
Semantic Data Models

JOAN PECKHAM and FRED MARYANSKI

Department of Computer Science and Engineering, University of Connecticut, Stows, Connecticut 06268

Semantic data models have emerged from a requirement for more expressive conceptual
data models. Current generation data models lack direct support for relationships, data
abstraction, inheritance, constraints, unstructured objects, and the dynamic properties of
an application. Although the need for data models with richer semantics is widely
recognized, no single approach has won general acceptance. This paper describes the
generic properties of semantic data models and presents a representative selection of
models that have been proposed since the mid-1970s. In addition to explaining the
features of the individual models, guidelines are offered for the comparison of models.
The paper concludes with a discussion of future directions in the area of conceptual data
modeling.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/
Specifications-methodologies; D.2.10 [Software Engineering]: Design; D.3.2
[Programming Languages]: Language Classifications-design languages; H.2.1
[Database Management]: Logical Design-data mode& H.2.3 [Database
Management]: Languages-data description languages (DDL); data manipulation
languages (DML); query Zangqes; H.2.8 [Database Management]: Database
Applications; 1.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and
Methods-semantic networks; K.6.3 [Management of Computing and Information
Systems]: Software Management-software development

General Terms: Design, Languages

Additional Key Words and Phrases: Conceptual data models, database systems, data
models, logical database design, next generation data models

INTRODUCTION

Although the relational model has provided
database practitioners with a modeling
methodology independent of the details of
the physical implementation, many design-
ers believe that the relational model does
not offer a sufficiently rich conceptual
model for problems that do not map onto
tables in a straightforward fashion. The
past decade has seen the emergence of
numerous data models with the aims
of providing increased expressiveness to the
modeler and incorporating a richer set of

semantics into the database. This collec-
tion of data models can be loosely catego-
rized as “semantic” data models since their
one unifying characteristic is that they at-
tempt to provide more semantic content
than the relational model. The first re-
search papers on semantic data models ap-
peared approximately 7 years after Codd’s
initial publications describing the rela-
tional model. Thus, in perhaps another 5-
7 years, one of the modeling methodologies
discussed here may attain commercial via-
bility. This survey selects a representative
sampling of the new generation of data

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1988 ACM 0360-03OO/S8/0900-0153 $01.50

ACM Computing Surveys, Vol. 20, No. 3, September 1988

154 l J. Peckham and F. Maryanski

CONTENTS

INTRODUCTION
1. BASIS OF COMPARISON

1.1 Library Example
2. REPRESENTATIVE SEMANTIC MODELS

2.1 Entity-Relationship Model
2.2 TAXIS
2.3 SDM
2.4 Functional Data Model
2.5 RM/T
2.6 SAM*: A Semantic Association Model
2.7 The Event Model
2.8 SHM+

3. COMPARISON OF MODELS
3.1 Tabular Comparison
3.2 Evaluating Semantic Models

4. WHERE DO WE GO NOW?
ACKNOWLEDGMENTS
REFERENCES

models and analyzes them in terms of their
fundamental modeling constructs, the rep-
resentation methodologies for the objects
of the model, and the methods by which
the modeler may express the semantics of
the application environment. The goal of
the presentation is to provide the reader
with an appreciation of the problems that
these semantic models attempt to resolve
and their contributions to the art of data-
base modeling.

The piece of the “real world” that is
represented by the database is commonly
called an enterprise. The structure or
schema of the database model is a represen-
tation of the elements and interconnections
between elements within the enterprise.
The constructs used to model elements are
usually called objects or entities. Enter-
prises are usually not static; thus database
models have structures for modeling oper-
ations used to manipulate the objects of the
database schema. These structures can be
atomic operations or more complex trans-
actions and can be considered objects with
relationships defined between them.

One problem inherent in modeling any
subset of the real world is the difference
between the human’s perception of the en-
terprise and the computer’s need to organ-
ize the structures in a particular way for

efficient storage and performance. This
gives rise to three database modeling levels
that reflect the user’s conceptual model, the
machine’s physical model, and the mapping
from one to the other. These levels are
described as follows in the ANSI/SPARC
proposal [Burns et al. 1986; Jardine 19771
for database architecture standardization:

(1)

(59

(3)

External level. The user’s logical views
of the enterprise without consideration
for performance or storage issues.
Conceptual level. The information
model, providing the mapping from the
logical to the physical, or internal,
level, describing the semantics of the
entities and relationships, including
descriptions of connections and con-
sistency constraints.
Internal level. An abstract model of the
physical database concerned with the
access paths to and the storage of data.

Using this categorization, the rela-
tional model [Codd 19701 and models that
are direct extensions of it can be seen as
conceptual models. The tables of the rela-
tional model, although lacking the ability
to express all relationships between the
objects of the logical model, do provide
convenient means for mapping to the phys-
ical model. Models such as the entity-
relationship model [Chen 19761 can be
viewed as conceptual and external since
there is a means to specify objects and
relationships corresponding to the user’s
logical view of the enterprise, as well as a
means to map these data structures to the
physical structures.

This survey considers conceptual seman-
tic models that make use of entities, rela-
tionships, and constraints to describe
static, dynamic, and temporal qualities of
an enterprise. The desired result is a rep-
resentation of the enterprise that closely
parallels the user’s perception, without con-
cern for the physical model. Frequently,
standard relationships with their seman-
tics, including the associated operations
and constraints, are predefined and strate-
gies for access and storage provided.
The user need only choose and combine
these relationships to model the real-world

ACM Computing Surveys, Vol. 20, No. 3, September 1988

Semantic Data Models l 155

defining some data semantics. For example,
functional dependencies from the relational
theory established some lower level seman-
tics for data models. Attempts were made
to extend these semantics to interrelational
dependencies or connections. The meaning
of the dependencies and the consistency
rules that follow from them were described
in the early papers.

One example of the above is a paper
by Schmid and Swenson [1975] in which
the relationships, characteristic and asso-
ciation, and their associated semantics are
described. This was followed by a paper by
Smith and Smith [1977] in which abstrac-
tions already identified by psychologists
and AI researchers were employed for
database modeling. These abstractions,
generalization and aggregation, are pro-
vided by virtually all current semantic
data models.

Generalization is the means by which
differences among similar objects are ig-
nored to form a higher order type in which
the similarities can be emphasized. An ex-
ample of this is a PUBLICATION entity
in a library database’ that exhibits charac-
teristics common to all publications held
by the library. In Figure 1, relationships
between the PUBLICATION entity and
other more specialized entities are repre-
sented using a type hierarchy with more
generalized types at the top and more
specialized ones at the bottom. For ex-
ample, PUBLICATION may be considered
a generalization of JOURNAL-PAPER,
BOOK, and CONFERENCE-PAPER in
the database. Similarly, BOOK may be con-
sidered a specialization of PUBLICA-
TION.

Aggregation is the means by which rela-
tionships between low-level types can be
considered a higher level type. The rela-
tional data model employs this concept by
aggregating attributes to form a relation.
Semantic data modeling permits the aggre-
gation of entity types (or relations) to form
higher order entities. An example is the
aggregation of TITLE and AUTHOR types

enterprise. As we shall see, there are
varying levels on which this modeling
support is provided in semantic conceptual
models.

For the purposes of this paper, a distinc-
tion is made between the abstract models
used for representing “real-world” enter-
prises and the systems that have been
developed for use in creating these repre-
sentations. More is said about this distinc-
tion at the end of this section.

Early database research concentrated on
the physical structure of databases. Little
consideration was given to the user’s per-
ception of the data. Of utmost concern were
the physical and information structures
necessary to provide consistent and effi-
cient database storage and retrieval.
The hierarchical [Tsichritzis and Lochov-
sky 19761 and network models [Taylor and
Frank 19761 offer the user the means to
navigate the database at the record level,
thus providing operations to derive more
abstract structures. The relational model
[Codd 19701 adds a data structure level,
eliminating the necessity of performing
primitive record level manipulations of the
database. The former approach might be
considered as operational, whereas the lat-
ter might be considered structural. Model-
ing capabilities with these approaches are
still closely related to the record structure
of the database.

In the middle seventies, researchers at-
tempted to simplify the design and use of
databases by providing modeling structures
that were capable of supporting the user’s
view of the data. Three papers [Chen 1976;
Schmid and Swenson 1975; Smith and
Smith 19771 addressed two important ideas
in data modeling and signaled the emer-
gence of semantic data models. The first
idea was that of data independence. Per-
haps influenced by developments in pro-
gramming languages, database researchers
felt the user should be free from the details
of the physical structure of the database.
In this way, the user could model the data
in a manner similar to the human percep-
tion of the application.

The second idea involved capturing ad-
ditional semantics in the data modeling
process. Existing models were capable of

’ This database will serve as a running example
throughout the paper. A description appears in Sec-
tion 1.

ACM Computing Surveys, Vol. 20, No. 3, September 1988

156 l J. Peckham and F. Maryanski

Figure 1. Generalization.

PUBLICATION PUBLICATION

4

JOURNAL

PAPER
BOOK

CONFERENCE

PAPER

DATABASE Al

BOOK
BOOK

to form a PUBLICATION type in our sam-
ple database, as illustrated in Figure 2.

In addition to generalization and aggre-
gation, many semantic models support the
classification and association relationships
[Brodie 19841. Classification is a form of
abstraction in which a collection of objects
is considered a higher level object class.
Essentially, it represents an is-instance-of
relationship. For example, in our sample
database, a BEST-SELLING-BOOK ob-
ject class consists of all BOOK objects with
sales greater than 10,000. The object IT is
an instance of the BEST-SELLING-
BOOK object class. Classification provides
a mechanism for the specification of the
type of a specific object, whereas speciali-
zation involves the derivation of a type
definition from that of an existing type.

Association is a form of abstraction in
which a relationship between member ob-
jects is considered a higher level set object
[Brodie 19841. The is-member-of relation-
ship embodies the association concept. The
set DATABASE-BOOKS is an association
of BOOK objects as is the set AI-BOOKS.
Criteria for set membership is typically
based on the satisfaction of some predicate,
such as TOPIC = DATABASE for the

ACM Computing Surveys, Vol. 20, No. 3, September 1988

PUBLICATION

52
Figure 2. Aggregation.

DATABASE-BOOKS set. The set defini-
tion mechanism could, however, be purely
external. Consider the GOOD-BOOKS set
as an example of a set in which the end
user, not the schema designer, determines
set membership.

Although association and aggregation de-
fine new object types from previously de-
fined types, the represent fundamentally
distinct abstractions. Aggregation provides
a means for specifying the attributes of a
new object type, whereas association is the
mechanism for defining a type whose value
will be a set of objects of a particular type.

Semantic Data Models l 157

WRITER NAME INCOME STIPEND

BOOK AUTHOR TITLE SALES PUBLISHER

PUB-HOUSE NAME GROSS

Figure 3. Relational library schema.

m PUBLISHED 7

Figure 4. Semantic library schema.

As the class of semantic data models has
grown, benefits related to the original re-
search objectives have become clear.

(1) Economy of Expression. The seman-
tic data models are usually complete in the
sense that the user is capable of extracting
the full range of information from the da-
tabase as easily as in the earlier models. All
of these models, however, also provide an
economy of expression that can be thought
of as stronger than completeness in the
following sense: Not only is the user able
to extract exactly the same information,
but much of this information can be ex-
tracted with greater ease.

For example, with the relational model,
the user must be aware of the attributes

involved in the implicit definition of inter-
relational connections and perform com-
plex operations on these attributes using
projections and joins to extract information
through these connections. Hence the se-
mantics of the relationship are embedded
within the user program. With a semantic
model, operations are explicitly defined
upon the relationships. Thus, the seman-
tics exist within the data model itself.

Consider an example dealing with writers
and books in the library database. Figure 3
presents the relational schema, and Fig-
ure 4 the corresponding semantic represen-
tation. The query of interest involves the
identification of all poor writers who had
successful books published by big publish-
ing houses. The quantification of “poor,”

ACM Computing Surveys, Vol. 20, No. 3, September 1988

158 l J. Peckham and F. Maryanski’

“successful,” and “big” appear in the quer-
ies themselves. The relational representa-
tion of this query is

SELECT NAME FROM WRITER
WHERE WRITER.INCOME < 20000
AND WRITER.NAME = BOOK.AUTHOR
AND BOOK.SALES > 50000
AND BOOK.PUBLISHER

= PUBLISHER.NAME
AND PUB-HOUSE.GROSS > 1000000

The same query can be expressed using a
semantic model and the notation of Tsi-
chritzis and Lochovsky [1982] as follows:

SELECT NAME FROM WRITER
WHERE WRITER.INCOME < 20000
AND BOOK.SALES > 50000/WROTE
AND PUB-HOUSE.GROSS’> lOOOOOO/
PUBLISHED

Since the semantics of the relationships are
embodied in the join operations that are
explicitly required in the relational query,
the query has a more compact expression
in the semantic model.

(2) Integrity Maintenance. The tradi-
tional models force the user either to keep
track of connections between database ob-
jects or to maintain intraobject consistency
through navigation of the connections on
the physical level. Semantic models provide
mechanisms for the definition of integrity
constraints and at the same time allow the
user to view the data on a level removed
from the low-level record structure. Al-
though this functionality is present in all
semantic models, the degree varies. (See
the discussion on insertion/deletion/modi-
fication constraints in Section 1.)

(3) Modeling Flexibility. Most tradi-
tiona12 data models provided only one
means of representing data. Semantic data
models, through the use of abstractions,
permit the user to model and view the data
on many levels. This provides enhanced
capabilities for modeling “real-world” situ-
ations, since viewing data on many levels

*We use the term “traditional” to describe the well-
established models such as hierarchical, network, and
relational.

is consistent with the way in which people
view the world. For example, the abstrac-
tion generalization permits one to think of
objects in a very detailed or a very superfi-
cial way [Hull and King 19871. The entity--
relationship (E-R) model [Chen 19761
provided an early example, permitting the
user to perceive of a relationship between
two entities as a relationship or as an en-
tity. The latter case is represented in Chen
[1976] as a relationship relation.

(4) Modeling Efficiency. The designer,
while constructing a particular database
schema, does not have to implement on a
low level. Most semantic models contain
built-in elementary operations and con-
straints. One example is a reference rela-
tionship in which one class of objects in the
database references another class through
an attribute of the referencing object. In
our example database, BOOK objects could
reference WRITER objects through an
attribute, AUTHOR. The reference rela-
tionship will have specific operations and
constraints associated with it. For example,
there may be an insertion operation and an
associated constraint that specifies that a
referencing object may not be inserted if it
references a nonexistent object in the da-
tabase. This saves the designer from imple-
menting the operation and constraint every
time a reference relationship type is de-
fined. This is not a new idea; it parallels
work in language theory with abstract data
types. In fact, one could say that most
semantic models encourage these sound
programming techniques.

In the decade that has passed since the
first semantic modeling constructs were
proposed, a plethora of models has been
proposed. This paper surveys and compares
a representative sample of these models,
focusing upon abstract conceptual models
proposed for use in the logical design and
specification of semantic databases. The
models are analyzed for the presence of
constructs representing the fulfillment of
the general semantic modeling goals out-
lined in this section.

Some systems, such as ACM/PCM [Bro-
die and Silva 19831, provide support for the

ACM Computing Surveys, Vol. 20, No. 3, September 1988

Semantic Data Models l 159

modeling components is used for compari-
son with each model. The Hull and King
paper has a significant tutorial flavor, ad-
dressing the issue of semantic database
modeling using a pedagogical data model.
That work emphasizes implementation as-
pects of database systems developed around
semantic models, whereas this paper fo-
cuses more on conceptual modeling issues.

Kerschberg et al. [19761 classify a collec-
tion of conceptual data models along the
following parameters: structural, concep-
tual, and semantic. Set-theoretic versus
graph-theoretic parameters are first used;
then mathematical foundations are identi-
tied to evaluate the structural characteris-
tics of the models. The means by which
entities are represented and used to overlay
the mathematical structures of the models
are used to illuminate the conceptual prop-
erties of the models. A linguistic approach
is taken to determine semantic levels of
abstraction.

In this paper, we identify a collection
of concepts that are used to measure the
semantic modeling capabilities of each
model. This method of presentation focuses
upon the support of relationships, the ab-
stractions they represent, the manner in
which the semantics are specified, and the
approach (if any) to dynamic modeling.
The results are used to compare and con-
trast the models and to identify which
approaches might best fulfill the stated
objectives of semantic modeling systems.

Every semantic model has objects (or en-
tities), relationships (functional or rela-
tional), dynamic properties, and a means
for handling integrity constraints. Relation-
ships can be characterized by the abstrac-
tions they are capable of representing and
the means by which they do so. Dynamic
properties can range from the simple spec-
ification of insertions and deletion con-
straints to the modeling of operations and
transactions. Constraints can be collected
from the user and represented and/or au-
tomatically implied by the semantics of the
model’s relationships. Both the level and
mechanisms of information representation
are used to characterize and compare
models.

entire database system life cycle, including
specification, creation, and maintenance.
These systems are beyond the scope of this
survey. The CRIS conference series has
focused upon research on the development
of such information systems. The reports
of these meetings provide in-depth descrip-
tions of a variety of projects, including
ACM/PCM, ISAC, NIAM, and D2S2 [Olle
et al. 1982,1983,1986]. Other such systems
are described in Braegger et al. [1985] and
Bryce and Hull [1986].

This paper emphasizes semantic data
models. For example, SHM+, which serves
as ACM/PCM’s conceptual model for the
description of entities, operations, and con-
straints, does fall within our spectrum of
interest, whereas the remainder of the
ACM/PCM work does not. (See Section 2.8
for a discussion of SHM+.)

The remainder of the paper includes Sec-
tion 1, which defines parameters for com-
parison of the models, Section 2, in which
the models are individually described, Sec-
tion 3, which provides a tabular comparison
of the systems using the parameters given
in Section 1 and discusses possible meas-
ures for the goodness of such models, and
Section 4, which briefly enumerates some
future goals for researchers in this and
closely related areas.

1. BASIS OF COMPARISON

The recent boom in the development of
semantic data models might lead one to
believe there is no basis of comparison for
this large and seemingly disparate col-
lection. Authors who have attempted to
provide some basis for comparison have
usually created classes of semantic models.
For example, Brodie [1984] groups the
models into extensions of classical models,
mathematical models, irreducible data
models, static semantic hierarchy models,
and dynamic semantic hierarchy models.
Tsichritzis and Lochovsky [19821 classify
models as traditional, entity-relationship,
binary, semantic network, and infological
data models. Hull and King [1987] take a
slightly different approach: A model con-
structed with fundamental semantic data

ACM Computing Surveys, Vol. 20, No. 3, September 1988

160 . J. Peckham and F. Maryanski

In this spirit, the following characteris- relationships have distinct presentations
tics are identified as being fundamental to from those of the WRITER and PUB-
semantic data models. HOUSE entities. In this case the user of

(1) Representation of Unstructured Ob-
jects. Unstructured data types are defined
in Tsichritzis and Lochovsky [1982] as low-
level or primitive types that are not con-
structed through aggregation of lower level
types. Strings, integers, and reals are ex-
amples of low-level types. Data types of
this nature typically are directly supported
in the hardware of the underlying computer
system. Some models developed for specific
applications [Christodoulakis et al. 1986;
Su 1983; Woelk et al. 19861 provide primi-
tives more elaborate than those presented
by most machines or compilers. Examples
are types to support statistical, text, voice,
and image data.

the system will view the relationship as a
simple connection between two types, and
not as a separate entity or attribute as
above.

Functional representation is obtained
by permitting specification of relationships
of objects through functional definitions in
the data definition language. For example,
the statement

DECLARE AUTHOR (BOOK)
cc > > WRITER

permits the designer to define a relation-
ship between BOOK and WRITER types
in which the AUTHOR of a given BOOK
object is a function of the BOOK object
and is a WRITER object. Within the sys-

(2) Relationship Representation. Rela- terns surveyed, we shall find examples of
tionships are analyzed in terms of their each approach.
presentation to the-modeler. Conceptually,
the relationship construct may appear in
the model as an attribute, entity, indepen-
dent element, or function. A relationship
embodied by attributes is one in which the
attribute of one object is connected to,
points to, or is derived from another object.
For example, if the AUTHOR attribute in
a BOOK type is defined to be of type
WRITER, where WRITER is an entity
type, then the relationship between BOOK
and WRITER is represented through the
attribute of the BOOK entity.

A relationship is presented as an entity
if the relationship of two or more objects
conceptually describes a distinct model ob-
ject. For example, we may choose to repre-
sent the REVIEW relationship between
REVIEWER and BOOK as an entity in the
model, having NAME (of the reviewer) and
TITLE (of book), as well as RATING and
DATE (of the review), as attributes.

Relationships can also be viewed as in-
dependent objects distinct from entities.
This does not imply that the physical da-
tabase represents relationships and entities
with different structures, but at least on
the conceptual level, entities are viewed as
separate from relationships. For example,
in Figure 4, the WROTE and PUBLISHED

(3) Standard Abstractions Present. As
discussed in the Introduction, the abstrac-
tions that have most frequently been iden-
tified for use in semantic databases are
classification, generalization, aggregation,
and association.

(4) Networks or Hierarchies of Rela-
tionships. Virtually all semantic data
models offer a diagrammatic construct for
the conceptualization of a schema. In most
such models, this diagram represents the
fundamental modeling abstraction of the
model. The most common example is a
generalization/specialization graph (or
IS-A diagram) representing the derivation
of object types. The nature of the graph
(network versus hierarchy, cyclic versus
acyclic) plays an important role in the char-
acterization of the data model. The graph-
ical expression of a model’s fundamental
abstractions may take on forms other than
the IS-A diagram. For example, the situa-
tion given in Figure 2 could be expanded
into the aggregation hierarchy of Figure 5,
where PUBLICATION is an aggregation
of TITLE and AUTHOR, with AUTHOR
defined as an aggregation of NAME,
INCOME, and STIPEND. Other models,
such as the entity-relationship model

ACM Computing Surveys, Vol. 20, No. 3, September 1988

PUBLICATION

TITLE AUTHOR

NAME INCOME
STIPEND

Semantic Data Models l 161

[Chen 19761, support only networks of re- general object are passed on to the more
lationships, as illustrated in Figure 6. With specific object. This can be thought of as a
this approach, no provision exists for the trivial derivation in which the computation
expression of a hierarchical structure is the identity function; that is, if PUBLI-
among relationships (although it may be CATION is defined to be a supertype of
present in an implicit sense). In Section 3, BOOK and if the attribute TITLE is as-
each model is examined for the extent to sumed to be inherited from PUBLICA-
which hierarchies (versus networks) are TION by BOOK, then this can also be
used as organizational structures. thought of as a derivation where

(5) Derivation/Inheritance. There are
two means by which semantic models han-
dle repeated information within the data-
base schema: semantic connections and
derivation. Repetition within individual ob-
ject types is handled by defining two sepa-
rate types with semantic connections
between them, thus limiting the degree of
redundancy (see Section 2.5). Repetition
between types is handled with derivation,
which is the means by which the attributes
of one object are computed or inherited
from other objects. Alternatively, class at-
tributes can be used to hold derived infor-
mation about a class of objects taken as a
whole. For example, the class attribute
AVERAGE-SALES for the type BEST-
SELLER can be computed as the mean of
the mean of the number of SALES for all
entries in BEST-SELLER.

BOOK.TITLE = PUBLICATION.TITLE

Inheritance in a generalization hierarchy
is the means by which attributes of a more

Multiple inheritance is the mechanism
by which objects in a generalization/spe-
cialization hierarchy are permitted to in-
herit properties from multiple higher level
objects. This is convenient for some appli-
cations but can be difficult to control. The
trouble arises when one specialized object
inherits the same property from two higher
level objects. Consider the generalization/
specialization and aggregation hierarchies
of Figure 7. The LITERARY-FIGURE
type represents those individuals who are
both writers and reviewers. LITERARY-
FIGURE is a specialization of both
WRITER and REVIEWER and therefore
inherits properties from both. REVIEWER
and WRITER both have a STIPEND at-
tribute; an inheritance conflict can arise
since REVIEWER.STIPEND refers to the
amount of money the person receives for

Figure 5. Aggregation hierarchy.

ACM Computing Surveys, Vol. 20, No. 3, September 1988

162 l J. Peckham and F. Maryanski

PERSON

I BOOK &EM PUB-HOUSE

REVIEWER

Figure 6. Relationship network.

reviewing a book, and WRITER.STIPEND
refers to the sum tendered when a book is
written. A semantic model can either pro-
hibit the use of multiple inheritance or offer
built-in mechanisms for handling conflicts
that may arise.

(6) Insertion/Deletion/Modification Con-
straints. The insertion and deletion con-
straints used to maintain the integrity of
the semantic database form one of its most
important features. The specification of
these constraints is the physical and oper-
ational interpretation of the semantics of
the model. If objects are connected through
relationships, then the insertion, deletion,
or modification of one object will impact
the existence status of other objects con-
nected to it.

It is important that the relationships of
the model clearly reflect the semantics of

the relationship to the database designer
and end user; that is, all users should have
a clear notion of the consequences of data-
base manipulation. Unforeseen side effects
are clearly not desirable. For example,
IS-A is a commonly used generalization
relationship. If BOOK IS-A PUBLICA-
TION, then when a PUBLICATION ob-
ject is removed from the database, the
corresponding BOOK object will also be
removed. These semantics of the IS-A re-
lationship should be clearly conveyed to the
designer and user of the model. Alterna-
tively, some models permit the designer to
specify the insertion/deletion/modification
semantics of relationships.

(7) Degree of Expression of Relationship
Semantics. Some models leave the expres-
sion of the semantics of cardinality, null
values, inverse relationships, derivations,

ACM Computing Surveys, Vol. 20, No. 3, September 1988

I LITERARY _
FIGURE

inheritance (partial/full or over relation-
ships other than those representing gener-
alization), or default values to the designer.
Other models completely define the behav-
ior of one or more of these features. The
amount of flexibility, and consequently re-
sponsibility, given to the designer by the
model serves as an important discriminant
among models.

(8) Dynamic Modeling. Dynamic model-
ing refers to the description of the semantic
properties of database transactions. The
counterpoint to dynamic modeling is static
modeling, which entails the description of
the properties of the data objects and rela-
tionships. In most projects, research on se-
mantic data models has emphasized the
static aspect. However, a minimal degree of
dynamic modeling, such as the specifica-
tion of insertion and deletion constraints,
the handling of pre- and postrequisites,
error recovery, and transaction definition,
appears in most modeling systems.

Some models take a more active role in
helping the user define higher level opera-
tions and transactions. In certain ap-
proaches this is provided only on the level
with the objects that they modify. In others,
modeling primitives are defined on the ba-
sis of object-oriented models in which op-
erations are encapsulated with the objects

Semantic Data Models l 163

Figure 7. Multiple inheritance.

they modify. See Dittrich [1986] for a gen-
eral description of object-oriented data
models and Dayal and Dittrich [1986] for
details on several specific models. Never-
theless, the emphasis in these models lies
with the static object as opposed to the
dynamic transaction. In addition to the
object-oriented viewpoint, some models
support a generalization hierarchy ap-
proach, which is data driven, or a flow-
of-information approach, which is more
temporal than data driven.

A few models have taken the description
of transactions a step further by applying
their primitive modeling abstractions to
transactions. These models support the de-
velopment of complex transactions for
more primitive ones by use of specialization
or aggregation. Discussions of specific ap-
plications of these techniques appear in
Section 3. Related information modeling
systems that support combining static and
dynamic aspects but fall outside of the
scope of this paper include NIAM [Verhei-
jen and Van Bekkum 19821 and ISAC [Olle
et al. 19821.

1.1 Library Example

A consistent example is used in the pres-
entation of the various models considered
in this paper in order to provide the reader

ACM Computing Surveys, Vol. 20, No. 3, September 1988

164 . J. Peckham and F. Maryanski

with an informal means of comparing the
models. The example serves to highlight
certain interesting features of particular
models. The role of the example is peda-
gogical, and therefore there is no intention
of presenting a comprehensive description
of all aspects of a library database. Ele-
ments of the database that would be mod-
eled by a repetition of features already pre-
sented are not included since they would
not add to the reader’s comprehension of
the models.

The enterprise selected for the example
is a library. In order not to bias the reader
toward one modeling methodology and not
to make any assumptions as to the reader’s
prior experience with data models, the in-
formation about the library is presented in
textual form. Assume that the statements
given here were obtained as a result of
interviews with the library staff, with some
database terminology inserted by the in-
terviewer. For each semantic data model
presented in Section 2, we develop a con-
ceptual model of the library based on the
following statements:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

A PUBLICATION entity has TITLE
and AUTHOR attributes.
BOOKS, JOURNAL-PAPERS, and
CONFERENCE PAPERS are partic-
ular kinds of PUBLICATIONS.
A BOOK entity has SALES, TOPIC,
AUTHOR, PRICE, PUBLISHER,
INTEREST-INDEX, and ACQUI-
SITION-PRIORITY attributes.
A BEST-SELLING-BOOK has
SALES greater than 10,000.
A WRITER entity has INCOME,
NAME, and STIPEND attributes.
The AUTHOR attribute of BOOK is
of type WRITER.
A PUB-HOUSE entity has NAME
and GROSS attributes.
A PERSON entity has a NAME at-
tribute.
A REVIEWER entity has a STI-
PEND attribute.
A LITERARY-FIGURE is both a
WRITER and a REVIEWER.

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
(22)

A BORROWED entity has PUBLI-
CATION and DUE-DATE attri-
butes.
A LIBRARY entity has ACQUISI-
TIONS and ORDERED-PUB-LIST
attributes.
The set of DATABASE-BOOKS
contains all BOOKS with TOPIC =
DATABASE and also has a TOTAL-
COST attribute.
The set of AI-BOOKS contains all
BOOKS with TOPIC = AI.
The BOOKS in the set of GOOD-
BOOKS are identified by the end
user.
The set DB-AI-GROUP-BOOKS
consists of BOOKS in both DATA-
BASE-BOOK and AI-BOOK.
All BOOKS in the set RESEARCH-
GROUP-COLLECTIONS are
GOOD-BOOKS.
WROTE is a relationship between
BOOK and AUTHOR.
PUBLISHED is a relationship be-
tween BOOK and PUB-HOUSE.
REVIEW is a relationship between
BOOK and REVIEWER with attri-
butes RATING and DATE.
A REVIEWER is a PERSON.
HOLD is a relationship between
BOOK and LIBRARY.

2. REPRESENTATIVE SEMANTIC MODELS

In the following sections, a number of se-
mantic data models selected to represent
the various major approaches to conceptual
modeling are discussed. Salient features of
each model are mentioned, and each is ana-
lyzed using the parameters of comparison
discussed in Section 1.

2.1 Entity-Relationship Model

The entity-relationship (E-R) model
[Chen 19761 is an early semantic data
model that unifies features of the tradi-
tional (as defined in the Introduction)
models to facilitate the incorporation of
semantic information. As indicated by the

ACM Computing Surveys, Vol. 20, No. 3, September 1988

Semantic Data Models . 165

a BOOK 1

I REVIEWER

a PUB-HOUSE

Figure 8. Types and attributes in the E-R model.

name, the two primary modeling constructs
are the entity and the relationship. From a
conceptual perspective, the enterprise
being modeled is viewed as a collection of
entity and relationship types represented
graphically (similar to the network model).
At the representational level, the informa-
tion structures for entity and relationship
instances strongly resemble relations.

Figure 6 in Section 1 presents an E-R
diagram for a portion of the library data-
base. Figure 8 graphically depicts the attri-
butes of the entity and relationship types.
From a very abstract viewpoint, as in Fig-
ure 8, a relationship exists between a type
and its attributes. Although not defined
as such in discussions of the entity-
relationship model, the relationship be-

tween a type and its attributes presents the
same abstraction as aggregation to the data
modeler.

The E-R model provides strong support
for a multiplicity of constraints. The
characters 1,&Z, and /iin Figure 6 indicate
the cardinality of the relationship defined
by the arc on which they appear. Aand -4
denote many. Hence the model explicitly
supports one-to-one, one-to-many, and
many-to-many relationships. Insertion/
deletion constraints are defined using ex-
istence dependencies. In Figure 6, the
existence of REVIEW entities depends on
the existence of a BOOK entity. Thus,
if a BOOK entity is deleted, all related
REVIEW entities will also disappear from
the database. The existence dependency is

ACM Computing Surveys, Vol. 20, No. 3, September 1938

166 l J. Peckham and F. Maryanski

represented by enclosing the dependent
entity (REVIEW) within a double rectan-
gle, then inserting the label E on the rela-
tionship diamond (IS-REVIEW-OF), and
including an arrow pointing to the depend-
ent entity (REVIEW). The dependent en-
tity type is known as a weak entity in
entity-relationship terminology.

The identification of entities can depend
upon the nature of the relationships in
which the entity participates. Normally, an
entity can be uniquely identified by the
values of some set of its attributes, that is,
NAME of WRITER. The identification of
other entities, however, may depend on the
relationship with other entities. For ex-
ample, in Figures 6 and 8, a SEARCH-
REQUEST entity, which consists of
TITLE, DATE, and SOURCE, does not
have a unique identification of its own but
must be referenced through the PERSON
entity via the REQUESTED relationship.
Again, in Figure 6 the presence of an iden-
tification dependency has a graphical
representation and is denoted by the
double rectangle around the SEARCH-
REQUEST entity, the arrow on the
relationship arc, and the ID in the relation-
ship box.

The only abstraction directly supported
in the original E-R model is aggregation,
although there are proposed extended
models that include generalization [Teory
et al. 19861. A variety of extensions to and
applications of the E-R model appears in
Chen [19851, March [19881, and Spaccapie-
tra [1987]. The major contribution is that
it was one of the first models attempting to
provide multiple abstraction levels by com-
bining the best features of the network and
relational models. Descriptions of similar
models can be found in Pirotte [1977] and
Tsichritzis and Lochovsky [19821.

2.2 TAXIS

TAXIS [Borgida et al. 1984; Mylopoulos et
al. 1980; Nixon et al. 1987; O’Brien 1983 is
a language for the design of interactive
database systems that places emphasis on
classification and generalization/speciali-
zation abstraction hierarchies. The data
model combines ideas from programming

language and database theory in order to
support the following capabilities:

(1)

(2)

(3)

Data encapsulation. The operations on
database objects are included in their
definitions.
Semantic data modeling. Specialization
is extended from the static to the dy-
namic portion of the database defini-
tion. This includes the modeling of
transactions and exception-handling
operations. Examples are given below.
Embedded database types and opera-
tions. The database types, classes in the
TAXIS terminology, and their opera-
tions, transactions, can be embedded in
existing higher level languages (e.g.,
Pascal).

The result is a highly structured model,
providing integrated modeling constructs
for the static and dynamic portions of
databases. Generalization/specialization
serves as the fundamental organizing ab-
straction of the TAXIS modeling approach.
This conceptual abstraction takes the form
of an IS-A hierarchy when presented
graphically as in Figure 1. In that figure,
BOOK IS-A PUBLICATION and thus in-
herits all properties of BOOK. In addition,
BOOK will take on its own properties. The
definition of the TAXIS BOOK class ap-
pears below:

dataclass BOOK with
attributes

AUTHOR: set of WRITER,
SALES: 0...99999999;
TITLE: string;
PUBLISHER: PUB-HOUSE;
BORROWER: set of PERSON;
REVIEWERS: set of REVIEWER,
REVIEWS: set of REVIEW;

end BOOK;

TAXIS permits multiple inheritance. As
mentioned in Section 1, this can cause
problems if not properly handled. TAXIS,
however, provides for the resolution of in-
heritance conflicts through its exception-
handling mechanism, which is described
shortly.

One special feature of TAXIS is the mod-
eling of the dynamic portion of the database
using specialization. The notion of classes

ACM Computing Surveys, Vol. 20, No. 3, September 1988

is also applied to the definition of transac-
tions. Consider the OBTAIN transaction
for the PUBLICATION class:

transaction OBTAIN with
parameters

p: PUBLICATION;
1: LIBRARY;

prerequisites
Not-in-library?: (p not-in l.acquisitions);
Not-yet-ordered?: (p not-in l.ordered-

pub-list);
actions

al: add p to the l.ordered-pub-list;
end OBTAIN;

In a TAXIS transaction, the prerequi-
sites serve as preconditions that must eval-
uate to “TRUE” in order for the actions to
execute. In this example, the prerequisites
verify that the object p does represent a
publication already in the library or on
order. As a result of this transaction, the
publication is placed on the ordered list for
processing by the purchasing department.
Since the purchasing of a book involves
specific operations, such as checking
the price and submitting a book order
to the publisher, a transaction that pro-
cesses the purchase of a new book can be
created by specializing the OBTAIN trans-
action as illustrated below. The specialized
version of OBTAIN is executed if the object
passed as parameter p is of type BOOK.

specialize OBTAIN (p: BOOK)
add
prerequisite

Cost-reasonable?: (p.price < = 50);
action

a4: order-book (p, p.publisher);
end OBTAIN;

The technique of specialization is ex-
tended to encompass the modeling of
exceptions as well. A general exception
handler is defined for each transaction
specifying general actions upon any excep-
tion. Specialized exceptions can be associ-
ated with the general exception handler
defining actions for particular exception
types. For example, a general exception
handler may be defined for the OBTAIN
transaction, with specialized exception
handlers to perform specific actions for
each exception type. Figure 9 presents a

Semantic Data Models l 167

hierarchy of exceptions for the OBTAIN
transaction. The modification of the trans-
action to include exception handling and a
sample exception handler is as follows:

transaction OBTAIN with
parameters

p: PUBLICATION;
1: LIBRARY;

prerequisites
Not-in-library?: (p not-in l.acquisitions);
Not-yet-ordered?: (p not-in lordered-

pub-list);
actions

al: add p to the l.ordered-pub-list;
for exception e in OBTAIN-EXCEP-

TION with pub c-p, lib C-1

use EX-HANDLER (e);
end OBTAIN;

Script class EX-HANDLER (e: book-out-of-
print)

transitions
send message;

actions
inform user that book is out of print

end,

The BOOK-OUT-OF-PRINT exception
would arise if the OBTAIN transaction
were called with an unsuccessful candidate
as a parameter. Exception handlers are
realized in TAXIS as scripts, which are
generalized processes with explicit com-
munication and synchronization mecha-
nisms. The communication aspects of
scripts are of interest here since exceptions
frequently result in the display of a message
to the user.

In conclusion, TAXIS is a system in
which classification and generalization
hierarchies are emphasized and extended
to the dynamic portion of the database. A
distinguishing characteristic of the system
is the use of database abstractions to model
exception handlers and transactions.

2.3 SDM

Many of the models considered in this sur-
vey offer the modeler a small set, typically
one or two, of fundamental abstractions.
Recall the E-R model with entities and
relationships and TAXIS, which provides
classes and generalization/specialization
hierarchies. SDM [Hammer and McLeod

ACM Computing Surveys, Vol. 20, No. 3, September 1988

168 . J. Peckham and F. Maryanski

INCORRECT

ORDER

r
NO 7 DISCOUNT

-

BUDGET

CUT

Figure 9. Exception hierarchy.

19811 takes a different approach by incor-
porating a wide range of modeling con-
structs into a single abstraction, the class.
The intent is to permit the database de-
signer to express the “meaning” of the da-
tabase clearly with mechanisms designed to
map directly onto the designer’s concepts.
Where most other semantic models provide
primitives from which the designer can
construct more complex conceptual objects,
SDM attempts to offer a full set of model-
ing facilities. In keeping with semantic
modeling philosophy, one objective is to
permit flexible and multiple views of the

ACM Computing Surveys, Vol. 20, No. 3, September 1988

data and at the same time carefully control
the repetitive modeling effort that arises
from such requirements. Aggregation, gen-
eralization, classification, association, and
derivation are all used to attain these
objectives.

Classification and association have
greater emphasis in SDM than aggregation
and generalization. An SDM database is a
collection of entities (instances) organized
into classes, or types. The designer defines
classes and within this framework specifies
member and class attributes, interclass
connections, and derivations. This is

Semantic Data Models l 169

different from models with entity and re-
lationship definitions in that the focus is
upon the definition of the class itself and
not its links to other classes via an E-R
diagram or an IS-A hierarchy.

Another example from the library data-
base illustrates the SDM approach. Assume
the definitions of BOOK and DATA-
BASE-BOOK given below. The descrip-
tion of BOOK contains only member
attributes that reflect the properties of
individual books. DATABASE-BOOK,
however, contains an interclass connec-
tion description and class attributes, in
addition to its member attributes. The in-
terclass connection description indicates
that DATABASE-BOOK is a subclass of
BOOK, where database is an element of
BOOK.Topic. The class attributes describe
properties of the class as a whole.

BOOK
description: all books within the library mem-

ber attributes:
Title

value class: STRINGS
Author

value class: PERSON
Publisher

value class: PUB-HOUSE
Price

description: price of book at library rate
value class: DOLLARS

Topic
value class: TOPICS

Interest-Index
value class: INTEGERS

Acquisition-priority
value class: INTEGERS
derivation: order by decreasing Interest-

Index within BOOK.
identifiers

Title

DATABASE-BOOK
description: all database books within the

library interclass connection: sub-
class of BOOK where

BOOK.TOPIC = ‘database’
member attributes:

Subtopic
value class: DB-SUB-TOPICS

class attributes:
Total-cost

value class: DOLLARS
derivation: sum of Price over mem-

bers of this class

As illustrated by Total-cost and Acqui-
sition-priority above, the values assumed
by attributes can be computed from any
other information in the database schema
using a sophisticated collection of deriva-
tion primitives such as statistical, Boolean,
and ordering computations and recursive
schema tracing capabilities.

Two types of interclass connections, sub-
type and group, can be specified in a class
definition. The subtype and grouping con-
nections are used to handle generalization
and association abstractions, respectively.
As in most systems having a generaliza-
tion hierarchy, inheritance of attributes is
included. Since multiple inheritance is per-
mitted, rules are specified to handle inher-
itance conflicts that may arise when two or
more supertypes of a type define an attrib-
ute with the identical name but some dif-
ferences in the values class or derivation.
Attributes may be specialized as one moves
down the generalization hierarchy. In the
above definition, DATABASE-BOOK is a
subtype of BOOK. As an alternative, sub-
types may be defined in which membership
is explicitly stated by the user as in

GOOD-BOOKS is a subclass of BOOK
to be specified by the user.

Membership in other classes can also be
used to specify a class as follows:

DB-AI-GROUP-BOOKS is defined as a
subclass of BOOK
where class membership is defined as
books that are in the classes DATA-
BASE-BOOKS and AI-BOOKS.

The grouping connection is used to spec-
ify classes that consist of groups of objects,
again either user or constraint specified. As
an example, the definition of RE-
SEARCH-GROUP-COLLECTIONS ap-
pears below:

RESEARCH-GROUP-COLLECTIONS
interclass connection: grouping of BOOK as

specified
member attributes:

Good-book-list
description: the good books that are in

the collection (if any)
value class: BOOK
derivation: subvalue of Contents where is

in GOOD-BOOKS
multivalued

ACM Computing Surveys, Vol. 20, No. 3, September 1988

170 l J. Peckham and F. Maryanski

The inter&us connection statement
specifies that the elements of the second
research group’s collection are user speci-
lied. In this case the collection contains the
books selected by the members of the re-
search group. Good-book-list is a multi-
valued, derived, member attribute that
contains the set of those selected books
that are also classified as good books.
Contents is a multivalued member attribute
that is automatically established for each
grouping class. The value of this attribute
is the collection of members of the class
underlying the grouping that forms the con-
tents of that member. In this example each
member of the grouping RESEARCH-
GROUP-COLLECTIONS, that is, the
collection of books in each research group,
has as the value of its Contents attribute
the set of books selected by the users in
that research group. The derivation state-
ment for the good-book-list attribute
identifies those members of the Contents
attribute set that are also in the GOOD-
BOOK class.

SDM employs the class abstraction as
its primary conceptual modeling vehicle.
Whereas classes effectively represent enti-
ties when using the SDM approach, rela-
tionships are embodied in the interclass
connections that are specified as part of the
class definitions. Within the class abstrac-
tion, SDM offers a rich set of inheritance,
constraint, and derivation options. A dis-
tinguishing feature of the SDM approach
is the focus on the specification of the class
without the development of hierarchies or
networks presenting interrelationships
among classes, as found in several other
models addressed in this survey.

Although it is generally true that more
primitive modeling constructs do provide
greater versatility, one might argue that the
difference is in emphasis. SDM can be
viewed as providing an extremely rich col-
lection of constructs capable of represent-
ing the user’s view of the data. SDM has
served as a prototype system for other se-
mantic models: Many later systems have
indeed chosen a subset of the SDM offer-
ings to provide useful sets of modeling tools
for specific classes of enterprises and mod-
eling philosophies.

2.4 Functional Data Model

The functional data model [Shipman 19811
was constructed in conjunction with the
data definition language DAPLEX. The
objective was to provide a model and defi-
nition/manipulation language that is ca-
pable of representing applications with
naturalness and simplicity. Most models
use a variety of constructs to provide mod-
eling flexibility. (These constructs are
summarized in Table 1 in Section 3.) The
designers of this system found, however,
that limiting the constructs to entity and
function provide a direct and simple lan-
guage for data definition and manipulation.

In the functional data model, functions
can be used to define the aggregation of
attributes used to form an entity. BOOK
might be defined as

DECLARE BOOK()==>> Entity
DECLARE Title (BOOK) ==> String
DECLARE Publisher (BOOK) ==>

PUB-HOUSE
DECLARE Author (BOOK) ==>>

PERSON

Since Author (BOOK) and BOOK() are
multivalued, ==>> is used to indicate a
multivalued function. Relationships are
also represented functionally. The decla-
ration of Author (BOOK) describes a rela-
tionship between BOOK and PERSON.
Multiple argument functions such as

DECLARE REVIEW RATING (BOOK,
REVIEWER)= => RATING

can be used to represent aggregate rela-
tionships between multiple entities. As
a basis for comparison, the E-R model rep-
resents the above function as a relation-
ship with attributes. REVIEW-RATING
would be a relationship between BOOK
and REVIEWER with a RATING attri-
bute.

The model does not provide explicit
means for generalization and classifica-
tion, although the user may define func-
tions representing these abstractions. The
null function on an entity type returns
theset of elements of that type and

ACM Computing Surveys, Vol. 20, No. 3, September 1988

Semantic Data Models l 171

relationship or connection between them.
The linkage between the relations does not
explicitly appear in the relational scheme.
For example, Figure 3 when considered by
itself without any supporting documenta-
tion does not present an obvious link be-
tween BOOK and WRITER. The semantic
relationship between BOOK.AUTHOR
and WRITER.NAME exists only in the
mind of the user or in the code of an
application program. The relational join
operator is used to associate tuples with
matching values in those fields. In the
relational model, however, a join could
also occur between BOOK.TITLE and
WRITER.NAME since both are text fields.
The result would be technically valid, but
not the realization of the relationship under
consideration.

Although the relational model presents
a well-defined and reasonably straight-
forward conceptual model, its semantic
leaness places a substantial modeling
burden on the end user or application pro-
grammer. RM/T represents a means of en-
hancing the semantic expressiveness of the
relational model while maintaining its
fundamental character. In this spirit, the
RM/T model defines entity and relation-
ship types and the corresponding existence
constraints between them. Entity types are
defined by E-relations, of which there ex-
ists one per type, and P-relations, which
define the properties (attributes) of the
type. An E-relation consists of a single
column holding the systemwide, unique
identifiers for each instance of the entity
type. P-relations are directly associated
with E-relations and hold the value for each
property. Figure 10 presents the E-relation
and a subset of the P-relations for the
BOOK entity.

RM/T represents relationships using
associative entity types for many-to-many
relationships and designative entity types
for many-to-one relationships. In our ex-
ample, the relationship BORROWED be-
tween BOOK and PERSON, which is
many-to-many, appears as an associative
entity type defined in RM/T as appears
below. The BORROWED relation con-
tains references to the appropriate BOOK
and PERSON tuples plus an attribute

therefore provides a form of association.
For example, the set of all books in the
library, is represented as BOOK().

Although the functional data model does
not provide as great a variety of modeling
techniques as other models, it is clear
that the concise and clear representation
of relationships between entities is an ad-
vantage. Buneman and Nikhil [1984] dis-
cuss the functional data language FQL,
in which a small set of functionals is
used to provide a collection of query opera-
tions for the manipulation of functional
databases.

2.5 RM/T

RM/T (Tasmanian model) [Codd 19791 is
an extension of Codd’s relational model
[Codd 19701, attempting to capture more
meaning in a conceptual model through the
introduction of relationships and integrity
rules. The relational model, a brief illustra-
tion of which appears in Figure 3 in the
Introduction, provides a tabular conceptual
model in which all relationships between
the tables (relations) are dynamically
formed on the basis of data values in the
tables.

After the introduction of the relational
model, researchers devoted their energies
to describing forms of the model that guar-
anteed high levels of consistency and pro-
tection from update anomalies [Codd 1970,
1972; Fagin 1977, 19791. But the result of
maintaining higher order normal forms is
usually a collection of relations far more
fragmented than originally defined by the
user and thus less closely related to the
user’s conceptual model.

For example, if the user is inclined to
define a BOOK relation containing tuples
completely describing the book’s author,
the rules defining normal forms will force
the separation of this relation into two
relations, BOOK and WRITER, to provide
a reasonable level of database consistency.
The definition of two separate relations will
permit a change in a field such as the
author’s address to occur in one place with-
out having to update the tuples for all books
written by the author. The user, however,
still views these two relations as having a

ACM Computing Surveys, Vol. 20, No. 3, September 1988

172 . J. Peckham and F. Maryanski

Figure 10. E-relation and P-relations.

BOOK BOOK-ID

AUTH BOOK-ID AUTHOR

TITL BOOK-ID TITLE

PUBL
BOOK-ID PUBLISHER

indicating the number of copies of the book Codd [1979] and Date [1983] contain com-
in the library. plete lists of the RM/T integrity rules.

CREATE E-RELATION HOLD
ASSOCIATING (BOOK VIA BOOK-ID,

LIBRARY VIA LIBRARY-ID);
CREATE P-RELATION PHOLD FOR

E-RELATION HOLD
PROPERTIES (SUR-BOOK

SURROGATE FOR BOOK,
SUR-LIB SURROGATE FOR

LIBRARY);

A given instance of BORROWED can
exist in the database only if, for that
instance, each E-attribute of BOOK and
PERSON either has the null value, or
identifies an existing entity of the appro-
priate type.

CREATE P-RELATION PHOLD-COP
FOR E-RELATION HOLD

PROPERTIES (COPIES DOMAIN
(COPIES));

The relationship between BOOK and
WRITER can be represented by defining
designative reference to entity type BOOK
from entity type WRITER by adding
the “DESIGNATING” phrase to the de-
finition of the E-RELATION BOOK as
shown below. BOOK is then considered a
designative entity type.

The E-attribute of an entity type is the
internal, systemwide, unique tuple identi-
fying attribute. An E-attribute roughly cor-
responds to object identifier in an object-
oriented system. The general form of the
above integrity rule holds for all associative
entity types in the schema. The rule can be
refined so as not to permit nulls. That
option would apply to the BORROWED
type defined here.

CREATE E-RELATION BOOK
DESIGNATING (AUTHOR VIA

WRITER-ID);

RM/T provides numerous built-in integ-
rity rules for the various entity types. The
rule given below [Date 19831 applies to the
BORROWED associative entity type. Both

RM/T provides explicit support for type
hierarchies through its SUBTYPE clause.
In an RM/T type hierarchy, subtypes are
distinguished by the values of specified at-
tributes per Figure 11. The relationship
DATABASE-BOOK IS-A BOOK is ex-
pressed in the definition of the E-RELA-
TION for DATABASE-BOOK as shown
in the following:

CREATE E-RELATION DATABASE-
BOOK SUBTYPE OF BOOK PER

CATEGORY TOPIC:

ACM Computing Surveys, Vol. 20, No. 3, September 1988

Semantic Data Models l 173

PUBLICATION

I TYPE

JOURNAL

PAPER
BOOK

CONFERENCE

PAPER

TOPIC

DATABASE Al

BOOK
BOOK

Figure 11. RM/T type hierarchy.

The phrase “PER CATEGORY TOPIC”
indicates that the value of the TOPIC
attribute determines membership in the
DATABASE-BOOK subtype.

Multiple inheritance may occur in an
RM/T type hierarchy. In a situation of that
nature, RM/T makes the tacit assumption
that no naming conflicts will arise since
none of the explicit integrity rules address
that case.

The orientation of this model is slightly
different from that of other semantic
models. RM/T arose out of the desire to
handle database inconsistencies resulting
from the insertion and deletion of tuples
connected through interrelational depen-
dencies. Thus the model is information
structure oriented, as is the relational
model. Most other semantic data models
provide similar modeling abstractions, but
at the higher, conceptual level distinct from
the underlying information structures.
RM/T presents itself as an enhanced rela-
tional model as opposed to a new approach
to conceptual modeling. RM/T, however,
still qualifies as a semantic model since the
definition of these semantics not only

gives more meaning to these relationships,
but provides the data structures neces-
sary to utilize the usual data modeling
abstractions.

2.6 SAM*: A Semantic Association Model

SAM* [Su 19831 is a semantic model de-
signed originally for scientific-statistical
databases and later extended to explicitly
support computer-intergrated manufactur-
ing applications. Since SAM* was designed
for a particular set of applications, it is
characterized by its support for nontradi-
tional object types and relationships lend-
ing themselves easily to the design of these
databases. The general organization of a
model constructed with SAM* is a network
of atomic and nonatomic concepts (or ob-
jects). The nonatomic constructs are de-
signed through recursive nesting to provide
a well-structured and semantically consist-
ent approach to object type definition. On
the lowest level, concepts are represented
with a set of abstract data types. The ex-
pansion to this set of types from the usual
strings and numerals was done for the

ACM Computing Surveys, Vol. 20, No. 3, September 1988

174 l J. Peckham and F. Maryanski

PUBLICATION (G)

Figure 12. G-relation.

following reasons:

CONFERENCE

PAPER

DATE

(1) To provide object types that corre-
spond exactly to those seen by the user
as the most primitive units of the ap-
plication.

(2) To provide well-defined operations on
the units of information that corre-
spond to the actions occurring in the
problem domain.

Both of the above provide more efficient
use of the designer’s energies since time
does not have to be spent building the high-
level constructs from more primitive types.

As a result of an analysis of the require-
ments of the computer-integrated manu-
facturing environment [Su 19861, the
following types and their operations are
built into SAM*:

(1) sets (ordered and unordered),
(2) vectors and matrices,
(3) time and time series,
(4) text,
(5) G-relations (generalized relations).

The G-relation of SAM* is an extended
relation whose attributes may be of any
valid SAM* type, including relation. Sub-
typing of G-relations occurs by organizing
types hierarchically into a semantic net-
work. The mapping involves implicitly
embedding G-relation types within the def-
inition of other G-relation types. For ex-
ample, the G-relation for PUBLICATION
pictured in Figure 12 captures the fact
that CONFERENCE PAPER, JOURNAL
PAPER, and BOOK relations are speciali-
zations of PUBLICATION.

SAM* provides the designer with seven
built-in relationships (associations in

ACM Computing Surveys, Vol. 20, No. 3, September 1988

BOOK

TITLE AUTHOR

JOURNAL

PAPER

JO”FwAL ISSUE

SAM* terminology) that can be organized
into networks to model the semantics of a
particular enterprise. These seven relation-
ships appear below [Su 19861. Several have
appeared in prior models and therefore
receive only cursory mention here.

(1) Membership: “is member of.”
(2) Aggregation: Defined in the Introduc-

tion.
(3) Interaction: Used to model arbitrary

relationships, in the E-R sense. Pro-
vides cardinality and referential integ-
rity constraints.

(4) Generalization: Enhanced version of
generalization with mutual exclusion,
set equality, set-subset, and set inter-
section constraints on the sibling types
of a parent in the generalization hier-
archy. Figure 13 illustrates the mutual
exclusion constraint, which indicates
that a PUBLICATION must be one of
either a BOOK, JOURNAL-PAPER
or a CONFERENCE-PAPER, and the
set intersection constraint, which in-
dicates that a BOOK could be consid-
ered both an AI-BOOK and a DATA-
BASE-BOOK. In the diagram, a 9
node represents generalization, and an
&node connotes aggregation.

(5) Composition: “is part of.”
(6) Cross product: Grouping among types

whose instances are the result of taking
the cross product of the instances of
the component types in order to sup-
port statistical analysis by the sum-
marization association defined next.

(7) Summarization: Supports statistical
aggregation and disaggregation. By

Semantic Data Models l 175

- PUBLICATION

Figure 13. SAM* generalization hierarchy.

AVG-SALES TOTAL-INCOME

TITLE PRICE NAME GROSS INCOME NAME STIPEND

Figure 14. Cross product and summarization.

combining cross product and summa-
rization, the designer can create statis-
tical entities using attributes from
several distinct entity types. Figure 14
illustrates a grouping that permits the
gathering of summary statistics on fi-
nancial aspects of publishing.

SAM* is oriented toward applications
such as statistical databases and CAD/
CAM, which involve nontraditional data.
A number of distinct data types exist as
primitives in SAM*. Furthermore, the
G-relation provides explicit support for the

representation of a wide diversity of infor-
mation. The modeling constructs of SAM*
were selected after an evaluation of the
requirements of the conceptual modeling
needs of the CAD/CAM environment. The
developers of this model have implemented
a prototype database management system
IDMAS, based upon the SAM* model in
order to evaluate the applicability of
the modeling techniques to the computer-
integrated manufacturing application do-
main [Krishnamurthy et al. 19871. An
enhanced model and system are presently
at the design stage.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

176 . J. Peckham and F. Maryanski

2.7 The Event Model

The event model [King and McLeod 1984,
19861 is a semantic data model providing
Support for generalization via functions,
and aggregation through attributes. An in-
teresting aspect of this model is its ap-
proach to dynamic modeling.

In the event model, a subtype relation-
ship is used to organize the static schema
into a set of hierarchies. Membership in
a subtype is defined using predicates
evaluated on attributes. For example, if
DATABASE-BOOK is a subtype of
BOOK, then a predicate would be specified
within BOOK, defining the members of
BOOK that qualify. For example,

Subtype: DATABASE-BOOK
all BOOK where topic = “database”.

The attribute constraints listed below are
built into the model [Farmer et al. 19851:

(1) Primary: The attribute uniquely iden-
tifies the object.

(2) Ordered: The attribute may serve as a
sort key.

(3) Single valued: The attribute has an
atomic element as its value.

(4) Multivalued: The attribute may have a
set as its value.

Thus, the semantics of an attribute de-
pend on the constraints imposed by the
schema designer in the definition of the
attribute type. This provides the designer
an additional degree of freedom. The defi-
nition of the BOOK type illustrates the
static modeling facility of the event model:

TYPE: BOOK
primary attributes: ISBN-string (singled

valued, nonnull)
dependent attributes:

AUTHOR-WRITER (multivalued, non-
null, ordered)

SALES-integer (single valued, ordered)
TITLE-string (single valued, nonnull,

ordered)
PUBLISHER-PUB-HOUSE (single

valued, nonnull, ordered)
BORROWER-PERSON (multivalued)
REVIEWERS-REVIEWER

(multivalued)
REVIEWS-REVIEW (multivalued)
TOPIC-string (multivalued, ordered)

The methodology for interactive dy-
namic model design consists of a sequence
of design phases that describe the dynamic
structures (events) of the application. In
the first phase of event design, a process of
stepwise refinement is used to define the
functions of the application environment.
These are represented as a hierarchy of
process and function links. Process events
correspond to units of processing within
the application environment. Function
links are used to represent a hierarchy of
events. A function link is defined between
two events if one individual person or pro-
cedure is responsible for both or if one is
logically embedded in the other. Figure 15
provides an example of events in the
procurement of books. This methodology
bears some resemblance to many EDP
systems analysis techniques. The integra-
tion of this systems analysis approach with
methods of conceptual data modeling dis-
tinguishes the event model from both
other semantic models and classical EDP
approaches.

Next, directed communication links are
used to form paths indicating the flow of
information in the database, as in Fig-
ure 16. The resulting diagrams resemble
state diagrams or Petri nets, but they are
presented at a more concrete level. Fig-
ure 16 shows the information flow for
Obtain-publication. The last step includes
resolving ambiguities and refining the
design.

As the authors point out, this model is
not appropriate for applications in which
the flow of information is not fixed or rou-
tine. This model, however, does present a
higher level modeling methodology for the
dynamic aspects of databases when the be-
havior of the model is reasonably predict-
able. The design philosophy of this model,
indicating not only the mechanism but the
sequence by which information is extracted
from the designer, could be extended to
static modeling as well. If it aids a designer
in specifying the semantics of an applica-
tion, such a philosophy is well worth in-
cluding in the model definition.

Ongoing work using the event model in-
clude Sedaco [Farmer et al. 1984, 19851, a
tool for semantic database construction

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Semantic Data Models l

/ \ OBTAIN-TECH-REPORT OBTAIN-TECH-REPORT

OBTRIN-BOOK

RCCEPT- RCCEPT-
REQUEST REQUEST

REJECT-REQUES” REJECT-REQUES”

ORDER-BOOK ORDER-BOOK ORDER-REQUEST ORDER-REQUEST

LOCATE-ADDRESS LOCATE-ADDRESS

Figure 15. Figure 15. Specification of functional links. Specification of functional links.

OBTRIN-PUBLICATION

OBTAIN-BOOK DBTRIN-TECH-REPORT

1 1

k LOCATE- DORESS

FIG EPT-REQUEST

\\

REJECT-REQUEST

4
3

ORDkR-BOOK INSTALL-REPORT

Figure 16. Flow of information.

identifying primitives to be used in data- 2.8 SHM+
base implementation, and Sembase [King
19841, a semantic database management Like the previous model, SHM+ [Brodie
system utilizing a graphics-based user 1984; Brodie and Ridjanovic 19841 ad-
interface. dresses the problem of modeling both the

ACM Computing Surveys, Vol. 20, No. 3 September 1988

178 . J. Peckham and F. Maryanski

OBTAIN-TECH-REPORT

INSTALL-REPORT

LOCATE-ADDRESS
1

ORDER-REQUEST

1 1

TECH-REPORT TECH-REPORT TECH-REPORT

Figure 17. Sequential scheme.

static and dynamic portions of an applica-
tion. Specification of data objects and as-
sociated transactions are performed using
an abstract data type philosophy and a
related modeling methodology. Object and
behavior schemes, an alternative to rela-
tional tables and entity-relationship dia-
grams, are used to capture the object and
operation schemas from the designer.
These schemes are used to model both
higher and lower level data, relationships,
and operation objects, thus providing a
unified structure for the expression of the
semantics of the application.

The basic modeling constructs of SHM+
are primitive objects and operations, com-
position rules for hierarchically forming
more complex objects and operations, and
constraints to be applied to all primitives,
composition rules, and hierarchies.

To model the static structure of the ap-
plication, the gross properties of the objects
and structural relationships are collected
by use of object schemes. An example of a
scheme utilizing aggregation is shown in
Figure 2 in the Introduction. Similar
schemes exist for generalization and asso-
ciation.

SHM+ supports inheritance through re-
lationships other than those representing
generalization. If we assume AUTHOR in
Figure 2 refers to another object type, then
the remaining attributes of that type

can be inherited by the aggregate object
PUBLICATION. This model not only en-
courages this perspective but permits the
user to specify to what extent inheritance
should be carried out (i.e., which attributes
of AUTHOR should be thought of as being
part of PUBLICATION). When a gener-
alization hierarchy appears in a design,
SHM+ enforces strict inheritance.

Behavior schemes are the explicit graphi-
cal representation of the gross properties
of SHM+ transactions. The nodes of a be-
havior scheme represent the objects partic-
ipating in the transaction, while the arcs
are labeled by the operations applied to the
objects. The structure of the graph defines
the control flow of the transaction. Figures
17 and 18 illustrate the representation of a
sequential computation and a caselike de-
cision, respectively. The graphical repre-
sentation of these control abstractions is
identical to that used to represent the struc-
tural abstractions of aggregation and gen-
eralization. Thus, SHM+ offers a unified
modeling methodology for both static and
dynamic objects. Figure 19 presents the
SHM+ definition of the OBTAIN-BOOK
transaction.

The most important aspects of the
SHM+ model are its contribution to dy-
namic data modeling and a consistent
modeling methodology for both dynamic
and static schemas. The similarity of the

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Semantic Data Models l 179

URL-REQUEST

REJECT-REQUEST

Figure 18. Case scheme.

BOOK-REQUEST BOOK-REQUEST

I 1 EURL-REQUEST

BOOK:REQUEST

G

Figure 19. Behavior scheme.
REJECT-REQUEST

A BOOK-REQUEST

1

ORDER-BOOK

BOOK-REQUEST BOOK

constructs in Figures 2 and 17 illustrate the
commonality of the approaches to modeling
data and transactions in SHM+. Since the
semantics of database objects always spec-
ify constraints on behavior of the database,
it seems reasonable that the definition of
transactions (dynamic objects also speci-

fying database behavior) should be consid-
ered an integral part of database modeling.

3. COMPARISON OF MODELS

In this section, the objectives and offerings
of the models described in Section 2 are

ACM Computing Surveys, Vol. 20, No. 3 September 1988

180 . J. Peckham and F. Maryanski

compared using the parameters suggested
in Section 1. A technique for assessing the
relative merits of these models is also given.
Since the collection of data models is not
uniform in terms of scope or objective, the
evaluation contains a certain amount of
subjectivity. Nevertheless, we present each
model in terms of our earlier definitions of
a “semantic model.”

3.1 Tabular Comparison

Table 1 summarizes the features of the
models surveyed. Owing to the diversity of
models chosen, the information in the table
is intentionally more general than specific.
More specific parameters would leave many
of the entries empty and would not provide
a good means of comparison, especially
with respect to dynamic modeling. A survey
that limits the types of models compared
to those providing some degree of dynamic
modeling but provides separate detailed
tables for static, dynamic, and temporal
modeling constructs appears in Urban
and Delcambre [19861.

An explanation of the terms used in the
table but not defined in Section 1 follows:

(1) Unstructured object representation is
classified as limited or enhanced, de-
pending on the degree to which the
system provides nontraditional data
types.

(2) Relationship representation is consid-
ered to be independent, entities, tables,
functions, or attributes, depending on
the manner in which the model pre-
sents the relationships to the user. As
mentioned before, many systems offer
multiple relationship views to the user
in the interest of semantic relativism.

(3) We classify the means by which in-
sertion/deletion constraints are of-
fered to the database designer within
a given model as follows: If a user is
provided a set of relationship types,
each of which includes insertionldele-
tion rules, then we shall consider these
rules built in. If these rules are further
maintained automatically by the sys-
tem, then we shall consider them au-
tomatic. If the user is provided with a
choice of insertion/deletion semantics

for each relationship type, then these
constraints are user specified.

Notice that within the table, one finds
a wide variety of modeling techniques.
For example, whereas TAXIS emphasizes
a generalization hierarchy as the major
organizational feature for objects and op-
erations, the entity-relationship model em-
phasizes networks. In this case, the subtle
differences in the properties of hierarchy
and a network have an impact on the ap-
plication of the modeling methodologies.
The absence of cycles in a hierarchy exactly
corresponds to a prohibition against circu-
lar inheritance in TAXIS. Some other ob-
servations follow:

(1) Almost all models include gener-
alization and aggregation as modeling
abstractions. Classification and espe-
cially association seem to be not so widely
acknowledged as fundamental modeling
concepts. Most models tend to build around
a single abstraction. For instance, TAXIS
stresses generalization, whereas SDM
defines all other properties within the class
definition.

(2) Dynamic modeling as an integral
part of the modeling process has gained the
interest of only a handful of semantic model
designers. In two of the three models ca-
pable of handling dynamic modeling,
(TAXIS, SHM+, and the event model), a
specific design methodology seems to be an
integral part of the model; that is, the model
not only provides modeling constructs but
gives the designer a particular sequence
of modeling activities used to specify the
database model.

(3) There is great variety in the defini-
tion of insertion/deletion constraints.
Some models (SAM*, SDM) specify these
constraints as a part of the relationship
definitions, others (functional data model,
entity-relationship model) permit the user
to specify which rules are desired, and still
others (RM/T) permit a mixture of built-
in constraints and user-defined constraints.

(4) There is also great variation in the
support of derivation. Many models offer
inheritance through a generalization rela-
tionship as the only form of derivation,
whereas a model such as SDM provides
many different varieties.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Table 1. Data Model Features

Unstructured
object

representation
Relationship

representation
Standard

abstraction

Network
versus

hierarchy
Derivation/
inheritance

Insertion/
deletion Relationship Dynamic

constraints semantics modeling

Functional

RM/T

SAM*

Event

Enhanced
(special-
purpose
set built
in)

Limited

SHM+ Limited

TAXIS Limited

SDM Limited

Limited

Limited

Independent and
tables

Entity (classes)

Aggregation

Generalization
Aggregation
Classification

Strong
net-
work

Strong
hier-
archy

Independent and
entity
(classes)

Functions

Independent

Independent

Attributes

Attributes, enti-
ties, separate

Generalization
Aggregation
Classification
Association
Association
Aggregation
Classification

Generalization
Aggregation
Classification
Association
Generalization
Aggregation
Classification
Association

Generalization
Aggregation
Generalization
Aggregation

General
hier-
archy
present

No direct
support
for
either

General
hier-
archy
present

Network

Hierarchy

General
hier-
archy

No User specific User select- No
able

Inheritance

Elaborate and
varied

User specific Predefined Transaction model-
except in ing, object oriented
IS-A
hierarchy

Automatic User defined No

Functional

Inheritance

Summation
over classes
inheritance

User specific User defined No

Automatic
and user
specific

Predefined No

Automatic Predefined Object oriented

No Automatic Predefined Transaction modeling

Inheritance over Built in Predefined Transaction modeling
generalization
and
association
hierarchies

182 l J. Peckham and F. Maryanski

(5) Only the most recent or the most
specialized models provide rich sets of data
types for modeling information that cannot

specify the acceptable states, transi-
tions, and responses of the database
system.

be simply coded-in ASCII. As the table -
indicates, this particular sampling of data The model developers vary in their per-

models nrovides few good examples. There ceptions of the following:

is evidence, however,-that work in this di- (1) Whether models should be applica-
rection is continuing [Copeland and Maier tion independent or targeted toward spe-
1984; Woelk et al. 19861. cific environments, such as SAM*.

That the modeling philosophy is very
different for each model is evidenced by the
sections describing each model. Table 1
serves to emphasize these differences fur-
ther. Although most models have been de-
fined to address the general problem of
conceptual modeling, many have been ex-
ercised in particular environments and
have thus assumed characteristics best
suited for those environments. In attempt-
ing to evaluate further the collection of
models, one must decide on the purpose of
the evaluation. Such an evaluation could
proceed from one of two points of view:

(1) categorization of the models with the
intention of identifying similarities and
differences or

(2) selection of a best model for a specific
environment.

In practice, a designer would face the
latter decision. Given the general nature of
this survey, however, we present parame-
ters for categorizing semantic models and
also discuss an approach to picking “the
best model” for a given task.

3.2 Evaluating Semantic Models

Although substantial diversity of concep-
tual modeling approaches exists among the
semantic data models considered, all of
the models’ authors seem to agree that the
main objective is to facilitate the modeling
of and the use of databases. Most agree that
the following contribute to this objective:

(1) A semantic model should provide rela-
tionships between data objects that
support the manner in which the user
perceives the real-world enterprise.

(2) For these relationships a semantic
model should contain semantics that

(2) Whether the relationships should be
highly developed packages, with all seman-
tics (insertion/deletion constraints, cardi-
nality constraints, etc) built in, as in SDM
or SAM*, or whether the database designer
should have the option to specify the se-
mantics of each relationship in an explicit
manner. The entity-relationship model
provides the latter option, since for every
relationship the designer indicates proper-
ties such as cardinality and insertion/dele-
tion constraints.

(3) Whether relationships should be
complex or primitive in their structure. Bi-
nary models [Abrial 1974; Azmoodeh et al.
1986; Bachman 1983; Bracci et al. 19761,
for example, are data models in which all
relationships are constructed from elemen-
tary binary relationships. Brodie [1984]
classifies these as irreducible models since
the information in the model is expressed
with atomic rather than complex groups of
facts. Tsichritzis and Lochovsky [19821
characterize binary models as the elemen-
tary graph-oriented models since the rela-
tionships are usually presented in graph
form (the relational model being the ele-
mentary table-oriented model). To illus-
trate that it is possible to represent complex
relationships using elementary binary re-
lationships, consider an aggregation rela-
tionship used to form entities. For example,
suppose a BOOK entity is composed of the
attributes Title, Page-length, Author (ref-
erence to another entity), and Publisher
(reference to another entity). One might
perceive this as a 1:4 relationship between
BOOK and the four attributes, relating
each BOOK object to one occurrence of
each of the attributes from the four binary
relationships: BOOK-Title, BOOK-Page-
length, and so on. Although it is possible
to construct complex relationships using
a binary model, it can be said that the

ACM Computing Surveys, Vol. 20, No. 3 September 1938

relationships presented to the user are
elementary. This approach is different from
that of a model such as SDM, which offers
built-in higher order relationships.

(4) Whether relationships are distin-
guished from entities at the conceptual
level. In some models, that is, E-R models,
relationships act as primary modeling ele-
ments with different semantics than enti-
ties. On the other hand, in the functional
model, both entities and relationships are
represented as functions.

(5) Which abstractions should be em-
phasized. Certain models stress one or two
abstractions as their primary modeling
tools. SDM, for example, makes heavy use
of classification and aggregation, whereas
TAXIS stresses generalization hierarchies.
Other approaches, such as SHM+, offer a
wider range of abstractions. The developers
of the models that provide a small number
of primary modeling concepts believe that
offering a few powerful options results in a
more straightforward modeling process.

(6) What approach to dynamic modeling
should be followed. SAM* provides abstract
data types, in contrast to the generalization
hierarchy approach in TAXIS and the flow
of information approach of the event
model.

The above criteria can serve as differen-
tiating characteristics of semantic data
models for a model evaluation. If the pur-
pose of the evaluation is to identify simi-
larities and differences among the models
for the purpose of classification, then these
characteristics can form the columns of a
table such as Table 1. Using information of
this nature, one may wish to organize the
models into groups as in Brodie [1984] or
to develop a continuum such as that pre-
sented in Figure 20.

The parameters of Table 1 can also be
utilized to identify the model of choice for
a particular task. In addition, consider
the following three criteria [March et al.
19841, which can measure the ease of appli-
cation of a given model to a particular
problem domain by a specific designer:

(1) User’s ability to understand the mean-
ing (or semantics) of the modeling
constructs provided. If the user has

Semantic Data Models

[ELATIONAL

WNCTIONAL
ä RbLATZ0NSNZP8

as PUNCTLONS

;DM bENTaTy CLASSES

rAXIS

WENT ä yNAPEaC
rZOI)ELZNa

iHM+
~assocaam.oN

kLASSZFZCATZON

;AM*
WsPBYLAL-PURPOSE

TyPEs

Figure 20. Data model continuum.

difficulty understanding or misunder-
stands the modeling tools, then the ad-
vantages of the semantic model are
completely lost.

(2) Ease of query formulation. One impe-
tus for the rise of semantic models was
the awkwardness of manipulating the
database on the physical and data
structure levels.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Table 2. Weighted Features

Network Insertion/
Unstructured Relationship Standard versus Derivation/ deletion Relationship Dynamic

objects representation abstraction hierarchy inheritance constraints semantics modeling

Weight 0 25 15 10 15 10 20 5

Table 3. Data Model ComDarison

Network Insertion/
Unstructured Relationship Standard versus Derivation/ deletion Relationship Dynamic

objects representation abstraction hierarchy inheritance constraints semantics modeling Total

Weight 0 25 15 10 15 10 20 5 -
Ml - 10 7 5 8 1 9 3 790
M2 - 6 8 5 6 7 4 8 600

Semantic Data Models l 185

contemporary semantic data model re-
searchers.

SAM* addresses the issue of supporting
nontraditional data by providing data types
that are useful in statistical applications
and CAD/CAM. Other researchers feel that
it is more useful to provide primitives to
support the design of special types [Cope-
land and Maier 19841. This provides a more
flexible model-one that is not targeted to
specific applications but that may require
more complexity in the expression of spe-
cialized types. Modeling primitives for the
design of text, sound (including voice), dig-
itized images, and complex vector graphics
appear in the approaches to the processing
of multimedia information [Christodou-
lakis et al. 1986; Woelk et al. 19861 that
utilize a meld of semantic data modeling
principles and object-oriented language
philosophies to provide support for these
diverse and nonstandard database applica-
tions.

Two other areas in which substantive
results are limited are those of dynamic and
temporal modeling (meaning the inclusion
of explicit time and event concepts). All
semantic systems provide support for static
modeling, but although researchers have
discussed the importance of temporal
[Snodgrass and Ahn 19861 and dynamic
modeling, one finds only a few models that
include these capabilities. Urban and Del-
cambre [1986] survey five models, RM/T,
TAXIS, SDM, SHM+, and the event
model, most providing dynamic and some
providing limited temporal modeling fea-
tures. A column containing information on
temporal modeling in Table 1 would be very
sparse indeed. Nevertheless, if conceptual
modeling tools are to grow in their ability
to describe an enterprise in a complete
manner, this description must encompass
behavior of a temporal nature as well as the
representation of events.

A variety of methodologies for the rep-
resentation of time has been proposed. Ar-
iav [1986] has defined TODM, the tempo-
rally oriented data model, which effectively
adds temporal data represented in cubic
form into the relational model. Ariav’s
work extends the relational operations to
include temporal data. Snodgrass and Ahn

(3) Ease of specification and maintenance
of the semantics of the modeling con-
structs. Whether the offering of the
model is a simple collection of inser-
tion/deletion constraints or a sophisti-
cated set of constraint definition tools,
the objective should be the same: The
semantics should be easily specified
and automatically maintained.

One commonly used evaluation strategy
involves the attachment of weights to the
columns of the table, as in Table 2 where
the weights indicate the relative impor-
tance of each metric to the problem do-
main. The rows of the table then hold the
score indicating the merit of that model for
the feature corresponding to each column.
Table 3 presents the evaluation of hypo-
thetical models Ml and M2 for a particular
application environment. Ml’s higher total
score reflects the evaluator’s preference for
the manner in which it describes relation-
ships and a general feeling by the evaluator
that Ml is “easier to understand.”

Subjectivity is inherent in this evaluation
process. When, however, one recalls that
one of the goals of semantic data models is
the production of a representation of the
enterprise that closely parallels the user’s
perception, it is appropriate that the user’s
perception play a major role in the evalua-
tion of a model for a given enterprise. In-
volving multiple evaluators in the process
will mitigate the subjectivity to some
degree.

4. WHERE DO WE GO NOW?

Although the formulation of abstractions
and the support of relationships was of
early and prime importance to researchers,
there are other issues that have arisen
within the realm of semantic data model-
ing. It is still important to explore the va-
riety of meanings for the semantics of the
objects, operations, and relationships of a
model. There are, however, other ideas that
also might satisfy the requirements out-
lined in the previous section and hence
produce conceptual models that simplify
the task of database design. The following
paragraphs give (an eclectic) collection of
ideas that will continue to be addressed by

ACM Computing Surveys, Vol. 20, No. 3 September 1988

186 . J. Peckhum and F. Maryan&

[1985, 19861 have also used the relational
model as the starting point for the repre-
sentation of temporal data. They distin-
guish between transaction time, which is
the time when information was stored in
the database, and valid time, the time dur-
ing which the information is useful. Using
these two concepts, they define static roll-
back relations and historical relations. The
approach taken by Shoshani and Kawagoe
[1986] differs from the others in that they
utilize time sequences, which are ordered
sequences of time values, as the primary
organizing concept. They also discuss the
issue of physical organization for temporal
data. Schiel [1983] proposes a temporal-
hierarchic data model (THM) that incor-
porates time concepts as one of its funda-
mental abstractions. His work details the
impact of temporal considerations on the
semantics of generalization and specializa-
tion. Castilho et al. [1982] have developed
a language for the inclusion of temporal
semantics in the specification of a database
schema. One of the key concepts found in
several studies of temporal data is that of
temporal constraints, which permit the
user to include time factors, as well as data
values, in the constraint conditions [Ariav
1986; Kung 19841.

To a large extent, the conceptual model-
ing requirements in new areas of informa-
tion processing have driven the develop-
ment of semantic data models. This survey
has presented several semantic models that
have the goal of satisfying the modeling
needs of a wide range of enterprises. An
alternative approach to addressing the need
for extended data modeling capabilities is
to generate data models automatically to
fit the requirements of specific application
environments. The Data Model Compiler
[Maryanski et al. 1986, 19871 and EXO-
DUS [Carey et al. 1986; Richardson and
Carey 19871 are investigating this ap-
proach. The key conceptual issue in the
development of a viable data model gener-
ator is the formal specification and repre-
sentation of the semantics of the concep-
tual data models. A first step involves the
identification of primitive abstractions for
the representation of entities, relation-
ships, operations, and constraints of the

model. The language used in the Data
Model Compiler project for the represen-
tation of data model semantics appears in
Hong and Maryanski [1988]. The EXO-
DUS project has developed the E program-
ming language [Richardson and Carey
19871 as a primary specification mecha-
nism. If the data model generator idea were
to prove feasible, it would make possible
the tailoring of semantic data models to the
requirements of an enterprise, thus reduc-
ing the gap between the model in the mind
of the designer and its representation
within the database system.

As evidenced by the models presented
here, semantic data modeling is presently
in the research stage. The commercial
marketplace will not move beyond the
relational model until semantic database
systems with reasonable performance char-
acteristics emerge. Chronologically, seman-
tic data models postdate the relational
model by approximately 7 years. Fledgling
products have begun to emerge; mature sys-
tems can be expected in a few years. The
target marketplace for these new products
is not expected to be commercial data pro-
cessing but rather the management of sci-
entific, engineering, and manufacturing
data. The impact of semantic data models
on the commercial market is likely to be
limited by the following.

(1) Inertia in the commercial market-the
process of converting enormous
amounts of data to a new model will
not occur until the expected benefit
clearly exceeds the cost.

(2) Opportunity in the scientific/engineer-
ing/manufacturing market-a well-
known need for advanced data models
already exists in this space.

A reasonable forecast for the conceptual
modeling future would project an emulation
of the developments in programming lan-
guages. Some languages appear to be for-
ever entrenched among practitioners (i.e.,
FORTRAN and COBOL), with new lan-
guages constantly surfacing, many having
a substantial impact on both researchers
and application programmers. A designer
will always seek the best model for the task.

ACM Computing Surveys, Vol. 20, No. 3 September 1938

Semantic Data Models l 187

from Artificial Intelligence, Databases, and Pro-
&mmiG Languages, M. L. Brodie, J. Mylopou-
10s. and J. W. Schmidt, Eds. Sprintrer-Verlas.
Nek York, pp. 19-48. - -

Since the complexity of the applications
will continue to increase, the designer’s re-
quirements of a conceptual model will sim-
ilarly heighten, and hence new models will
continue to emerge. The collection of
models surveyed in this paper is represent-
ative of the next, but not the last, genera-
tion of data models.

ACKNOWLEDGMENTS

The work of J. Peckham and F. Maryanski was par-
tially supported by grant ECS-8401487 from the Na-
tional Science Foundation. The work of J. Peckham
was partially supported by an IBM teaching fellow-
ship. The work of F. Maryanski was partially sup-
ported by grant IRI-8704042 from the National
Science Foundation.

REFERENCES

ABRIAL, J. R. 1974. Data semantics. In Data Base
Management, J. W. Klimbie and K. L. Koffemen,
Eds. North-Holland, Amsterdam, pp. l-59.

ARIAV, G. 1986. Temporally oriented data models.
ACM Trans. Database Syst. 11,4 (Dec.), 499-527.

AZMOODEH, M., LAVINGTON, S. H., AND STANDRING,
M. 1986. The semantic binary. relationship
model of information. In Research and Deuelop-
ment in Information Retrieval, Proceedings oft&
3rd Joint BCS and ACM Symposium. Cambridge
University Press, Cambridge, UK.

BACHMAN, C. W. 1983. The structuring capabilities
of the molecular data model. In Entity-Relation-
ship Approach to Software Engineering, Pro-
ceedings of the 3rd International Conference on
Entity-Relationship Approach (Anaheim, Calif.),
C. G. Davis et al., Eds. North-Holland, Amster-
dam.

BORGIDA, A., MYLOPOULOS, J., WONG, H. K. T.
1984. Generalization/specialization as a basis
for software specification. In On Conceptual Mod-
eUing, Perspectives from Artificial Intelligence,
Databases, hnd Programming Languages, M. L.
Brodie, J. Mylopoulos, and J. W. Schmidt, Eds.
Springer-Verlag, New York, pp. 87-114.

B~ACCI, G., PAOLINI, P., AND PELAGAT~I, G.
1976. Binary logical associations in data mod-
elling. In Model&g in Database Management
Systems, Proceedings of ZFZP TC2 Conference
(Freudenstadt, W. Germany), G. M. Nijssen, Ed.
North-Holland, Amsterdam, pp. 125-148.

BRAEGGER, R. P., DUD ZER, A., REBSAMEN, J., AND
ZEHNDER, C. 1985. Gambit: An interactive da-
tabase design tool for data structures, integrity
constraints, and transactions. IEEE Trans.
Softw. Erg. SE-l 1, I, 574-582.

BRODIE, M. L. 1984. On the development of data
models. In On Conceptual Modelling, Perspectives

BRODIE, M. L., AND RIDJANOVIC, D. 1984. On the
design and specification of database transactions.
In On Conceptual Modelling, Perspectives from
Artificial Intelligence, Databases, and Program-
ming Lunguoges, M. L. Brodie, J. Mylopoulos,
and J. W. Schmidt, Eds. Springer-Verlag, New
York, pp. 277-32.

BRODIE, M. L., AND SILVA, E. 0. 1983. Active and
passive component modelling: ACM/PCM. In
Proceedings of the ZFZP WG8.1 Working Confer-
ence, T. W. Olle, et al., Eds. North-Holland,
Amsterdam, pp. 41-92.

BRYCE, D., AND HULL, R. 1986. SNAP: A graphics-
based schema manager. In Proceedings of the
Intern&on& Conference on Data Engineering
(Los Angeles, Calif.). IEEE, New York, pp.
151-164.

BUNEMAN, 0. P., AND NIKHIL, R. 1984. The func-
tional data model and its uses for interaction with
databases. In On Conceptual Modelling, Perspec-
tives from Artificial ZnteUigence, Databases, and
Programming Languages, M. L. Brodie, J. Mylo-
poulos, and J. W. Schmidt, Eds. Springer-
Verlag, New York, pp. 359-386.

BURNS, T., FONG, E., JEFFERSON, E., KNOX, R.,
MARK, L., REEDY, C., REICH, L., ROUSSOPOU-
LOS, N., AND T~uszows~r, N. 1986. Reference
Model for DBMS Standardization. Database Ar-
chitecture Framework Task Group (DAFTG) of
the ANSI/XB/SPARC Database System Study
Group. ACM Sigmod Rec. 15, 1, 19-58.

CAREY, M., DE Wm, D., FRANK, D., GRAEFE, G.,
MURAZIKRISHRA, H., RICHARDSON, J., AND
SHEKITA, E. 1986. The architecture of the
EXODUS extensible database system. In Pro-
ceedings of the International Workshop on
Object-Oriented Datnbase Systems (Pacific Grove,
Calif.). IEEE, New York, pp. 52-65.

CASTILHO, J. M. V., CASANOVA, M. A., AND FURTADO,
M. L. 1982. A temporal framework for database
specifications. In Proceedings of tke 8th Znterna-
tional Conference on Very Large Data Bases
(Mexico City). Very Large Data Base Endow-
ment, Saratoga, Calif., pp. 280-291.

CHEN, P. 1976. The entity-relationship model: To-
ward a unified view of data. ACM Trans. Database
Syst. 1, 1 (Mar.), 9-36.

CHEN, P., Ed. 1985. Entity-Relation-ship Approach:
The Use of the ER Concept in Knowledge Repre-
sentation. North-Holland, Amsterdam.

CHRISTODOULAKIS, S., Ho, F., AND THEODORIDOU,
M. 1986. The multimedia object presentation
manager of MINOS: A symmetric approach. In
Proceedings of the ACM SZGMOD Confer-
ence (Washington, D.C.). ACM, New York, pp.
295-310.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

188 ' J. Peckkam and F. Maryanski

CODD, E. F. 1970. A relational model of data for
large shared data banks. Commun. ACM 13, 6
(June), 377-387.

CODD, E. F. 1972. Further normalization of the da-
tabase relational model. In Data Base Systems,
R. Rustin, Ed. Prentice-Hall, Englewood Cliffs,
N.J., pp. 33-64.

CODD, E. F. 1979. Extending the database relational
model to capture more meaning. ACM Trans.
Database Syst. 4,4 (Dec.), 397-434.

COPELAND, G., AND MAIER, D. 1984. Making Small-
talk a database system. In Proceedings of the
ACM SZGMOD Conference (Boston, Mass.).
ACM, New York, pp. 316-325.

DATE, C. 1983. Introduction to Database Systems,
vol. 2. Addison-Wesley, Reading, Mass.

DAYAL, U., AND DIT~RICH, K., Eds. 1986. In Proceed-
ings of Znternational Workshop on Object-
Oriented Database Systems (Pacific Grove,
Calif.). IEEE, New York.

DITPRICH, K. 1986. Object-oriented database sys-
tems: The notions and the issues. In Proceedings
of the International Workshop on Object-Oriented
Database Systems (Pacific Grove, Calif.). IEEE,
New York, pp. 2-4.

FAGIN, R. 1977. Multivalued dependencies and a new
normal form for relational databases. ACM
Trans. Database Syst. 2,3 (Sept.), 262-278.

FAGIN, R. 1979. Normal forms and relational data-
base operators. In Proceedings of the ACM
SZGMOD Conference (Boston, Mass.). ACM,
New York, pp. 153-160.

FARMER, D., KING, R., AND MYERS, D. 1984. A tool
for the ‘implementation of databases. In Proceed-
ings of the International Conference on Data
Engineering (Los Angeles, Calif.). IEEE, New
York, pp. 386-393.

FARMER, D., KING, R., AND MYERS, D. 1985. The
semantic database constructor. IEEE Trans.
Softw. Eng. SE-II, 7, 583-591.

HAMMER, M., AND MCLEOD, D. 1981. Database de-
scription with SDM: A semantic database model.
ACM Trans. Database Syst. 6,3 (Sept.), 351-386.

HONG, S., AND MARYANSKI, F. 1988. Representation
of object-oriented data models. Znf. Sci. To be
published.

HULL, R., AND KING, R. 1987. Semantic database
modeling: Survey, applications, and research is-
sues. ACM Comput. Surv. 19,3 (Sept.), 201-260.

JARDINE, D. A., Ed. 1977. TheANSZ/SPARC DBMS
Model. North-Holland, The Netherlands.

KERSCHBERG, L., KLUG, A., AND TSICHRITZIS, D.
1976. A taxonomy of data models. In Systems
for Large Data Bases, P. C. Lockemann and E. J.
Neuhold., Eds. North-Hollahd, Amsterdam, pp.
43-64.

KING, R. 1986. A database management system
based on an object oriented model. In Proceedings

of the International Workshop on Expert Database
Systems (Charleston. S.C.). University of South
Carolina,‘pp. 443-468.

KING, R., AND MCLEOD, D. 1986. The event data-
base specification model. In Proceedings of the
2nd Znternutionul Conference on Databases: Zm-
proving usability and Responsiveness (Jerusalem,
Israel). IIPA, pp. 299-322.

KING, R., AND MCLEOD, D. 1984. A unified model
and methodology for conceptual database design.
In On Conceptwl Modelling, Perspectives from
Artificial Intelligence, Databases, and Program-
ming Languages, M. L. Brodie, J. Mylopoulos,
and J. W. Schmidt, Eds. Springer-Verlag, New
York, pp. 313-327.

KRISHNAMURTHY, V., Su, S., LAM, H., MITCHELL, Z.,
AND BANCMEYER, E. 1987. A distributed
database architecture for an integrated manufac-
turing facility. In Proceedings of International
Conference on Data and Knowledge Systems for
Manufacturing and Engineering (Hartford,
Conn.). IEEE, New York, pp. 4-13.

KUNG, H. 1984. A temporal framework for database
specification and verification. In Proceedings of
the 10th International Conference on Very Large
Data Bases (Singapore). Very Large Database
Endowment, Saratoga, Calif., pp. 91-99.

MARCH, S. T., Ed. 1988. In Proceedings of the 6th
Entity-Relationship Conference. North-Holland,
Amsterdam. To,be published.

MARCH, S. T., RIDANOVIC, D., AND PRIETULA, F.
1984. On the effects of normalization on the
quality of relational database designs or being
normal is not enough. In Proceedings: Trends and
Applications 1984, Making Databases Work
(Gaithersburg, Md.). National Bureau of Stand-
ards, pp. 257-261.

MARYANSKI, F. 1986. The data model compiler:
A tool for generating object-oriented database
systems. In Proceedings of the Workshop on
Object-Oriented Database Systems (Pacific
Grove, Calif.). IEEE, New York, pp. 73-84.

MARYANSKI, F., FRANCIS, S., HONG, S., AND PECK-
HAM, J. 1987. Generation of conceptual data
models. Data and Knowledge Engineering. To be
published.

MYLOPOULOS, J., BERNSTEIN, P. A., WONG, H. K. T.
1980. A language facility for designing database-
intensive applications. ACM Trans. Database
Syst. 5, 2 (June), 185-207.

NIXON, B., CHUNG, L., LAUZEN, I., BORGIDA, A.,
MYLOPOULOS, J., AND STANLEY, M. 1987.
Implementation of a compiler for a semantic data
model: Experience with Taxis. In Proceedings of
the ACM SZGMOD Conference (San Francisco.
Calif.). ACM, New York; pp. 11&131.

O’BRIEN, P. 1983. An integrated interactive design
environment for Taxis. In Proceedings of SOFT-
FAIR: A Conference on Software Development

ACM Computing Surveys, Vol. 20, No. 3 September 1988

Semantic Data Models l 189

SNODGRASS, R., AND AHN, I. 1985. A taxonomy of
time in databases. In Proceedings of the ACM
SZGMOD Conference (Austin, Tex.). ACM, New
York, pp. 236-246.

SNODGRASS, R., AND AHN, I. 1986. Temporal data-
bases. Computer 19,9, 35-46.

SPACCAPIETRA, S., Ed. 1987. Entity-Relationship
Approach: Ten Years of Experience. North-
Holland, Amsterdam.

SU, S. Y. W. 1983. SAM*: A semantic association
model for corporate and scientific-statistical
databases. Znf. Sci. 29,151-199.

Su, S. Y. W. 1986. Modeling integrated manufactur-
ing data with SAM*. Computer 19, 1, 34-49.

TAYLOR, R. W., AND FRANK, R. L. 1976. CODASYL
data-base management systems. ACM Comput.
Suru. 8, 1 (Mar.), 67-103.

TEOREY, T. J., YANG, D., AND FRY, J. P. 1986. A
logical design methodology for relational data-
bases using the extended entity relation-
ship model. ACM Comput. Suru. 18, 2 (June),
197-222.

TSICHRITZIS, D., AND LOCHOVSKY, F. 1976.
Hierarchical database management: A survey.
ACM Comput. Suru. 8,l (Mar.), 105-123.

TSICHRITZIS, D., AND LOCHOVSKY, F. 1982. Data
Models. Prentice-Hall, Englewood Cliffs, N.J.

URBAN, S. D., AND DELCAMBRE, L. M. L. 1986. An
analysis of the structural, dynamic and temporal
aspects of semantic data models. In Proceedings
of the International Conference on Data Engi-
neering (Los Angeles, Calif.). IEEE, New York,
pp. 382-389.

VERHEIJEN, G. M. A., AND VAN BEKKUM, J.
1982. NIAM: An information analysis method.
In Proceedings of the ZFZP WG 8.1 Working Con-
ference, T. W. Olle et al., Eds., North-Holland,
Amsterdam.

WOELK, D., KIM, W., AND LUTHER, W. 1986. An
object-oriented approach to multimedia data-
bases. In Proceedings of the ACM SZGMOD Con-
ference (Washington, D.C.). ACM, New York,
pp. 311-325.

Tools, Techniques, and Alternatiues (Silver
Spring, Md.). IEEE, New York, pp. 298-306.

OLLE, T. W. et al., Eds. 1982. Information systems
design methodologies: A comparative review. In
Proceedings of the ZFZP WG 8.1 Working Confer-
ence. North-Holland, Amsterdam.

DLLE, T. W. et al., Eds. 1983. Information systems
design methodologies: A feature analysis. In Pro-
ceedings of the ZFZP WG 8. I Working Conference.
North-Holland, Amsterdam.

OLLE, T. W. et al., Eds. 1986. Information systems
design methodologies: Improving the practice. In
Proceedings of the ZFZP WG 8.1 Working Confer-
ence. North-Holland, Amsterdam.

PIRO~E, A. 1977. The entity-association model: An
information oriented data base model. In Pro-
ceedings of the International Computing Sympo-
sium. North-Holland, Amsterdam, pp. 581-597.

RICHARDSON, J. E., AND CAREY, M. J. 1987.
Programming constructs for database system im-
plementation in EXODUS Databases. In Pro-
ceedings of the SZGMOD Conference (San Fran-
cisco, Calif.). ACM, New York, pp. 208219.

SCHIEL, U. 1983. An abstract introduction to the
temporal-hierarchic data model (THM). In Pro-
ceedings of the 9th International Conference on
Very Large Data Bases (Florence Italy). Very
Large Database Endowment, Saratoga, Calif.,
pp. 322-330.

SCHMID, H. A., AND SWENSON, J. R. 1975. On the
semantics of the relational data model. In Pro-
ceedings of the ACM SZGMOD Conference (San
Jose, Calif.). ACM, New York, pp. 211-223.

SHIPMAN, D. W. 1981. The functional data model
and the data lanauaee DAPLEX. ACM Trans.
Database Syst. 6, i (Mar.), 140-173.

SHOSHANI, A., AND KAWAGOE, K. 1986. Temporal
data management. In Proceedings of the 12th
International Conference on Very Large Data
Bases (Kyoto, Japan). Morgan Kaufman, Los
Altos, Calif., pp. 79-88.

SMITH, J. M., AND SMITH, D. C. P. 1977. Database
abstractions: Aggregation and generalization.
ACM Trans. Database Syst. 2, 2 (Mar.),
105-133.

Received November 1986; final revision accepted Octobe r 1987.

ACM Computing Surveys, Vol. 20, No. 3 September 1988

