
List edge colourings of some 1-factorable multigraphsM. N. Ellingham1Department of Mathematics, 1326 Stevenson CenterVanderbilt University, Nashville, TN 37240, U. S. A.mne@math.vanderbilt.eduLuis Goddyn2Department of Mathematics and StatisticsSimon Fraser University, Burnaby, B. C., V5A 1S6, Canadagoddyn@math.sfu.caAbstractThe List Edge Colouring Conjecture asserts that, given any multigraph G with chromaticindex k and any set system fSe : e 2 E(G)g with each jSej = k, we can choose elements se 2 Sesuch that se 6= sf whenever e and f are adjacent edges. Using a technique of Alon and Tarsiwhich involves the graph monomial Qfxu � xv : uv 2 Eg of an oriented graph, we verify thisconjecture for certain families of 1-factorable multigraphs, including 1-factorable planar graphs.Keywords: list edge colouring, choosability, 1-factorization, graph polynomial, graph monomial,planar graphs, regular graphs.AMS Classi�cation numbers: 05C15, (05C70, 05C10).1 IntroductionLet G = (V;E) be a graph (with multiple edges allowed). A proper (vertex) colouring ofG is a functionon V for which adjacent vertices receive distinct values. A proper k-colouring is a proper colouringwhose range is a subset of [k] := f0; 1; : : :; k�1g. With this de�nition, two distinct proper k-colouringsof G may induce the same partition of V (G). A graph is k-colourable if it has a proper k-colouring.The following concept was introduced by Erd�os, Rubin and Taylor [5]. Let a : V (G)! f1; 2; : : :g. Wesay that G is a-choosable or a-list colourable if for every set system fSv : v 2 V g such that jSvj = a(v),there is a proper colouring c such that c(v) 2 Sv for v 2 V (G). In case a is the constant functiona(v) � k, we say that G is k-choosable. The terms k-edge colourable, a-edge choosable and k-edgechoosable are de�ned in an analogous way. If a graph is k-choosable, then it is k-colourable, but notconversely, as shown by K3;3 which is not 2-choosable. In contrast, we have the following.Conjecture 1.1 (List Edge Colouring Conjecture) If G is a k-edge colourable multigraph, thenG is k-edge choosable.This conjecture seems to have been arrived at independently by several people. It has been veri�edfor the class of bipartite graphs [7], and also for complete graphs of odd order [8]. An excellent surveyappears in [1]. Further results and historical comments may be found in [3, 4]. Our main result veri�esthis conjecture for a class of planar graphs.Theorem 1.2 If G is a d-regular d-edge colourable planar multigraph, then G is d-edge choosable.The Four Colour Theorem is equivalent to the statement that every 2-connected 3-regular planargraph is 3-edge colourable. Theorem 1.2 therefore implies that the Four Colour Theorem is equivalentto the statement that every 2-connected 3-regular planar graph is 3-edge choosable. This was observedindependently by F. Jaeger and M. Tarsi [personal communication]. For d � 4, the question of whichd-regular planar multigraphs are d-edge colourable has not yet been resolved. Seymour [15] and othershave proposed conjectures that would imply that any d-edge connected d-regular planar multigraphof even order is d-edge colourable, and hence, by Theorem 1.2, d-edge choosable.1Supported by the University Research Council of Vanderbilt University and NSERC Canada.2Supported by NSERC Canada. 1



Our main tool is a result of Alon and Tarsi [2] which relates choosablility to coe�cients in a certainpolynomial. Let D be an orientation of G. The graph monomial of G is the homogeneous polynomial�(G) with variables fxv : v 2 V (G)g and de�ned by�(G) = Yuv2E(D)(xu � xv):(Some authors call �(G) the graph polynomial , but we abandon this overused term in favour of thatused by Sabidussi [13].) As we have de�ned it, �(G) depends on a particular orientation D of G;however changing the orientation multiplies �(G) by �1, so �(G) is unique up to sign. The graphmonomial was �rst used by Petersen [12]; indeed Petersen gave order, degree and factor their graphtheoretical meanings by reference to �(G). Scheim [14] used �(G) to prove some results about 3-edgecolourings of 3-regular planar graphs; our Theorem 1.2 extends one of his results. Li and Li [10]mention �(G) in the context of determining the independence number of G.Theorem 1.3 (Alon and Tarsi [2]) Let a : V (G) ! f1; 2; : : :g. If the coe�cient ofQv2V (G) xa(v)�1v in �(G) is nonzero, then G is a-choosable.Scheim's paper [14] contains much of the reasoning needed to prove this theorem; however, he wasworking before the introduction of the idea of list colourings, and did not state his results in fullgenerality. Alon and Tarsi [2] give combinatorial interpretations of the coe�cients of �(G), and useTheorem 1.3 to investigate the (vertex) choosability of planar graphs and bipartite graphs. Fleischnerand Stiebitz [6] use Alon and Tarsi's results to solve a conjecture of Erd�os regarding the 3-vertexcolourability of certain 4-regular graphs. Penrose [11] states the case d = 3 of Theorem 3.1 in termsof \abstract tensor systems".2 Interpreting the Coe�cientIn order to study edge choosability one applies Theorem 1.3 to line graphs. The line graph L(G) of amultigraph G has V (L(G)) = E(G) with an edge joining e to f in L(G) for each common endpointthat e and f have in G. Thus, every pair of parallel edges in G is joined by two edges in L(G). Forregular G, the coe�cient of �(L(G)) which is of interest has several nice combinatorial interpretations,some of which are implicit in [2] and explicitly described by N. Alon in the preamble to Proposition3.8 of [1].From here on, G is a d-regular multigraph. Let �(G) denote the coe�cient of Qe2E(G) xd�1e in�(L(G)). If �(G) 6= 0, then G is d-edge choosable, and thus the List Edge Colouring Conjecture holdstrue for G.The set of edges �(v) incident with each vertex v of G can be ordered with a star labelling at v,a bijection �v : �(v) ! [d]. A global star labelling is a set � = f�v : v 2 V (G)g. We assume thatG comes with a �xed global star labelling � = �(G) = f�vg, called the reference labelling of G, withwhich other star labellings will be compared. In particular, the sign of a star labelling �v (relative to�) is the sign of the permutation �v � ��1v , and is denoted sign�(�v), or sometimes just sign(�v). Thesign of a global star labelling � is de�ned as sign(�) =Qv2V (G) sign(�v).Star labellings allow us to assign signs to other combinatorial objects in G. A k-factor in G isa k-regular spanning subgraph of G. Let p = dd=2e. An ordered (near) 2-factorization of G is anordered partition F = (F0; F1; : : : ; Fp�1) of E(G), where each Fi is a 2-factor, unless d is odd, in whichcase Fp�1 is a 1-factor (hence the word \near"). An orientation � of F is an orientation of G sothat each Fi becomes a union �i of directed circuits, except that when d is odd �p�1 = Fp�1 remainsan unoriented 1-factor. Let OOB2F(G) denote the set of oriented ordered (near) 2-factorizations ofG in which each 2-factor is bipartite, i.e. a union of even circuits. For each � 2 OOB2F(G), thereis an associated global star labelling �: given uv 2 �i oriented from u to v, we set �u(uv) = i and�v(uv) = d � 1 � i, or if d is odd and uv 2 �p�1 then �u(uv) = �v(uv) = (d � 1)=2. We de�ne2



sign(�) = sign�(�) to be sign(�). As shown in [1],�(G) = � X�2OOB2F(G) sign(�): (1)Let B2F(G) denote the set of unordered and unoriented bipartite (near) 2-factorizations of G.For any F 2 B2F(G), we can de�ne sign(F ) = sign�(F ) to be sign(�) for any orientation � of anyordering of F . All such � have the same sign, because reversing the orientation of an even circuitchanges the sign at an even number of vertices, and swapping two 2-factors swaps two pairs of edgesat each vertex. If !(F ) is the total number of circuits in all of the 2-factors in F , then there are 2!(F )orientations of each of the bd=2c! orderings of F , so that (1) may be rewritten as�(G) = � bd=2c! XF2B2F(G) sign(F ) 2!(F ): (2)The coe�cient �(G) may also be interpreted in terms of edge colourings of G. Let ECd(G) denotethe set of proper d-edge colourings c : E(G) ! [d]. Each c 2 ECd(G) induces a global star labelling� = � (c) where for each edge e = uv, �u(e) = �v(e) = c(e). We de�ne the sign of c (with respectto �(G)) by sign(c) = sign(� (c)). As explained in [1], there is a bijection between OOB2F(G) andECd(G) which preserves all or reverses all signs, giving�(G) = � Xc2ECd(G) sign(c): (3)Let 1F(G) denote the set of unordered 1-factorizations of G. Each f 2 1F(G) corresponds toan equivalence class of d! edge colourings in ECd(G) under permutations of the colours [d]. Asinterchanging two colours in c introduces exactly jV (G)j transpositions in � (c), equivalent colouringsin ECd(G) have equal sign. Thus a sign function is well de�ned on 1F(G).�(G) = � d! Xf21F(G) sign(f) (4)There is a coarser equivalence relation on ECd(G) on whose parts a sign function can be de�ned.An elementary Kempe recolouring of c 2 ECd(G) exchanges the colours i and j on the edges of asingle component circuit of the 2-factor c�1(i) [ c�1(j), for some distinct i; j 2 [d]. Two elementsof ECd(G) (or 1F(G)) are Kempe equivalent if one can be obtained from the other by a sequence ofelementary Kempe recolourings. Let KE(G) denote the set of Kempe (equivalence) classes of properd-edge colourings of G. As with 1-factorizations, Kempe equivalent colourings have the same sign,and the sign of a Kempe class is well de�ned.�(G) = � X�2KE(G) sign(�) j�j (5)We summarize with a list of su�cient conditions for a graph to be d-edge choosable.Theorem 2.1 Let G be a d-regular multigraph. Suppose that at least one of the following holds.(i) G has an odd number of distinct 1-factorizations,(ii) G is 1-factorable and any two 1-factorizations are Kempe equivalent,(iii) G is 1-factorable and any two 1-factorizations have the same sign, or(iv) the number of F 2 B2F(G) which minimize the total number !(F ) of circuits in all of the2-factors in F is odd.Then �(G) 6= 0, and as a consequence G is d-edge choosable.Proof. Claims (i) and (iii) follow immediately from (4), while (ii) follows from (5). If (iv) holds thenthe sum in (2) is non-zero modulo 2!0+1, where !0 = minf!(F ) : F 2 B2F(G)g.3



Note that condition (ii) implies condition (iii). We illustrate with some examples of d-regular graphswhich are d-edge choosable by Theorem 2.1. The skeleton of the 3-cube has four distinct 1-factoriz-ations, but they are all Kempe equivalent; thus (ii) applies, although (i) does not. The generalizedPetersen graph P (9; 2) has a unique 1-factorization [16], and so (i) and (ii) both apply. Largergeneralized Petersen graphs P (6k+ 3; 2), k � 2, are not uniquely 1-factorable, but have exactly threeHamilton circuits [16]. Thus !(F ) is minimum (equal to 1) for exactly three F 2 B2F(G). Theseprovide an examples of (iv) whereas (i), (ii) and (iii) may not hold. The 8-vertex M�obius ladder(which may be thought of as an octagon with all four long diagonals added) has exactly three 1-fac-torizations, and they are all Kempe equivalent; therefore (i) and (ii) both apply. The skeleton ofthe dodecahedron has exactly ten 1-factorizations, each in its own Kempe class and all of the samesign; thus (iii) applies. The even complete graphs K2r satisfy (iii) for r � 3, but not for r � 4. Itappears likely that �(K2r) is never zero (we have veri�ed this electronically for r � 5), though this isprobably a di�cult problem. It is not even known whether the List Colouring Conjecture holds forK2r. Similarly, we expect that �(K2r;2r) is never zero (as has been veri�ed for r � 5 by J. Janssen[private communication]), although (iii) holds only for r � 2.In the next section we show that all 1-factorizations of a regular planar multigraph have the samesign. In contrast, K3;3 has exactly one 1-factorization of each sign, thus �(K3;3) = 0. (Even so, K3;3is 3-edge choosable as it is bipartite [7].) This is a special case of the situation for Kd;d with d � 3odd, which is discussed in [2]. More generally we have the following.Proposition 2.2 If G is d-regular, with d odd, and there exist distinct vertices v, v0 with identicalneighbourhoods, then �(G) = 0.Proof. We consider the involution on ECd(G) which interchanges the colours of vw and v0w, foreach neighbour w of v. This involution is �xed-point free and, as d is odd, is sign-reversing. Thus by(3), �(G) = 0.We brie
y describe two operations which can be used to produce regular multigraphsG with �(G) = 0.Let G0 and G1 be disjoint d-regular multigraphs of even order, and let vi 2 V (Gi) and ei 2 E(Gi),i = 0; 1. We form a new d-regular multigraph H from (G0 � v0) [ (G1 � v1) by adding d new edges,each joining a neighbour of v0 to a neighbour of v1. We also form a new d-regular multigraph Kfrom (G0 � e0) [ (G1 � e1) by adding two new edges, each joining an endpoint of e0 to an endpointof e1. Using (3), one can show that �(H) = ��(G0)�(G1)=d! and that �(K) = ��(G0)�(G1)=d. Thus�(H) = �(K) = 0 provided that �(G0) = 0. Pavol Gvozdjak (personal communication) has found aHamiltonian cubic graph G with xi(G) = 0, but which does not arise from Proposition 2.2 nor eitherof these two operations. We do not know whether this graph is 3-edge colourable.3 Regular planar multigraphsIn this section we prove Theorem 1.2 by showing the following.Theorem 3.1 Let G be a d-regular planar multigraph, d � 1. Then all 1-factorizations of G have thesame sign. Hence j�(G)j is precisely the number of proper d-edge colourings of G.The case d = 3 of this theorem was proved by Scheim [14], and can also be deduced from a resultof Vigneron [17] (see also Jaeger [9]) together with observations of Alon and Tarsi [2] relating thecoe�cients of �(G) to eulerian orientations of G. We leave as unsolved the problem of determiningwhich graphs satisfy the conclusion of Theorem 3.1.Roughly, we prove this theorem by giving a `geometric' interpretation of sign(�) in (1), and thenusing the topology of the plane to deduce that this sign is always positive. We use terminology andnotation from Section 2. Let G be a d-regular graph embedded on an orientable surface. For v 2 V (G),a star labelling �v is said to be clockwise if the edges are labelled in clockwise ascending order aroundv. A global star labelling � = f�vg of G is clockwise if each of its members is clockwise. From here onwe assume the reference labelling �(G) to be clockwise. Let � = (�0; : : : ;�p�1) 2 OOB2F(G) and letv be a vertex of G. For �i 2 � we denote by �i(v) the connected component of �i which contains v;4



thus �i(v) is either an edge or a directed circuit. Two oriented 2-factors �i;�j 2 � are said to crossat v if the circuits �i(v), �j(v) geometrically cross at v. We say that an edge e 2 �(v)nE(�i) lies tothe right of �i (at v) if e lies geometrically on the right as �i(v) is traversed through v. Similarly,if v lies on the boundary of a face R of the embedding, then R is to the left of �i (at v) if R liesgeometrically on the left as �i(v) is traversed through v. It is important to note that the terms `cross'and `to the left/right' can equally well (though more cumbersomely) be de�ned purely in terms of� and �(G), without reference to any embedding of G. For example, a face R is speci�ed by a pairof edges in �(v) having consecutive �v-labels (modulo d); two 2-factors �i and �j cross at v if somecyclic rotation of the sequence �v � ��1v (i); �v � ��1v (j); �v � ��1v (d � 1 � i); �v � ��1v (d � 1 � j) ismonotone, where � is the global star labelling associated with �.We de�ne three invariants which determine the sign of � (relative to �(G)). Let v 2 V (G). Wedenote by x(�; v) the number of unordered pairs of 2-factors in � which cross at v. If d � 1 is odd,then we de�ne the root edge ev to be the edge �p�1(v); we let r(�; v) denote the number of oriented2-factors �i 2 � for which ev lies to the right of �i at v. If d � 2 is even, then we de�ne the root faceRv to be the face speci�ed by the �v-labels 0 and d� 1; we let l(�; v) denote the number of oriented2-factors �i 2 � for which Rv lies to the left of �i at v. Finally, we set x(�) := Pv2V (G) x(�; v),r(�) :=Pv2V (G) r(�; v), and l(�) :=Pv2V (G) l(�; v).Lemma 3.2 Let G be a d-regular multigraph with reference labelling �. For any oriented ordered(near) 2-factorization � of G we have sign(�) = (�1)x(�)+r(�) or sign(�) = (�1)x(�)+l(�) accordingto whether d is odd or even.Proof. Given any star labelling �v, let �(v) denote the oriented ordered partion of �(v) whose ithpart is the directed path with edges ��1v (d� 1� i) followed by ��1v (i), except that when d is odd the(p � 1)th part is the unoriented root edge ev = ��1v (p � 1). In general, x(�; v) equals the number ofpairs of paths in �(v) which cross, and r(�; v) (l(�; v)) is the number of such paths for which ev (Rv)lies to the right (left).Let � be the global star labelling associated with �. For each v, �(v) is just the restriction of� to �(v). A �-consecutive transposition of �v is any transposition which exchanges the �v-labelson any two edges in �(v) whose �v-labels di�er by exactly one. The sign of �v is determined bythe length of a sequence S of such transpositions which transforms �v into �v. In case d is odd,a �-consecutive transposition of �v corresponds to a modi�cation of �(v) which does exactly oneof two things. First, it may cross or uncross exactly one pair of dipaths in �(v). Second, it maytransfer ev from one side of exactly one such dipath to its other side. By de�nition, if �v = �v, thenx(�; v) = r(�; v) = 0. Thus x(�; v)+r(�; v) is congruent to the number of transpositions in S (modulo2), so sign(�v) = (�1)x(�;v)+r(�;v). Thus sign(�) = Qv2V (G)(�1)x(�;v)+r(�;v) = (�1)x(�)+r(�). Thed-even case is exactly analogous, writing l and Rv in place of r and ev.We remark here on an essential di�erence between the d-odd and d-even cases. The root edge ev isdetermined by � whereas the root face Rv is de�ned by �(G). There appears to be no way of resolvingthis dichotomy.A plane graph is a speci�c embedding of a planar graph in the plane. To prove Theorem 3.1 itsu�ces, by (1), to show that x(�), r(�) and l(�) are even, for any � 2 OOB2F(G), whenever G isplane and �(G) is clockwise. This (essentially) is proved in the next three lemmas.Lemma 3.3 Let G be a plane d-regular multigraph with a clockwise reference labelling �. Then x(�)is even for any oriented ordered (near) 2-factorization � of G.Proof. Let xij denote the number of vertices at which two oriented 2-factors �i; �j 2 � cross. Asany two edge-disjoint circuits in the plane geometrically cross an even number of times, each xij iseven and thus x(�) =Pij xij is even.In contrast to x(�), both r(�) and l(�) depend on the particular orientation � of the underlying(near) 2-factorization F . However, their parities are not a�ected by reorientation, provided that eachof the 2-factors in F is bipartite. In case d is odd, we use the following simple observation whose proofis omitted. 5



Proposition 3.4 Let G be a plane 3-regular multigraph, and let C be a circuit of G. Let i be thenumber of vertices of C incident with an edge inside C, and j the number of vertices of G inside C.Then i � j (mod 2).Lemma 3.5 Let G be a d-regular plane multigraph, where d � 1 is odd, and suppose that �(G) isclockwise. Then r(�) is even, for any oriented ordered bipartite near 2-factorization � of G.Proof. For 0 � i � p � 2, let ri be the number of vertices v for which the root edge ev is to theright of the oriented 2-factor �i 2 �. As r(�) =Pp�2i=0 ri, it su�ces to show that each ri is even. Foreach i we argue as follows. We may assume that each circuit C in �i is oriented clockwise so that `tothe right of �i' is equivalent to `inside C'. For any circuit C in �i, the vertices of G inside C are thevertices of a union of even circuits in �i. Thus an even number of vertices of G lie inside C. ApplyingProposition 3.4 to the (undirected) 3-regular subgraph of G induced by the edges in �i [�p�1, thereare an even number of vertices v in C for which ev lies inside of C. As �i is a disjoint union of circuitsC, ri is even as required.For the d-even case, we need some preliminary de�nitions. Let G be a plane graph, and C acircuit in G. We say that C surrounds a vertex v (or face R) if v (or R) is contained within thebounded region of R2 � C. If H is a 2-factor of G and v is a vertex of G, let s(v;H) be the numberof component circuits in H that surround v; de�ne s(R;H) similarly for a face R. Suppose G is ad-regular plane multigraph, where d = 2p is even. Then the plane dual of G is bipartite, and wecan properly 2-face-colour G, using colours 0 and 1, so that the outer face is coloured 0. If G has a2-factorization F = fF0; F1; : : : ; Fp�1g, then it is not di�cult to see that every face R receives thecolour obtained by reducing modulo 2 the sum s(R;F0)+ s(R;F1)+ : : :+ s(R;Fp�1). We say that thereference labelling �(G) is 0-consistent if it is clockwise and each root face Rv, v 2 V (G) is coloured0.Lemma 3.6 Let G be a d-regular plane multigraph, where d � 2 is even, and suppose that �(G) is0-consistent. Then l(�) is even, for any oriented ordered bipartite 2-factorization � of G.Proof. We may assume that each component circuit C in �i is oriented anticlockwise so that `tothe left of �i' is equivalent to `inside C'. For 0 � i � p� 1 and for each vertex v, let li(v) equal 1 ifRv lies inside the circuit �i(v), and 0 otherwise. For v 2 V (G) we consider the colour of Rv, which isthe modulo 2 reduction ofPp�1i=0 s(Rv;�i), and which is also 0, because � is 0-consistent. For each i,s(Rv;�i) = s(v;�i) + li(v). Therefore, working modulo 2, the colour of Rv is0 � p�1Xi=0 s(v;�i) + p�1Xi=0 li(v)which implies p�1Xi=0 li(v) � p�1Xi=0 s(v;�i):Therefore, l(�) = Xv2V (G) p�1Xi=0 li(v)� p�1Xi=0 Xv2V (G) s(v;�i):Since each component circuit C of each �i has an even number of vertices, and s(v;�i) is constantfor all vertices of C, each sumPv2V (G) s(v;�i) is even, and so l(�) is also even, as required.AcknowledgmentsThe authors wish to thank Noga Alon, Roland H�aggkvist and Jarik Ne�setril for useful discussions.6
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