
Key Agreement in Ad-hoc Networks

N. Asokan and P. Ginzboorg

Presented by

Chuk Yang Seng

1



Introduction

• Ad-hoc Key Agreement Scenario:

– Small group of people at a conference in a room

– Wireless network session during the meeting

– Share information securely so that no one outside
the room can eavesdrop

– People in the room know and trust one another personally

– Lack of infrastructure, so no means of digitally identify
and authenticating one another, and public keys tech-
niques are not relevant

2



Solution

• Location-based key agreement

– Only those present in the room can read the messages

• Choosing a fresh password and share it among those in the

room

• Long random password are difficult to use

• Natural language phrase are more user friendly but weak

3



• Use a weak shared password to derive a strong shared session

key

• Password Authenticated Key Exchange



Password Authenticated Key Exchange

• Desirable properties:

– Secrecy

– Contributory key agreement

– Tolerance to disruption: Intruders who can insert mes-

sages but cannot modify or delete messages sent (!!!)

• Existing method Encrypted Key Exchange (EKE) by Bellovin

and Merrit

– EKE is non-contributory

4



Password authenticated Diffie-Hellman key

exchange

• Recall Diffie Hellman:

– A and B agree on a prime p and a generator g where
g ∈ Z∗p

– They randomly choose secrets SA and SB such that SA, SB ∈
Z∗p

1. A → B: gSA

2. B → A: gSB

– K = gSASB

5



• Password authenticated Diffie-Hellman

1. A → B: A, P (gSA)

2. B → A: P (gSB), K(Cb)

– K = gSASB

3. A → B: K(Ca, Cb)

4. B → A: K(Ca)

6



Multi-party version

• By Steiner et al

• Each participants, M1, M2, . . . , Mn share a password P

• ∀i: Mi generates random quantity Si

• Goal: All who knew P will end up with a shared session key

K = gS1S2...Sn

7



Multi-party version

1. Mi → Mi+1 : gS1S2...Si, i = 1, . . . , n− 2 in sequence

2. Mn−1 → ALL : π = gS1S2...Sn−1, broadcast

3. Mi → Mn : P (ci), i = 1, . . . , n− 1, in parallel, where ci = πŜi/Si

and Ŝi is a blinding factor randomly chosen by Mi

4. Mn → Mi : (ci)
Sn, i = 1, . . . , n− 1, in parallel

5. Mi → ALL : Mi, K(Mi, H(M1, M2, . . . , Mn)), for some i, broad-
cast

8



Multi-party version

• The protocol provides perfect forward secrecy to all players

• It is contributory

• Partially resilient to disruptions:

– Mn can disrupt the protocol completely

– Any others can send out a random quantity at stage 1

– If Mi sent a random quantity, then M1, . . . , Mi−1 will not

be able to compute the session key but Mi+1, . . . , Mn can.

9



• Inefficient:

– Stage 1 takes n-2 communication steps

– It is not clear how (4) can be done in parallel



Fault tolerant Diffie-Hellman key exchange

on a d-cube

• By Becker and Wille

• d-cube: d dimensional hypercube, which a graph in form of
a cube with 2d nodes

• Each node is connected to d other nodes

• Each node has a unique d bit address, such that the address
of 2 nodes connected by an edge along the jth dimension
differ only in their jth bit

10



Fault tolerant Diffie-Hellman key exchange

on a d-cube

• Suppose there are n = 2d participants and each participant

is assigned to a node in the hypercube.

• Each participant thus has a unique d-bit address

• Carry out 2 party version of Diffie-Hellman through d rounds

• Suppose node i has address I, then at jth round, I carries out

2 party Diffie-Hellman with node whose address is I ⊕ 2j−1

11



• After d rounds, all players will have the same key



Fault tolerant Diffie-Hellman key exchange

on a d-cube

• What if n is not a power of 2?

– ”2d octopus”

– 2d < n < 2d+1

– The remaining n − 2d (wards) are distributed among the

controllers (at most 1 ward per controller)

– Controllers carry out 2 party Diffie-Hellman with their

wards

12



– The controllers then engage in d round hypercube protocol

– Controllers distribute the results to their wards



Dealing with faults

• If a node finds its chosen partner to be faulty, then the node

should select another non-faulty partner

• Distributed algorithm for finding partners

13



• Node algorithm for each round

procedure do round(round number)

mask = 00. . .01 //Initialize mask

mask = mask � round number-1 //Left shift mask

partner = self address ⊕ mask

new mask = mask � 1

two party exchange(partner, new mask)

end

14



• Recursive algorithm for finding a partner and performing 2

party exchange

procedure two party exchange(candidate, mask)

if(mask ≤ 0 )

// Reached a leaf node

Attempting to run two-party key exchange

return success or failure

endif

//Else, reached a non-leaf node and try the left side first

new mask = mask � 1

result = two party exchange(candidate,new mask)

if (result = success) return success

15



//left side failed, try right side

new candidate = candidate ⊕ mask

return two party exchange(new candidate, new mask)

end



Complexity

• 2d octopus will take d + 2 rounds

• But each round can have as many as n − 1 sub-rounds (to

find a partner)

16



Comments (from authors)

• Synchronization:

– Possible to allow each node to proceed independently

– When node A initiates an exchange with B, A can indicate

the round number i

– If B has not reached i, it will reply with a ”try later”

status message, causing A to block this round

– When B replies or when A times out and find some other

partner, the blockage will be removed

17



Comments (from authors)

• Leader election:

– The leader, Mn, has greater say in the final session key

than other players

– It is unclear whether this has any tangible advantage

– If there is a lack of natural leader or ordering, then there

is a need to either elect a leader or find an ordering

18



Comments (from authors)

• Security issues:

– How can security be visualized so that a novice can easily

configure and use them?

– How can security policies at various levels be combined?

– Infrastructure-less, hence difficult to provide security ser-

vices

19



Comments (mine)

• Use of weak password P

– P is weak hence it should not be reuse

– May be better to use P to establish K and repeat the

process again using K

– Time for intruder to recover P should at least be as long

as the conference duration

– Why use weak password at all?

20



Comments (mine)

• Not flexible:

– Everyone must be present in order to carry out the proto-

col else, the conference may be disrupted for key exchange

whenever a late comer shows up

– It is difficult to remove/or isolate a particular player, may

need to re-establish another key and repeated use of P

may compromise P

21



Comments (mine)

• Limited application:

– May not work in a more complicated scenario, such as one

that requires signature

• Identity

– Since any intruder can inject messages or modify mes-

sages, how does one verify that the message is really from

the key exchange partner

22



Comments (mine)

• Is public key techniques a better choice?

23



Conclusions

• Recap of Diffie-Hellman

• How we can extend Diffie-Hellman from 2 party version to

multi-party version

• To increase efficiency and fault tolerance, the ”d-cube” or

”d-octupus” protocol is introduced

24


