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1 IntroductionRepresentation of qualitative temporal information and reasoning with it is anintegral part of many arti�cial intelligence tasks, such as general planning [Allen,1991], presentation planning in a multi-media context [Feiner et al., 1993], natu-ral language understanding [Song and Cohen, 1988], and diagnosis of technicalsystems [N�okel, 1991]. Allen's [1983] interval calculus is well suited for represen-ting qualitative temporal relationships and reasoning with it. In fact, it is usedin all the applications mentioned above.While the worst-case computational properties of Allen's calculus and frag-ments of it have been quite extensively analyzed [Golumbic and Shamir, 1993;Ladkin and Maddux, 1994; Nebel and B�urckert, 1995; van Beek and Cohen, 1990;Vilain and Kautz, 1986], design and empirical evaluation of reasoning algorithmsfor Allen's calculus has received much less research attention. In this paper, weaddress the latter problem and analyze in how far using the ORD-Horn subclass[Nebel and B�urckert, 1995] of Allen's relations can improve the e�ciency of exi-sting reasoning algorithms. As it turns out, the ORD-Horn class can signi�cantlyenhance the performance in search-intensive cases.1Since reasoning in the full calculus is NP-hard [Vilain and Kautz, 1986], it isnecessary to employ some sort of exhaustive search method if one wants completereasoning in the full calculus. Allen [1983] proposed in his original paper tosearch through all possible \atomic" temporal constraint networks that resultfrom instantiating disjunctive relations to one disjunct and to test for consistencyusing the path-consistency algorithm [Montanari, 1974] that is incomplete for thefull calculus, but complete for atomic relations.A more e�cient algorithm has been proposed by Ladkin and Reinefeld [1992].This algorithm uses path-consistency as a forward checking technique [Haralickand Elliot, 1980] during the backtrack search, which results in pruning the searchtree signi�cantly. As pointed out by Ladkin and Reinefeld [1992], this algorithmallows to instantiate disjunctive relations not only by atomic relations but by anyset of relations the path-consistency method is complete for, which can considera-bly reduce the branching factor in the backtrack search. However, if non-atomicrelations are used, it is not any longer obvious that the backtracking algorithmis a complete reasoning method. As we show in Section 3, however, Ladkin andReinefeld's suggestion is indeed correct.Since the ORD-Horn subclass of the qualitative relations in Allen's calcu-lus is the unique maximal set containing all atomic relations such that path-consistency is su�cient for consistency [Nebel and B�urckert, 1995], it wouldseem that employing this set in the backtracking algorithm is clearly advan-tageous over using other subclasses. However, the experiments that have beenperformed so far do not seem to justify this conjecture. Ladkin and Reinefeld1The C-programs that were used for the evaluation are available from the author.1



[1992; 1993] concluded from the experiments they performed that \in practiceone can expect the number of path-consistency computation almost constant,"i.e., in practice there won't be much search. Van Beek and Manchak [1996],who further developed Ladkin and Reinefeld's backtracking algorithm, were ableto generate problem instances that led to signi�cant search. However, they didnot observe that using the ORD-Horn subclass led to an performance impro-vement over using the smaller pointizable subclass [Ladkin and Maddux, 1994;van Beek and Cohen, 1990].It may be the case, however, that Ladkin and Reinefeld [1992; 1993] missedgenerating hard instances and that van Beek and Manchak [1996] did not look forthe right performance indicators. In Section 5, we identify the phase transitionregion [Cheeseman et al., 1991] for reasoning in Allen's calculus, which containsarbitrarily hard instances. We use these problems to evaluate the usage of theORD-Horn class in Section 6 and demonstrate its advantage. Further, we de-monstrate in Section 7 that combining the ORD-Horn subclass with other searchstrategies in an orthogonal way can dramatically improve the performance on vanBeek and Manchak's [1996] hard problem instances.2 Allen's CalculusAllen's [1983] approach to reasoning about time is based on the notion of timeintervals and binary relations on them. A time interval X is an ordered pair(X�;X+) such that X� < X+, where X� and X+ are interpreted as points onthe real line. Given two concrete time intervals, their relative positions can bedescribed by exactly one of the elements of the set A of thirteen atomic intervalrelations. Atomic relations are, for example, �, �, �, and d, meaning that the�rst interval equals, is before, is after, or is strictly inside the second interval,respectively. These interval relations can be de�ned in terms of their intervalendpoint relations, e.g., XdY can be de�ned by X� > Y � ^ X+ < Y + (seeTable 1).In order to express inde�nite information, unions of the atomic interval re-lations are used, which are written as sets of atomic relations. The formulaXf�; dgY means, e.g., that X equals Y or is inside Y . Since there are 13 atomicrelations, there are 213 possible unions of atomic relations, which form the set ofbinary interval relations (denoted by r)|including the empty relation ; and theuniversal relation A. The set of all binary interval relations 2A is denoted by A.On this set, we can de�ne the operations intersection (r \ r0), relational converse(r^), and relational composition (r � r0):8X;Y : Xr^Y $ Y rX8X;Y : X (r \ r0) Y $ XrY ^Xr0Y8X;Y : X (r � r0) Y $ 9Z: (XrZ ^ Zr0Y ):2



Basic Interval Sym- Pictorial EndpointRelation bol Example RelationsX before Y � xxx X� < Y �, X� < Y +,Y after X � yyy X+ < Y �, X+ < Y +X meets Y m xxxx X� < Y �, X� < Y +,Y met-by X m^ yyyy X+ = Y �, X+ < Y +X overlaps Y o xxxx X� < Y �, X� < Y +,Y overlapped-by X o^ yyyy X+ > Y �, X+ < Y +X during Y d xxx X� > Y �, X� < Y +,Y includes X d^ yyyyyyy X+ > Y �, X+ < Y +X starts Y s xxx X� = Y �, X� < Y +,Y started-by X s^ yyyyyyy X+ > Y �, X+ < Y +X �nishes Y f xxx X� > Y �, X� < Y +,Y �nished-by X f^ yyyyyyy X+ > Y �, X+ = Y +X equals Y � xxxx X� = Y �, X� < Y +,yyyy X+ > Y �, X+ = Y +Table 1: The set A of the thirteen atomic relations. The endpoint relationsX� < X+ and Y � < Y + that are valid for all relations have been omitted.Together with these operations, A forms an algebra,2 which is called Allen'sinterval algebra.A qualitative description of an interval con�guration is usually given as a setof formulae of the above form, or, equivalently, as a temporal constraint graphwith nodes as intervals and arcs labeled with interval relations|the constraints.These graphs are often represented as matrices of size n�n for n intervals, whereMij 2 A is the constraint between the ith and jth interval. Usually it is assumed(without loss of generality) that Mii = f�g and Mji = Mij^.The fundamental reasoning problem in this framework is to decide whether agiven qualitative description of an interval con�guration is satis�able, i.e., whe-ther there exists an assignment of real numbers to all interval endpoints, such thatall constraints in the corresponding constraint graph are satis�ed. This problem,called ISAT, is fundamental because all other interesting reasoning problems po-lynomially reduce to it [Golumbic and Shamir, 1993] and because it is one of themost important tasks in practical applications [van Beek and Manchak, 1996].The most often used method to determine satis�ability of a temporal cons-traint graph is the path-consistency method,3 which was already proposed by2Note that we obtain a relation algebra if we add complement and union as operations[Ladkin and Maddux, 1994].3An alternative method for a subset of Allen's interval algebra has been developed by Ge-revini and Schubert [1993]. 3



Allen [1983]. Essentially, it consists of computing repeatedlyMij  Mij \ (Mik �Mkj) (1)for all i; j; k until no more changes occur. Obviously, the restriction on Mij doesnot remove any possible assignment, but only deletes atomic relations that arenot satis�able in any way. This method|if implemented in a sophisticated way|runs in O(n3) time, where n is the number of intervals. In the following, a matrixthat has been \reduced" in this way is called path-consistent and is denoted bycM . If cMij = ; for some i; j, then it follows obviously thatM is not satis�able. Theconverse implication is not valid, however, as Allen [1983] already demonstratedusing an example attributed to H. Kautz. Since ISAT is NP-complete [Vilainand Kautz, 1986], it is very unlikely that any polynomial algorithm can solveISAT. However, there exist subsets of A such that ISAT is a polynomial problemif only relations from these subsets are used. These subsets are the continuousendpoint class C [N�okel, 1991; van Beek and Cohen, 1990], the pointizable classP [Ladkin and Maddux, 1994; van Beek and Cohen, 1990], and the ORD-Hornclass H [Nebel and B�urckert, 1995], which form a strict hierarchy. Interestingly,these classes lead also to completeness of the path-consistency method.3 The Backtracking AlgorithmIf an application needs more expressiveness than is granted by the above men-tioned subclasses and if complete reasoning is required, then some sort of back-tracking search is necessary. The backtracking algorithm shown in Figure 1,which has been proposed by Ladkin and Reinefeld [1992], appears to be the moste�cient version of such an algorithm.The procedure \path-consistency" transforms a matrix C to bC. The set Splitis a subset of A such that path-consistency is complete for ISAT. The algorithmdeviates slightly from the one published in [Ladkin and Reinefeld, 1992] in thatit makes the choice of the constraint to be processed next nondeterministic, butis otherwise identical.When the algorithm is implemented, a number of design choices are necessarythat can in
uence the practical e�ciency considerably [van Beek and Manchak,1996]. Some of these choices will be discussed in Section 6 below. The choiceof what subset of A to use for the set Split seems obvious, however, namely, thelargest such set, which is the ORD-Horn class [Nebel and B�urckert, 1995]. Thissubclass covers 10% of Allen's interval algebra (compared with 1% for C and2% for P), and for this reason the ORD-Horn class should reduce the branchingfactor in the backtrack search much more than any other class. Unfortunately,the reduction is less dramatic than the previous �gures suggest. Based on theassumption that the interval relations are uniformly distributed, a straightforward4



Input: Matrix C representing a temporal constraint graphResult: true i� C is satis�ablefunction consistent(C)path-consistency(C)if C contains empty relationthen return falseelsechoose an unprocessed label Cij and split Cijinto r1; : : : ; rk s.t. all rl 2 Splitif no label can be split then return trueendiffor all labels rl (1 � l � k) doCij  rlif consistent(C) then return trueendifendforreturn falseendifendfunction Figure 1: Backtracking algorithmcomputer-based analysis gives the following average branching factors:4 A 6.5, C3.551, P 2.955,5 H 2.533.The main problem with the algorithm is, however, that it is not obvious thatit is complete if Split di�ers from the set of atomic relations. In this case, it ispossible that during the backtrack search a constraintMij that has been restrictedto a relation from the set Split is further constrained by the path-consistencyprocedure to a relation that is not in Split. Hence, it is not obvious that allconstraints belong to the class Split for which path-consistency is complete whenthe recursive function terminates, which may lead to incompleteness.In order to show that the above backtracking algorithm is nevertheless com-plete, we need �rst some de�nitions. We write M � N i� Mij � Nij for all i; j.Further we denote by M [i; j=r] the matrix that is identical to M except thatM [i; j=r]ij = r. The following lemma is straightforward [Montanari, 1974].4As noted by Ladkin and Reinefeld [1993], this is a worst-case measure, because the inter-leaved path-consistency computations reduce the branching factor considerably.5This number deviates from [Ladkin and Reinefeld, 1993] but has been con�rmed by Petervan Beek in personal communication. 5



Lemma 1 cM �M , ccM = cM , and if M � N then cM � cN .Now let �k denote the k-th choice of the backtracking algorithm, i.e. thechoice of the pair (i; j) and the selected relation rl. Then M [�k] denotes thereplacement of the constraint Mij by rl. Assuming that C denotes the originaltemporal constraint graph, we de�ne the following sequences of matrices:C0 = C (2)Ck = dCk�1[�k] (3)S0 = C (4)Sk = Sk�1[�k] (5)In other words, Ck corresponds to the matrix C after the kth choice in thebacktracking algorithm and Sk re
ects the �rst k choices without having appliedpath-consistency.Lemma 2 cCk = cSk, for all k.Proof. �: We prove Ck � Sk by induction, from which cCk � cSk follows byLemma 1. The hypothesis holds for k = 0 by de�nition. Assume that it holdsfor k. From that it follows by Lemma 1 that cCk � Sk and cCk[�k+1] � Sk[�k+1],since the k + 1th choice is always a subset of the corresponding relation in cCk.By applying the de�nition of C and S, we get Ck+1 � Sk+1, as desired.�: We prove cCk � cSk by induction. The hypothesis holds for k = 0 byde�nition and Lemma 1. Assuming that it holds for k, it follows that cCk[�k+1] �cSk[�k+1] (*). Since Sk � Sk[�k+1], we have cSk � dSk[�k+1]. Let �k+1 be rl at(i; j). Clearly, dSk[�k+1]ij � rl. Hence, also cSk[�k+1] � dSk[�k+1]. From that and(*) it follows that Ck+1 � dSk+1, from which the the claim follows by applyingLemma 1 twice.In other words, if the recursive function terminates, the temporal constraintgraph is equivalent to one which results from applying all choices (which selectconstraints from Split) and using path-consistency in the end. Since soundnessis obvious and completeness follows from Lemma 2, the backtracking algorithmdescribed above is indeed sound and complete.Theorem 3 The backtracking algorithm is sound and complete if the set Split isa subclass of Allen's interval algebra such that the path-consistency algorithm iscomplete. 6



4 Test Instances and Measurement MethodsIn order to test empirically the usefulness of employing the ORD-Horn class inthe backtracking algorithm, some set of test instances is necessary. Ideally, aset of \benchmark" instances that are representative of problem instances thatappear in practice should be used. However, such a collection of large bench-mark problems does not exist for qualitative temporal reasoning problems [vanBeek and Manchak, 1996]. The DNA sequencing instance from molecular bio-logy [Benzer, 1959]that has been suggested by van Beek and Manchak [1996] isunfortunately not adequate for our purposes because the structure of constraintsleads to identical results for P and H [van Beek and Manchak, 1996].For these reasons, the only possibility to evaluate the usefulness of the ORD-Horn class is to randomly generate temporal constraint networks as in [Ladkin andReinefeld, 1992; Ladkin and Reinefeld, 1993; van Beek and Manchak, 1996]. Weuse three models to generate constraint networks, denoted by A(n; d; s), H(n; d),and S(n; d; s).For A(n; d; s), random instances are generated as follows:1. A graph with n nodes and an average degree of d for each node is generated.This is accomplished by selecting nd=2 out of the n(n� 1)=2 possible edgesusing a uniform distribution.2. If there is no edge between the ith and jth node, we set Mij = Mji = A.3. Otherwise a non-null constraint is selected according to the parameter s,such that the average size of all non-universal constraints is s. This isaccomplished by selecting one of the atomic relations with uniform dis-tribution and out of the remaining 12 relations each one with probability(s� 1)=13.For H(n; d), the random instances are generated as in steps 1{2 above, butin step 3, we select a constraint from a particular set of 3006 probably very hardconstraints with a uniform distribution. The conjecture that these constraintsare hard is based on the fact that their translation to a logical form requiresclauses with at least three literals and the observation that the path-consistencyalgorithm is similar to positive unit-resolution on the logical form.6 As our expe-riments demonstrate, these constraints lead indeed to hard reasoning problems.Finally, for S(n; d; s), the random instances are generated as in A(n; d; s),but in a post-processing step the instances are made satis�able by adding atomicrelations that result from the description of a randomly generated scenario, i.e.,these instances are always satis�able. This model was proposed by van Beek andManchak [1996], and they reported that a large fraction of instances generated by6See [Nebel and B�urckert, 1995] for a precise de�nition of logical form of a temporal cons-traint and for the similarity between path-consistency and positive unit resolution.7



S(100; 25; 6:5) are very hard, sometimes requiring more than half a day of CPUtime on a Sun 4/20.Using these random models, we analyze the e�ect of varying the parame-ters and evaluate the runtime e�ciency of di�erent implementations of thebacktracking algorithm. As the performance indicator we use CPU time on aSparcStation 20. Although this indicator is more dependent on the particularimplementation and platform than indicators such as the number of compositi-ons performed or the number of search nodes explored, it gives a more realisticpicture of the e�ect of applying di�erent search techniques.5 Phase Transitions for Reasoning in Allen'sCalculusCheeseman et al [1991] conjectured:All NP-complete problems have at least one order parameter and thehard to solve problems are around a critical value of this order pa-rameter. This critical value (a phase transition) separates one regionfrom another, such as overconstrained and underconstrained regionsof the problem space.Instances in the phase transition are obviously particularly well suited for testingalgorithms on search intensive instances.Ladkin and Reinefeld [1993] observed that reasoning in Allen's calculus hasa phase transition in the range 6 � c � n � 15 for c � 0:5, where c is the ratioof non-universal constraints to all possible constraints and n is the number ofintervals. This phase transition is, however, not independent of the instance size,and for this reason does not allow to generate arbitrarily hard instances.Our conjecture was that the average degree of the constraint graph is a criticalorder parameter that can lead to a size-independent phase-transition. As Figure 2demonstrates,7 this is indeed the case for A(n; d; 6:5).The probability that the instance is satis�able drops from 1 to 0 aroundd = 9:5. As expected, the typical instances around the phase transition are hard,meaning that the median value of CPU time has a peak in the phase transitionregion, as shown in Figure 3 (the solid line marks the phase transition). Further,the mean value has a peak there as well, as also shown in Figure 3.For other values of the average label size s, we get qualitatively similar results,as Figure 4 shows for s = 7:0. The general picture that emerged from varying sfrom 5:0 to 8:0 was that with larger values of s the phase transition region movesto higher values of d and the runtime requirements grow.7Each data point in this and the following graphs is based on 500 randomly generatedinstances. 8
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the average label size. If we use, for instance, a uniform distribution over theORD-Horn relations|which results in an average label size of 6.83|no runtimepeak is observable in the phase transition region. Using the \hard relations"from H(n; d)|resulting in an average label size of 6.97|one would expect signi-�cant more search and perhaps a move of the phase transition compared withA(n; d; 7:0). This expectation is con�rmed by our experiments, as shown in Fi-gure 5.
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Figure 6: Comparison between P and H for A(n; 9:5; 6:5) and H(n; 11:5)This means that contrary to previous observations, it can pay o� for searchintensive cases to use the ORD-Horn subclass instead of the pointizable subclass.10



The di�erence between A(n; 9:5; 6:5) and H(n; 11:5) is probably explainable bythe fact that the distribution of labels in the two di�erent random models leadto a reduction of the branching factor of 15.3% in the former case and 9.3% inthe latter case when going from the pointizable to the ORD-Horn class.One question might be, however, where the performance enhancements camefrom. As Figure 7 shows, the median CPU time value is almost identical forusing H and P and the main di�erences appear for the very hard instances. Forthis reason, the main value of using the ORD-Horn subclass seems to be that itreduces the runtime of extreme cases.
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Figure 7: Comparison by percentilesThe results described above were achieved by using all techniques describedin [van Beek and Manchak, 1996] and varying only the set Split. So the questionarises how changing the set Split in our backtracking algorithm compares to otherdesign decisions. We varied the following design decisions in order to answer thisquestion:ORD-Horn/pointizable: The subclass used for the set Split.static/dynamic: Constraints are processed according to a heuristic evaluationof their constrainedness which is determined statically before the back-tracking starts or dynamically during the search.local/global: The evaluation of the constrainedness is based on a local heuristicweight criterion or on a global heuristic criterion [van Beek and Manchak,1996].queue/no queue: The path-consistency procedure uses a weighted queuescheme for the constraints to be processed next [van Beek and Manchak,1996] or the scheme described in [Ladkin and Reinefeld, 1992], which usesno queue. 11



As it turns out, the improvement of using H instead of P is small compared withthe improvements achievable by other means (Figure 8).
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Figure 11: The e�ect of combining strategies orthogonallypletely orthogonal and does not require any communication, which makes it verywell suited for parallel implementations.8 Conclusions and OutlookWe showed that using the ORD-Horn subclass in the backtracking algorithm pro-posed by Ladkin and Reinefeld [1992] leads to a complete reasoning algorithmand has|as conjectured in [Nebel and B�urckert, 1995]|the e�ect of enhancingsearch e�ciency. On instances in the phase transition, which we have identi�edin this paper, the ORD-Horn subclass leads to an additional performance enhan-cement over the already highly optimized version [van Beek and Manchak, 1996]of Ladkin and Reinefeld's [1992] backtracking algorithm. For the hard satis�ableproblems described in [van Beek and Manchak, 1996], the bene�t of using theORD-Horn class is not directly observable. However, when combining it ortho-gonally with other search strategies one notes that by using ORD-Horn someinstances become solvable which are not solvable otherwise.An interesting question is, whether the orthogonal combination of search stra-tegies as described above can also lead to a better performance in the phasetransition region. Another interesting question is, whether local search methodssimilar to GSAT [Selman et al., 1992] can be applied to temporal reasoning. Adirect application of GSAT, however, does not seem to be promising becausetranslations from Allen's calculus to propositional logic lead to a cubic blowup[Nebel and B�urckert, 1995].AcknowledgementsI would like to thank Peter Ladkin for discussions concerning the problems dis-cussed in this paper and Peter van Beek for discussions and making available the14
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