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ABSTRACT 
Predicting linkages among data objects is a fundamental data 
mining task in various application domains, including 
recommender systems, information retrieval, automatic Web 
hyperlink generation, record linkage, and communication 
surveillance. In many contexts link prediction is entirely based on 
the linkage information itself (a prominent example is the 
collaborative filtering recommendation). Link-structure based link 
prediction is closely related to a parallel and almost separate 
stream of research on topological modeling of large-scale graphs. 
Graph topological modeling builds on random graph theory to 
find parsimonious graph generation models reproducing empirical 
topological measures that summarize the global structure of a 
graph, such as clustering coefficient, average path length, and 
degree distribution. These well-studied topological measures and 
graph generation models have direct implications on link 
prediction. This paper represents initial efforts to explore the 
connection between link prediction and graph topology. The focus 
is exclusively on the predictive value of the clustering coefficient 
measure. The standard clustering coefficient measure is 
generalized to capture higher-order clustering tendencies. The 
proposed framework consists of a cycle formation link probability 
model, a procedure for estimating model parameters based on the 
generalized clustering coefficients, and model-based link 
prediction generation. Using the Enron email dataset we 
demonstrate that the proposed cycle formation model 
corresponded closely with the actual link probabilities and the 
link prediction algorithm based on this model outperformed 
existing algorithms. 

Categories and Subject Descriptors 
G.3.3 [Probability and Statistics]: Statistical computing; G.2.3 
[Discrete Mathematics]: Application  

General Terms 
Algorithms, Measurement. 

Keywords 
Link prediction, graph topological structure, clustering coefficient 

1. INTRODUCTION 
Many data mining tasks involve (sometimes implicitly) prediction 
of linkages among data objects. Examples of explicit link 
prediction problems include automatic Web hyperlink creation, 
genetic or protein-protein interactions prediction, and the record 
linkage problem. Other well-studied problems can be viewed as a 
link prediction problem once the data are rendered with a 
graph/network representation. Such examples are abundant. 
Information Retrieval can be viewed as dealing with prediction of 
links between words and documents within a word-document 
bipartite graph representing word occurrence. Recommender 
systems can be viewed as services predicting links between users 
and items within a user-item bipartite graph representing 
preferences or purchases.  

While computational methods developed for these problems of 
different forms all essentially deal with the same fundamental 
problem of predicting links in network or graph data, link 
prediction has recently received substantial interest as a generic 
data mining task in the relational learning field [9].  Relational 
learning (or multi-relational learning) deals with richly structured 
data, which may be described by a relational database or using 
relational or first-order logic. Objects of multiple types can be 
linked with each other. The structure of the links or dependencies 
among data objects is the key data pattern specially exploited by 
relational learning methods. Various relational learning methods 
have been developed to predict the existence of potential links 
within a relational dataset that typically consists of observed 
linkages among data objects and attributes of the data objects.  

Link structure has long been the focus of study for fields outside 
of data mining. Graph theory is essentially the study of link 
structure, but in an abstract graph/network where vertices are 
abstract data objects without descriptive attributes and edges are 
abstract links. Standard graph theory typically studies the 
properties of small-scale graphs. On the other hand, graph 
topological modeling based on the random graph theory, which 
have seen a surge in recent interest and a wide range of 
applications, investigates properties of large-scale real graphs 
such as the Internet, WWW, citation and co-authorship networks, 
and genetic regulatory networks. The primary focus here is on 
characterizing global patterns of the link structure, or graph 
topological feature, and developing parsimonious graph 
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generation models that can reproduce such features to describe the 
significant mechanisms governing the structure of the graph.  

Although in general a complete relational data consisting of both 
link structure and descriptive attributes of data objects can be 
exploited, many link prediction methods are developed 
exclusively for exploiting the link structure itself. A prominent 
example is the collaborative filtering approach for recommender 
systems [22]. Under such an approach, attributes of the users and 
items are deliberatively ignored and only the links representing 
preferences or purchases are used for making recommendations 
(or potential links between users and items). When only the link 
structure is employed, the link prediction problem is formulated 
upon an abstract graph. Here we see a rarely-explored connection 
between the link prediction problem and the graph topological 
modeling. For example, a key question posed by graph 
topological modeling is whether or not a given large-scale graph 
is random. This question is answered by comparing the observed 
topological properties with the expectation from a random graph 
generation model. If we determine a given graph to be consistent 
with one generated from a random graph model, searching for 
data patterns for link prediction would be meaningless as no such 
pattern should exist. Beyond the basic randomness test, the well-
studied topological measures can be viewed as a form of link data 
summary statistics and be employed directly to perform link 
prediction tasks in addition to building graph generation models 
explaining the graph data. After all, model building and prediction 
are rarely separable in statistical inference.  

This paper focuses on analyzing the predictive value of one 
particular graph topological measure called clustering coefficient. 
Clustering coefficient describes the tendency to form clusters 
(fully connected subgraphs) in a graph. A typical clustering 
coefficient describes the probability for a connected triple to form 
triangles. We formalize the notion of generalized clustering 
coefficients to describe the formation of longer cycles. A link 
prediction framework based on the analysis of generalized 
clustering coefficients is then proposed, consisting of a cycle 
formation link probability model, a procedure for estimating 
model parameters based on the generalized clustering coefficients 
of a given graph, and model-based link prediction generation.  An 
experimental study based on real-world graph data was conducted 
to demonstrate the proposed framework and its effectiveness.  

The remainder of the paper proceeds as follows. Section 2 
reviews relevant literature on link prediction, relational learning, 
and graph topological modeling. Section 3 introduces generalized 
clustering coefficient and describes the link prediction framework 
based on clustering coefficient analysis. Section 4 presents the 
experimental study. Section 5 concludes the paper and points out 
limitations and future directions.  

2. LITERATURE REVIEW 
2.1 The Link Prediction Problem 
Prediction of links is the modeling focus of many well-studied 
problems. In many contexts, the link structure itself is the critical 
data pattern exploited for prediction. A wide range of problems 
can be viewed as prediction of links based on the observed link 
structure, including information retrieval [25] (predicting query-
document links based on a document-word network), 
collaborative filtering recommendation [22] (predicting user-item 

links based on a user-item interaction matrix), record linkage 
problem [30] (predicting links among records with same identity), 
and protein/genetic interaction modeling [12] (predicting 
underlying protein/genetic interactions based on interaction 
networks observed from experiments). Many algorithms 
developed for these problems also work for the generic link 
prediction problem. On the other hand, advances in the link 
prediction problem would have potential implications in these 
different application domains.  
Recently, the link prediction problem has been formulated as a 
generic data mining task within the field of relational learning. 
Relational learning or multirelational learning [6] extends 
standard data mining that learns from attributes of independent 
entities stored in a single database table to extract patterns from 
multiple related tables. Link structure is exploited by relational 
learning methods to enhance the performance of various well-
known data mining tasks such as classification and clustering [9]. 
Link prediction, where link structure itself is the target of 
prediction, has also become an important task of relational 
learning. 
Various relational learning methods were proposed for link 
prediction, typically exploiting both the link structure itself and 
the rich descriptive attributes of data objects. Probabilistic 
relational models (PRMs) [16] are the main formal approach that 
has been developed for relational learning, which extends 
Bayesian networks to the relational domain. Getoor et al. [10] 
introduced the concept of structure uncertainty and extends the 
PRMs to model and predict link existence. Huang et al. extended 
the PRMs framework further to work specifically for link 
prediction in a recommendation context [15]. Several studies also 
employed other relational probabilistic graphical models (e.g., 
relational Markov network) for the link prediction problem [5, 23, 
27]. Propescul and Ungar [21] applied the structural logistic 
regression model for building link prediction models.  
Relational learning link prediction models typically assume a 
richly structured relational data environment, where type 
information regarding the data objects and linkages, regular 
descriptive attributes, link structure, and potentially descriptive 
attributes of the links are available. These models can be directly 
applied to abstract graphs where link structure is the only source 
of predictive data patterns. However, many of these models might 
not able to capture the well-established data patterns in large 
graphs such as paths, cycles, and flows.  
The link prediction problem on abstract graphs (networks of no 
vertex and edge attributes) is the focus of our study. Liben-
Nowell and Kleinberg [17] studied the abstract graph link 
prediction problem for social networks with an abstract graph 
representation. They were specifically looking at academic co-
authorship networks. They investigated the relative effectiveness 
of network proximity measures adapted from graph theory, 
computer science, and social science and confirmed for social 
networks the power of prediction methods based purely on the 
graph structure. Many other algorithms developed in other fields 
that deal with problems with implicit abstract graph 
representation are also suitable for abstract graph link prediction, 
such as the collaborative filtering recommendation algorithms 
[14]. 



2.2 Graph Topological Modeling 
Abstract graphs are the exclusive focus for the field of graph 
theory, for which properties associated with concepts such as 
paths, cycles, and flows within relatively small-scale graphs are 
the primary interest. Recent surge of application of random graph 
theory and topological graph modeling in a wide variety of 
scientific, engineering, and social domains [1, 19] has switched 
focus to analyzing structural features of large-scale complex 
graphs, which is deeply associated with the idea of discovering 
patterns from large-scale datasets in data mining.   
Random graph modeling research exploits a graph representation 
of complex systems with a focus on its topological characteristics. 
Its main research objective is to capture the mechanisms that 
determine the network topology of a particular system. The key 
assumption is that the fundamental mechanism that governs the 
generation of relationships among components of a system leaves 
certain identifiable traits in the resulting network topology. Thus, 
a simple graph generation model that can reproduce similar 
topological features of the real network may bring important 
insights to the understanding of the actual mechanism that 
governs the real system. 
Many recent studies show that real-world networks demonstrate 
surprisingly consistent topological characteristics across different 
domains [1]. Three major concepts related to these topological 
features are “small world,” “clustering,” and “scale-free” 
phenomena, which involve three basic topological measures: the 
average path length, clustering coefficient, and degree 
distribution. The average path length measure is defined as the 
average distance between any pair of nodes. The degree of a 
vertex in a graph is the number of edges incident on that vertex. 
In this paper we focus on analyzing the clustering coefficient 
measure, which we introduce in detail below.  
Many real-world networks show an inherent tendency to cluster. 
Such a tendency is quantified by the clustering coefficient 
measure [20, 29]. We adopt the Newman definition: 

 triplesconnected ofnumber 
graph) in the  trianglesofnumber (3×

=C   (1) 

where a triangle is a set of three vertices each of which is 
connected to both of the others, and a connected triple is three 
vertices x-y-z, with both vertices x and z connected with y (note 
that x-y-z and z-y-x are considered the same connected triple). The 
clustering coefficient C is strictly bounded between 0 and 1 and 
measures the extent to which being a neighbor is a transitive 
property.  
Various graph generation models have been proposed, ranging 
from the classic purely random ER model [7], in which the 
generation of the graphs is conditional only on the size of the 
graph and the vertex connection probability, to various hybrid 
random graph generation models that incorporate certain non-
random principle to reproduce empirically observed topological 
characteristics (e.g., [29, 2]). 
Graph topological measures can be viewed as a form of summary 
statistics for graph data. Just like the correlation coefficient 
summarizes a sample of two random variables, topological 
measures summarize graph data patterns relevant to building a 
graph generation model explaining the link occurrences in the 
observed graph. These measures should provide valuable 

information for understanding of the link structure and prediction 
of future or unobserved links.  

3. LINK PREDICTION BASED ON 
GENERALIZED CLUSTERING 
COEFFICIENTS 
3.1 Generalized Clustering Coefficient 
In this paper, we focus on analyzing the predictive power of 
clustering coefficient. The tendency to form clusters is an 
important aspect of graph structural patterns. The standard 
clustering coefficient measures the probability for a connected 
triple to form a triangle. Such a data pattern naturally exhibits a 
predictive power. Given a graph with a large clustering 
coefficient, links that would lead to many new triangles would 
naturally be good candidates of future or missing links.  
Although most of the existing literature on graph topological 
modeling has focused on the average path length, clustering 
coefficient, and degree distribution measures, no formal study 
investigates whether these measures are sufficient in 
characterizing graph generation process of real-world graphs. It 
has been shown that the standard clustering coefficient does not 
fully capture the clustering mechanism in real graphs [11]. 
Several studies have analyzed longer cycles in graphs and looked 
at higher order clustering coefficients that measure tendency in a 
graph to form longer cycles (e.g., [8, 11]). 
We now introduce the formal notations involving a graph and 
define the generalized clustering coefficient. To be consistent 
with the graph studied by the existing topological modeling 
literature, we limit our focus on abstract graphs with undirected 
links. Let G = (V, E) be a finite undirected graph without multiple 
edges or self-loops. V = (1, 2, …., N) is the list of vertices of G, 
and E = (e1, e2, …, eM) is the list of edges of G, each es 
corresponds to a sequence of two vertices (i, j). In this paper, we 
use edge and link interchangeably. Since we are looking at 
undirected graphs, if (i, j) is an edge of G, (j, i) will also be an 
edge of G. A path of length k in G is a nonempty sequence of 
vertices p = (v0, v1, … , vk) such that (vi, vi+1) is an edge of G for 
all i, 0 ≤ i ≤ k −1. A cycle of length k in G is a nonempty 
sequence of vertices p = (v0, v1, … , vk, v0) such that (vi, vi+1) is an 
edge of G for all i, 0 ≤ i ≤ k −1, and (vk, v0) is an edge of G. Pijk 
denotes the set of paths of length k starting at i and ending at j. 
We denote the number of such paths as |Pijk|. 
A generalized clustering coefficient C(k) of degree k is defined as: 

k
kkC

length  of paths ofnumber 
graph in the length  of cycles ofnumber )( =  (2) 

When k = 2, (2) reduces to (1) as the number of paths of length 2 
doubles the number of connected triples and the number of cycles 
of length 2 is six times the number of triangles in the graph. When 
computing C(k) for a undirected graph, we can avoid redundant 
counting by only counting paths with smaller-index vertex as the 
starting vertex and checking for each path whether the starting 
vertex and ending vertex form an edge in the graph (if so a cycle 
is counted). The obtained numbers for the cycles and paths will be 
exactly half of the total number of cycles and paths, and their 
ratio gives the clustering coefficient measure according to (2). To 
compute the generalized clustering coefficients, Rubin’s 
algorithm for enumerating all simple paths [24] can be employed. 



Rubin’s algorithm uses O(N3) matrix operations to find all paths 
of different lengths in a graph. The algorithm can be customized 
to find all paths of length up to k for our purpose. Figure 1 
presents an example graph illustrating clustering coefficients of 
different degrees.  

 
Figure 1. An example illustrating generalized clustering 

coefficients. 

3.2 A Link Probability Model Based on Cycle 
Formation 
Generalized clustering coefficients capture important graph 
topological characteristics. From the link prediction perspective, 
these summary statistics regarding the graph structure directly 
correspond to the conditional probability of observing cycles of 
certain length given the same-length paths. In other words, the 
clustering coefficients describe the correlation between cycles and 
paths.  

Previous link prediction studies have tried to exploit the cycle 
formation tendency observed in real graphs in a qualitative 
manner. These previous efforts can be broadly categorized into 
local and global methods. Under the local approach (e.g., the 
common neighbors, Jaccard’s coefficient, and Adamic/Adar 
measure in [17] and standard user-based and item-based 
collaborative filtering algorithms [4]), link occurrence probability 
is heuristically set to positively correlate with the number of 
common neighbors (or the number of cycles of length 2 that 
would be formed if the link at question existed). The global 
approach (e.g., the spreading activation approach [13] and the 
Katz, hitting time, PageRank, and variants in [17]) explores 
longer paths between a given pair of vertices and essentially relate 
the link occurrence probability to the sum of total number of paths 
between the two vertices weighted by the path length. These 
previous methods are heuristic in nature and rely implicitly on the 
assumed high tendency for paths of different lengths to form 
cycles.  

The local approach methods are qualitatively supported by many 
recent empirical findings that real networks across different 
domains share the common property of high clustering tendency 
when measured by the standard clustering coefficient measure 
(C(2)). Previous approach essentially attempt to predict links that 
will maximize the clustering coefficient of the resulting network, 
which is implicitly assuming the network is on the evolution path 
to higher clustering tendency and ultimately to a fully connected 
network. In reality, many networks across different domains have 
exhibited stationary level of clustering tendency independent of 
the size of the network (see Figure 9 in [1]). Under this stationary 
assumption, the exact value of observed clustering coefficient 
should be incorporated to design the link prediction algorithms, 
such that the predicted links would grow the network with 
consistent clustering coefficient over time. To the best of our 
knowledge, no formal link probability model has been 

investigated previously based on the underlying clustering 
coefficient (propensity for length-2 paths to become triangles).  

The global methods are natural extensions of the local methods. If 
links are more likely to occur between nodes connected by short 
paths (of length 2), they might be more likely to occur between 
nodes connected by longer paths as well. However, these methods 
are not justified by even qualitative empirical observations as the 
empirical findings on clustering coefficients of higher degrees (k 
> 2) are quite limited. The lack of understanding on real 
networks’ higher-degree clustering coefficient properties poses 
challenges on the heuristic link prediction algorithms that assume 
positive correlation between paths and cycles of large length.  

In this paper, we propose a link probability model based on cycle 
formation that formally relates to generalized clustering 
coefficients. In this model, the occurrence probability of a 
particular link is determined by the number of cycles (of different 
lengths) that will be formed by adding this link. A fundamental 
assumption of our framework is the stationary property of the 
degree of clustering of the network. The model parameters, 
corresponding to the prevalence of mechanisms such as length-k 
cycle formation, can be estimated given a series of generalized 
clustering coefficients (of different degrees). Assuming the 
clustering stationarity, this model is then used to predict future or 
unobserved links in the network. 

Formally, a cycle formation model of degree k (k ≥ 1), denoted as 
CF(k),  treats the link occurrence probability as governed by t link 
generation mechanisms, g(1), …, g(k), each described by a single 
parameter, c1, …, ck. Among these mechanisms, g(1) is a dummy 
mechanism that corresponds to a random link generation process 
and c1 corresponds to the probability for a link to occur within a 
purely random model. Therefore CF(1) reduces back to a random 
link probability model. Other mechanisms g(k)’s (k > 1) 
correspond to link probability determined by the length-k paths 
associated with the vertex pair. The parameter ck = Pr((i, j) ∈ E | 
|Pijk| =1) describes the conditional probability of a length-k to 
become a length-k cycle.  

 
Figure 2. An example illustrating the cycle formation link 

probability model. 
For example, assume a cycle formation model of degree 3 
(CF(3)), the occurrence probability of the potential link (1, 6) in 
Figure 2 is governed by three mechanisms: the random link 
occurrence g(1), length-2 cycle formation mechanism g(2), and 
length-4 cycle formation mechanism g(3).  

In order to make our link probability model complete, we need to 
decide how multiple link generation mechanisms should be 
combined to derive the total link occurrence probability. We will 
start with integration of multiple paths of the same length. Take 
the two length-2 paths between 1 and 6 in Figure 2 as an example, 
it is key in our context to realize that path 1−2−6 and 1−5−6 
cannot be treated as two independent determinants of the 
occurrence probability of (1, 6). Depending on the occurrence of 
edge (1, 6), both paths either remain paths or become cycles 



together. Therefore, given Pr((i, j) ∈ E | |Pij2| = 1) = c1, Pr((i, j) ∈ 
E | |Pij2| = 2) = c1

2/( c1
2+(1-c1)2). To generalize: 

Pr((i, j) ∈ E | |Pijk| = m) = ck
m/( ck

m+(1-ck)m), k > 1  (3) 

Similarly, we combine the effects of multiple mechanisms to form 
the total link occurrence probability under the cycle formation 
model of degree k (CF(k)), denoted as 
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Our model accounts for a variety of detailed link occurrence 
patterns based on cycle formation. When ck = 0.5, length-k paths 
do not have any effect on the link probability for the vertex pair, 
while a ck greater (smaller) than 0.5 indicates that length-k paths 
have positive (negative) effects on the linking probability.  

As our link probability model was motivated by the generalized 
clustering coefficients, it is important to relate the model back to 
the clustering coefficient measures and eventually based on these 
empirical measures to estimate the model parameters. In this 
paper we limit the discussion on cycle formation models up to 
degree of 4. Table 1 shows the details for deriving expected 
clustering coefficients of degrees 2, 3, and 4 based on the link 
probability model in (4). Higher-degree models can be derived in 
a similar manner. 

Table 1. Expected clustering coefficients of degrees 2, 3 and 4 
based on the cycle formation model (E[C(k)] = f(c1,c2,...,ck) = 

∑ ∈+
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k i Graph Pattern (Gi) #(Gi) Pr(Gi) 
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∈ E | Gi) 

2 1 
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1 (1−P3)2 P0,1,0 
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2 P3(1-P3) P1,1,0 3 
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1 P3
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1 (1−P4)2 

(1−P3)3 P0,0,1 
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3 
(1−P4)2 

(1−P3)2 

P3 
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2 P4(1−P4)
(1−P3)3 P1,0,1 
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1 
(1−P4)2 

(1−P3) 

P3
2 

P1,2,1 
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5 
 

2 
(1−P4)2 

(1−P3) 

P3
2 

P0,2,1 

6 
 

1 P4
2 

(1−P3)3 P2,0,1 
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(1−P3)2 

P3 
P1,1,1 
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1 (1−P4)2

P3
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P3
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2 P3 
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2 P3
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2 P3
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(1−P3) 

P3,2,1 

14
 

2 (1−P4)P4
P3

3 P2,3,1 

15

 

1 P4
2P3

3 P3,3,1 

Table 1 shows all possible graph patterns relevant to a given path 
of length k (p = (1,2,…, k+1) in this context). For each possible 
graph pattern (Gi), the number of subgraphs corresponding to this 
pattern (#(Gi)), the probability for one of such subgraphs to occur 
(Pr(Gi)), and the probability for the edge (1, k+1) to occur 
conditional on Gi (Pr((1, k+1) ∈ E | Gi)) are shown. Pr((1, k+1) ∈ 
E | Gi) is derived from formula (4) with |Pijk|’s computed from the 
specific graph pattern Gi. The total probability for observing the 
link (1, k+1) conditional on a path p = (1, 2, …, k+1) is given by  

f(c1,c2,...,ck) = ∑i ii GG )Pr()(#  )|)1,1Pr(( iGEk ∈+ . (5) 

This probability is the theoretical prediction of the expected 
clustering coefficient of degree k (E[C(k)]) based on our cycle 
formation model.  

3.3 Estimating the Model Parameters and 
Performing Link Prediction 
We propose an iterative procedure for estimating the parameters 
of the cycle formation model based on the generalized clustering 
coefficients. The estimation procedure is described below in 
Figure 3. 



At Step 2, a random graph with the degree distribution of G can 
be viewed as generated from the CF(1) model. Theoretically, C(k) 
= c1, ∀ k>2 under CF(1) and c1 can be computed as the average 
linking probability of the ER model [7] 2M/N(N −1) for very 
large graphs. We found that random graphs of hundreds of vertex 
and edges with degree distributions consistent with real networks 
typically exhibit C(k)’s that deviate from the linking probability 
of the ER model. For different k, C(k) also slightly varied. For our 
purpose, we adopted a numeric approach to generate random 
graphs with consistent degree distribution as the input graph G 
(using the switching algorithm in [18]) and took the average, 
C(2)rand, as the estimate of c1 for the cycle formation model.  

Parameter Estimation for Cycle Formation Model CF(k): 
Input: G = (V, E)  
Output: c1, c2, …, ck 
1. Compute generalized clustering coefficients C(2), … , C(k) 
2. Compute the connecting probability under a random graph 
with the degree distribution of G as c1 
3. Set c2 = (1−c1)C(2)/(c1−2c1C(2)+C(2))* 
4. Set ci = 0.5, i = 3, …, k 
5. Repeat for i = 3, …, k 
5.1. ci = |)),...,,...,()((|minarg '

1
'

ki
c

cccfiC
i

− † 

Figure 3. Procedure for estimating parameters of the cycle 
formation model. 

Our parameter estimation procedure builds directly upon the cycle 
formation model introduced in Section 3.2. Intuitively, we start 
with a pure random model conditional on the degree distribution 
(with no meaningful cycle formation mechanism at all) and obtain 
the cycle formation probability c1. We then compare the observed 
C(2) and c1. The part of C(2) that cannot be explained by c1 has to 
be due to a meaningful length-2 cycle formation mechanism. 
Thus the estimator of c2 can be derived. We then proceed with 
comparison between observed C(3) with the expected C(3) under 
CF(2) to obtain the estimate of c3. This process continues until 
reaching the degree of the model. The key to our approach is that 
C(k) is a function of c1, … , ck, and is independent of ck’, k’ > k. 
With the estimated parameters of the cycle formation model, we 
then use formula (4) to derive the link probabilities.  

4. EXPERIMENTAL STUDY  
4.1 Data 
We used the Enron email dataset to evaluate our proposed cycle 
formation link probability model and the corresponding link 
prediction algorithm. The Enron email corpus is a large-scale 
email collection from a real organization over the course covering 
a 3.5 years period. We used a pre-processed version of the dataset 
provided by Jitesh Shetty and Jafar Adibi [26] (data available at 
ftp://ftp.isi.edu/sims/philpot/data/enron-mysqldump.sql.gz). This 
dataset contains 252,759 emails from 151 Enron employees, 
mainly senior managers. In our study we have focused on emails 
sent from and to these 151 people.  

The final email collection we analyzed contained 40,489 emails 
during May 11th of 1999 to June 21st of 2002. We have decided 

                                                                 
* Derived from C(2) = c1c2/(c1c2 +(1−c1)(1−c2)). 
† Typical numerical methods can be used to find ci that gives f(c1,c2,...,ck) 

within [C(i) − ε, C(i) + ε] for specified small ε.  

to perform the link prediction analysis on the monthly email 
graphs in 2001. In this study, an email graph is an undirected and 
unweighted graph with edges connecting senders and recipients of 
emails during the corresponding time periods. The semantics of 
an edge (a, b) in such a graph is that there has been at least one 
email communication between a and b (either a sending at least 
one email with recipients including b or b sending at least one 
email with recipients including a). For month t in 2001, we used 
the emails in the previous three months (t−3, t−2, t−1) to form 
the background graph Gtb. This background graph is the input for 
prediction of email links in Gt. Like most of the link prediction 
problems, we are interested in predicting the occurrence of links 
in Gt that did not already appeared in Gtb. Table 2 shows the 
number of links in Gtb and generalized clustering coefficient 
measures up to degree 4. We can observe from the table that 
across different months in 2001, the background email graphs 
maintained relatively stable clustering coefficients despite the 
constantly increasing number of links. 

In addition to the generalized clustering coefficients, the 
connecting probability under random graphs with the same degree 
distribution as the background email graphs are also needed as the 
input for the cycle formation model parameter estimation 
procedure. As described in Section 3.3, we used the numerically 
derived C(2)rand as the estimate of c1. In our study, C(2)rand for Gt 
were averaged from 20 random graphs with the same degree 
distribution as Gt. 

Table 2. Background graph measures: number of links and 
generalized clustering coefficients  

Month (t) Links in Gtb C(2) C(3) C(4) C(2)rand
1 293 0.33096 0.23823 0.14936 0.08640
2 320 0.32601 0.23311 0.14551 0.09323
3 322 0.32209 0.22479 0.14167 0.10626
4 319 0.30438 0.23183 0.14594 0.11809
5 372 0.33735 0.24507 0.16657 0.10776
6 466 0.25617 0.18714 0.13372 0.11647
7 500 0.24860 0.17575 0.12921 0.12693
8 521 0.26801 0.19199 0.14545 0.11411
9 564 0.30663 0.23026 0.18632 0.13281

10 580 0.32155 0.24162 0.19575 0.12692
11 763 0.33394 0.25565 0.20934 0.14318
12 763 0.36168 0.26508 0.20998 0.13900

4.2 Cycle Formation Model and Parameter 
Estimation 
A basic test on the validity of the proposed cycle formation model 
is to verify the accuracy of the theoretical expected clustering 
coefficients. In our current study, we generated random graphs 
that have the same degree distribution and standard clustering 
coefficient (C(2) in our context) as the 12 real background email 
graphs. We adopted Volz’s algorithm for random graphs with 
tunable degree distribution and clustering [28] to generate these 
graphs. In principle, these random graphs can be viewed as 
generated from the cycle formation model CF(2). For each graph 
Gt, c1 and c2 were estimated following the procedure described in 
Section 3.3. The expected C(3) and C(4) were computed 
assuming a CF(2) model and then compared with the actual 
measures of the randomly generated graphs. Figure 4 shows the 
comparison between the expected C(3) and C(4) under CF(2) 
based on the cycle formation model with the actual values of C(3) 



and C(4) of the randomly generated graphs that are consistent 
with CF(2). For the randomly generated graphs, we show the 
mean and 95% confidence interval of the measures based on 
samples of 10 random graphs. Even with only 10 random graphs 
as the samples, we observe from the figure that the theoretical 
predictions of the higher-degree clustering coefficients were 
generally consistent with the randomly generated graphs.  
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Figure 4. Theoretical and simulated values of C(3) and C(4) 
under CF(2).  

Following the parameter estimation procedure described in 
Section 3.3, we estimated the parameters for the complete CF(4) 
models for the 12 background email graphs. The parameter 
estimates are shown in Table 3. Notice that c1 is identical to 
C(2)rand in Table 2 as previously discussed in Section 3.3. From 
these estimates, we observe that over the 12 months period, the 
Enron email graphs have exhibited consistent cycle formation 
patterns. The prominent patterns (parameter estimates largely 
differ from 0.5) were the positive effect of length-2 cycle 
formation and the negative effect of length-3 cycle formation. 
Length-4 cycle formation had relatively minor effect on link 
probability as for most months c4 was close to 0.5. The negative 
effect of length-3 cycles was especially interesting. Previous link 
prediction approaches typically assume unidirectional effect of 
formation of cycles of different lengths and would misinterpret 
the information embedded in the length-3 paths.  

Table 3. Parameter estimates for the cycle formation model  

Month (t) c1 c2 c3 c4 
1 0.08640 0.83951 0.26563 0.55039 
2 0.09323 0.82469 0.26211 0.55068 
3 0.10626 0.79985 0.21367 0.58877 
4 0.11809 0.76568 0.40625 0.43164 
5 0.10776 0.80826 0.24648 0.59258 
6 0.11647 0.72320 0.40781 0.47344 
7 0.12693 0.69473 0.22656 0.57383 
8 0.11411 0.73975 0.34844 0.53281 
9 0.13281 0.74277 0.32695 0.57334 

10 0.12692 0.76527 0.31445 0.58857 
11 0.14318 0.75003 0.29883 0.60439 
12 0.13900 0.77825 0.18906 0.69990 

4.3 Link Prediction Performance 
In this study, we are interested in predicting email links that did 
not appear in the background email graph. Table 4 shows the 
number of new email links for each of the 12 months. To evaluate 
the link prediction performance, we construct a Receiver 
Operating Characteristics (ROC)-style curve with x-axis and y-
axis as the percent of total possible new links selected and the 
percent of actual new links that are in the selected links. The area 

under curve (AUC) measure [3] is reported for assessing the link 
prediction performance.  
For comparison purpose, we also reported the link prediction 
performance of three representative existing link prediction 
algorithms: (a) the preferential attachment (PA) algorithm [17] 
that was motivated by the preferential attachment model [2] and 
relate the link probability with the product of the degrees of the 
two vertices; (b) the spreading activation (SA) algorithm [13] that 
explores the ensemble of paths connecting the vertex pair of all 
lengths and heuristically relate larger number of paths of different 
lengths with higher link probability (this algorithm is in essence 
similar to Katz, hitting time, PageRank and variants in [17]); (c) 
the generative model (GM) algorithm [14] that introduces latent 
email types and employs the Expectation Maximization algorithm 
to estimate the probability of each people to be associated with 
these latent types as senders and recipients. Both the spreading 
activation and generative model algorithms have demonstrated 
competitive performance over other algorithms in many link 
prediction tasks such as the collaborative filtering task.  
Based on the analysis in the previous section, we decided to use 
the CF(3) model as the parameter c4 does not seem to deviate 
from 0.5 significantly. Using the parameter estimates for the 
CF(3) model we computed the link probability scores as 
described in Section 3.3. The AUC measures of our proposed 
algorithm as well as the three benchmark algorithms are shown in 
Table 4. The CF(3) algorithm achieved the highest AUC measure 
for the first 9 months and achieved the second-based performance 
for the remaining 3 months. There was clearly no preferential 
attachment phenomenon in our data. The PA algorithm was worse 
than a random predictor for most months. The SA and GM 
algorithms had comparable performances that were substantially 
worse than our proposed algorithm. 

Table 4. Number of new links and AUC measures for the cycle 
formation and benchmark link prediction algorithms  

Month 
(t) 

New Links 
in Gt CF(3) PA SA GM 

1 46 0.76764 0.52091 0.70977 0.67237
2 46 0.76748 0.48449 0.67891 0.69189
3 46 0.81385 0.44235 0.72598 0.73472
4 62 0.82106 0.45057 0.72143 0.75518
5 95 0.73883 0.45141 0.63052 0.69805
6 72 0.71737 0.41585 0.67084 0.70634
7 88 0.73977 0.48104 0.70304 0.69231
8 168 0.74056 0.60122 0.69806 0.65201
9 90 0.72065 0.46032 0.69501 0.70263

10 213 0.74384 0.48877 0.69840 0.74500
11 123 0.74860 0.47632 0.72477 0.75116
12 56 0.70018 0.44078 0.69573 0.76273

5. CONCLUSIONS AND FUTURE 
DIRECTIONS 
In this paper we explore the connection between two largely 
separate fields of link prediction and graph topology modeling. 
The key idea is that the well-studied topological measures in 
effect serve as summary statistics describing the link occurrences 
in graphs and carry valuable information for building model-
based link prediction algorithms. In this study, we focus on 
analyzing generalized clustering coefficients and their prediction 
value for link prediction. We proposed a cycle formation model 



Sthat relates the occurrence probability a link with its ability for 
form cycles of different lengths. The parameters of this model can 
be estimated given the generalized clustering coefficients of the 
graph. Using the Enron email dataset we have verified that the 
cycle formation model was able to capture closely the actual link 
probabilities and that the link prediction algorithm based on this 
model outperformed existing link prediction algorithms. 

Our framework can be enhanced in several aspects. Although 
expected clustering coefficients for higher degrees can be derived 
in a similar manner as shown in Table 1, a compact formula that 
approximates the exact value would ease the application of our 
framework. Closed-form prediction of the expected clustering 
coefficients of random graphs of given degree distribution would 
give the estimate for c1 without having to numerically generate 
samples of such random graphs. Conceptually, our proposed link 
prediction framework shares the flavor as an autoregressive 
regression model for time series analysis, with generalized 
clustering coefficients corresponding to autocorrelation between 
present value and past values and link generation mechanisms 
g(i)’s corresponding to past values as predictors of the present 
value. Accordingly, to make our proposed framework complete, 
stochastic component should be included in our model and 
confidence interval of the parameter estimates should be derived 
to perform complete statistical inference and model selection. 
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