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Abstract

The List Edge Colouring Conjecture asserts that, given any multigraph G with chromatic
index k and any set system {S. : e € E(G)} with each |S.| = k, we can choose elements s. € S.
such that s. # s; whenever e and f are adjacent edges. Using a technique of Alon and Tarsi
which involves the graph monomial H{xu — %y : uv € E} of an oriented graph, we verify this
conjecture for certain families of 1-factorable multigraphs, including 1-factorable planar graphs.

Keywords: list edge colouring, choosability, 1-factorization, graph polynomial, graph monomial,
planar graphs, regular graphs.
AMS Classification numbers: 05C15, (05C70, 05C10).

1 Introduction

Let G = (V, F') be a graph (with multiple edges allowed). A proper (vertex) colouring of GG is a function
on V for which adjacent vertices receive distinct values. A proper k-colouring is a proper colouring
whose range is a subset of [k] := {0, 1, ..., k—1}. With this definition, two distinct proper k-colourings
of G may induce the same partition of V(G). A graph is k-colourable if it has a proper k-colouring.
The following concept was introduced by Erdds, Rubin and Taylor [5]. Let a : V(G) — {1,2,...}. We
say that G is a-choosable or a-list colourable if for every set system {S, : v € V'} such that |S,| = a(v),
there is a proper colouring ¢ such that ¢(v) € S, for v € V(G). In case a is the constant function
a(v) = k, we say that G is k-choosable. The terms k-edge colourable, a-edge choosable and k-edge
choosable are defined in an analogous way. If a graph is k-choosable, then it is k-colourable, but not
conversely, as shown by K33 which is not 2-choosable. In contrast, we have the following.

Conjecture 1.1 (List Edge Colouring Conjecture) If G is a k-edge colourable multigraph, then
G s k-edge choosable.

This conjecture seems to have been arrived at independently by several people. It has been verified
for the class of bipartite graphs [7], and also for complete graphs of odd order [8]. An excellent survey
appears in [1]. Further results and historical comments may be found in [3, 4]. Our main result verifies
this conjecture for a class of planar graphs.

Theorem 1.2 If GG is a d-regular d-edge colourable planar multigraph, then G is d-edge choosable.

The Four Colour Theorem is equivalent to the statement that every 2-connected 3-regular planar
graph is 3-edge colourable. Theorem 1.2 therefore implies that the Four Colour Theorem is equivalent
to the statement that every 2-connected 3-regular planar graph is 3-edge choosable. This was observed
independently by F. Jaeger and M. Tarsi [personal communication]. For d > 4, the question of which
d-regular planar multigraphs are d-edge colourable has not yet been resolved. Seymour [15] and others
have proposed conjectures that would imply that any d-edge connected d-regular planar multigraph
of even order is d-edge colourable, and hence, by Theorem 1.2, d-edge choosable.
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Our main tool is a result of Alon and Tarsi [2] which relates choosablility to coefficients in a certain
polynomial. Let D be an orientation of G. The graph monomial of GG is the homogeneous polynomial

¢(G) with variables {z, : v € V(G)} and defined by

(= [ (vu—m)

uv€EE(D)

(Some authors call €(G) the graph polynomial, but we abandon this overused term in favour of that
used by Sabidussi [13].) As we have defined it, ¢(() depends on a particular orientation D of G}
however changing the orientation multiplies €(G) by +1, so €(G) is unique up to sign. The graph
monomial was first used by Petersen [12]; indeed Petersen gave order, degree and factor their graph
theoretical meanings by reference to €(G). Scheim [14] used €(G) to prove some results about 3-edge
colourings of 3-regular planar graphs; our Theorem 1.2 extends one of his results. Li and Li [10]
mention €(() in the context of determining the independence number of G.

Theorem 1.3 (Alon and Tarsi [2]) Let a : V(G) — {1,2,...}. If the coefficient of
HUEV(G) x{‘f(”‘l in €(G) is nonzero, then G is a-choosable.

Scheim’s paper [14] contains much of the reasoning needed to prove this theorem; however, he was
working before the introduction of the idea of list colourings, and did not state his results in full
generality. Alon and Tarsi [2] give combinatorial interpretations of the coefficients of ¢(G), and use
Theorem 1.3 to investigate the (vertex) choosability of planar graphs and bipartite graphs. Fleischner
and Stiebitz [6] use Alon and Tarsi’s results to solve a conjecture of Erdds regarding the 3-vertex
colourability of certain 4-regular graphs. Penrose [11] states the case d = 3 of Theorem 3.1 in terms
of “abstract tensor systems”.

2 Interpreting the Coefficient

In order to study edge choosability one applies Theorem 1.3 to line graphs. The line graph L(G) of a
multigraph G has V(L(G)) = FE(G) with an edge joining e to f in L(G) for each common endpoint
that e and f have in GG. Thus, every pair of parallel edges in G is joined by two edges in L(G). For
regular G, the coefficient of €(L(()) which is of interest has several nice combinatorial interpretations,
some of which are implicit in [2] and explicitly described by N. Alon in the preamble to Proposition
3.8 of [1].

From here on, GG is a d-regular multigraph. Let &(G) denote the coefficient of HeEE(G) =1 in
e(L(G)). Tf £(G) # 0, then G is d-edge choosable, and thus the List Edge Colouring Conjecture holds
true for G.

The set of edges 6(v) incident with each vertex v of G can be ordered with a star labelling at v,
a bijection m, : 6(v) — [d]. A global star labelling is a set 7 = {m, : v € V(G)}. We assume that
(i comes with a fixed global star labelling p = p(G) = {pv }, called the reference labelling of G, with
which other star labellings will be compared. In particular, the sign of a star labelling 7, (relative to
p) is the sign of the permutation m, o p;'!, and is denoted sign (7, ), or sometimes just sign(m,). The
sign of a global star labelling 7 is defined as sign(w) = HUEV(G) sign(my ).

Star labellings allow us to assign signs to other combinatorial objects in G. A k-factor in G is
a k-regular spanning subgraph of G. Let p = [d/2]. An ordered (near) 2-factorization of GG is an
ordered partition F' = (Fy, Fi, ..., Fp_1) of E(G), where each F; is a 2-factor, unless d is odd, in which
case Fp_q is a 1-factor (hence the word “near”). An ortentation ® of F' is an orientation of G so
that each F; becomes a union ®; of directed circuits, except that when d is odd ®,_; = F,_; remains
an unoriented 1-factor. Let OOB2F(() denote the set of oriented ordered (near) 2-factorizations of
G in which each 2-factor is bipartite, i.e. a union of even circuits. For each & € OOB2F((), there
is an associated global star labelling 7: given uv € ®; oriented from u to v, we set 7, (uv) = i and

mp(uv) = d—1—14, or if d is odd and wv € ®,_1 then m,(uv) = 7y (uv) = (d — 1)/2. We define



sign(®) = sign ,(®) to be sign(7). As shown in [1],

§G) = £ ) sign(@). (1)

®cOOB2F(G)

Let B2F((G) denote the set of unordered and unoriented bipartite (near) 2-factorizations of G.
For any F' € B2F((), we can define sign(F') = sign,(F') to be sign(®) for any orientation ® of any
ordering of F'. All such ® have the same sign, because reversing the orientation of an even circuit
changes the sign at an even number of vertices, and swapping two 2-factors swaps two pairs of edges
at each vertex. If w(F") is the total number of circuits in all of the 2-factors in F, then there are Quw(F)
orientations of each of the [d/2]! orderings of F', so that (1) may be rewritten as

§G) = x[d/2]t D sign(F) 2. (2)

FEB2F(G)

The coefficient £(G') may also be interpreted in terms of edge colourings of . Let EC4(G) denote
the set of proper d-edge colourings ¢ : E(G) — [d]. Each ¢ € EC4(G) induces a global star labelling
7 = 7(c) where for each edge e = uv, r,(e) = 7 (e) = c(e). We define the sign of ¢ (with respect
to p(G)) by sign(c) = sign(r(c)). As explained in [1], there is a bijection between OOB2F(G) and
EC4(G) which preserves all or reverses all signs, giving

§a) = = > sign(c). (3)

c€EC4(@)

Let 1F(G) denote the set of unordered 1-factorizations of GG. Each f € 1F(G) corresponds to
an equivalence class of d! edge colourings in EC4(G) under permutations of the colours [d]. As
interchanging two colours in ¢ introduces exactly |V(G)| transpositions in 7(¢), equivalent colourings
in EC4(G) have equal sign. Thus a sign function is well defined on 1F(G).

§G) = +d Y sign(f) (4)
FEIF(G)

There is a coarser equivalence relation on EC4(G) on whose parts a sign function can be defined.
An elementary Kempe recolouring of ¢ € EC4((G) exchanges the colours ¢ and j on the edges of a
single component circuit of the 2-factor ¢=1(i) U ¢71(j), for some distinct i,j € [d]. Two elements
of EC4(G) (or 1F((G)) are Kempe equivalent if one can be obtained from the other by a sequence of
elementary Kempe recolourings. Let KE(G) denote the set of Kempe (equivalence) classes of proper
d-edge colourings of GG. As with 1-factorizations, Kempe equivalent colourings have the same sign,
and the sign of a Kempe class is well defined.

€§G) = £ > sign(s) x| (5)
KEKE(G)
We summarize with a list of sufficient conditions for a graph to be d-edge choosable.
Theorem 2.1 Let G be a d-regular multigraph. Suppose that at least one of the following holds.
(1) G has an odd number of distinct 1-factorizations,
(i1) G is 1-factorable and any two 1-factorizations are Kempe equivalent,
(iii) G is 1-factorable and any two 1-factorizations have the same sign, or

(iv) the number of F' € B2F(G) which minimize the total number w(F') of circuits in all of the
2-factors in I 1s odd.

Then £(G) # 0, and as a consequence G is d-edge choosable.

Proof. Claims (i) and (iii) follow immediately from (4), while (ii) follows from (5). If (iv) holds then
the sum in (2) is non-zero modulo 2*°F1 | where wg = min{w(F) : F' € B2F(G)}. |



Note that condition (ii) implies condition (iii). We illustrate with some examples of d-regular graphs
which are d-edge choosable by Theorem 2.1. The skeleton of the 3-cube has four distinct 1-factoriz-
ations, but they are all Kempe equivalent; thus (ii) applies, although (i) does not. The generalized
Petersen graph P(9,2) has a unique l-factorization [16], and so (i) and (ii) both apply. Larger
generalized Petersen graphs P(6k+ 3,2), k > 2, are not uniquely 1-factorable, but have exactly three
Hamilton circuits [16]. Thus w(F) is minimum (equal to 1) for exactly three F' € B2F((G). These
provide an examples of (iv) whereas (i), (ii) and (iii) may not hold. The 8-vertex Mdbius ladder
(which may be thought of as an octagon with all four long diagonals added) has exactly three 1-fac-
torizations, and they are all Kempe equivalent; therefore (i) and (ii) both apply. The skeleton of
the dodecahedron has exactly ten 1-factorizations, each in its own Kempe class and all of the same
sign; thus (iii) applies. The even complete graphs Ko, satisfy (iii) for » < 3, but not for » > 4. Tt
appears likely that £(Ka,) is never zero (we have verified this electronically for » < 5), though this is
probably a difficult problem. It is not even known whether the List Colouring Conjecture holds for
Ky,. Similarly, we expect that £(K s, 2r) is never zero (as has been verified for » < 5 by J. Janssen
[private communication]), although (iii) holds only for r < 2.

In the next section we show that all 1-factorizations of a regular planar multigraph have the same
sign. In contrast, K33 has exactly one 1-factorization of each sign, thus (K3 3) = 0. (Even so, K33
is 3-edge choosable as it is bipartite [7].) This is a special case of the situation for K44 with d > 3
odd, which is discussed in [2]. More generally we have the following.

Proposition 2.2 If G is d-regular, with d odd, and there exist distinct vertices v, v/ with identical

neighbourhoods, then &(G) = 0.

Proof. We consider the involution on EC4(G) which interchanges the colours of vw and v’ w, for
each neighbour w of v. This involution is fixed-point free and, as d is odd, is sign-reversing. Thus by

(3),&(G)=0. 1

We briefly describe two operations which can be used to produce regular multigraphs G with £(G) = 0.
Let Gy and Gy be disjoint d-regular multigraphs of even order, and let v; € V(G;) and e; € E(G;),
i =0,1. We form a new d-regular multigraph H from (Go — vp) U (G1 — v1) by adding d new edges,
each joining a neighbour of vy to a neighbour of v;. We also form a new d-regular multigraph K
from (Gy — ep) U (G1 — e1) by adding two new edges, each joining an endpoint of ey to an endpoint
of e1. Using (3), one can show that {(H) = +&(Go)é(G1)/d! and that E(K) = +&(Go)E(Gh)/d. Thus
E(H) = £(K) = 0 provided that £(Gy) = 0. Pavol Gvozdjak (personal communication) has found a
Hamiltonian cubic graph G with zi(G) = 0, but which does not arise from Proposition 2.2 nor either
of these two operations. We do not know whether this graph is 3-edge colourable.

3 Regular planar multigraphs

In this section we prove Theorem 1.2 by showing the following.

Theorem 3.1 Let G be a d-regular planar multigraph, d > 1. Then all 1-factorizations of G have the
same sign. Hence |£(G)| is precisely the number of proper d-edge colourings of G.

The case d = 3 of this theorem was proved by Scheim [14], and can also be deduced from a result
of Vigneron [17] (see also Jaeger [9]) together with observations of Alon and Tarsi [2] relating the
coefficients of €((G) to eulerian orientations of G. We leave as unsolved the problem of determining
which graphs satisfy the conclusion of Theorem 3.1.

Roughly, we prove this theorem by giving a ‘geometric’ interpretation of sign(®) in (1), and then
using the topology of the plane to deduce that this sign is always positive. We use terminology and
notation from Section 2. Let GG be a d-regular graph embedded on an orientable surface. For v € V(G),
a star labelling m, 1s said to be clockwise if the edges are labelled in clockwise ascending order around
v. A global star labelling # = {m, } of G is clockwise if each of its members is clockwise. From here on
we assume the reference labelling p(G) to be clockwise. Let ® = (&g, ..., ®,_1) € OOB2F(() and let
v be a vertex of G. For ®; € & we denote by ¥;(v) the connected component of ®; which contains v;



thus ®;(v) is either an edge or a directed circuit. Two oriented 2-factors ®;, ®; € & are said to cross
at v if the circuits ®;(v), ®;(v) geometrically cross at v. We say that an edge e € §(v)\E(®;) lies to
the right of ®; (at v) if e lies geometrically on the right as ®;(v) is traversed through v. Similarly,
if v lies on the boundary of a face R of the embedding, then R is to the left of ®; (at v) if R lies
geometrically on the left as ®;(v) is traversed through v. It is important to note that the terms ‘cross’
and ‘to the left/right’ can equally well (though more cumbersomely) be defined purely in terms of
® and p(G), without reference to any embedding of G. For example, a face R is specified by a pair
of edges in é(v) having consecutive p,-labels (modulo d); two 2-factors ®; and ®; cross at v if some
cyclic rotation of the sequence p, o w7 1(i), py o 7 1(j), py oy (d — 1 —14), pyomy(d—1—7j)is
monotone, where 7 is the global star labelling associated with @.

We define three invariants which determine the sign of ® (relative to p(G)). Let v € V(G). We
denote by #(®,v) the number of unordered pairs of 2-factors in ® which cross at v. If d > 1 is odd,
then we define the root edge e, to be the edge ®,_1(v); we let r(®,v) denote the number of oriented
2-factors ®; € ® for which e, lies to the right of ®; at v. If d > 2 is even, then we define the root face
R, to be the face specified by the p,-labels 0 and d — 1; we let {(®, v) denote the number of oriented
2-factors ®; € & for which R, lies to the left of ®; at v. Finally, we set 2(P) := ZUEV(G) (P, v),

r(®) = Z’UEV(G) r(®,v), and [(®) := Z’UEV(G) [(®,v).

Lemma 3.2 Let G be a d-regular multigraph with reference labelling p. For any oriented ordered
(near) 2-factorization ® of G we have sign(®) = (=1)*(®)+7(2) o sign(®) = (—1)"(PH®) qccording
to whether d is odd or even.

Proof. Given any star labelling 7, let ®(v) denote the oriented ordered partion of §(v) whose ¢th
part is the directed path with edges 7, 1(d — 1 —4) followed by 7, 1(), except that when d is odd the
(p — 1)th part is the unoriented root edge e, = 7, !(p — 1). In general, z(®, v) equals the number of
pairs of paths in ®(v) which cross, and r(®,v) ({(®,v)) is the number of such paths for which e, (R,)
lies to the right (left).

Let m be the global star labelling associated with ®. For each v, ®(v) is just the restriction of
® to 6(v). A p-consecutive transposition of m, is any transposition which exchanges the m,-labels
on any two edges in é(v) whose py,-labels differ by exactly one. The sign of 7, is determined by
the length of a sequence S of such transpositions which transforms m, into p,. In case d i1s odd,
a p-consecutive transposition of w, corresponds to a modification of ®(v) which does exactly one
of two things. First, it may cross or uncross exactly one pair of dipaths in ®(v). Second, it may
transfer e, from one side of exactly one such dipath to its other side. By definition, if =, = p,, then
2(®,v) = r(®,v) = 0. Thus z(P, v)+r(P, v) is congruent to the number of transpositions in .S (modulo
2), so sign(m,) = (=1)"(®W)+(®0)  Thus sign(®) = HUEV(G (—1)=(@0)Hr(@v) — (_1)=(®)+7(®) The
d-even case 1s exactly analogous, writing [ and R, in place of r and e,.

We remark here on an essential difference between the d-odd and d-even cases. The root edge e, is
determined by ® whereas the root face R, is defined by p((G). There appears to be no way of resolving
this dichotomy.

A plane graph 1s a specific embedding of a planar graph in the plane. To prove Theorem 3.1 it
suffices, by (1), to show that z(®), »(®) and /(®) are even, for any & € OOB2F(G), whenever G is
plane and p(() is clockwise. This (essentially) is proved in the next three lemmas.

Lemma 3.3 Let G be a plane d-regular multigraph with a clockwise reference labelling p. Then x(P)
is even for any oriented ordered (near) 2-factorization & of G.

Proof. Let z;; denote the number of vertices at which two oriented 2-factors ®;, ®; € ® cross. As
any two edge-disjoint circuits in the plane geometrically cross an even number of times, each z;; is
even and thus z(®) = le xi; 1s even. |

In contrast to z(®), both r(®) and {(®) depend on the particular orientation ® of the underlying
(near) 2-factorization F'. However, their parities are not affected by reorientation, provided that each
of the 2-factors in F' is bipartite. In case d is odd, we use the following simple observation whose proof
1s omitted.



Proposition 3.4 Let G be a plane 3-regular multigraph, and let C' be a circuit of G. Let i be the
number of vertices of C' incident with an edge inside C', and j the number of vertices of G inside C.
Then i =j (mod 2).

Lemma 3.5 Let G be a d-regular plane multigraph, where d > 1 is odd, and suppose that p(G) is
clockwise. Then v(®) is even, for any oriented ordered bipartite near 2-factorization ® of G.

Proof. For 0 < i < p— 2, let r; be the number of vertices v for which the root edge e, is to the
right of the oriented 2-factor ®; € ®. As r(P) = 5;:—02 r;, 1t suffices to show that each r; is even. For
each ¢ we argue as follows. We may assume that each circuit C' in ®; is oriented clockwise so that ‘to
the right of ®;’ is equivalent to ‘inside C”. For any circuit C' in ®;, the vertices of G inside C' are the
vertices of a union of even circuits in ®;. Thus an even number of vertices of (G lie inside C'. Applying
Proposition 3.4 to the (undirected) 3-regular subgraph of G induced by the edges in ®; U ®,_1, there
are an even number of vertices v in C' for which e, lies inside of C'. As ®; 1s a disjoint union of circuits

C, r; is even as required. |

For the d-even case, we need some preliminary definitions. Let G be a plane graph, and C' a
circuit in G. We say that C' surrounds a vertex v (or face R) if v (or R) is contained within the
bounded region of R? — C. If H is a 2-factor of G and v is a vertex of (i, let s(v, H) be the number
of component circuits in H that surround v; define s(R, H) similarly for a face R. Suppose G is a
d-regular plane multigraph, where d = 2p is even. Then the plane dual of GG is bipartite, and we
can properly 2-face-colour (G, using colours 0 and 1, so that the outer face is coloured 0. If G has a
2-factorization F' = {Fy, F1,..., Fp_1}, then it is not difficult to see that every face R receives the
colour obtained by reducing modulo 2 the sum s(R, Fy)+s(R, F1)+ ...+ s(R, Fp_1). We say that the
reference labelling p(G) is 0-consistent if it is clockwise and each root face Ry, v € V(@) is coloured

0.

Lemma 3.6 Let G be a d-regular plane multigraph, where d > 2 is even, and suppose that p(G) is
0-consistent. Then [(®) is even, for any oriented ordered bipartite 2-factorization ® of G.

Proof. We may assume that each component circuit C' in ®; is oriented anticlockwise so that ‘to
the left of ®;” is equivalent to ‘inside C”. For 0 < ¢ < p— 1 and for each vertex v, let [;(v) equal 1 if
R, lies inside the circuit ®;(v), and 0 otherwise. For v € V() we consider the colour of R,, which is
the modulo 2 reduction of Zf:_ol s(Ry, ®;), and which is also 0, because p is O-consistent. For each i,
s(Ry, ®;) = s(v,®;) + l;(v). Therefore, working modulo 2, the colour of R, is

p—1 p—1
0 = D s(v,®)+ > li(v)
1=0 =0
which implies
p—1 p—1
> h(v) = s(v, ®;)
i=0 i=0
Therefore,
p—1
(@) = > >l
VEV(G) =0
p—1
= Z Z s(v, ®;).
i=0 vEV(G)

Since each component circuit C' of each ®; has an even number of vertices, and s(v, ®;) is constant
for all vertices of C', each sum ZUEV(G) s(v, ®;) is even, and so [(®) is also even, as required. |
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