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Semantic data models have emerged from a requirement for more expressive conceptual 
data models. Current generation data models lack direct support for relationships, data 
abstraction, inheritance, constraints, unstructured objects, and the dynamic properties of 
an application. Although the need for data models with richer semantics is widely 
recognized, no single approach has won general acceptance. This paper describes the 
generic properties of semantic data models and presents a representative selection of 
models that have been proposed since the mid-1970s. In addition to explaining the 
features of the individual models, guidelines are offered for the comparison of models. 
The paper concludes with a discussion of future directions in the area of conceptual data 
modeling. 
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INTRODUCTION 

Although the relational model has provided 
database practitioners with a modeling 
methodology independent of the details of 
the physical implementation, many design- 
ers believe that the relational model does 
not offer a sufficiently rich conceptual 
model for problems that do not map onto 
tables in a straightforward fashion. The 
past decade has seen the emergence of 
numerous data models with the aims 
of providing increased expressiveness to the 
modeler and incorporating a richer set of 

semantics into the database. This collec- 
tion of data models can be loosely catego- 
rized as “semantic” data models since their 
one unifying characteristic is that they at- 
tempt to provide more semantic content 
than the relational model. The first re- 
search papers on semantic data models ap- 
peared approximately 7 years after Codd’s 
initial publications describing the rela- 
tional model. Thus, in perhaps another 5- 
7 years, one of the modeling methodologies 
discussed here may attain commercial via- 
bility. This survey selects a representative 
sampling of the new generation of data 
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models and analyzes them in terms of their 
fundamental modeling constructs, the rep- 
resentation methodologies for the objects 
of the model, and the methods by which 
the modeler may express the semantics of 
the application environment. The goal of 
the presentation is to provide the reader 
with an appreciation of the problems that 
these semantic models attempt to resolve 
and their contributions to the art of data- 
base modeling. 

The piece of the “real world” that is 
represented by the database is commonly 
called an enterprise. The structure or 
schema of the database model is a represen- 
tation of the elements and interconnections 
between elements within the enterprise. 
The constructs used to model elements are 
usually called objects or entities. Enter- 
prises are usually not static; thus database 
models have structures for modeling oper- 
ations used to manipulate the objects of the 
database schema. These structures can be 
atomic operations or more complex trans- 
actions and can be considered objects with 
relationships defined between them. 

One problem inherent in modeling any 
subset of the real world is the difference 
between the human’s perception of the en- 
terprise and the computer’s need to organ- 
ize the structures in a particular way for 

efficient storage and performance. This 
gives rise to three database modeling levels 
that reflect the user’s conceptual model, the 
machine’s physical model, and the mapping 
from one to the other. These levels are 
described as follows in the ANSI/SPARC 
proposal [Burns et al. 1986; Jardine 19771 
for database architecture standardization: 

(1) 

(59 

(3) 

External level. The user’s logical views 
of the enterprise without consideration 
for performance or storage issues. 
Conceptual level. The information 
model, providing the mapping from the 
logical to the physical, or internal, 
level, describing the semantics of the 
entities and relationships, including 
descriptions of connections and con- 
sistency constraints. 
Internal level. An abstract model of the 
physical database concerned with the 
access paths to and the storage of data. 

Using this categorization, the rela- 
tional model [Codd 19701 and models that 
are direct extensions of it can be seen as 
conceptual models. The tables of the rela- 
tional model, although lacking the ability 
to express all relationships between the 
objects of the logical model, do provide 
convenient means for mapping to the phys- 
ical model. Models such as the entity- 
relationship model [Chen 19761 can be 
viewed as conceptual and external since 
there is a means to specify objects and 
relationships corresponding to the user’s 
logical view of the enterprise, as well as a 
means to map these data structures to the 
physical structures. 

This survey considers conceptual seman- 
tic models that make use of entities, rela- 
tionships, and constraints to describe 
static, dynamic, and temporal qualities of 
an enterprise. The desired result is a rep- 
resentation of the enterprise that closely 
parallels the user’s perception, without con- 
cern for the physical model. Frequently, 
standard relationships with their seman- 
tics, including the associated operations 
and constraints, are predefined and strate- 
gies for access and storage provided. 
The user need only choose and combine 
these relationships to model the real-world 
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defining some data semantics. For example, 
functional dependencies from the relational 
theory established some lower level seman- 
tics for data models. Attempts were made 
to extend these semantics to interrelational 
dependencies or connections. The meaning 
of the dependencies and the consistency 
rules that follow from them were described 
in the early papers. 

One example of the above is a paper 
by Schmid and Swenson [1975] in which 
the relationships, characteristic and asso- 
ciation, and their associated semantics are 
described. This was followed by a paper by 
Smith and Smith [1977] in which abstrac- 
tions already identified by psychologists 
and AI researchers were employed for 
database modeling. These abstractions, 
generalization and aggregation, are pro- 
vided by virtually all current semantic 
data models. 

Generalization is the means by which 
differences among similar objects are ig- 
nored to form a higher order type in which 
the similarities can be emphasized. An ex- 
ample of this is a PUBLICATION entity 
in a library database’ that exhibits charac- 
teristics common to all publications held 
by the library. In Figure 1, relationships 
between the PUBLICATION entity and 
other more specialized entities are repre- 
sented using a type hierarchy with more 
generalized types at the top and more 
specialized ones at the bottom. For ex- 
ample, PUBLICATION may be considered 
a generalization of JOURNAL-PAPER, 
BOOK, and CONFERENCE-PAPER in 
the database. Similarly, BOOK may be con- 
sidered a specialization of PUBLICA- 
TION. 

Aggregation is the means by which rela- 
tionships between low-level types can be 
considered a higher level type. The rela- 
tional data model employs this concept by 
aggregating attributes to form a relation. 
Semantic data modeling permits the aggre- 
gation of entity types (or relations) to form 
higher order entities. An example is the 
aggregation of TITLE and AUTHOR types 

enterprise. As we shall see, there are 
varying levels on which this modeling 
support is provided in semantic conceptual 
models. 

For the purposes of this paper, a distinc- 
tion is made between the abstract models 
used for representing “real-world” enter- 
prises and the systems that have been 
developed for use in creating these repre- 
sentations. More is said about this distinc- 
tion at the end of this section. 

Early database research concentrated on 
the physical structure of databases. Little 
consideration was given to the user’s per- 
ception of the data. Of utmost concern were 
the physical and information structures 
necessary to provide consistent and effi- 
cient database storage and retrieval. 
The hierarchical [Tsichritzis and Lochov- 
sky 19761 and network models [Taylor and 
Frank 19761 offer the user the means to 
navigate the database at the record level, 
thus providing operations to derive more 
abstract structures. The relational model 
[Codd 19701 adds a data structure level, 
eliminating the necessity of performing 
primitive record level manipulations of the 
database. The former approach might be 
considered as operational, whereas the lat- 
ter might be considered structural. Model- 
ing capabilities with these approaches are 
still closely related to the record structure 
of the database. 

In the middle seventies, researchers at- 
tempted to simplify the design and use of 
databases by providing modeling structures 
that were capable of supporting the user’s 
view of the data. Three papers [Chen 1976; 
Schmid and Swenson 1975; Smith and 
Smith 19771 addressed two important ideas 
in data modeling and signaled the emer- 
gence of semantic data models. The first 
idea was that of data independence. Per- 
haps influenced by developments in pro- 
gramming languages, database researchers 
felt the user should be free from the details 
of the physical structure of the database. 
In this way, the user could model the data 
in a manner similar to the human percep- 
tion of the application. 

The second idea involved capturing ad- 
ditional semantics in the data modeling 
process. Existing models were capable of 

’ This database will serve as a running example 
throughout the paper. A description appears in Sec- 
tion 1. 
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Figure 1. Generalization. 
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to form a PUBLICATION type in our sam- 
ple database, as illustrated in Figure 2. 

In addition to generalization and aggre- 
gation, many semantic models support the 
classification and association relationships 
[Brodie 19841. Classification is a form of 
abstraction in which a collection of objects 
is considered a higher level object class. 
Essentially, it represents an is-instance-of 
relationship. For example, in our sample 
database, a BEST-SELLING-BOOK ob- 
ject class consists of all BOOK objects with 
sales greater than 10,000. The object IT is 
an instance of the BEST-SELLING- 
BOOK object class. Classification provides 
a mechanism for the specification of the 
type of a specific object, whereas speciali- 
zation involves the derivation of a type 
definition from that of an existing type. 

Association is a form of abstraction in 
which a relationship between member ob- 
jects is considered a higher level set object 
[Brodie 19841. The is-member-of relation- 
ship embodies the association concept. The 
set DATABASE-BOOKS is an association 
of BOOK objects as is the set AI-BOOKS. 
Criteria for set membership is typically 
based on the satisfaction of some predicate, 
such as TOPIC = DATABASE for the 
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Figure 2. Aggregation. 

DATABASE-BOOKS set. The set defini- 
tion mechanism could, however, be purely 
external. Consider the GOOD-BOOKS set 
as an example of a set in which the end 
user, not the schema designer, determines 
set membership. 

Although association and aggregation de- 
fine new object types from previously de- 
fined types, the represent fundamentally 
distinct abstractions. Aggregation provides 
a means for specifying the attributes of a 
new object type, whereas association is the 
mechanism for defining a type whose value 
will be a set of objects of a particular type. 
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WRITER NAME INCOME STIPEND 

BOOK AUTHOR TITLE SALES PUBLISHER 

PUB-HOUSE NAME GROSS 

Figure 3. Relational library schema. 

m PUBLISHED 7 

Figure 4. Semantic library schema. 

As the class of semantic data models has 
grown, benefits related to the original re- 
search objectives have become clear. 

(1) Economy of Expression. The seman- 
tic data models are usually complete in the 
sense that the user is capable of extracting 
the full range of information from the da- 
tabase as easily as in the earlier models. All 
of these models, however, also provide an 
economy of expression that can be thought 
of as stronger than completeness in the 
following sense: Not only is the user able 
to extract exactly the same information, 
but much of this information can be ex- 
tracted with greater ease. 

For example, with the relational model, 
the user must be aware of the attributes 

involved in the implicit definition of inter- 
relational connections and perform com- 
plex operations on these attributes using 
projections and joins to extract information 
through these connections. Hence the se- 
mantics of the relationship are embedded 
within the user program. With a semantic 
model, operations are explicitly defined 
upon the relationships. Thus, the seman- 
tics exist within the data model itself. 

Consider an example dealing with writers 
and books in the library database. Figure 3 
presents the relational schema, and Fig- 
ure 4 the corresponding semantic represen- 
tation. The query of interest involves the 
identification of all poor writers who had 
successful books published by big publish- 
ing houses. The quantification of “poor,” 
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“successful,” and “big” appear in the quer- 
ies themselves. The relational representa- 
tion of this query is 

SELECT NAME FROM WRITER 
WHERE WRITER.INCOME < 20000 
AND WRITER.NAME = BOOK.AUTHOR 
AND BOOK.SALES > 50000 
AND BOOK.PUBLISHER 

= PUBLISHER.NAME 
AND PUB-HOUSE.GROSS > 1000000 

The same query can be expressed using a 
semantic model and the notation of Tsi- 
chritzis and Lochovsky [1982] as follows: 

SELECT NAME FROM WRITER 
WHERE WRITER.INCOME < 20000 
AND BOOK.SALES > 50000/WROTE 
AND PUB-HOUSE.GROSS’> lOOOOOO/ 
PUBLISHED 

Since the semantics of the relationships are 
embodied in the join operations that are 
explicitly required in the relational query, 
the query has a more compact expression 
in the semantic model. 

(2) Integrity Maintenance. The tradi- 
tional models force the user either to keep 
track of connections between database ob- 
jects or to maintain intraobject consistency 
through navigation of the connections on 
the physical level. Semantic models provide 
mechanisms for the definition of integrity 
constraints and at the same time allow the 
user to view the data on a level removed 
from the low-level record structure. Al- 
though this functionality is present in all 
semantic models, the degree varies. (See 
the discussion on insertion/deletion/modi- 
fication constraints in Section 1.) 

(3) Modeling Flexibility. Most tradi- 
tiona12 data models provided only one 
means of representing data. Semantic data 
models, through the use of abstractions, 
permit the user to model and view the data 
on many levels. This provides enhanced 
capabilities for modeling “real-world” situ- 
ations, since viewing data on many levels 

*We use the term “traditional” to describe the well- 
established models such as hierarchical, network, and 
relational. 

is consistent with the way in which people 
view the world. For example, the abstrac- 
tion generalization permits one to think of 
objects in a very detailed or a very superfi- 
cial way [Hull and King 19871. The entity-- 
relationship (E-R) model [Chen 19761 
provided an early example, permitting the 
user to perceive of a relationship between 
two entities as a relationship or as an en- 
tity. The latter case is represented in Chen 
[1976] as a relationship relation. 

(4) Modeling Efficiency. The designer, 
while constructing a particular database 
schema, does not have to implement on a 
low level. Most semantic models contain 
built-in elementary operations and con- 
straints. One example is a reference rela- 
tionship in which one class of objects in the 
database references another class through 
an attribute of the referencing object. In 
our example database, BOOK objects could 
reference WRITER objects through an 
attribute, AUTHOR. The reference rela- 
tionship will have specific operations and 
constraints associated with it. For example, 
there may be an insertion operation and an 
associated constraint that specifies that a 
referencing object may not be inserted if it 
references a nonexistent object in the da- 
tabase. This saves the designer from imple- 
menting the operation and constraint every 
time a reference relationship type is de- 
fined. This is not a new idea; it parallels 
work in language theory with abstract data 
types. In fact, one could say that most 
semantic models encourage these sound 
programming techniques. 

In the decade that has passed since the 
first semantic modeling constructs were 
proposed, a plethora of models has been 
proposed. This paper surveys and compares 
a representative sample of these models, 
focusing upon abstract conceptual models 
proposed for use in the logical design and 
specification of semantic databases. The 
models are analyzed for the presence of 
constructs representing the fulfillment of 
the general semantic modeling goals out- 
lined in this section. 

Some systems, such as ACM/PCM [Bro- 
die and Silva 19831, provide support for the 
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modeling components is used for compari- 
son with each model. The Hull and King 
paper has a significant tutorial flavor, ad- 
dressing the issue of semantic database 
modeling using a pedagogical data model. 
That work emphasizes implementation as- 
pects of database systems developed around 
semantic models, whereas this paper fo- 
cuses more on conceptual modeling issues. 

Kerschberg et al. [ 19761 classify a collec- 
tion of conceptual data models along the 
following parameters: structural, concep- 
tual, and semantic. Set-theoretic versus 
graph-theoretic parameters are first used; 
then mathematical foundations are identi- 
tied to evaluate the structural characteris- 
tics of the models. The means by which 
entities are represented and used to overlay 
the mathematical structures of the models 
are used to illuminate the conceptual prop- 
erties of the models. A linguistic approach 
is taken to determine semantic levels of 
abstraction. 

In this paper, we identify a collection 
of concepts that are used to measure the 
semantic modeling capabilities of each 
model. This method of presentation focuses 
upon the support of relationships, the ab- 
stractions they represent, the manner in 
which the semantics are specified, and the 
approach (if any) to dynamic modeling. 
The results are used to compare and con- 
trast the models and to identify which 
approaches might best fulfill the stated 
objectives of semantic modeling systems. 

Every semantic model has objects (or en- 
tities), relationships (functional or rela- 
tional), dynamic properties, and a means 
for handling integrity constraints. Relation- 
ships can be characterized by the abstrac- 
tions they are capable of representing and 
the means by which they do so. Dynamic 
properties can range from the simple spec- 
ification of insertions and deletion con- 
straints to the modeling of operations and 
transactions. Constraints can be collected 
from the user and represented and/or au- 
tomatically implied by the semantics of the 
model’s relationships. Both the level and 
mechanisms of information representation 
are used to characterize and compare 
models. 

entire database system life cycle, including 
specification, creation, and maintenance. 
These systems are beyond the scope of this 
survey. The CRIS conference series has 
focused upon research on the development 
of such information systems. The reports 
of these meetings provide in-depth descrip- 
tions of a variety of projects, including 
ACM/PCM, ISAC, NIAM, and D2S2 [Olle 
et al. 1982,1983,1986]. Other such systems 
are described in Braegger et al. [1985] and 
Bryce and Hull [1986]. 

This paper emphasizes semantic data 
models. For example, SHM+, which serves 
as ACM/PCM’s conceptual model for the 
description of entities, operations, and con- 
straints, does fall within our spectrum of 
interest, whereas the remainder of the 
ACM/PCM work does not. (See Section 2.8 
for a discussion of SHM+.) 

The remainder of the paper includes Sec- 
tion 1, which defines parameters for com- 
parison of the models, Section 2, in which 
the models are individually described, Sec- 
tion 3, which provides a tabular comparison 
of the systems using the parameters given 
in Section 1 and discusses possible meas- 
ures for the goodness of such models, and 
Section 4, which briefly enumerates some 
future goals for researchers in this and 
closely related areas. 

1. BASIS OF COMPARISON 

The recent boom in the development of 
semantic data models might lead one to 
believe there is no basis of comparison for 
this large and seemingly disparate col- 
lection. Authors who have attempted to 
provide some basis for comparison have 
usually created classes of semantic models. 
For example, Brodie [1984] groups the 
models into extensions of classical models, 
mathematical models, irreducible data 
models, static semantic hierarchy models, 
and dynamic semantic hierarchy models. 
Tsichritzis and Lochovsky [ 19821 classify 
models as traditional, entity-relationship, 
binary, semantic network, and infological 
data models. Hull and King [1987] take a 
slightly different approach: A model con- 
structed with fundamental semantic data 
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In this spirit, the following characteris- relationships have distinct presentations 
tics are identified as being fundamental to from those of the WRITER and PUB- 
semantic data models. HOUSE entities. In this case the user of 

(1) Representation of Unstructured Ob- 
jects. Unstructured data types are defined 
in Tsichritzis and Lochovsky [1982] as low- 
level or primitive types that are not con- 
structed through aggregation of lower level 
types. Strings, integers, and reals are ex- 
amples of low-level types. Data types of 
this nature typically are directly supported 
in the hardware of the underlying computer 
system. Some models developed for specific 
applications [Christodoulakis et al. 1986; 
Su 1983; Woelk et al. 19861 provide primi- 
tives more elaborate than those presented 
by most machines or compilers. Examples 
are types to support statistical, text, voice, 
and image data. 

the system will view the relationship as a 
simple connection between two types, and 
not as a separate entity or attribute as 
above. 

Functional representation is obtained 
by permitting specification of relationships 
of objects through functional definitions in 
the data definition language. For example, 
the statement 

DECLARE AUTHOR (BOOK) 
cc > > WRITER 

permits the designer to define a relation- 
ship between BOOK and WRITER types 
in which the AUTHOR of a given BOOK 
object is a function of the BOOK object 
and is a WRITER object. Within the sys- 

(2) Relationship Representation. Rela- terns surveyed, we shall find examples of 
tionships are analyzed in terms of their each approach. 
presentation to the-modeler. Conceptually, 
the relationship construct may appear in 
the model as an attribute, entity, indepen- 
dent element, or function. A relationship 
embodied by attributes is one in which the 
attribute of one object is connected to, 
points to, or is derived from another object. 
For example, if the AUTHOR attribute in 
a BOOK type is defined to be of type 
WRITER, where WRITER is an entity 
type, then the relationship between BOOK 
and WRITER is represented through the 
attribute of the BOOK entity. 

A relationship is presented as an entity 
if the relationship of two or more objects 
conceptually describes a distinct model ob- 
ject. For example, we may choose to repre- 
sent the REVIEW relationship between 
REVIEWER and BOOK as an entity in the 
model, having NAME (of the reviewer) and 
TITLE (of book), as well as RATING and 
DATE (of the review), as attributes. 

Relationships can also be viewed as in- 
dependent objects distinct from entities. 
This does not imply that the physical da- 
tabase represents relationships and entities 
with different structures, but at least on 
the conceptual level, entities are viewed as 
separate from relationships. For example, 
in Figure 4, the WROTE and PUBLISHED 

(3) Standard Abstractions Present. As 
discussed in the Introduction, the abstrac- 
tions that have most frequently been iden- 
tified for use in semantic databases are 
classification, generalization, aggregation, 
and association. 

(4) Networks or Hierarchies of Rela- 
tionships. Virtually all semantic data 
models offer a diagrammatic construct for 
the conceptualization of a schema. In most 
such models, this diagram represents the 
fundamental modeling abstraction of the 
model. The most common example is a 
generalization/specialization graph (or 
IS-A diagram) representing the derivation 
of object types. The nature of the graph 
(network versus hierarchy, cyclic versus 
acyclic) plays an important role in the char- 
acterization of the data model. The graph- 
ical expression of a model’s fundamental 
abstractions may take on forms other than 
the IS-A diagram. For example, the situa- 
tion given in Figure 2 could be expanded 
into the aggregation hierarchy of Figure 5, 
where PUBLICATION is an aggregation 
of TITLE and AUTHOR, with AUTHOR 
defined as an aggregation of NAME, 
INCOME, and STIPEND. Other models, 
such as the entity-relationship model 
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[Chen 19761, support only networks of re- general object are passed on to the more 
lationships, as illustrated in Figure 6. With specific object. This can be thought of as a 
this approach, no provision exists for the trivial derivation in which the computation 
expression of a hierarchical structure is the identity function; that is, if PUBLI- 
among relationships (although it may be CATION is defined to be a supertype of 
present in an implicit sense). In Section 3, BOOK and if the attribute TITLE is as- 
each model is examined for the extent to sumed to be inherited from PUBLICA- 
which hierarchies (versus networks) are TION by BOOK, then this can also be 
used as organizational structures. thought of as a derivation where 

(5) Derivation/Inheritance. There are 
two means by which semantic models han- 
dle repeated information within the data- 
base schema: semantic connections and 
derivation. Repetition within individual ob- 
ject types is handled by defining two sepa- 
rate types with semantic connections 
between them, thus limiting the degree of 
redundancy (see Section 2.5). Repetition 
between types is handled with derivation, 
which is the means by which the attributes 
of one object are computed or inherited 
from other objects. Alternatively, class at- 
tributes can be used to hold derived infor- 
mation about a class of objects taken as a 
whole. For example, the class attribute 
AVERAGE-SALES for the type BEST- 
SELLER can be computed as the mean of 
the mean of the number of SALES for all 
entries in BEST-SELLER. 

BOOK.TITLE = PUBLICATION.TITLE 

Inheritance in a generalization hierarchy 
is the means by which attributes of a more 

Multiple inheritance is the mechanism 
by which objects in a generalization/spe- 
cialization hierarchy are permitted to in- 
herit properties from multiple higher level 
objects. This is convenient for some appli- 
cations but can be difficult to control. The 
trouble arises when one specialized object 
inherits the same property from two higher 
level objects. Consider the generalization/ 
specialization and aggregation hierarchies 
of Figure 7. The LITERARY-FIGURE 
type represents those individuals who are 
both writers and reviewers. LITERARY- 
FIGURE is a specialization of both 
WRITER and REVIEWER and therefore 
inherits properties from both. REVIEWER 
and WRITER both have a STIPEND at- 
tribute; an inheritance conflict can arise 
since REVIEWER.STIPEND refers to the 
amount of money the person receives for 

Figure 5. Aggregation hierarchy. 
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PERSON 

I BOOK &EM PUB-HOUSE 

REVIEWER 

Figure 6. Relationship network. 

reviewing a book, and WRITER.STIPEND 
refers to the sum tendered when a book is 
written. A semantic model can either pro- 
hibit the use of multiple inheritance or offer 
built-in mechanisms for handling conflicts 
that may arise. 

(6) Insertion/Deletion/Modification Con- 
straints. The insertion and deletion con- 
straints used to maintain the integrity of 
the semantic database form one of its most 
important features. The specification of 
these constraints is the physical and oper- 
ational interpretation of the semantics of 
the model. If objects are connected through 
relationships, then the insertion, deletion, 
or modification of one object will impact 
the existence status of other objects con- 
nected to it. 

It is important that the relationships of 
the model clearly reflect the semantics of 

the relationship to the database designer 
and end user; that is, all users should have 
a clear notion of the consequences of data- 
base manipulation. Unforeseen side effects 
are clearly not desirable. For example, 
IS-A is a commonly used generalization 
relationship. If BOOK IS-A PUBLICA- 
TION, then when a PUBLICATION ob- 
ject is removed from the database, the 
corresponding BOOK object will also be 
removed. These semantics of the IS-A re- 
lationship should be clearly conveyed to the 
designer and user of the model. Alterna- 
tively, some models permit the designer to 
specify the insertion/deletion/modification 
semantics of relationships. 

(7) Degree of Expression of Relationship 
Semantics. Some models leave the expres- 
sion of the semantics of cardinality, null 
values, inverse relationships, derivations, 
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inheritance (partial/full or over relation- 
ships other than those representing gener- 
alization), or default values to the designer. 
Other models completely define the behav- 
ior of one or more of these features. The 
amount of flexibility, and consequently re- 
sponsibility, given to the designer by the 
model serves as an important discriminant 
among models. 

(8) Dynamic Modeling. Dynamic model- 
ing refers to the description of the semantic 
properties of database transactions. The 
counterpoint to dynamic modeling is static 
modeling, which entails the description of 
the properties of the data objects and rela- 
tionships. In most projects, research on se- 
mantic data models has emphasized the 
static aspect. However, a minimal degree of 
dynamic modeling, such as the specifica- 
tion of insertion and deletion constraints, 
the handling of pre- and postrequisites, 
error recovery, and transaction definition, 
appears in most modeling systems. 

Some models take a more active role in 
helping the user define higher level opera- 
tions and transactions. In certain ap- 
proaches this is provided only on the level 
with the objects that they modify. In others, 
modeling primitives are defined on the ba- 
sis of object-oriented models in which op- 
erations are encapsulated with the objects 
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Figure 7. Multiple inheritance. 

they modify. See Dittrich [1986] for a gen- 
eral description of object-oriented data 
models and Dayal and Dittrich [1986] for 
details on several specific models. Never- 
theless, the emphasis in these models lies 
with the static object as opposed to the 
dynamic transaction. In addition to the 
object-oriented viewpoint, some models 
support a generalization hierarchy ap- 
proach, which is data driven, or a flow- 
of-information approach, which is more 
temporal than data driven. 

A few models have taken the description 
of transactions a step further by applying 
their primitive modeling abstractions to 
transactions. These models support the de- 
velopment of complex transactions for 
more primitive ones by use of specialization 
or aggregation. Discussions of specific ap- 
plications of these techniques appear in 
Section 3. Related information modeling 
systems that support combining static and 
dynamic aspects but fall outside of the 
scope of this paper include NIAM [Verhei- 
jen and Van Bekkum 19821 and ISAC [ Olle 
et al. 19821. 

1.1 Library Example 

A consistent example is used in the pres- 
entation of the various models considered 
in this paper in order to provide the reader 
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with an informal means of comparing the 
models. The example serves to highlight 
certain interesting features of particular 
models. The role of the example is peda- 
gogical, and therefore there is no intention 
of presenting a comprehensive description 
of all aspects of a library database. Ele- 
ments of the database that would be mod- 
eled by a repetition of features already pre- 
sented are not included since they would 
not add to the reader’s comprehension of 
the models. 

The enterprise selected for the example 
is a library. In order not to bias the reader 
toward one modeling methodology and not 
to make any assumptions as to the reader’s 
prior experience with data models, the in- 
formation about the library is presented in 
textual form. Assume that the statements 
given here were obtained as a result of 
interviews with the library staff, with some 
database terminology inserted by the in- 
terviewer. For each semantic data model 
presented in Section 2, we develop a con- 
ceptual model of the library based on the 
following statements: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

A PUBLICATION entity has TITLE 
and AUTHOR attributes. 
BOOKS, JOURNAL-PAPERS, and 
CONFERENCE PAPERS are partic- 
ular kinds of PUBLICATIONS. 
A BOOK entity has SALES, TOPIC, 
AUTHOR, PRICE, PUBLISHER, 
INTEREST-INDEX, and ACQUI- 
SITION-PRIORITY attributes. 
A BEST-SELLING-BOOK has 
SALES greater than 10,000. 
A WRITER entity has INCOME, 
NAME, and STIPEND attributes. 
The AUTHOR attribute of BOOK is 
of type WRITER. 
A PUB-HOUSE entity has NAME 
and GROSS attributes. 
A PERSON entity has a NAME at- 
tribute. 
A REVIEWER entity has a STI- 
PEND attribute. 
A LITERARY-FIGURE is both a 
WRITER and a REVIEWER. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
(22) 

A BORROWED entity has PUBLI- 
CATION and DUE-DATE attri- 
butes. 
A LIBRARY entity has ACQUISI- 
TIONS and ORDERED-PUB-LIST 
attributes. 
The set of DATABASE-BOOKS 
contains all BOOKS with TOPIC = 
DATABASE and also has a TOTAL- 
COST attribute. 
The set of AI-BOOKS contains all 
BOOKS with TOPIC = AI. 
The BOOKS in the set of GOOD- 
BOOKS are identified by the end 
user. 
The set DB-AI-GROUP-BOOKS 
consists of BOOKS in both DATA- 
BASE-BOOK and AI-BOOK. 
All BOOKS in the set RESEARCH- 
GROUP-COLLECTIONS are 
GOOD-BOOKS. 
WROTE is a relationship between 
BOOK and AUTHOR. 
PUBLISHED is a relationship be- 
tween BOOK and PUB-HOUSE. 
REVIEW is a relationship between 
BOOK and REVIEWER with attri- 
butes RATING and DATE. 
A REVIEWER is a PERSON. 
HOLD is a relationship between 
BOOK and LIBRARY. 

2. REPRESENTATIVE SEMANTIC MODELS 

In the following sections, a number of se- 
mantic data models selected to represent 
the various major approaches to conceptual 
modeling are discussed. Salient features of 
each model are mentioned, and each is ana- 
lyzed using the parameters of comparison 
discussed in Section 1. 

2.1 Entity-Relationship Model 

The entity-relationship (E-R) model 
[Chen 19761 is an early semantic data 
model that unifies features of the tradi- 
tional (as defined in the Introduction) 
models to facilitate the incorporation of 
semantic information. As indicated by the 
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a BOOK 1 

I REVIEWER 

a PUB-HOUSE 

Figure 8. Types and attributes in the E-R model. 

name, the two primary modeling constructs 
are the entity and the relationship. From a 
conceptual perspective, the enterprise 
being modeled is viewed as a collection of 
entity and relationship types represented 
graphically (similar to the network model). 
At the representational level, the informa- 
tion structures for entity and relationship 
instances strongly resemble relations. 

Figure 6 in Section 1 presents an E-R 
diagram for a portion of the library data- 
base. Figure 8 graphically depicts the attri- 
butes of the entity and relationship types. 
From a very abstract viewpoint, as in Fig- 
ure 8, a relationship exists between a type 
and its attributes. Although not defined 
as such in discussions of the entity- 
relationship model, the relationship be- 

tween a type and its attributes presents the 
same abstraction as aggregation to the data 
modeler. 

The E-R model provides strong support 
for a multiplicity of constraints. The 
characters 1,&Z, and /iin Figure 6 indicate 
the cardinality of the relationship defined 
by the arc on which they appear. Aand -4 
denote many. Hence the model explicitly 
supports one-to-one, one-to-many, and 
many-to-many relationships. Insertion/ 
deletion constraints are defined using ex- 
istence dependencies. In Figure 6, the 
existence of REVIEW entities depends on 
the existence of a BOOK entity. Thus, 
if a BOOK entity is deleted, all related 
REVIEW entities will also disappear from 
the database. The existence dependency is 

ACM Computing Surveys, Vol. 20, No. 3, September 1938 



166 l J. Peckham and F. Maryanski 

represented by enclosing the dependent 
entity (REVIEW) within a double rectan- 
gle, then inserting the label E on the rela- 
tionship diamond (IS-REVIEW-OF), and 
including an arrow pointing to the depend- 
ent entity (REVIEW). The dependent en- 
tity type is known as a weak entity in 
entity-relationship terminology. 

The identification of entities can depend 
upon the nature of the relationships in 
which the entity participates. Normally, an 
entity can be uniquely identified by the 
values of some set of its attributes, that is, 
NAME of WRITER. The identification of 
other entities, however, may depend on the 
relationship with other entities. For ex- 
ample, in Figures 6 and 8, a SEARCH- 
REQUEST entity, which consists of 
TITLE, DATE, and SOURCE, does not 
have a unique identification of its own but 
must be referenced through the PERSON 
entity via the REQUESTED relationship. 
Again, in Figure 6 the presence of an iden- 
tification dependency has a graphical 
representation and is denoted by the 
double rectangle around the SEARCH- 
REQUEST entity, the arrow on the 
relationship arc, and the ID in the relation- 
ship box. 

The only abstraction directly supported 
in the original E-R model is aggregation, 
although there are proposed extended 
models that include generalization [Teory 
et al. 19861. A variety of extensions to and 
applications of the E-R model appears in 
Chen [ 19851, March [ 19881, and Spaccapie- 
tra [1987]. The major contribution is that 
it was one of the first models attempting to 
provide multiple abstraction levels by com- 
bining the best features of the network and 
relational models. Descriptions of similar 
models can be found in Pirotte [1977] and 
Tsichritzis and Lochovsky [ 19821. 

2.2 TAXIS 

TAXIS [Borgida et al. 1984; Mylopoulos et 
al. 1980; Nixon et al. 1987; O’Brien 1983 is 
a language for the design of interactive 
database systems that places emphasis on 
classification and generalization/speciali- 
zation abstraction hierarchies. The data 
model combines ideas from programming 

language and database theory in order to 
support the following capabilities: 

(1) 

(2) 

(3) 

Data encapsulation. The operations on 
database objects are included in their 
definitions. 
Semantic data modeling. Specialization 
is extended from the static to the dy- 
namic portion of the database defini- 
tion. This includes the modeling of 
transactions and exception-handling 
operations. Examples are given below. 
Embedded database types and opera- 
tions. The database types, classes in the 
TAXIS terminology, and their opera- 
tions, transactions, can be embedded in 
existing higher level languages (e.g., 
Pascal). 

The result is a highly structured model, 
providing integrated modeling constructs 
for the static and dynamic portions of 
databases. Generalization/specialization 
serves as the fundamental organizing ab- 
straction of the TAXIS modeling approach. 
This conceptual abstraction takes the form 
of an IS-A hierarchy when presented 
graphically as in Figure 1. In that figure, 
BOOK IS-A PUBLICATION and thus in- 
herits all properties of BOOK. In addition, 
BOOK will take on its own properties. The 
definition of the TAXIS BOOK class ap- 
pears below: 

dataclass BOOK with 
attributes 

AUTHOR: set of WRITER, 
SALES: 0...99999999; 
TITLE: string; 
PUBLISHER: PUB-HOUSE; 
BORROWER: set of PERSON; 
REVIEWERS: set of REVIEWER, 
REVIEWS: set of REVIEW; 

end BOOK; 

TAXIS permits multiple inheritance. As 
mentioned in Section 1, this can cause 
problems if not properly handled. TAXIS, 
however, provides for the resolution of in- 
heritance conflicts through its exception- 
handling mechanism, which is described 
shortly. 

One special feature of TAXIS is the mod- 
eling of the dynamic portion of the database 
using specialization. The notion of classes 
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is also applied to the definition of transac- 
tions. Consider the OBTAIN transaction 
for the PUBLICATION class: 

transaction OBTAIN with 
parameters 

p: PUBLICATION; 
1: LIBRARY; 

prerequisites 
Not-in-library?: (p not-in l.acquisitions); 
Not-yet-ordered?: (p not-in l.ordered- 

pub-list); 
actions 

al: add p to the l.ordered-pub-list; 
end OBTAIN; 

In a TAXIS transaction, the prerequi- 
sites serve as preconditions that must eval- 
uate to “TRUE” in order for the actions to 
execute. In this example, the prerequisites 
verify that the object p does represent a 
publication already in the library or on 
order. As a result of this transaction, the 
publication is placed on the ordered list for 
processing by the purchasing department. 
Since the purchasing of a book involves 
specific operations, such as checking 
the price and submitting a book order 
to the publisher, a transaction that pro- 
cesses the purchase of a new book can be 
created by specializing the OBTAIN trans- 
action as illustrated below. The specialized 
version of OBTAIN is executed if the object 
passed as parameter p is of type BOOK. 

specialize OBTAIN (p: BOOK) 
add 
prerequisite 

Cost-reasonable?: (p.price < = 50); 
action 

a4: order-book (p, p.publisher); 
end OBTAIN; 

The technique of specialization is ex- 
tended to encompass the modeling of 
exceptions as well. A general exception 
handler is defined for each transaction 
specifying general actions upon any excep- 
tion. Specialized exceptions can be associ- 
ated with the general exception handler 
defining actions for particular exception 
types. For example, a general exception 
handler may be defined for the OBTAIN 
transaction, with specialized exception 
handlers to perform specific actions for 
each exception type. Figure 9 presents a 
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hierarchy of exceptions for the OBTAIN 
transaction. The modification of the trans- 
action to include exception handling and a 
sample exception handler is as follows: 

transaction OBTAIN with 
parameters 

p: PUBLICATION; 
1: LIBRARY; 

prerequisites 
Not-in-library?: (p not-in l.acquisitions); 
Not-yet-ordered?: (p not-in lordered- 

pub-list); 
actions 

al: add p to the l.ordered-pub-list; 
for exception e in OBTAIN-EXCEP- 

TION with pub c-p, lib C-1 

use EX-HANDLER (e); 
end OBTAIN; 

Script class EX-HANDLER (e: book-out-of- 
print) 

transitions 
send message; 

actions 
inform user that book is out of print 

end, 

The BOOK-OUT-OF-PRINT exception 
would arise if the OBTAIN transaction 
were called with an unsuccessful candidate 
as a parameter. Exception handlers are 
realized in TAXIS as scripts, which are 
generalized processes with explicit com- 
munication and synchronization mecha- 
nisms. The communication aspects of 
scripts are of interest here since exceptions 
frequently result in the display of a message 
to the user. 

In conclusion, TAXIS is a system in 
which classification and generalization 
hierarchies are emphasized and extended 
to the dynamic portion of the database. A 
distinguishing characteristic of the system 
is the use of database abstractions to model 
exception handlers and transactions. 

2.3 SDM 

Many of the models considered in this sur- 
vey offer the modeler a small set, typically 
one or two, of fundamental abstractions. 
Recall the E-R model with entities and 
relationships and TAXIS, which provides 
classes and generalization/specialization 
hierarchies. SDM [Hammer and McLeod 

ACM Computing Surveys, Vol. 20, No. 3, September 1988 



168 . J. Peckham and F. Maryanski 

INCORRECT 

ORDER 

r 
NO 7 DISCOUNT 

- 

BUDGET 

CUT 

Figure 9. Exception hierarchy. 

19811 takes a different approach by incor- 
porating a wide range of modeling con- 
structs into a single abstraction, the class. 
The intent is to permit the database de- 
signer to express the “meaning” of the da- 
tabase clearly with mechanisms designed to 
map directly onto the designer’s concepts. 
Where most other semantic models provide 
primitives from which the designer can 
construct more complex conceptual objects, 
SDM attempts to offer a full set of model- 
ing facilities. In keeping with semantic 
modeling philosophy, one objective is to 
permit flexible and multiple views of the 
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data and at the same time carefully control 
the repetitive modeling effort that arises 
from such requirements. Aggregation, gen- 
eralization, classification, association, and 
derivation are all used to attain these 
objectives. 

Classification and association have 
greater emphasis in SDM than aggregation 
and generalization. An SDM database is a 
collection of entities (instances) organized 
into classes, or types. The designer defines 
classes and within this framework specifies 
member and class attributes, interclass 
connections, and derivations. This is 
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different from models with entity and re- 
lationship definitions in that the focus is 
upon the definition of the class itself and 
not its links to other classes via an E-R 
diagram or an IS-A hierarchy. 

Another example from the library data- 
base illustrates the SDM approach. Assume 
the definitions of BOOK and DATA- 
BASE-BOOK given below. The descrip- 
tion of BOOK contains only member 
attributes that reflect the properties of 
individual books. DATABASE-BOOK, 
however, contains an interclass connec- 
tion description and class attributes, in 
addition to its member attributes. The in- 
terclass connection description indicates 
that DATABASE-BOOK is a subclass of 
BOOK, where database is an element of 
BOOK.Topic. The class attributes describe 
properties of the class as a whole. 

BOOK 
description: all books within the library mem- 

ber attributes: 
Title 

value class: STRINGS 
Author 

value class: PERSON 
Publisher 

value class: PUB-HOUSE 
Price 

description: price of book at library rate 
value class: DOLLARS 

Topic 
value class: TOPICS 

Interest-Index 
value class: INTEGERS 

Acquisition-priority 
value class: INTEGERS 
derivation: order by decreasing Interest- 

Index within BOOK. 
identifiers 

Title 

DATABASE-BOOK 
description: all database books within the 

library interclass connection: sub- 
class of BOOK where 

BOOK.TOPIC = ‘database’ 
member attributes: 

Subtopic 
value class: DB-SUB-TOPICS 

class attributes: 
Total-cost 

value class: DOLLARS 
derivation: sum of Price over mem- 

bers of this class 

As illustrated by Total-cost and Acqui- 
sition-priority above, the values assumed 
by attributes can be computed from any 
other information in the database schema 
using a sophisticated collection of deriva- 
tion primitives such as statistical, Boolean, 
and ordering computations and recursive 
schema tracing capabilities. 

Two types of interclass connections, sub- 
type and group, can be specified in a class 
definition. The subtype and grouping con- 
nections are used to handle generalization 
and association abstractions, respectively. 
As in most systems having a generaliza- 
tion hierarchy, inheritance of attributes is 
included. Since multiple inheritance is per- 
mitted, rules are specified to handle inher- 
itance conflicts that may arise when two or 
more supertypes of a type define an attrib- 
ute with the identical name but some dif- 
ferences in the values class or derivation. 
Attributes may be specialized as one moves 
down the generalization hierarchy. In the 
above definition, DATABASE-BOOK is a 
subtype of BOOK. As an alternative, sub- 
types may be defined in which membership 
is explicitly stated by the user as in 

GOOD-BOOKS is a subclass of BOOK 
to be specified by the user. 

Membership in other classes can also be 
used to specify a class as follows: 

DB-AI-GROUP-BOOKS is defined as a 
subclass of BOOK 
where class membership is defined as 
books that are in the classes DATA- 
BASE-BOOKS and AI-BOOKS. 

The grouping connection is used to spec- 
ify classes that consist of groups of objects, 
again either user or constraint specified. As 
an example, the definition of RE- 
SEARCH-GROUP-COLLECTIONS ap- 
pears below: 

RESEARCH-GROUP-COLLECTIONS 
interclass connection: grouping of BOOK as 

specified 
member attributes: 

Good-book-list 
description: the good books that are in 

the collection (if any) 
value class: BOOK 
derivation: subvalue of Contents where is 

in GOOD-BOOKS 
multivalued 
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The inter&us connection statement 
specifies that the elements of the second 
research group’s collection are user speci- 
lied. In this case the collection contains the 
books selected by the members of the re- 
search group. Good-book-list is a multi- 
valued, derived, member attribute that 
contains the set of those selected books 
that are also classified as good books. 
Contents is a multivalued member attribute 
that is automatically established for each 
grouping class. The value of this attribute 
is the collection of members of the class 
underlying the grouping that forms the con- 
tents of that member. In this example each 
member of the grouping RESEARCH- 
GROUP-COLLECTIONS, that is, the 
collection of books in each research group, 
has as the value of its Contents attribute 
the set of books selected by the users in 
that research group. The derivation state- 
ment for the good-book-list attribute 
identifies those members of the Contents 
attribute set that are also in the GOOD- 
BOOK class. 

SDM employs the class abstraction as 
its primary conceptual modeling vehicle. 
Whereas classes effectively represent enti- 
ties when using the SDM approach, rela- 
tionships are embodied in the interclass 
connections that are specified as part of the 
class definitions. Within the class abstrac- 
tion, SDM offers a rich set of inheritance, 
constraint, and derivation options. A dis- 
tinguishing feature of the SDM approach 
is the focus on the specification of the class 
without the development of hierarchies or 
networks presenting interrelationships 
among classes, as found in several other 
models addressed in this survey. 

Although it is generally true that more 
primitive modeling constructs do provide 
greater versatility, one might argue that the 
difference is in emphasis. SDM can be 
viewed as providing an extremely rich col- 
lection of constructs capable of represent- 
ing the user’s view of the data. SDM has 
served as a prototype system for other se- 
mantic models: Many later systems have 
indeed chosen a subset of the SDM offer- 
ings to provide useful sets of modeling tools 
for specific classes of enterprises and mod- 
eling philosophies. 

2.4 Functional Data Model 

The functional data model [Shipman 19811 
was constructed in conjunction with the 
data definition language DAPLEX. The 
objective was to provide a model and defi- 
nition/manipulation language that is ca- 
pable of representing applications with 
naturalness and simplicity. Most models 
use a variety of constructs to provide mod- 
eling flexibility. (These constructs are 
summarized in Table 1 in Section 3.) The 
designers of this system found, however, 
that limiting the constructs to entity and 
function provide a direct and simple lan- 
guage for data definition and manipulation. 

In the functional data model, functions 
can be used to define the aggregation of 
attributes used to form an entity. BOOK 
might be defined as 

DECLARE BOOK( )==>> Entity 
DECLARE Title (BOOK) ==> String 
DECLARE Publisher (BOOK) ==> 

PUB-HOUSE 
DECLARE Author (BOOK) ==>> 

PERSON 

Since Author (BOOK) and BOOK( ) are 
multivalued, ==>> is used to indicate a 
multivalued function. Relationships are 
also represented functionally. The decla- 
ration of Author (BOOK) describes a rela- 
tionship between BOOK and PERSON. 
Multiple argument functions such as 

DECLARE REVIEW RATING (BOOK, 
REVIEWER)= => RATING 

can be used to represent aggregate rela- 
tionships between multiple entities. As 
a basis for comparison, the E-R model rep- 
resents the above function as a relation- 
ship with attributes. REVIEW-RATING 
would be a relationship between BOOK 
and REVIEWER with a RATING attri- 
bute. 

The model does not provide explicit 
means for generalization and classifica- 
tion, although the user may define func- 
tions representing these abstractions. The 
null function on an entity type returns 
theset of elements of that type and 
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relationship or connection between them. 
The linkage between the relations does not 
explicitly appear in the relational scheme. 
For example, Figure 3 when considered by 
itself without any supporting documenta- 
tion does not present an obvious link be- 
tween BOOK and WRITER. The semantic 
relationship between BOOK.AUTHOR 
and WRITER.NAME exists only in the 
mind of the user or in the code of an 
application program. The relational join 
operator is used to associate tuples with 
matching values in those fields. In the 
relational model, however, a join could 
also occur between BOOK.TITLE and 
WRITER.NAME since both are text fields. 
The result would be technically valid, but 
not the realization of the relationship under 
consideration. 

Although the relational model presents 
a well-defined and reasonably straight- 
forward conceptual model, its semantic 
leaness places a substantial modeling 
burden on the end user or application pro- 
grammer. RM/T represents a means of en- 
hancing the semantic expressiveness of the 
relational model while maintaining its 
fundamental character. In this spirit, the 
RM/T model defines entity and relation- 
ship types and the corresponding existence 
constraints between them. Entity types are 
defined by E-relations, of which there ex- 
ists one per type, and P-relations, which 
define the properties (attributes) of the 
type. An E-relation consists of a single 
column holding the systemwide, unique 
identifiers for each instance of the entity 
type. P-relations are directly associated 
with E-relations and hold the value for each 
property. Figure 10 presents the E-relation 
and a subset of the P-relations for the 
BOOK entity. 

RM/T represents relationships using 
associative entity types for many-to-many 
relationships and designative entity types 
for many-to-one relationships. In our ex- 
ample, the relationship BORROWED be- 
tween BOOK and PERSON, which is 
many-to-many, appears as an associative 
entity type defined in RM/T as appears 
below. The BORROWED relation con- 
tains references to the appropriate BOOK 
and PERSON tuples plus an attribute 

therefore provides a form of association. 
For example, the set of all books in the 
library, is represented as BOOK( ). 

Although the functional data model does 
not provide as great a variety of modeling 
techniques as other models, it is clear 
that the concise and clear representation 
of relationships between entities is an ad- 
vantage. Buneman and Nikhil [1984] dis- 
cuss the functional data language FQL, 
in which a small set of functionals is 
used to provide a collection of query opera- 
tions for the manipulation of functional 
databases. 

2.5 RM/T 

RM/T (Tasmanian model) [Codd 19791 is 
an extension of Codd’s relational model 
[Codd 19701, attempting to capture more 
meaning in a conceptual model through the 
introduction of relationships and integrity 
rules. The relational model, a brief illustra- 
tion of which appears in Figure 3 in the 
Introduction, provides a tabular conceptual 
model in which all relationships between 
the tables (relations) are dynamically 
formed on the basis of data values in the 
tables. 

After the introduction of the relational 
model, researchers devoted their energies 
to describing forms of the model that guar- 
anteed high levels of consistency and pro- 
tection from update anomalies [Codd 1970, 
1972; Fagin 1977, 19791. But the result of 
maintaining higher order normal forms is 
usually a collection of relations far more 
fragmented than originally defined by the 
user and thus less closely related to the 
user’s conceptual model. 

For example, if the user is inclined to 
define a BOOK relation containing tuples 
completely describing the book’s author, 
the rules defining normal forms will force 
the separation of this relation into two 
relations, BOOK and WRITER, to provide 
a reasonable level of database consistency. 
The definition of two separate relations will 
permit a change in a field such as the 
author’s address to occur in one place with- 
out having to update the tuples for all books 
written by the author. The user, however, 
still views these two relations as having a 

ACM Computing Surveys, Vol. 20, No. 3, September 1988 



172 . J. Peckham and F. Maryanski 

Figure 10. E-relation and P-relations. 

BOOK BOOK-ID 

AUTH BOOK-ID AUTHOR 

TITL BOOK-ID TITLE 

PUBL 
BOOK-ID PUBLISHER 

indicating the number of copies of the book Codd [1979] and Date [1983] contain com- 
in the library. plete lists of the RM/T integrity rules. 

CREATE E-RELATION HOLD 
ASSOCIATING (BOOK VIA BOOK-ID, 

LIBRARY VIA LIBRARY-ID); 
CREATE P-RELATION PHOLD FOR 

E-RELATION HOLD 
PROPERTIES (SUR-BOOK 

SURROGATE FOR BOOK, 
SUR-LIB SURROGATE FOR 

LIBRARY); 

A given instance of BORROWED can 
exist in the database only if, for that 
instance, each E-attribute of BOOK and 
PERSON either has the null value, or 
identifies an existing entity of the appro- 
priate type. 

CREATE P-RELATION PHOLD-COP 
FOR E-RELATION HOLD 

PROPERTIES (COPIES DOMAIN 
(COPIES)); 

The relationship between BOOK and 
WRITER can be represented by defining 
designative reference to entity type BOOK 
from entity type WRITER by adding 
the “DESIGNATING” phrase to the de- 
finition of the E-RELATION BOOK as 
shown below. BOOK is then considered a 
designative entity type. 

The E-attribute of an entity type is the 
internal, systemwide, unique tuple identi- 
fying attribute. An E-attribute roughly cor- 
responds to object identifier in an object- 
oriented system. The general form of the 
above integrity rule holds for all associative 
entity types in the schema. The rule can be 
refined so as not to permit nulls. That 
option would apply to the BORROWED 
type defined here. 

CREATE E-RELATION BOOK 
DESIGNATING (AUTHOR VIA 

WRITER-ID); 

RM/T provides numerous built-in integ- 
rity rules for the various entity types. The 
rule given below [Date 19831 applies to the 
BORROWED associative entity type. Both 

RM/T provides explicit support for type 
hierarchies through its SUBTYPE clause. 
In an RM/T type hierarchy, subtypes are 
distinguished by the values of specified at- 
tributes per Figure 11. The relationship 
DATABASE-BOOK IS-A BOOK is ex- 
pressed in the definition of the E-RELA- 
TION for DATABASE-BOOK as shown 
in the following: 

CREATE E-RELATION DATABASE- 
BOOK SUBTYPE OF BOOK PER 

CATEGORY TOPIC: 
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PUBLICATION 

I TYPE 

JOURNAL 

PAPER 
BOOK 

CONFERENCE 

PAPER 

TOPIC 

DATABASE Al 

BOOK 
BOOK 

Figure 11. RM/T type hierarchy. 

The phrase “PER CATEGORY TOPIC” 
indicates that the value of the TOPIC 
attribute determines membership in the 
DATABASE-BOOK subtype. 

Multiple inheritance may occur in an 
RM/T type hierarchy. In a situation of that 
nature, RM/T makes the tacit assumption 
that no naming conflicts will arise since 
none of the explicit integrity rules address 
that case. 

The orientation of this model is slightly 
different from that of other semantic 
models. RM/T arose out of the desire to 
handle database inconsistencies resulting 
from the insertion and deletion of tuples 
connected through interrelational depen- 
dencies. Thus the model is information 
structure oriented, as is the relational 
model. Most other semantic data models 
provide similar modeling abstractions, but 
at the higher, conceptual level distinct from 
the underlying information structures. 
RM/T presents itself as an enhanced rela- 
tional model as opposed to a new approach 
to conceptual modeling. RM/T, however, 
still qualifies as a semantic model since the 
definition of these semantics not only 

gives more meaning to these relationships, 
but provides the data structures neces- 
sary to utilize the usual data modeling 
abstractions. 

2.6 SAM*: A Semantic Association Model 

SAM* [Su 19831 is a semantic model de- 
signed originally for scientific-statistical 
databases and later extended to explicitly 
support computer-intergrated manufactur- 
ing applications. Since SAM* was designed 
for a particular set of applications, it is 
characterized by its support for nontradi- 
tional object types and relationships lend- 
ing themselves easily to the design of these 
databases. The general organization of a 
model constructed with SAM* is a network 
of atomic and nonatomic concepts (or ob- 
jects). The nonatomic constructs are de- 
signed through recursive nesting to provide 
a well-structured and semantically consist- 
ent approach to object type definition. On 
the lowest level, concepts are represented 
with a set of abstract data types. The ex- 
pansion to this set of types from the usual 
strings and numerals was done for the 
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PUBLICATION ( G ) 

Figure 12. G-relation. 

following reasons: 

CONFERENCE 

PAPER 

DATE 

(1) To provide object types that corre- 
spond exactly to those seen by the user 
as the most primitive units of the ap- 
plication. 

(2) To provide well-defined operations on 
the units of information that corre- 
spond to the actions occurring in the 
problem domain. 

Both of the above provide more efficient 
use of the designer’s energies since time 
does not have to be spent building the high- 
level constructs from more primitive types. 

As a result of an analysis of the require- 
ments of the computer-integrated manu- 
facturing environment [Su 19861, the 
following types and their operations are 
built into SAM*: 

(1) sets (ordered and unordered), 
(2) vectors and matrices, 
(3) time and time series, 
(4) text, 
(5) G-relations (generalized relations). 

The G-relation of SAM* is an extended 
relation whose attributes may be of any 
valid SAM* type, including relation. Sub- 
typing of G-relations occurs by organizing 
types hierarchically into a semantic net- 
work. The mapping involves implicitly 
embedding G-relation types within the def- 
inition of other G-relation types. For ex- 
ample, the G-relation for PUBLICATION 
pictured in Figure 12 captures the fact 
that CONFERENCE PAPER, JOURNAL 
PAPER, and BOOK relations are speciali- 
zations of PUBLICATION. 

SAM* provides the designer with seven 
built-in relationships (associations in 
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TITLE AUTHOR 

JOURNAL 

PAPER 

JO”FwAL ISSUE 

SAM* terminology) that can be organized 
into networks to model the semantics of a 
particular enterprise. These seven relation- 
ships appear below [Su 19861. Several have 
appeared in prior models and therefore 
receive only cursory mention here. 

(1) Membership: “is member of.” 
(2) Aggregation: Defined in the Introduc- 

tion. 
(3) Interaction: Used to model arbitrary 

relationships, in the E-R sense. Pro- 
vides cardinality and referential integ- 
rity constraints. 

(4) Generalization: Enhanced version of 
generalization with mutual exclusion, 
set equality, set-subset, and set inter- 
section constraints on the sibling types 
of a parent in the generalization hier- 
archy. Figure 13 illustrates the mutual 
exclusion constraint, which indicates 
that a PUBLICATION must be one of 
either a BOOK, JOURNAL-PAPER 
or a CONFERENCE-PAPER, and the 
set intersection constraint, which in- 
dicates that a BOOK could be consid- 
ered both an AI-BOOK and a DATA- 
BASE-BOOK. In the diagram, a 9 
node represents generalization, and an 
&node connotes aggregation. 

(5) Composition: “is part of.” 
(6) Cross product: Grouping among types 

whose instances are the result of taking 
the cross product of the instances of 
the component types in order to sup- 
port statistical analysis by the sum- 
marization association defined next. 

(7) Summarization: Supports statistical 
aggregation and disaggregation. By 
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- PUBLICATION 

Figure 13. SAM* generalization hierarchy. 

AVG-SALES TOTAL-INCOME 

TITLE PRICE NAME GROSS INCOME NAME STIPEND 

Figure 14. Cross product and summarization. 

combining cross product and summa- 
rization, the designer can create statis- 
tical entities using attributes from 
several distinct entity types. Figure 14 
illustrates a grouping that permits the 
gathering of summary statistics on fi- 
nancial aspects of publishing. 

SAM* is oriented toward applications 
such as statistical databases and CAD/ 
CAM, which involve nontraditional data. 
A number of distinct data types exist as 
primitives in SAM*. Furthermore, the 
G-relation provides explicit support for the 

representation of a wide diversity of infor- 
mation. The modeling constructs of SAM* 
were selected after an evaluation of the 
requirements of the conceptual modeling 
needs of the CAD/CAM environment. The 
developers of this model have implemented 
a prototype database management system 
IDMAS, based upon the SAM* model in 
order to evaluate the applicability of 
the modeling techniques to the computer- 
integrated manufacturing application do- 
main [Krishnamurthy et al. 19871. An 
enhanced model and system are presently 
at the design stage. 
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2.7 The Event Model 

The event model [King and McLeod 1984, 
19861 is a semantic data model providing 
Support for generalization via functions, 
and aggregation through attributes. An in- 
teresting aspect of this model is its ap- 
proach to dynamic modeling. 

In the event model, a subtype relation- 
ship is used to organize the static schema 
into a set of hierarchies. Membership in 
a subtype is defined using predicates 
evaluated on attributes. For example, if 
DATABASE-BOOK is a subtype of 
BOOK, then a predicate would be specified 
within BOOK, defining the members of 
BOOK that qualify. For example, 

Subtype: DATABASE-BOOK 
all BOOK where topic = “database”. 

The attribute constraints listed below are 
built into the model [Farmer et al. 19851: 

(1) Primary: The attribute uniquely iden- 
tifies the object. 

(2) Ordered: The attribute may serve as a 
sort key. 

(3) Single valued: The attribute has an 
atomic element as its value. 

(4) Multivalued: The attribute may have a 
set as its value. 

Thus, the semantics of an attribute de- 
pend on the constraints imposed by the 
schema designer in the definition of the 
attribute type. This provides the designer 
an additional degree of freedom. The defi- 
nition of the BOOK type illustrates the 
static modeling facility of the event model: 

TYPE: BOOK 
primary attributes: ISBN-string (singled 

valued, nonnull) 
dependent attributes: 

AUTHOR-WRITER (multivalued, non- 
null, ordered) 

SALES-integer (single valued, ordered) 
TITLE-string (single valued, nonnull, 

ordered) 
PUBLISHER-PUB-HOUSE (single 

valued, nonnull, ordered) 
BORROWER-PERSON (multivalued) 
REVIEWERS-REVIEWER 

(multivalued) 
REVIEWS-REVIEW (multivalued) 
TOPIC-string (multivalued, ordered) 

The methodology for interactive dy- 
namic model design consists of a sequence 
of design phases that describe the dynamic 
structures (events) of the application. In 
the first phase of event design, a process of 
stepwise refinement is used to define the 
functions of the application environment. 
These are represented as a hierarchy of 
process and function links. Process events 
correspond to units of processing within 
the application environment. Function 
links are used to represent a hierarchy of 
events. A function link is defined between 
two events if one individual person or pro- 
cedure is responsible for both or if one is 
logically embedded in the other. Figure 15 
provides an example of events in the 
procurement of books. This methodology 
bears some resemblance to many EDP 
systems analysis techniques. The integra- 
tion of this systems analysis approach with 
methods of conceptual data modeling dis- 
tinguishes the event model from both 
other semantic models and classical EDP 
approaches. 

Next, directed communication links are 
used to form paths indicating the flow of 
information in the database, as in Fig- 
ure 16. The resulting diagrams resemble 
state diagrams or Petri nets, but they are 
presented at a more concrete level. Fig- 
ure 16 shows the information flow for 
Obtain-publication. The last step includes 
resolving ambiguities and refining the 
design. 

As the authors point out, this model is 
not appropriate for applications in which 
the flow of information is not fixed or rou- 
tine. This model, however, does present a 
higher level modeling methodology for the 
dynamic aspects of databases when the be- 
havior of the model is reasonably predict- 
able. The design philosophy of this model, 
indicating not only the mechanism but the 
sequence by which information is extracted 
from the designer, could be extended to 
static modeling as well. If it aids a designer 
in specifying the semantics of an applica- 
tion, such a philosophy is well worth in- 
cluding in the model definition. 

Ongoing work using the event model in- 
clude Sedaco [Farmer et al. 1984, 19851, a 
tool for semantic database construction 
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/ \ OBTAIN-TECH-REPORT OBTAIN-TECH-REPORT 

OBTRIN-BOOK 

RCCEPT- RCCEPT- 
REQUEST REQUEST 

REJECT-REQUES” REJECT-REQUES” 

ORDER-BOOK ORDER-BOOK ORDER-REQUEST ORDER-REQUEST 

LOCATE-ADDRESS LOCATE-ADDRESS 

Figure 15. Figure 15. Specification of functional links. Specification of functional links. 

OBTRIN-PUBLICATION 

OBTAIN-BOOK DBTRIN-TECH-REPORT 

1 1 

k LOCATE- DORESS 

FIG EPT-REQUEST 

\\ 

REJECT-REQUEST 

4 
3 

ORDkR-BOOK INSTALL-REPORT 

Figure 16. Flow of information. 

identifying primitives to be used in data- 2.8 SHM+ 
base implementation, and Sembase [King 
19841, a semantic database management Like the previous model, SHM+ [Brodie 
system utilizing a graphics-based user 1984; Brodie and Ridjanovic 19841 ad- 
interface. dresses the problem of modeling both the 
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OBTAIN-TECH-REPORT 

INSTALL-REPORT 

LOCATE-ADDRESS 
1 

ORDER-REQUEST 

1 1 

TECH-REPORT TECH-REPORT TECH-REPORT 

Figure 17. Sequential scheme. 

static and dynamic portions of an applica- 
tion. Specification of data objects and as- 
sociated transactions are performed using 
an abstract data type philosophy and a 
related modeling methodology. Object and 
behavior schemes, an alternative to rela- 
tional tables and entity-relationship dia- 
grams, are used to capture the object and 
operation schemas from the designer. 
These schemes are used to model both 
higher and lower level data, relationships, 
and operation objects, thus providing a 
unified structure for the expression of the 
semantics of the application. 

The basic modeling constructs of SHM+ 
are primitive objects and operations, com- 
position rules for hierarchically forming 
more complex objects and operations, and 
constraints to be applied to all primitives, 
composition rules, and hierarchies. 

To model the static structure of the ap- 
plication, the gross properties of the objects 
and structural relationships are collected 
by use of object schemes. An example of a 
scheme utilizing aggregation is shown in 
Figure 2 in the Introduction. Similar 
schemes exist for generalization and asso- 
ciation. 

SHM+ supports inheritance through re- 
lationships other than those representing 
generalization. If we assume AUTHOR in 
Figure 2 refers to another object type, then 
the remaining attributes of that type 

can be inherited by the aggregate object 
PUBLICATION. This model not only en- 
courages this perspective but permits the 
user to specify to what extent inheritance 
should be carried out (i.e., which attributes 
of AUTHOR should be thought of as being 
part of PUBLICATION). When a gener- 
alization hierarchy appears in a design, 
SHM+ enforces strict inheritance. 

Behavior schemes are the explicit graphi- 
cal representation of the gross properties 
of SHM+ transactions. The nodes of a be- 
havior scheme represent the objects partic- 
ipating in the transaction, while the arcs 
are labeled by the operations applied to the 
objects. The structure of the graph defines 
the control flow of the transaction. Figures 
17 and 18 illustrate the representation of a 
sequential computation and a caselike de- 
cision, respectively. The graphical repre- 
sentation of these control abstractions is 
identical to that used to represent the struc- 
tural abstractions of aggregation and gen- 
eralization. Thus, SHM+ offers a unified 
modeling methodology for both static and 
dynamic objects. Figure 19 presents the 
SHM+ definition of the OBTAIN-BOOK 
transaction. 

The most important aspects of the 
SHM+ model are its contribution to dy- 
namic data modeling and a consistent 
modeling methodology for both dynamic 
and static schemas. The similarity of the 
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URL-REQUEST 

REJECT-REQUEST 

Figure 18. Case scheme. 

BOOK-REQUEST BOOK-REQUEST 

I 1 EURL-REQUEST 

BOOK:REQUEST 

G 

Figure 19. Behavior scheme. 
REJECT-REQUEST 

A BOOK-REQUEST 

1 

ORDER-BOOK 

BOOK-REQUEST BOOK 

constructs in Figures 2 and 17 illustrate the 
commonality of the approaches to modeling 
data and transactions in SHM+. Since the 
semantics of database objects always spec- 
ify constraints on behavior of the database, 
it seems reasonable that the definition of 
transactions (dynamic objects also speci- 

fying database behavior) should be consid- 
ered an integral part of database modeling. 

3. COMPARISON OF MODELS 

In this section, the objectives and offerings 
of the models described in Section 2 are 
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compared using the parameters suggested 
in Section 1. A technique for assessing the 
relative merits of these models is also given. 
Since the collection of data models is not 
uniform in terms of scope or objective, the 
evaluation contains a certain amount of 
subjectivity. Nevertheless, we present each 
model in terms of our earlier definitions of 
a “semantic model.” 

3.1 Tabular Comparison 

Table 1 summarizes the features of the 
models surveyed. Owing to the diversity of 
models chosen, the information in the table 
is intentionally more general than specific. 
More specific parameters would leave many 
of the entries empty and would not provide 
a good means of comparison, especially 
with respect to dynamic modeling. A survey 
that limits the types of models compared 
to those providing some degree of dynamic 
modeling but provides separate detailed 
tables for static, dynamic, and temporal 
modeling constructs appears in Urban 
and Delcambre [ 19861. 

An explanation of the terms used in the 
table but not defined in Section 1 follows: 

(1) Unstructured object representation is 
classified as limited or enhanced, de- 
pending on the degree to which the 
system provides nontraditional data 
types. 

(2) Relationship representation is consid- 
ered to be independent, entities, tables, 
functions, or attributes, depending on 
the manner in which the model pre- 
sents the relationships to the user. As 
mentioned before, many systems offer 
multiple relationship views to the user 
in the interest of semantic relativism. 

(3) We classify the means by which in- 
sertion/deletion constraints are of- 
fered to the database designer within 
a given model as follows: If a user is 
provided a set of relationship types, 
each of which includes insertionldele- 
tion rules, then we shall consider these 
rules built in. If these rules are further 
maintained automatically by the sys- 
tem, then we shall consider them au- 
tomatic. If the user is provided with a 
choice of insertion/deletion semantics 

for each relationship type, then these 
constraints are user specified. 

Notice that within the table, one finds 
a wide variety of modeling techniques. 
For example, whereas TAXIS emphasizes 
a generalization hierarchy as the major 
organizational feature for objects and op- 
erations, the entity-relationship model em- 
phasizes networks. In this case, the subtle 
differences in the properties of hierarchy 
and a network have an impact on the ap- 
plication of the modeling methodologies. 
The absence of cycles in a hierarchy exactly 
corresponds to a prohibition against circu- 
lar inheritance in TAXIS. Some other ob- 
servations follow: 

(1) Almost all models include gener- 
alization and aggregation as modeling 
abstractions. Classification and espe- 
cially association seem to be not so widely 
acknowledged as fundamental modeling 
concepts. Most models tend to build around 
a single abstraction. For instance, TAXIS 
stresses generalization, whereas SDM 
defines all other properties within the class 
definition. 

(2) Dynamic modeling as an integral 
part of the modeling process has gained the 
interest of only a handful of semantic model 
designers. In two of the three models ca- 
pable of handling dynamic modeling, 
(TAXIS, SHM+, and the event model), a 
specific design methodology seems to be an 
integral part of the model; that is, the model 
not only provides modeling constructs but 
gives the designer a particular sequence 
of modeling activities used to specify the 
database model. 

(3) There is great variety in the defini- 
tion of insertion/deletion constraints. 
Some models (SAM*, SDM) specify these 
constraints as a part of the relationship 
definitions, others (functional data model, 
entity-relationship model) permit the user 
to specify which rules are desired, and still 
others (RM/T) permit a mixture of built- 
in constraints and user-defined constraints. 

(4) There is also great variation in the 
support of derivation. Many models offer 
inheritance through a generalization rela- 
tionship as the only form of derivation, 
whereas a model such as SDM provides 
many different varieties. 
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(5) Only the most recent or the most 
specialized models provide rich sets of data 
types for modeling information that cannot 

specify the acceptable states, transi- 
tions, and responses of the database 
system. 

be simply coded-in ASCII. As the table - 
indicates, this particular sampling of data The model developers vary in their per- 

models nrovides few good examples. There ceptions of the following: 

is evidence, however,-that work in this di- (1) Whether models should be applica- 
rection is continuing [Copeland and Maier tion independent or targeted toward spe- 
1984; Woelk et al. 19861. cific environments, such as SAM*. 

That the modeling philosophy is very 
different for each model is evidenced by the 
sections describing each model. Table 1 
serves to emphasize these differences fur- 
ther. Although most models have been de- 
fined to address the general problem of 
conceptual modeling, many have been ex- 
ercised in particular environments and 
have thus assumed characteristics best 
suited for those environments. In attempt- 
ing to evaluate further the collection of 
models, one must decide on the purpose of 
the evaluation. Such an evaluation could 
proceed from one of two points of view: 

(1) categorization of the models with the 
intention of identifying similarities and 
differences or 

(2) selection of a best model for a specific 
environment. 

In practice, a designer would face the 
latter decision. Given the general nature of 
this survey, however, we present parame- 
ters for categorizing semantic models and 
also discuss an approach to picking “the 
best model” for a given task. 

3.2 Evaluating Semantic Models 

Although substantial diversity of concep- 
tual modeling approaches exists among the 
semantic data models considered, all of 
the models’ authors seem to agree that the 
main objective is to facilitate the modeling 
of and the use of databases. Most agree that 
the following contribute to this objective: 

(1) A semantic model should provide rela- 
tionships between data objects that 
support the manner in which the user 
perceives the real-world enterprise. 

(2) For these relationships a semantic 
model should contain semantics that 

(2) Whether the relationships should be 
highly developed packages, with all seman- 
tics (insertion/deletion constraints, cardi- 
nality constraints, etc) built in, as in SDM 
or SAM*, or whether the database designer 
should have the option to specify the se- 
mantics of each relationship in an explicit 
manner. The entity-relationship model 
provides the latter option, since for every 
relationship the designer indicates proper- 
ties such as cardinality and insertion/dele- 
tion constraints. 

(3) Whether relationships should be 
complex or primitive in their structure. Bi- 
nary models [Abrial 1974; Azmoodeh et al. 
1986; Bachman 1983; Bracci et al. 19761, 
for example, are data models in which all 
relationships are constructed from elemen- 
tary binary relationships. Brodie [1984] 
classifies these as irreducible models since 
the information in the model is expressed 
with atomic rather than complex groups of 
facts. Tsichritzis and Lochovsky [ 19821 
characterize binary models as the elemen- 
tary graph-oriented models since the rela- 
tionships are usually presented in graph 
form (the relational model being the ele- 
mentary table-oriented model). To illus- 
trate that it is possible to represent complex 
relationships using elementary binary re- 
lationships, consider an aggregation rela- 
tionship used to form entities. For example, 
suppose a BOOK entity is composed of the 
attributes Title, Page-length, Author (ref- 
erence to another entity), and Publisher 
(reference to another entity). One might 
perceive this as a 1:4 relationship between 
BOOK and the four attributes, relating 
each BOOK object to one occurrence of 
each of the attributes from the four binary 
relationships: BOOK-Title, BOOK-Page- 
length, and so on. Although it is possible 
to construct complex relationships using 
a binary model, it can be said that the 
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relationships presented to the user are 
elementary. This approach is different from 
that of a model such as SDM, which offers 
built-in higher order relationships. 

(4) Whether relationships are distin- 
guished from entities at the conceptual 
level. In some models, that is, E-R models, 
relationships act as primary modeling ele- 
ments with different semantics than enti- 
ties. On the other hand, in the functional 
model, both entities and relationships are 
represented as functions. 

(5) Which abstractions should be em- 
phasized. Certain models stress one or two 
abstractions as their primary modeling 
tools. SDM, for example, makes heavy use 
of classification and aggregation, whereas 
TAXIS stresses generalization hierarchies. 
Other approaches, such as SHM+, offer a 
wider range of abstractions. The developers 
of the models that provide a small number 
of primary modeling concepts believe that 
offering a few powerful options results in a 
more straightforward modeling process. 

(6) What approach to dynamic modeling 
should be followed. SAM* provides abstract 
data types, in contrast to the generalization 
hierarchy approach in TAXIS and the flow 
of information approach of the event 
model. 

The above criteria can serve as differen- 
tiating characteristics of semantic data 
models for a model evaluation. If the pur- 
pose of the evaluation is to identify simi- 
larities and differences among the models 
for the purpose of classification, then these 
characteristics can form the columns of a 
table such as Table 1. Using information of 
this nature, one may wish to organize the 
models into groups as in Brodie [1984] or 
to develop a continuum such as that pre- 
sented in Figure 20. 

The parameters of Table 1 can also be 
utilized to identify the model of choice for 
a particular task. In addition, consider 
the following three criteria [March et al. 
19841, which can measure the ease of appli- 
cation of a given model to a particular 
problem domain by a specific designer: 

(1) User’s ability to understand the mean- 
ing (or semantics) of the modeling 
constructs provided. If the user has 
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Figure 20. Data model continuum. 

difficulty understanding or misunder- 
stands the modeling tools, then the ad- 
vantages of the semantic model are 
completely lost. 

(2) Ease of query formulation. One impe- 
tus for the rise of semantic models was 
the awkwardness of manipulating the 
database on the physical and data 
structure levels. 
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Table 2. Weighted Features 

Network Insertion/ 
Unstructured Relationship Standard versus Derivation/ deletion Relationship Dynamic 

objects representation abstraction hierarchy inheritance constraints semantics modeling 

Weight 0 25 15 10 15 10 20 5 

Table 3. Data Model ComDarison 

Network Insertion/ 
Unstructured Relationship Standard versus Derivation/ deletion Relationship Dynamic 

objects representation abstraction hierarchy inheritance constraints semantics modeling Total 

Weight 0 25 15 10 15 10 20 5 - 
Ml - 10 7 5 8 1 9 3 790 
M2 - 6 8 5 6 7 4 8 600 
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contemporary semantic data model re- 
searchers. 

SAM* addresses the issue of supporting 
nontraditional data by providing data types 
that are useful in statistical applications 
and CAD/CAM. Other researchers feel that 
it is more useful to provide primitives to 
support the design of special types [Cope- 
land and Maier 19841. This provides a more 
flexible model-one that is not targeted to 
specific applications but that may require 
more complexity in the expression of spe- 
cialized types. Modeling primitives for the 
design of text, sound (including voice), dig- 
itized images, and complex vector graphics 
appear in the approaches to the processing 
of multimedia information [Christodou- 
lakis et al. 1986; Woelk et al. 19861 that 
utilize a meld of semantic data modeling 
principles and object-oriented language 
philosophies to provide support for these 
diverse and nonstandard database applica- 
tions. 

Two other areas in which substantive 
results are limited are those of dynamic and 
temporal modeling (meaning the inclusion 
of explicit time and event concepts). All 
semantic systems provide support for static 
modeling, but although researchers have 
discussed the importance of temporal 
[Snodgrass and Ahn 19861 and dynamic 
modeling, one finds only a few models that 
include these capabilities. Urban and Del- 
cambre [1986] survey five models, RM/T, 
TAXIS, SDM, SHM+, and the event 
model, most providing dynamic and some 
providing limited temporal modeling fea- 
tures. A column containing information on 
temporal modeling in Table 1 would be very 
sparse indeed. Nevertheless, if conceptual 
modeling tools are to grow in their ability 
to describe an enterprise in a complete 
manner, this description must encompass 
behavior of a temporal nature as well as the 
representation of events. 

A variety of methodologies for the rep- 
resentation of time has been proposed. Ar- 
iav [1986] has defined TODM, the tempo- 
rally oriented data model, which effectively 
adds temporal data represented in cubic 
form into the relational model. Ariav’s 
work extends the relational operations to 
include temporal data. Snodgrass and Ahn 

(3) Ease of specification and maintenance 
of the semantics of the modeling con- 
structs. Whether the offering of the 
model is a simple collection of inser- 
tion/deletion constraints or a sophisti- 
cated set of constraint definition tools, 
the objective should be the same: The 
semantics should be easily specified 
and automatically maintained. 

One commonly used evaluation strategy 
involves the attachment of weights to the 
columns of the table, as in Table 2 where 
the weights indicate the relative impor- 
tance of each metric to the problem do- 
main. The rows of the table then hold the 
score indicating the merit of that model for 
the feature corresponding to each column. 
Table 3 presents the evaluation of hypo- 
thetical models Ml and M2 for a particular 
application environment. Ml’s higher total 
score reflects the evaluator’s preference for 
the manner in which it describes relation- 
ships and a general feeling by the evaluator 
that Ml is “easier to understand.” 

Subjectivity is inherent in this evaluation 
process. When, however, one recalls that 
one of the goals of semantic data models is 
the production of a representation of the 
enterprise that closely parallels the user’s 
perception, it is appropriate that the user’s 
perception play a major role in the evalua- 
tion of a model for a given enterprise. In- 
volving multiple evaluators in the process 
will mitigate the subjectivity to some 
degree. 

4. WHERE DO WE GO NOW? 

Although the formulation of abstractions 
and the support of relationships was of 
early and prime importance to researchers, 
there are other issues that have arisen 
within the realm of semantic data model- 
ing. It is still important to explore the va- 
riety of meanings for the semantics of the 
objects, operations, and relationships of a 
model. There are, however, other ideas that 
also might satisfy the requirements out- 
lined in the previous section and hence 
produce conceptual models that simplify 
the task of database design. The following 
paragraphs give (an eclectic) collection of 
ideas that will continue to be addressed by 
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[1985, 19861 have also used the relational 
model as the starting point for the repre- 
sentation of temporal data. They distin- 
guish between transaction time, which is 
the time when information was stored in 
the database, and valid time, the time dur- 
ing which the information is useful. Using 
these two concepts, they define static roll- 
back relations and historical relations. The 
approach taken by Shoshani and Kawagoe 
[1986] differs from the others in that they 
utilize time sequences, which are ordered 
sequences of time values, as the primary 
organizing concept. They also discuss the 
issue of physical organization for temporal 
data. Schiel [1983] proposes a temporal- 
hierarchic data model (THM) that incor- 
porates time concepts as one of its funda- 
mental abstractions. His work details the 
impact of temporal considerations on the 
semantics of generalization and specializa- 
tion. Castilho et al. [1982] have developed 
a language for the inclusion of temporal 
semantics in the specification of a database 
schema. One of the key concepts found in 
several studies of temporal data is that of 
temporal constraints, which permit the 
user to include time factors, as well as data 
values, in the constraint conditions [Ariav 
1986; Kung 19841. 

To a large extent, the conceptual model- 
ing requirements in new areas of informa- 
tion processing have driven the develop- 
ment of semantic data models. This survey 
has presented several semantic models that 
have the goal of satisfying the modeling 
needs of a wide range of enterprises. An 
alternative approach to addressing the need 
for extended data modeling capabilities is 
to generate data models automatically to 
fit the requirements of specific application 
environments. The Data Model Compiler 
[Maryanski et al. 1986, 19871 and EXO- 
DUS [Carey et al. 1986; Richardson and 
Carey 19871 are investigating this ap- 
proach. The key conceptual issue in the 
development of a viable data model gener- 
ator is the formal specification and repre- 
sentation of the semantics of the concep- 
tual data models. A first step involves the 
identification of primitive abstractions for 
the representation of entities, relation- 
ships, operations, and constraints of the 

model. The language used in the Data 
Model Compiler project for the represen- 
tation of data model semantics appears in 
Hong and Maryanski [1988]. The EXO- 
DUS project has developed the E program- 
ming language [Richardson and Carey 
19871 as a primary specification mecha- 
nism. If the data model generator idea were 
to prove feasible, it would make possible 
the tailoring of semantic data models to the 
requirements of an enterprise, thus reduc- 
ing the gap between the model in the mind 
of the designer and its representation 
within the database system. 

As evidenced by the models presented 
here, semantic data modeling is presently 
in the research stage. The commercial 
marketplace will not move beyond the 
relational model until semantic database 
systems with reasonable performance char- 
acteristics emerge. Chronologically, seman- 
tic data models postdate the relational 
model by approximately 7 years. Fledgling 
products have begun to emerge; mature sys- 
tems can be expected in a few years. The 
target marketplace for these new products 
is not expected to be commercial data pro- 
cessing but rather the management of sci- 
entific, engineering, and manufacturing 
data. The impact of semantic data models 
on the commercial market is likely to be 
limited by the following. 

(1) Inertia in the commercial market-the 
process of converting enormous 
amounts of data to a new model will 
not occur until the expected benefit 
clearly exceeds the cost. 

(2) Opportunity in the scientific/engineer- 
ing/manufacturing market-a well- 
known need for advanced data models 
already exists in this space. 

A reasonable forecast for the conceptual 
modeling future would project an emulation 
of the developments in programming lan- 
guages. Some languages appear to be for- 
ever entrenched among practitioners (i.e., 
FORTRAN and COBOL), with new lan- 
guages constantly surfacing, many having 
a substantial impact on both researchers 
and application programmers. A designer 
will always seek the best model for the task. 
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from Artificial Intelligence, Databases, and Pro- 
&mmiG Languages, M. L. Brodie, J. Mylopou- 
10s. and J. W. Schmidt, Eds. Sprintrer-Verlas. 
Nek York, pp. 19-48. - - 

Since the complexity of the applications 
will continue to increase, the designer’s re- 
quirements of a conceptual model will sim- 
ilarly heighten, and hence new models will 
continue to emerge. The collection of 
models surveyed in this paper is represent- 
ative of the next, but not the last, genera- 
tion of data models. 
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