a client cache, how should we update it? With no updates, thedigest slowly becomes stale, and will have increasing numbers of false hits and false misses. Is therean e�cient way to incrementally update cache digests? Or do we need to send the entire digestevery time?3.6 Remote StorageA proxy must keep peer digests in memory because they are consulted on most misses. It also maymake sense to store copies of digests on disk. When a proxy gets restarted, disk resident digestscan be reused if they are fresh enough. Note that expiration and other useful information is storedon disk along with the digest itself.Another possible use of disk resident digests is sharing those digests with other proxies. It certainlymakes sense to fetch a cached digest from a neighbor rather than from its original producer, if theneighbor is closer. By storing digests on disk, we can treat them as any other cached object. Thisgreatly simpli�es the implementation.3.7 Handling False HitsHow are false hits to be handled? For sibling relationships, we cannot tolerate a signi�cant (orperhaps any) number of false hits. This violates the de�nition of a sibling relationship. We willrequire some feature in HTTP to detect false hits and deal with them appropriately.Design decisions on each layer can be done independently. However, only a balanced architecturewill result in good performance and scalability. The following section describes motivation behind5



our design choices.4 Proposed ApproachBalancing design alternatives on all layers is a �ne art. Our goal was to �nd a simple yet robustcombination rather than a perfect optimal solution. Our choices often leave a lot of freedom forfurther optimization and tuning.4.1 Building a DigestCache digests are built using a �xed set of hash functions: hash values are simply 4 byte sectionsof a standard 16 byte MD5 computed over a URL string. The hash values, modulo the digest size,determine which bits will be turned on. Each cache determines the size of its digest independentlyfrom its peers. The same holds for the number of bits per object. The size of a digest is likely todepend on the current cache size and maximum cache capacity.Note that the proposed scheme allows for a very e�cient lookup implementation on foreign digestswhile allowing great exibility in building a digest. For example, to reduce the number of falsehits, a proxy may decide to apply fewer hash functions for old or stale entries. This will a�ect theway a cache digest is computed. However, the lookup algorithm for peers remains unchanged. Ingeneral, Cache Digest separates digest computation from digest use.4.2 Storing a DigestA proxy maintains both memory and a disk resident copies of its own digest. The in-memory copyis used for fast updates. If, for some reason, the memory copy is unavailable, requests for the digestcan still be satis�ed with the on-disk copy. In fact, keeping a memory resident copy is actually notrequired. A proxy may decide to recompute its digest from scratch instead of constantly updatingthe in-memory copy. When a digest is written to disk, it is treated as any other cached object. Aproxy does not have to employ special algorithms to share its local digest with its peers. If a peeris allowed to retrieve cached documents from a proxy, it can retrieve a cache digest as well. Clearly,more complicated access controls can be implemented, but they are not addressed here2.The local digest can be recomputed at con�gurable (but �xed) time intervals. A smarter algorithmcould monitor the density of the current digest and trigger rebuild if, for example, the number ofbits turned on exceeds some threshold. A trigger based on the cache's object expiration rate isanother alternative.The presence and quality of local update algorithms is transparent to other proxies. A proxy must,however, attach an expiration date to its cache digest so the peers will know when the digest maybecome out-of-date. A precise expiry time is not required, and peers are not required to discardexpired digests.2However, we should note that we are aware of some potential security issues. Given a list of URLs and a cachedigest, someone can discover (via brute-force methods) which objects are likely present in a cache and which are not.
6



4.3 Disseminating DigestsWe propose to use a pull technique for disseminating cache digests. Pull �ts very well with thecurrent distribution and access control schemes for Web objects. Push requires a parent proxy tomaintain state data for all of its children. Moreover, a child cache may not be willing to accept anew digest at an arbitrary time selected by a parent proxy3.A similar problem (i.e., proxy is not willing to serve a digest to a child cache) does exist with thepull approach. However, techniques for resolving such conicts are already well developed and donot waste bandwidth on transmitting potentially huge put requests, only to receive a negativereply.To preserve bandwidth and proxy resources, peers will use an \If-Modi�ed-Since" request or equiv-alent technique when refreshing neighbor digests. Moreover, it may be desirable to fetch the digestof a remote parent via a local neighbor. Remember that digests are treated as any other Webobject and can be disseminated using existing cache hierarchies4.4.4 Digest UpdatesAfter a proxy gets a digest from its neighbor, the digest is no longer synchronized with the contentsof the neighbor's cache. This di�erence may be acceptable, if the following two conditions holduntil the next digest transfer: (1) the neighbor does not add a lot of new, popular objects to itscache, and (2) only unpopular documents are purged from the neighbor's cache. If both conditionshold, the inconsistency embedded within an unsynchronized digest is harmless because it does nota�ect documents that are actually being requested by clients.If at least one of the conditions is false, it may be desirable for a proxy to notify its digest usersabout recent changes in its cache contents. It is not obvious how frequently such noti�cationsshould be sent. Very frequent updates will reduce the number of false hits and misses. However,they may require signi�cant amounts of bandwidth.If updates are to be supported, we propose to \piggyback" update messages in HTTP repliesby using two custom HTTP headers: X-Accept-Digest-Update and X-Digest-Update. The �rstheader is used in the requests to notify the recipient that originator can accept digest updates in thereply for that particular message. The second header is used in the reply to send current updates.The proposed piggybacking scheme has several major implications:1. We do not require any new protocols to handle exceptional conditions; HTTP takes care ofthat.2. No extra messages are generated between cooperating proxies.3. Parents are not required to maintain state information about child caches.4. There are practical limits on the amount of information we can or should place into HTTPheaders. However, we do not envision this as a real problem. We do not want to signi�cantlyincrease the overall message size. Update headers should be limited to some fraction (e.g.10%) of the message content-length, with an upper limit of 2 KB or so.3Most bandwidth charging schemes are \receiver-pays."4Another potential security problem exists if cache digest objects become corrupted or sabotaged.7



Note, it may be the case that only one of the update conditions described above holds true. Commonsense suggests that (2) (only purging unpopular objects) is the most likely to hold. In this case, wedo not need to support delete noti�cations, only addition noti�cation would be sent. Supportingdeletes is simple to implement, but does consume extra memory on the proxy which maintains thedigest[4].4.5 Digest AccuracyCache digests increase the uncertainty level in cache requests. False misses lead to lower hit ratiosfor peers and reduce hierarchy utilization. By design, false misses should rarely occur5, whereasfalse hits are much more likely. We propose a relatively simple mechanism to handle false hits.When a proxy requests an object based on the cache digest hit prediction, and the request is sentto a sibling (which cannot forward misses for us), we add a standard HTTP cache control directivecalled only-if-cached. If the request turns out to be a miss, according to HTTP/1.1[5], the proxywill send a 504 (Gateway Timeout) reply. Upon receipt of a 504 reply, the originating proxy willeither forward the request to a parent or directly to the origin server. When such a request is sentto a parent (which can forward misses), the only-if-cached directive is not added.Note that other resource discovery protocols such as ICP and HTCP[6] are facing the same problemwith uncertain information. By the time an ICP or HTCP reply comes back, and the subsequentHTTP request reaches the peer, the object may get purged, thereby resulting in a false hit. Theprobability of a false hit is lower for these protocols, however, the solution proposed above willwork for ICP and HTCP as well as for Cache Digests.5 Implementation and MethodologyWe have built Cache Digest support into Squid version 1.2.beta20. At startup, each cache builds adigest of its own contents. The digest is built as the swap.state �le is read, and continually updatedas new objects enter the cache. Because deletes are not supported, the entire cache digest is rebuiltperiodically (every hour).We choose to transfer cache digests as HTTP messages. Digests may be quite large, and individualUDP messages are limited to a system's socket bu�er size (typically ranging from 9{64 KB).Additionally, there are numerous commercial cache products available which do not support ICP.Using HTTP increases the chance that Cache Digests will someday be implemented these products.The peer cache's digests (\peer digests") are requested on demand. That is, Squid will not requesta peer's digest until it is needed. Cache digests are served as standard HTTP replies, with anExpires header based on the digest rebuild period. Thus, we know when to request a fresh digestfrom a peer. Cache digest replies may be swapped to disk (as standard cache objects). A cachemay serve its own digest to others from the on-disk copy. A cache may need to swap in a peer'sdigest if the peer returns an HTTP 304 (Not Modi�ed) reply in response to an update request.At present, we do not properly handle false hits. For a parent relationships, this is not a problembecause a proxy is allowed to cause a cache miss at its parent. For sibling relationships, on theother hand, false hits need to be dealt with properly. As discussed above (section 4.5), we intend touse the only-if-cached directive. Our problem is that Squid is not fully programmed to properly5Recall that an up-to-date cache digest produces no false misses.8



handle a 504 reply and re-forward the request to a parent cache or directly to the origin server.With ICP, there are a couple of di�erent tie-breaking mechanisms available. Normally we use thepeer advertising the lowest RTT to the origin server (the src rtt feature), or the �rst neighborto reply. For Cache Digests, we select the neighbor which is closest to us. We would prefer toselect the peer which is closest to the origin server , but currently the only way Squid receives peerRTT measurements is via ICP6. If there are not any RTT measurements available, we employ around-robin approach.If all peer digests report a miss, where should we forward the request? Again, with ICP's src rttfeature we can choose the parent which is closest to the origin server, or go directly to the originserver if our cache is the closest. Our present cache digest implementation always forwards directlyto the origin if all peer digests miss.Because we need to measure the e�ectiveness of our cache digest implementation, we must categorizeeach request as a true hit, true miss, false hit, or false miss. We calculate these values for the cacheas a whole, and for each con�gured neighbor which also supports Cache Digests.� We know we have a true hit when the peer digest indicates the object is present, and theHTTP X-Cache reply header7 speci�es a hit.� We know we have a true miss when the peer digest indicates the object is not present, andthe X-Cache header speci�es a miss. Recall, above we stated requests are never forwarded toa neighbor if its digest indicates a miss, so counting true misses is not usually possible. Insection 6.1 we describe how we count false misses for this study.� We know we have a false hit when the peer digest indicates the object is present, but theX-Cache header speci�es a miss.� We know we have a false miss when the peer digest indicates the object is not present, butthe X-Cache header speci�es a hit. Again, counting false misses is not possible in general.Section 6.1 describes our approach for this study.At the present time, we do not update cache digests with HTTP headers. In fact, we have not yetseen su�cient, real evidence that such updates would make a signi�cant impact in digest accuracy.6 Framework and Results6.1 Squid Modi�cations and InstrumentationIn addition to the support for Cache Digests described above, we also modi�ed Squid in speci�cways for this study. The most important modi�cation allows us to compare the performance ofCache Digests to ICP on a single machine. Ideally, we could have two machines at each locationreceiving similar request streams, one using ICP and the other Cache Digests. Instead, we modi�edSquid to give each machine a \dual personality." A randomly generated number determines if Squid6This is not a requirement, however, and in the future we may implement a bulk exchange of network RTTmeasurements.7X-Cache is not a standard HTTP reply header. It is an extension header used by Squid to indicate if the requestwas a hit or a miss. Every Squid cache adds its own X-Cache header.9



will use ICP or Cache Digests for a given request (local cache misses only of course). We split thebalance evenly, so half of the time we use ICP and the other half Cache Digests.This technique also allows us to count true and false misses. When Squid selects ICP, we alsocheck our peer's cache digests to �nd out what they predict about the request. If the cache digestspredict a miss, but the X-Cache header indicates a hit, then we count a false miss. Conversely ifboth the cache digests and X-Cache header indicate a miss, we have a true miss.We have also instrumented Squid to keep client- and server-side service time histograms for bothICP and Cache Digest modes. The client-side service time is the time elapsed between acceptingand closing the client HTTP connection8. The server-side service time is the time elapsed betweenbeginning the neighbor selection process (i.e. it includes the ICP query/reply phase) and readingthe last byte of the server's reply.Squid 1.2 already counts the number and size of ICP messages sent and received to/from thenetwork. We added similar counters for the Cache Digest network tra�c.One of the tradeo�s for Cache Digests is increased memory usage. We count the number of bytesrequired for storing local and remote cache digests. ICP does not utilize any additional processmemory.6.2 The NLANR CachesOur modi�ed version of Squid 1.2 has been running since April 10, 1998 on the NLANR caches[7].We collect statistics from each cache at �ve minute intervals. This data is presented in the followingsections. To understand some of the data, it is helpful to also understand how the NLANR cachesare con�gured, especially their peering arrangements.There are currently eight NLANR caches, whose locations and con�gurations are summarized inthe table below:Name City Network or Exchange Point RAM, MB Cache Size, GBpb Pittsburgh, PA vBNS9 512 16uc Urbana-Champaign, IL vBNS 512 16bo1 Boulder, CO vBNS 512 16bo2 Boulder, CO vBNS 512 21sv Silicon Valley, CA FIX-West 512 16sd San Diego, CA vBNS 256 8.8pa Palo Alto, CA Digital's PAIX 512 26sj San Jose, CA MAE-West 512 16The pa and sj caches do not have any neighbors, so they are not included in this analysis. However,pa does have international cache clients helping us test our Cache Digests implementation. Theremaining caches each receive 0.4{1.2 million requests per day, serving 5{14 GB to 125{200 clientcaches throughout the world.The following summarizes the NLANR cache peering con�gurations:� pb, uc, bo1, bo2, and sd form the \vBNS club." These caches will forward requests to eachother for all com, net , org , edu, gov , mil , and us domains. In the case of ICP, this means8For persistent connections it is the time between reading the �rst request byte and writing the last reply byte.9The nationwide OC-12 backbone operated by MCI for the National Science Foundation. http://www.vbns.net/10



Service Time, msecProxy ICP Digestpb 538 371uc 608 420bo1 506 394bo2 537 371sv 1633 1200sd 732 505Table 1: Median client service times for the NLANR caches. The data was collected during the�rst 48 hour period. Cache Digest consistently outperforms ICP by a large margin. Note that thedi�erence in response time is signi�cantly larger than one RTT between these caches (approximately40-60 msec). ICP often has to wait for more than one reply before selecting a peer.one of these caches sends an ICP query to every other (four total) for each local cache miss.Note, 60% of all requests we receive are for an origin server in the com domain.� sv has a few international cache peers (Korea, New Zealand, Australia, Taiwan). sv does notpeer with the other NLANR caches, with the exception of bo for th domains.� sd has a few international cache peers (South Africa, Mexico, Brazil, Russia).� pb has a few international cache peers (Sweden, Netherlands, United Kingdom). pb alsoreceives requests from the other \vBNS club" caches for many European domains.� We use cache host acl con�guration lines to ensure that any given request passes through nomore than two NLANR caches.6.3 Overview of ResultsIn the following sections, we compare the di�erences between ICP- and Cache Digest-based neighborselection. We are interested in three parameters: service times, digest accuracy, and network tra�c.For these parameters, we present tables of values for every cache. For many of the values we alsoinclude plots from the pb cache. Our data has been gathered over a six day period (April 10{15,1998).6.4 Service TimesTable 1 lists the median client response time for the �rst 48 hour period of our experiment. Onall caches, Cache Digests perform noticeably better than ICP. Cache Digests eliminate ICP querydelays for local misses. Another advantage of Cache Digests is that increasing the number of peerswill not slow down client requests. ICP, on the other hand, cannot scale well with the number ofclients.Figure 2 shows the cumulative distribution of client-side service times for a 24-hour period on pb.This includes only cache misses on pb which also used either ICP or Cache Digests to select thenext-hop cache10. The plot on the left shows that for 85% of such requests, Cache Digests provide11



0

10

20

30

40

50

60

70

80

90

100

100 1000 10000

C
D

F
, p

er
ce

nt
ile

milliseconds
Client:PB

Digest
ICP

0

10

20

30

40

50

60

70

80

90

100

300 350 400 450 500 550 600 650 700

C
D

F
, p

er
ce

nt
ile

milliseconds
Client:PB

Digest
ICP

Figure 2: Client-side service times for the pb cache. On the left is a logarithmic plot which clearlyshows that Cache Digests provide lower service times to cache clients. A closeup on the right, witha linear X-axis, shows the Cache Digest median is 371 msec, while the ICP median is 538 msec.

0

100

200

300

400

500

600

700

800

900

04/10 04/11 04/12 04/13 04/14 04/15 04/16

m
ill

is
ec

on
ds

ICP: client
server

Digest: client
server Figure 3: Median client- and server-side ser-vice time values for pb during the duration ofthis study. These median values for 5-minuteintervals are smoothed by gnuplot's \smoothbezier" function. The elimination of ICP de-lays is clearly evident. Cache digests alwaysperform better than ICP-based selection.signi�cantly lower service times. The remaining 15% have nearly identical service times, perhapsindicating that the client connection is a bottleneck.The right side of Figure 2 shows a close-up of the area where both curves cross the median. Here,with a linear X-scale, the improvement is easier to see. The Cache Digest median is 69% of theICP-based value (371 ms vs. 538 ms).In Figure 3 we plot pb's client- and server-side median service times for the entire 6 day periodof our study. This graph shows that cache digests consistently perform better than ICP at alltimes of the day. Both show increases during peak times, when the Internet becomes congested.Qualitatively, it appears that congestion a�ects ICP a little bit more than Cache Digests.6.5 Digest AccuracyTable 2 is essential in analyzing digest accuracy. Smaller digests result in higher false hit ratios.Stale digests may generate too many false misses. In this table, the number of false misses isnegligible on all servers. However, we are disappointed with the high false hit percentages andintend to investigate these further. We might not actually have 18% false hits, but rather, wemay not be properly counting them. Counting is somewhat tricky because we must take into10We always forward cgi-bin and query requests directly to origin servers.12



Hit Miss TotalsProxy true false true false true false hit misspb 33.6 18.1 48.0 0.3 81.7 18.3 51.7 48.3uc 34.7 15.5 49.4 0.3 84.1 15.9 50.2 49.8bo1 42.2 17.3 40.1 0.4 82.3 17.7 59.5 40.5bo2 38.0 17.3 44.3 0.5 82.3 17.7 55.2 44.8sv 25.7 6.6 67.7 0.0 93.4 6.6 32.4 67.7sd 39.4 11.9 48.5 0.2 87.9 12.1 51.3 48.7Table 2: Digest accuracy ratios (%). All caches have very low false miss ratios, which may indicatethat most new documents entering a cache are not requested again soon. Thus, delete noti�cationis not required to keep digest hit ratios constant. Our false hit ratios are relatively high. We areworking on identifying and solving this problem. The total true ratio needs to be increased to atleast 95% before Cache Digests can become attractive for practical use.

0

10

20

30

40

50

60

70

80

90

100

04/10 04/11 04/12 04/13 04/14 04/15 04/16

%

misses: true
false

hits: true
false

0

10

20

30

40

50

60

70

80

90

100

04/10 04/11 04/12 04/13 04/14 04/15 04/16

%

Total:
misses

hits
true

false

Figure 4: On the left, percentages of true hits, false hits, true misses, and false misses for pb. Notethat the percentages are relatively unchanging, except at cache restarts. On the right, percentagesof hits, misses, true guesses, and false guesses. Hits and misses are complimentary (together theyadd to 100%), as are the true and false guesses.consideration things such as Pragma: no-cache and certain Cache-Control headers. Also, Cacheswith di�ering refresh parameters will also produce remote misses when hits are expected.In Figure 4, we plot the relative percentages of true hits, false hits, true misses, and false misses forpb. Note that the percentages are quite consistent, except at cache restarts. On the left graph, thetop curve (true misses, at about 50%) indicates the number of times peer digests accurately specifythey do not contain the requested object. The next curve (true hits, at about 32%) indicates howoften at least one of the peer digests accurately speci�es it does contain the object. Next, false hits,at about 18%, indicates how often at least one of the peer digests incorrectly speci�es it containsthe object. The �nal curve, false misses, is very near to zero, and not visible on this plot.On the right, we sum the percentages both ways and plot their values over time. The Cache Digestpredictions are true about 81% of the time. Conversely, they are false 19% of the time. The hitand miss ratios are nearly equal to each other, just above and below 50%.
13



Tra�c rate, KB/hourProxy ICP DigestSent Received Sent Receivedpb 5.4 5.4 3.2 2.7uc 7.1 7.1 4.2 2.6bo1 5.3 5.3 3.7 2.6bo2 6.1 6.1 5.5 4.7sv 1.1 1.1 4.8 1.2sd 7.2 7.2 2.3 2.8Table 3: Transfer rates for ICP and Cache Digests. Values for ICP tra�c are calculated as if weare not using Cache Digests. Unfortunately, our approximation looses some accuracy. In practice,incoming and outgoing ICP bandwidth di�ers very slightly. Cache Digests have smaller transferrates in both directions compared to ICP. However, further analysis shows that Cache Digeststra�c is bursty unless special optimizations are applied (see discussion of Figure 5).6.6 Network Tra�cTables 3 and 4 summarize incoming and outgoing tra�c for the NLANR caches. ICP has highertra�c volume and, of course, generates many more messages compared to Cache Digests. Di�er-ences in Cache Digests �gures among proxies are due to di�erent cache sizes and access patterns.When a small proxy is cooperating with a large one, the larger proxy sends more information thanit can receive back. In practice, this may lead to interesting inter-proxy agreements to compensatefor an \unfair trade."The problem of asymmetric tra�c is not speci�c to Cache Digests though. Moreover, with cachedigests, proxies may have better control on the amount of data transmitted within the hierarchy.For example, a large proxy that wants to limit the number of requests from a small peer may givethe latter a cache digest with fewer bits turned on.Figure 5 shows the amount of network bandwidth consumed by pb for ICP and Cache Digests.For ICP, we have calculated the amount of tra�c which would exist in the absence of CacheDigests. Additionally, we calculate only ICP tra�c from the NLANR caches, and do not includeICP messages from other caches. In making this calculation, we lose some accuracy. For instance,Figure 5 and Table 3 do not show that pb receives slightly more ICP bytes than it sends11. Notethat for cache digests, pb sends more than it receives. This is because the sd cache is signi�cantlysmaller, and there are a small number of child caches which take pb's digests, but pb does not taketheirs.Figure 6 shows the theoretical break-even points for Cache Digests vs. ICP. This can be usedto determine the digest refresh period which will result in a lower bandwidth utilization. Ourderivation follows.Given a cache size S, an average per-peer ICP query rate of R per second, and a digest refreshperiod of T , we draw the lines where the average tra�c rates for Cache Digests and ICP are equal.Squid uses 6 bits in the bloom �lter for every object. For a given cache size S in GB and an averageobject size l in KB, the size of Squid's cache digest in MB is:11This is because pb receives more queries than replies, and the icp query message includes four extra bytes whichare not present in replies. 14



Message rate, msgs/hourProxy ICP DigestSent Received Sent Receivedpb 75772 75772 7.1 3.8uc 99725 99725 7.2 3.0bo1 75383 75383 7.2 3.5bo2 86596 86596 10.3 6.0sv 16073 16073 7.9 2.9sd 101895 101895 8.5 4.2Table 4: Number of messages transmitted per hour for ICP and Cache Digests. Of course, CacheDigests require signi�cantly fewer messages. Cache Digests use about one message per digestupdate. For this experiment, digests were expired with one hour intervals. Thus the number ofdigests received is approximately the number of cache peers that support Cache Digests. We sendmore digest messages than we receive because some messages go to peers which are either dead ordo not have Cache Digest support.

0

50

100

150

200

250

300

04/10
00:00

04/10
06:00

04/10
12:00

04/10
18:00

04/11
00:00

04/11
06:00

04/11
12:00

04/11
18:00

04/12
00:00

M
B

ICP: sent
received

Digest: sent
received

0

5

10

15

20

25

04/12
00:00

04/12
03:00

04/12
06:00

04/12
09:00

04/12
12:00

04/12
15:00

04/12
18:00

04/12
21:00

04/13
00:00

K
B

/s
ec

Digest: sent
received

ICP: sent
received

Figure 5: On the left, cumulative network tra�c for Cache Digests and ICP. Here we have elim-inated ICP tra�c from non-NLANR caches. On the right we show the rate of tra�c for bothmethods. These are �ve minute samples. Cache Digest tra�c is very bursty while ICP tra�c,by comparison, is very smooth. More \dense" Cache Digest tra�c after 15:00 is the result of theimprovement to digest update algorithm. Prior to that time, a cache would request digests fromits peers almost at the same time. The graph clearly shows times when one, two, three, or moredigests were sent or received with little or no gap (levels of line markers correspond to the numberof digests transmitted during that 5 minute period). This unwanted synchronization led to largepeaks in Cache Digests tra�c rate. Peaks start to dissolve after we introduced an lower bound onthe frequency of digest updates.
15



1

2

4

8

16

1 2 4 8 16

D
ig

es
t r

ef
re

sh
 p

er
io

d,
 h

ou
rs

ICP query rate, per second, per peer

Cache Size
5 GB

10 GB
20 GB
40 GB

Figure 6: Theoretical break-even points forCache Digests vs. ICP. The four lines repre-sent di�erent cache sizes. Larger cache sizesmean larger cache digest messages. For agiven cache size, and a given ICP query rate(per peer), you can estimate the digest re-fresh period which will result in lower overallbandwidth utilization. Points above the linesrepresent lower bandwidth for Cache Digests,while points below the lines represent lowerbandwidth for ICP. For example, a 20 GBcache receiving an average of 2 ICP queriesper second from each of its peers will bene�tfrom switching to cache digests with an up-date period of 1.15 hours or more.Scd = 0:75 � SlThe Cache Digest tra�c rate, in MB/s, is given as:Scd3600TThe ICP tra�c rate, assuming an average ICP message size of 70 bytes, and R queries per second,is given (in bytes/sec) as: 2 � 70 bytes � REquating these two, and solving for T as a function of R,T = Scd0:504ROr in terms of the cache size S (GB) with an average object size l of 13 KB,T = S8:74R6.7 Memory UsageThe size of a digest depends on the cache size. For experiments presented in this paper, Squid used6 bits per object assuming full cache capacity. Thus, a 16 GB cache had a digest of approximately1 MB. For less-than-full caches, digest size can be calculated based on the actual amount of diskspace used with some \fudge factor" to allow for cache size growth.The total memory requirement for running Cache Digest is proportional to the number of peerswith digests. A cache peering with 4 neighbors required about 5-6 MB of RAM to store its owndigest and digests of its peers. After all digests has been fetched, memory usage is stable.16



7 Related WorkThe Cache Array Routing Protocol (CARP) has been designed by the University of Pennsylvaniaand Microsoft[8]. With this scheme, requests are deterministically forwarded to a set of neighborcaches. The algorithm always forwards a request for the same URL to the same neighbor. CARPworks well for Intranet hierarchies, but less well for loosely coupled, non-autonomous Internet cachepeerings.Povey and Harrison have proposed a Distributed Internet Cache[9] which is primarily targeted ateliminating upper level bottlenecks and scaling issues. In their scheme, upper level Web caches arereplaced by \directory servers." Instead of serving objects via HTTP, these servers receive additionand deletion advertisements from lower level caches. Thus, an upper level server knows the contentsof each lower level cache and may redirect one cache to another for a given object. The authorspropose simple modi�cations to ICP for the exchange of advertisement messages.Gadde, Rabinovich, and Chase have developed a similar system labeled CRISP[10]. Here, a centralmapping service ties together some number of caches. The mapping service directs proxies tofetch cached objects from each other. The CRISP system works well for autonomously managedcaches. For a wide-area con�guration, the network RTT between the cache and a CRISP servermay introduce signi�cant delays.Pei Cao and students at the University of Wisconsin, Madison have developed an object locationtechnique based on Bloom Filters called \Summary Cache"[4]. Summary Cache extends ICP toallow \pushing" of Bloom Filters from parent caches to their children. Updates are supported viaICP as well. Summary Cache maintains a special table to track deletions from a Bloom Filter.The size of that table is 4 times the size of a local Bloom Filter. The table allows them to notifypeers when objects are purged from the cache. The researchers tested their ideas using a log-drivensimulation and small scale benchmarking with an instrumented version of Squid.Cache Digest was designed and developed independently from Pei Cao's group. We regret havingno knowledge of the Summary Cache project until it was completed leaving us no opportunity toinuence the development. While the design objectives are probably the same, our understandingof practical matters seems to di�er somewhat. We believe that push technology is not well suitedfor Squid and cooperative caching in general. With push caching, a parent proxy has to maintainstate for all of its children, and there is no guarantee that the children are willing to accept freshBloom Filters as often as (and when) the parent proxy wants to generate them. Summary cachedoes not piggyback update messages and requires a special ICP message to \push" updates. Weare also not sure that supporting deletions from a Bloom Filter is worth the overhead because mostpurged objects are old and are never requested again anyway.Cache Digests require a common set of hash functions for lookups, but nothing else. Digest creatorsare free to choose the algorithm which builds the bloom �lter (e.g., giving priority to some objects).Digest consumers need not know the details of such an algorithm. For Summary Cache, creatorsprecisely specify the full algorithm details, and consumers must be able to recognize the algorithm,or the bloom �lter is useless.The Hypertext Caching Protocol[6] is a recently proposed replacement for ICP. As with ICP,HTCP is a UDP-based query/reply protocol. The primary di�erence is that an HTCP queryincludes full HTTP request headers, and HTCP replies include full HTTP reply headers. Thisaddresses ICP's inability to accurately predict cache hits due to a lack of HTTP request headerssuch as Cache-Control: Max-age. 17



8 AcknowledgmentsWe are thankful to Henny Bekker (SURFNet, the Netherlands), Dancer (Australia), and other betatesters of Cache Digests.This work was supported by grants of the National Science Foundation (NCR-9521745, NCR-9616602).9 Conclusions and Future WorkIn this study, we have shown that a Cache Digest , based on Bloom Filters, provides an objectlocation function similar to ICP, but without any per-request delays. Median service times onour caches improved by 100 milliseconds or more when Cache Digests were used instead of ICP.Additionally, if the Cache Digest parameters (especially update frequency) are carefully selected,this technique consumes less network bandwidth overall. Cache Digests have increased memoryrequirements, approximately 1 MB per digest in this study.Whereas ICP generates a steady stream of small packets, Cache Digest transfers occur in high-volume bursts (e.g. 1 MB every 2 hours). For this reason, Cache Digests may not be suitable foruse over low-speed or highly congested network paths. This remains an area for future investigation,and we hope to receive good feedback regarding this from the user community.The most signi�cant drawback to Cache Digests is the number of false hits|as high as 18% forour caches. We can not realistically expect digests to be used for sibling relationships until thisnumber is reduced to at least 5%. Therefore, our top priority task is to identify the primary reasonfor relatively high false hit ratio.Related to this, we must also modify Squid to properly handle 504 (Gateway Timeout) repliesfor only-if-cached requests. Even with a 5% false hit ratio, we can not use digests for siblingrelationships without only-if-cached support.Our short study seems to support the idea that Cache Digests may not need to be kept fully up-to-date. With an update period of one hour (and no incremental updates), we witnessed essentiallyno change in hit/miss and true/false ratios. If other investigations reveal that incremental updatesare bene�cial, we intend to implement this functionality with customized HTTP request and replyheaders.Meanwhile, we will continue to tune our Cache Digest implementation, try di�erent con�gurations,and gather additional performance data from the NLANR caches.

18



References[1] D. Wessels and K. Cla�y, \Internet cache protocol (ICP), version 2," Network Working GroupRFC 2186, September 1997. http://ds.internic.net/rfc/rfc2186.txt.[2] D. Wessels and K. Cla�y, \Application of internet cache protocol (ICP), version 2," NetworkWorking Group RFC 2186, September 1997. http://ds.internic.net/rfc/rfc2187.txt.[3] B. Bloom, \Space/time trade-o�s in hash coding with allowable errors," Communications ofthe ACM, vol. 13, pp. 422{426, July 1970.[4] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, \Summary cache: A scalable wide-area web cachesharing protocol," Tech. Rep. 1361, Department of Computer Science, University of Wisconsin-Madison, February 1998. http://www.cs.wisc.edu/~cao/papers/summarycache.html.[5] R. Fielding et al., \Hypertext transport protocol { HTTP/1.1," Network Working Group RFC2068, January 1997. http://ds.internic.net/rfc/rfc2068.txt.[6] P. A. Vixie, \Hyper text caching protocol (htcp/0.0)," draft-vixie-htcp-proto-00.txt, March1998. http://ds.internic.net/internet-drafts/draft-vixie-htcp-proto-00.txt.[7] D. Wessels, K. Cla�y, and H.-W. Braun, \NLANR prototype web caching system." Researchproject funded by the National Science Foundation. http://ircache.nlanr.net/.[8] V. Valloppillil and K. W. Ross, \Cache array routing protocol v1.0," draft-vinod-carp-v1-03.txt, February 1998. http://ds.internic.net/internet-drafts/draft-vinod-carp-v1-03.txt.[9] D. Povey and J. Harrison, \A distributed internet cache," in Proceedings of the 20th Aus-tralasian Computer Science Conference (to appear), February 1997. http://www.psy.uq.edu.au:8080/~dean/project/.[10] S. Gadde, M. Rabinovich, and J. Chase, \Reduce, reuse, recycle: An approach to buildinglarge internet caches," in Workshop on Hot Topics in Operating Systems (HotOS), April 1997.http://www.cs.duke.edu/ari/cisi/crisp-recycle/.[11] D. Wessels, \Squid internet object cache." http://squid.nlanr.net/.

19


