DIRECTED HYPERGRAPHS AND APPLICATIONS (*)

Giorgio Galld Giustino Longb

Sang Nguyeh Stefano Pallottido

Abstract

We deal with directed hypergraphs as a tool to model and solve some classes of problems arising in
Operations Research and in Computer Science. Concepts such as connectivity, paths and cuts are defined. An
extension of the main duality results to a special class of hypergraphs is presented. Algorithms to perform
visits of hypergraphs and to find optimal paths are studied in detail. Some applications arising in
propositional logic, And-Or graphs, relational data bases and transportation analysis are presented.

January 1990

Revised, October 1992

) This research has been supported in part by the “Comitato Nazionale Scienza e Tecnologia
dell'lnformazione”, National Research Council of Italy, under Grant n.89.00208.12, and in part
by research grants from the National Research Council of Canada.

1 Dipartimento di Informatica, Universita di Pisa, Italy
2 Département d'Informatique et de Recherche Opérationhbieliegrsité de Montréal, Canada



INTRODUCTION

Hypergraphs, a generalization of graphs, have been widely and deeply studied in Berge (197:
1984, 1989), and quite often have proved to be a successful tool to represent and model concej
and structures in various areas of Computer Science and Discrete Mathematics.

Here we deal with directed hypergraphs. Sometimes with different names such as “labellec
graphs” and “And-Or graphs”, directed hypergraphs have been introduced in the literature as a wa
to deal with particular problems arising in Computer Science and in Combinatorial Optimization
(see, for example, Nilsson (1971), Martelli and Montanari (1973), Levi and Sirovich (1976), Boley
(1977), Furtado (1978), Maier (1980), Nilsson (1980), Gnesi, Montanari and Martelli (1981),
Uliman (1982), Nguyen and Pallottino (1989)).

Directed hypergraphs have also been explicitly introduced in Torres and Araoz (1988), Longo
(1989), Gallo, Longo, Nguyen and Pallottino (1989). In addition, particular instances of directed
hypergraphs can be found in Dowling and Gallier (1984), Ausiello, D'Atri and Sacca (1985, 1986),
Nguyen and Pallottino (1988), Gallo and Urbani (1989), Ausiello, Italiano and Nanni (1990),
Italiano and Nanni (1989).

The remaining of the paper is organised as follows. After a general presentation of directec
hypergraphs, section 3 introduces the concept of connection in hypergraphs and defines paths a
hyperpaths. Section 4 introduces cuts and cutsets in relation to connectivity. Sections 5 and
develop algorithms to visit hypergraphs and to solve some classes of minimum path problem:
defined on hypergraphs. Several applications are studied in section 7. In particular, it is shown the
hypergraph concepts and algorithms are elegant and powerful tools to model and to solve problen
which arise in areas such as propositional logic (Dowling and Gallier (1984), Gallo and Urbani
(1989)), And-Or graphs (Martelli and Montanari (1973), Levi and Sirovich (1976), Nilsson (1980),
Gnesi, Montanari and Martelli (1981)), data bases (Maier (1980), Ullman (1982), Ausiello, D'Atri
and Sacca (1983, 1985, 1986)), and urban transportation (Nguyen and Pallottino (1986, 198¢
1989)).

2. DIRECTED HYPERGRAPHS

A hypergraphis a pairH=(V ,E), whereV={v,, v,,...,v,} is the set ofvertices(or node3 and
E={E4, Es,...,En}, with E; OV fori=1,..., m, is the set ohyperedgesClearly, whenk;|=2,
i=1,...,m, the hypergraph is a standard graph.

While the size of a standard graph is uniquely defines bpdm, the size of a hypergraph
depends also on the cardinality of its hyperedges; we definsizeef H as the sum of the
cardinalities of its hyperedges:

siz§H) = ZgpEIE.
It is worth noting that there is a one-to-one correspondence between hypergraphs and Boolee
matrices. Indeed, anym matrixA:[aij] such thataij [1{0,1} may be considered as tlvcidence

matrix of a hypergrapHd where each rowis associated with a vertexand each columpwith a
hyperedgek;.



A directed hyperedge dryperarcis an ordered paik = (X,Y), of (possibly empty) disjoint
subsets of vertices is thetail of E while Y is itshead In the following, the tail and the head of
hyperarcE will be denoted by &) and HE), respectively.

A directed hypergraphs a hypergraph with directed hyperedges. In the following, directed
hypergraphs will simply be called hypergraphs. An example of hypergraph is illustrated in Fig. 1.
Note that hyperarEs has an empty head.

E, E, E; E, E

1
111 0 0 O
211 0 0 O
3]0 -1 0 O
411 -1 0 O
51 0 0 O
61 0 -1 O
710 1 0 O
8] 0 1 0 O
910 O 1 O
10 0 0 1 -1
11710 0 0 -1
12 0 0 0 1

Fig. 1 -A hypergraph and its incidence matrix.

As for directed graphs, thacidence matrirof a hypergrapliH is anxm matrix [al-j] defined as
follows (see Fig. 1):

-1 ifv, O T(Ej),
a; = 1 ifv; O H(E)),
0 otherwise.

Clearly, there is a one-to-one correspondence between hypergraphs and (-1, 0, 1) matrices.

A Backwardhyperarc, or simplyB-arc, is a hyperar& = (T(E),H(E)) with |H(E)|=1 (Fig.
2a). AForward hyperarc, or simply-arc, is a hyperar& = (T(E),H(E)) with |T(E)|=1 (Fig.
2b).

O

(@) (b)
Fig. 2 -A B-arc (a) and a F-arc (b).

A B-graph (or B-hypergraph) is a hypergraph whose hyperarcs are B-arEsgraph (or F-
hypergraph) is a hypergraph whose hyperarcs are F-arB$-graph (or BF-hypergraph) is a
hypergraph whose hyperarcs are either B-arcs or F-arcs. _ _

__Given a hypergraphl=(V ,E), we define itsymmetric imagéne hypergraptl =(V,E ) where
E ={(X,Y): (Y,X) OE}. Note that the symmetric image of a B-graph is a F-graph, and viceversa.



Note that it is always possible to transform a general hypergraph into a BF-graph, by adding ¢
dummy node to each hyperarc which is neither a B-arc nor a F-arc, and thus replacing the hypera
by one backward and one forward hyperarc (see Fig. 3).

5= ot

Fig. 3 - Transformation of a hyperarc into a B-arc and a F-arc.

Let FS¢)={EOE: vOIT(E)} and BS¢)={EOE: vOH(E)} denote theForward Starand the
Backward Staof nodev, respectively.

B-graphs and F-graphs are of particular relevance in applications. Indeed, they have bee
introduced many times in the literature with various nameslaidedled graphsused by Dowling
and Gallier (1984) and Gallo and Urbani (1989) to represent Horn-formulae, are B-graphs; B-
graphs have been introduced as tools to analgdective data basdgusiello, D'Atri and Sacca
(1985, 1986), Ausiello, Italiano and Nanni (1990), Italiano and Nanni (1989)) and to study
Leontiev substitution matricesdLeontiev flow problemé&Jeroslow, Martin, Rardin and Wang
(1989)); F-graphs have been studied in the context of urban transit problems (Nguyen anc
Pallottino (1988, 1989)) and applications of F-graphs to the analysis of And-Or graphs are reporte:
in Gallo, Longo, Nguyen and Pallottino (1989).

Torres and Ardoz (1988) introduced hypergraphs and B-graphs, called directed hypergraphs ar
rule hypergraphs respectively, to represent deduction properties in data bases as paths
hypergraphs.

3. PATHS, HYPERPATHS AND CONNECTION

A path Rt of lengthg, in hypergrapiH=(V ,E) is a sequence of nodes and hyperBegs(v;=s,
Eil, Vo, Eiz, ...,Eiq, vq+1:t), where:
sO T(Ejy), tO H(E;, ), andy; O H(E;; )nT(E;),j=2, ....0.

Nodessandt are theorigin and thedestinationof Pg;, respectively, and we say thas connected
tos. If tUT(E,), thenPgis said to be aycle this is in particular true whets. In asimplepath all
hyperarcs are distinct, and a simple patelemmentaryif all nodesvy, vy,..., vgq+1 are distinct.
Similarly we may definsimpleandelementary cycleA path is said to beycle-freeif it does not
contain any subpath which is a cycle.



Fig. 4 - A pathP; .

In Fig. 4, node 8 is connected to node 1, while node 9 is not. The elementary path connecting 8 1
1 is drawn in thick line.

Consider a hypergraphl=(V ,E). A B-path (or B-hyperpath Ng; is a minimal hypergraph
Hn:(Vn,En) such that:

i) s,tDVn:EDDE E OV ;
i (il

iy xOVq O xis connected tein Hy by means of a cycle-free simple path.
We say thaH{=(V ,Ep) is aF-path (or F-hyperpath from s tot if its symmetric image is a B-
path fromt to s.

A BF-path(or BF-hyperpath from stot is a hypergraph which is at the same time a B-path and a
F-path fromstot.

Nodey is B-connected(F-connectedBF-connectejito nodex if a B-path (F-path, BF-patlfi),y
exists inH.

@

(b)

Fig. 5- A B-path (a) and a B-graph which is not a B-path (b).

The hypergraph in Fig. 5a is a B-path; note that the cycles(4, Es, 4) is not contained in any
simple path from node 1 to node 7. On the contrary, the hypergraph in Fig. 5b is not a B-patt
because the only path connecting node 3 to the origin contains the cy&{edE,, 3).



The following proposition trivially holds:

Proposition 1- Given a B-patfilg; and a hyperarECER, one has that each nod@T(E) is B-
connected t@.

Given a hyperar& = (T(E),H(E)), aB-reductionof E is a B-arcE* = (T(E*),{Vv}) such that
T(E) = T(E*) andv OH(E).

A B-reductionof a hypergrapl is the B-graptg obtained frorH by replacing each hyperarc
by one of its B-reductions. Clearly, a hypergraph may have many B-reductions; we shall denote b
B(H) the set of all the B-reductions bf.

In an analogous way it is possible to defineeductionsandBF-reductionsof hypergraphs. Note
that a BF-reduction of a hypergraph is a standard digraph.

We say that nodgis super-connectetb nodex in hypergrapi if y is B-connected t& in any
B-reductionHpg of H. Then to say that is not super-connected towe need at least one B-
reduction in whicly is not B-connected ta

Note that in B-graphs the concepts of B-connection and super-connection coincide.

The definitions of connection introduced above can be generalized as follows: givedd set
nodes, we say that node y is B-connected (F-connected, BF-connected, super-conn8dted) to
the hypergrapiH if y is B-connected (F-connected, BF-connected, super-connectsd) toe
hypergraphH' obtained fromH by addition of the new origin nodeand an arcg(x) for each
xS, Similarly, we can define the connection of a set of nddesa single origin node.

4. CUTS AND CUTSETS

Let H=(V ,E) be a hypergraph arglandt be two distinguished nodes, tseurceand thesink
respectively.
A cut Tg=(V 4 Vy) is a partition ofV into two subsety ¢ andV; such thasOV ¢ andtOV,.
Given the cuil g, its cutsetEg; is the set of all hyperards such that TE)OV ¢ and HE)O V ;.
Such a cutset may be empty; see for instance the cut ({1,2},{3,4,5,6,7}) in the B-graph of Fig. 5b.
The cardinality of a cut is the cardinality of its cutset. In Fig. 6 three cuts are indicated; the
cardinality ofTst1 is 2, while'l'st2 and Tst3 have cardinality 1. Note thatis not necessarily
disconnected froms by removing the hyperarcs of a cutset. For example, in Fig. 6 by removing the
cutset ofT 1 we disconnect from s, by removing the cutset a 2 only the B-connection dfto
sis lost, whllet remains both connected and B- connectaimhen we remove the cutset'Bl‘3

D/ 0,0
® 1O
oy Loy e

T1 T2

st st

Fig. 6 - Only cutht1 disconnects sourceand sinkt.



The following two theorems relate cuts to connection in hypergraphs.

Theorem 1- In a B-graphH=(V ,E), a cutT; of cardinality 0 exists if and only tfis not B-
connected t@.

Proof. (O ) Assume that a cul ; with an empty cutsdt; exists and there is a nodél V  B-
connected te. Then a B-ar&=(T(E),{v}) must exist with the property that every nodeT (E) be
B-connected te (see Proposition 1). Clearly, &s;; is empty, at least one nod@T(E) must
belong toV,. By repeating the same argumentwrwe may eventually conclude thaglso
belongs toV, which is a contradiction.

(0) Now assume thatis not B-connected ta DefineV ¢ as the set of all the nodes B-connected
tosandV =V \ Vg T is necessarily a cut of cardinality 0, for the existence of a B-arc
E=(T(E),{W}) in the cut, being TE) 0 Vg andv O V,, imply the B-connection of to s.¢

Theorem 2- In a hypergraptH=(V ,E) a cutT; of cardinality 0 exists if and only ifis not
super-connected ®

Proof. (0) Let Ts=(V 4, V)) be a cut of cardinality 0. Consider the B-reductidg of H obtained

by replacing each hyperaEcwith a B-arc (TE),{V}) with the condition that if TE)O V ¢ then also

v O Vg This reduction is always possible since for any hypegandth T(E)O'V ¢ at least one
node in its head must belong ¥, otherwiseE belongs to the cutset which, by hypothesis, is
empty. By Theorem 1,is not B-connected t®in Hg and therefor¢ is not super-connected $an

H.

(O) If tis not super-connected $pthen a B-reduction exists such th& not B-connected toin

it, and, by Theorem 1, the proof is completed.

Theorems 1 and 2 generalize to hypergraphs the property holding for standard digraphs that tr
removal of all the arcs of a cutset disconnects the sink from the source. Unfortunately, other nict
properties do not hold for hypergraphs, even if we restrict our attention to B-graphs. In particular, it
is well known that the two following equivalent facts hold for standard digraphs:

P1: the minimum cardinality of as-t path in a digraph is equal to the maximum number
of disjoints-t cutsets.
Po: the minimum cardinality of as-t cut in a digraph is equal to the maximum number
of disjoints-t paths.
Such properties do not hold for hypergraphs, although the following theorems show that they holc
in a weaker form for B-graphs.

Theorem 3- In a B-grapiH=(V ,E) the following inequalities hold:

min{|Mg{: Mgt is as-t B-path} = maximum number of disjoird-t cutsets> min{|Pg{: Pt is as-t
path}.
Proof. The first inequality follows directly from the fact that, due to Theorem 1, a cutset must
contain at least a B-arc of every B-path, then the number of disjoitiitsets cannot exceed the
cardinality of any B-path.

The second inequality can be proved as follows.\gdenote the set of nodeg for which
there exists a pathyRvith cardinality< k. Clearly, ifh is the minimum cardinality of thet paths,
then we havedg= Vo O V. 0...0 V, O V; then ¥,V \Vp), V1,V \WV9)... V.1,V V1) are



st cuts with disjoint cutsets, for no B-arc with a tail nod®jiand the head i with j 2 i+2 may
exist, and thus, no B-arc can belong to more than one cutset. This completes tie proof.

Theorem 4- In a B-graptH=(V ,E) the following inequalities hold:

max-number of disjoing-t paths> min{|Eg{: Eg;is as-t cutset}> max-number of disjoing-t B-
paths.

Proof. TransformH=(V ,E) into a standard digrap® =(V ,A) where for each B-arc(y) there is
a unique arcXy)UA, with x(IX. The choice ok[IX is arbitrary. It is easy to check that to aty
cutsetEg; in H corresponds at cutsetCg; in G with |Cg{ = |Eg{; moreover, any set &fdisjoint
paths inG corresponds to a set bflisjoint paths irH, then the maximum number of disjoint paths
in G is not larger than the maximum number of disjoint patHslirHence, from the well known
max flow - min cut theorem for digraphs one has:
max-number of disjoirg-t paths inH = max-number of disjoirg-t paths inG =

= min{|Cy: Cy is as-tcutset inG} > min{|Ey{: Egis as-tcutset inH}.

The second inequality follows directly from the fact that, due to Theorem 1, any cutset must
contain one B-arc from each B-path at least, and this completes the proof.

The following examples show that strict inequalities may hold in all cases.
In Fig. 7, a B-graph is presented for which the minimum cardinality-oB-paths is 5, the
maximum number of disjoirg-t cutsets is only 4 and the minimum cardinalitgdipaths is 3.

JORENLO

Fig. 7

In the B-graph of Fig. 8, the maximum number of disjsiipaths is 3, the minimum cardinality
of s-tcuts is 2, and the maximum number of disjeiiB-paths is 1.

! O

O ® 9O

w

Fig. 8



In section 7.1 we will show that the problem of finding the minimum cardinsdityut iSNP-
hard also in the case of B-graphs.

5. VISIT OF A HYPERGRAPH

Here we consider the problem of visiting a hypergraph starting from an originrnode of
finding all the nodes which are connected (B-connected, super-connegated) to

The simplest case is to find in a hypergraph all the nodes which are connect&idoedure
Visit described below finds all such nodes and returns a set of paths connecting th&ucto
paths, which define tieerooted at, are described by two predecessor functi®&E) points to
the nodeJT(E) which precedes hyperakin the pathPv(i) points to the ar&E0BS(i) which
precedes noden the path.

Procedure Visit(r,H):
begin
for eachi OV do PvJ[i]:= 0;
for each E; O E do Pe[g]:= 0;
Pv[rl:=nil; Q:={r};
repeat
select and removallQ;
for each E;L0FS(i) such that Pe[5]=0 do
begin
Pe[g] =1,
for each hUJH(Ej) such that Pv[h]=0do begin Pv[h] := §; Q := QO {h} end-for
end-for
untii Q=0
end-procedure.

It is easy to check thatisit runs inO(sizgH)) time. In fact, the initialization phase runs in
O(n+m) time and, since each node is inserted and removed from the candidat sebst once,
each hyperarc is examined only once, i.e. the first time the hyperarc is selected.

Now, consider the case of B-connection. Proce@4Xésit returns a set of B-paths containing
all the nodes B-connectedritoSuch B-paths defineBrtreerooted at.

Notice that in this case only one predecessor fundigns necessary. In fact, by the definition
of B-path, if hyperar& belongs to a B-path, then all the nodes of its tail must belong to the same
B-path. Nevertheless, we shall maintain the use of the second predecessor flrectunch
function defines a particular tree among the trees contained in the B-tree returned by the procedur
In connection with the functioRe, a node functiony, is introduced which, for each nolgegives
the cardinality of the path fronr to h in the tree defined bfe andPv. The motivation of
introducing such a function will be made clear in the next section.

A counterk; is used to provide for each hyperdicthe number of nodes of its tail already
removed fromQ. To stress the fact that functioRs andv are not essential to the computation of
the B-tree, the statements involving them have been written in italics.



Procedure B-Visit(r,H):
begin
for eachi OV do beginPV[i] := 0; V[i] := o end-for;
for each§ O E do Pe[f] = k :=0;
Pv[r] :=nil; Q:={r}; V[r] :=0;
repeat
select and removealQ;
for each §OFS() do
begin
ki .=k +1;
if kj = |T(G)|then
begin
Pe[g] =i,
for each hOJH(Ej) such that Pv[h]=0do
begin Pv[h] := g; Q :=QU {h}; vih]:= V[Pe[Ej]]+1 end-for
end-if
end-for
until Q=0
end-procedure.

ProcedureB-Visit runs inO(siz€H)) time. In fact, each hyperais selected at most |H)|
times and only the last time its head is examined. Moreover, each node is inserted and remove
from Q at most once.

In a similar way it is possible to define a procede+¥isit which finds a set of F-paths which
haver as terminal node and all the nodes to wirich F-connected. Note that while tBeVisit
starts from the origin of the B-paths, theVisit must start from the destination of the F-paths to
retain a linear time complexity.

One can also defineBF-Visit. Unfortunately, the problem of performing such a visit is not an
easy one unless the hypergraph is either a B-graph or a F-graph; in the former case a BF-path
simply a B-path, while in the latter it is a F-path.

The following procedur&uperVisit checks whether a nodés super-connected to a naslen
a general hypergraph.

Procedure SuperVisit(s,t,H):
begin
superconnected true;
while superconnectednd B(H) # @ do
begin
select and removdg from B(H); B-Visit(s, Hp);
if Pv[t}]=0then superconnected false

end-while
end-procedure.

SuperVisit runs inO(siz¢H)-|B(H)|) time, whereB(H)| = I'IEjDE|H(Ej)| is the number of all
possible B-reductions dfl.

A quite efficient Branch&Bound scheme to solve this problem can be easily derived from the
second algorithm for the satisfiability problem presented in Gallo and Urbani (1989).

10



6. WEIGHTED HYPERGRAPHS

6.1. Weighting functions

A weighted hypergrapls one in which each hyperakcis assigned a real weight vectefE).
Depending on the particular application, the componentg(&f may representosts lengths
capacitiesetc. For the sake of simplicity, in the following we shall consider only scalar weights.

Given a B-pattil=(V ,En) from stot, by weighting functiorwe mean a node functiofy
which assigns weights to all its nodes depending on the weights of its hyp&Vgaitsis the
weightof the B-patH1 under the chosen weighting function.

We shall restrict ourselves to weighting functions for whigh(s)=0 andWn(y), for eachy=s,
depends only on the hyperarcs whirkcedey in the B-patiTT, i.e. the hyperarcs belonging to all
B-paths froms toy contained irf1.

A typical example of this kind of weighting function is tbest Cr, defined as the sum of the
weights of all the hyperarcs preceding ngde I:

Cn(s) =0;
Cn(y) = 2 W(E), yOVn\sh,
ED{Engy Ny}

CIearIy,Cn(t)=zEDEnw(E) is thecostof I1. This function is the usual cost in the graph setting,
and the problem of finding a minimum cost B-path is a natural generalization of the minimum cost
path problem. Note that when the weights are all equal to 1, the ¢bs$ @k cardinality.

A relevant class of weighting functions is the one in which the weight ofyncale be written as
a function of both the weights of the hyperarcs enteringyiatad that of the nodes in their tails:

Wn(y) = min{w(E) + Fn(T(E)): EDERnBSE)}, yO Vp\sh, 1)
where (T(E)) is a function of the weights of the nodes i)l (
Fn(T(B)) = FqWn(x): xOT(E)}), EOER, (2)

where F is a non-decreasing function/gfi(x) for eachxJT(E). Such weighting functions will be
calledadditive weighting functions

In the particular case of B-graphs, the B-paths have the property that there is only orte B-arc
entering into every nodgs,; in this case (1) becomes:

Wn(y) =w(E) + Fn(T(E)), yOVn\s} (1)
Two particular additive weighting functions which have been presented in the literature in the
context of some relevant applications of hypergraphs amisteceand thevalue

Given as-t B-pathl=(V 1,En), thedistancein M from s to all the nodegV n\{ s} which are
B-connected tg, Dn(y), is defined by the following recursive equations:

Dn(s) =0;

3
Dn(y) = min{l(E) + max{Dn(x): xXOT(E)}: EDELnBSY)}, yOVp\{sh )
wherel(E) is thelengthof hyperarcE.
For B-graphs, equation (3) becomes:
Dn(y) =I(E) + maxPn(): xOT(E)},  y O Vp\{s} (39

11



In the case of unit hyperarc lengths, il(E)=1 0 ECE, the distance will be calledepth Gallo
and Urbani (1989) have introduced the depth function on B-graphs in the context of the satisfiability
analysis of propositional Horn formulae. Note that, in this case, proc&dwvisit, with the use
of functionv and a breadth-first search strategy, finds the minimum depth B-t@¢singH))
time.

Thevalue Vn, defined by Jeroslow, Martin, Rardin and Wang (1989) in the context of the
Leontiev flow problem for the case of B-graphs, is the solution of the following recursive
eguations:

Vn(s) = 0;

4
Vi) =c(E) + 2 axEVn(¥, EODEqnBSE), yOVp\sk: )
xOT(E)

wherec(E) is thecostof B-arcE and, for eaclt and eactx(OT(E), a(x,E) is a non-negative real
coefficient.

6.2. Minimum weight B-paths

This section addresses the problem of finding a minimum weight B-path in a weighted
hypergraph. Such problem can be viewed as a natural generalization of the shortest path proble
for standard digraphs.

Unfortunately, at least in general, the minimum weight B-path problem on hypergrdypBs is
hard. In fact, Italiano and Nanni (1989) have proved that the particular problem of finding minimum
cardinality B-paths in a B-graph P-hard. Nevertheless, many particular cases exist for which
the problem is easy to solve. One example is when the weighting functions are additive, and this i
exactly the case of the standard shortest path problem in digraphs.

From now on, we shall restrict ourselves to the case of additive weighting functions.
Furthermore, we shall assume throughout that arc weights are non-negative and that all cycles a
non-decreasing. Aon-decreasing cyclis a cycleC={v1, E1, v2, E, ..., v, Ey, v1} such that , for
any realz

W(E) + I:(vr)(W(Er-l) + I:(vr_l)(--.+ F(vz)(W(El) + F(vl)(Z))---)) >z (5)

where, for eaclk;, Fn;)(w) is the restriction of &T(E)) to the case in which all the nodes oEj}(
have weight zero except nodevhich has weighiv.

Condition (5) ensures that no node weight can be decreased through a cycle, and plays the sai
role as the non-negative cycles condition in digraphs.

To provide a deeper understanding of condition (5) we will apply it to both the distance function
and to the value function below. In the first case, sing@ (E;j)) is the maximum among the
weights of the nodes belonging taE]), F;)(w) =w, and condition (5) becomes:

r
W(Ej) +z= 2z,

i=1

from which we get

i W(E;) = 0.
i=1

12



We have thus derived the non-negativity condition for cycle weights, which is a standard
assumption when dealing with shortest paths in digraphs.
Quite different is the case of the value function. Here we get:

W(Er)+a(Vr,Er)(W(Er-1) + a(Vr-1,Er-1)(W(Er-2) + .. +a(V2,E2)(W(E1) + a(vl,El)z) ))
> 7,
and

r-l h-1 r
WE) + S (W(Erh) Ma(ve,Er)) +2 [a(viE) 2z
h=1 1=0 i=1
which is true for any redif:

|‘r|a(vi,Ei) > 1.

i=1
We have thus obtained the “gain-free condition” stated in Jeroslow, Martin, Rardin and Wang
(1989).

Now, consider the problem of finding a set of minimum weight B-paths from arigirall the
nodesy which are B-connected to This is the generalization of the well known shortest path tree
problem. Such problem is strictly related to that of finding a solution to the follos&mgralized
Bellman's Equations

W(r) = 0;

W(y) = min{w(E) + FW(X): xOT(E)}): EOBSE)},  yOV \{r}.

The following procedur&BT finds a solution of (6) together with a minimum weighitree
rooted atr, i.e. a cycle-free set of minimum weight B-paths connegtitogall the nodeg which
are B-connected to it. ¥f is not B-connected to SBT returnsW(y) =+. As inB-Visit, the B-
tree computed b$BT is described by the predecessor funcken

(6)

13



Procedure SBT(rH):
begin
for eachidV do W(i) := +oo;
for each EOE do kj = 0;
Q:={s; W(r=0;
repeat
select and removeaudQ;
for each fjOFS(u) do
begin
ki .=k + 1,
if kj=|T(E)|then
begin
f:=F(T(5));
for each yJH(Ej) such that W(y)>w(Ej)+f do
begin
if yOIQ then
begin
Q:=QU{yk
if W(y)<+oo then for eachEL[JFS(y) do kn:=kn-1
end-if;
W(y) :=w(E)+f; Pvly]:=g
end-for
end-if
end-for
until Q =9
end-procedure.

The countek;, for each hyperarg;j, represents the number of nodes belonging E)Which
have been removed fro@at a previous iteration and are currently ouQofl he use of the counter
permits to reduce substantially the number of updating operafmneach yIH(E;)...); in fact,
for eachkj, instead of checking the valuggy) of the nodes belonging to Bj every time a node
utlT(Ej) is selected fron@, this is done only when the last nadéeT(E;) is removed fronQ, i.e.
when ki=|T(gj)I.

The correctness dBT directly follows from the fact that, at termination, equations (6) are
satisfied; moreover, the number of iterations is finite since:

i) each time a weight is updated, a new B-tree is found, and no B-tree can be found twice;

ii) the number of consecutive iterations which do not lead to a change in the node weights is

bounded byn.
Clearly, the complexity o6BT depends on the implementation of the candidat® setd on the
cost needed to evaluate the function F.

For the sake of simplicity, we shall assume that E)T¢an be computed @(|T(E)|) time, which
is the case in most applications. As @rwe shall consider three different implementations: the
queue with a FIFO selection policy, thenordered listand theheap both with the selection of the
minimum weight element. According to the notation introduced in Gallo and Pallottino (1986) we
shall call the corresponding versions ®BT: SBT-queue SBT-Dijkstra andSBT-heap,
respectively.

Consider firstSBT-queue The cost of the initialization i®(n+m) time. Each operation of
selection and removal fro and insertion int@ has unit cost. As in the classical shortest path

14



algorithms, one can easily prove thaifs implemented as a queue then each node is selected and
processed at mosttimes. Also each hyperaEcis examined at mosttimes; this is due to the fact
that the nodes of HH) are only examined when all the nodes iE)Tifo longer belong tQ. The
scanning of HE) costsO(|T(E)|) time for the evaluation of F(E}) andO(|H(E)|) time for the
testing of conditionM(y)>w(E)+F(T(E)), for eachylJH(E). Thus, algorithnSBT-queueruns in
O(n-sizgH)) time.

It is worth noting that condition (5) on non-decreasing cycles is tighter than what is actually
needed; in fact, for the correctnessSBT-queue it is enough that during its operations no
negative cycle is detected, where by negative cycle we mean a decreasing cycle which actually lea
to cyclic improvements of its node weights. Note tB&T-queuecan be easily modified in order
to detect such negative cycles, by simply bounding the number of improvements on the weight of
single node.

Now, consider the case in which at each iteration a nalech thawV(u)=min{W(x):xJQ} is
selected. In this case, the well-known assumption of non-negative arc weights for standarc
digraphs in Dijkstra Theorem can be generalized to:

W(E) + F{W(X): xOOT(E)}) = W(X), xOT(E), EOE.
Under this additional assumption Dijkstra Theorem can be easily extended to hypergraphs:

Theorem 5- If W(u)=min{W(x): x(IQ}, then W(u) is the minimum among the weights of the B-
paths fronr to u.
Corollary - Each nodeidV is removed fronQ only once.

A consequence of the above Corollary is that statemelt/(y)<+co then for eachEn[JFS(y)
do kn := kn - 1” can be dropped since it is no longer necessary to decrease the counters.
The complexity foISBT-Dijkstra and forSBT-heapdirectly follow from the Corollary:
- Algorithm SBT-Dijkstra runs inO(max{n2, siz§H)}) time, as the total cost of node selections
and removals fron® is O(n?) and the total cost of processing all hyper&r¢svaluation of F(TE))
and scanning of HR)) is O(siz€H)).
- Algorithm SBT-heapruns inO(siz§H)-logn) time, as each time the val\éy) of a nodey is
updated the heap must be updated at@¢@sgn).
- In the case of B-graphs, algoritfBT-heapruns in O(maxfnlogn, siz§H)}) time, as each B-arc
produces at most one weight improvement, thus the overall cost of updating the@dpgds).
Jeroslow, Martin, Rardin and Wang (1989) presented an algorithm to find the optimal values of
V(y) for each nodg in a B-graph. This algorithm generalizes the Bellman-Ford-Moore algorithm
and runs inO(n-sizgH)).1t is as fast aSBT-queueand slower thaisBT-Dijkstra andSBT-
heap.

7. APPLICATION OF HYPERGRAPHS

7.1. Satisfiability

Let P be a set of atomicpropositions which can be eitherue or false and denote by a
proposition which is alwaysue, and byf a proposition which is alwayalse LetC be a set ofn
clauseseach of the form:

15



prUp2U... Upr « Ppr+10pr+20... Opg, (7)
where, fori=1,...,0, pi OP. The meaning of (7) is that at least one of the propositens.,pr
must betrue when all the propositiongr+1,...,pq aretrue. If this is the case, the clausetise;
otherwise p1,...,pr are allfalsg andpr+1,...,pq aretrue) the clause isalse The disjunction
p100p200... Opy is also called theonsequencef the clause, while the conjunctipp.10pr+20... Opg
is called themplicant We allow forr=0, in which case the consequence is replaceft doyd for
r=q, in which case the implicant is replacedtby

Clause (7) can be easily converted idigjunctive form

prOp20... Opr O=pr+2 O=pr+20... =g,
A truth evaluatioris a functiorv : P— {false trug}. If there is a truth evaluation which makes all

the clausetrue, thenC is said to besatisfiable otherwise it isinsatisfiable
Thesatisfiability problem(SAT) is defined as follows:

Input A setP of n propositions, and a s& of m clauses ovel O {f,t};
Output "yes' if C is satisfiable, Ho" otherwise.

Most often, in the case gés-instancesa truth evaluation which satisfi€Sis also desired.

A particularly important case is when a clause contains only one atomic propositiosl .
(6). Such clause is calledHorn clause

It is well known thatSATis NP-complete (Cook (1971), Garey and Johnson (1979)). BRer
complete, oNP-hard, are also most of its variants suclk-&AT(each clause contaik&3 atomic
propositions at most) andlax-SAT(the maximization of the number of satisfied clauses, or
equivalently, the minimisation of the number of clauses to be dropped in order to make the
remaining clauses satisfiable). A notable exception is the case in @hadntains only Horn
clauses. In this case the satisfiability probléf®RN-SAT is polynomial: in fact it can be solved
in linear time (Itai and Makowsky (1982), Dowling and Gallier (1984)). Unfortunahdbx-
HORN-SATremainsdNP-hard (Jaumard and Simeone (1987)).

HORN-SATis the set of the instances®ATwhose clauses are Horn clauses.

To any given instancalJSATwe can associate the hypergrddh with one node for each
element of PO {f,t} and one hyperarcE with H(E)={p1,p2,....pr} and
T(E)={pr+1,Pr+2,...,pqt for each clausei Up2 O...0pr « pr+1 Opr+2 O...0pg. Clearly,
from the definition, ifMJHORN-SATthenH; is a B-graph. Note that the labelled graphs
introduced by Dowling and Gallier (1984) to repreself®RN-SATinstances have a direct
interpretation as B-graphs.

Theorem 6- An instancat]SATis satisfiable if and only if the associated hypergralhhas a
cut T with cardinality 0.

Proof. (I) If mtis satisfiable, then a truth assignmemixists which makes all the clausestitiue.
Consider the cul s = (V,Vy) with:

Vi={p: v(p) =true} O {t} and Vi={p: v(p) =falsg O {f}.

We claim thatT i has cardinality 0; in fact the existence of a hypeEawith T(E)OV,; and
H(E)OV; would imply the existence of a clause méalseby v.
(0) Let T = (V,V5) be a cut with 0 cardinality. It is easy to check that the function:

16



true if pOV4,
v(p) = _
false if pOV;

IS a truth assignment which makes all the clausestroie. ¢

A direct consequence of Theorem 6 and of the results of sections 4 and SHORIAtSATis
equivalent to the problem of finding a B-path in a B-graph. TBe¥iisit can solve any instance
of HORN-SATIn linear time. ActuallyB-Visit bears a strong resemblance with the linear
algorithm forHORN-SATproposed by Dowling and Gallier (1984).

Similarly, as one can easily che@&qyperVisit can be used to solve the instanceSAT.

Another interesting consequence of Theorem 6 is that:

Theorem 7-Max-SAT can be solved by finding a minimum cardinalityf cut on the
corresponding hypergraph.

Proof. The proof follows directly from Theorem 6 and from the fact that a minimum cardinality
cutset provides the minimum number of hyperarcs to be removed tofmakeuperconnected to
t.¢

SinceMax-SATis NP-hard, Theorem 7 implies thé¢P-hardness of the minimum cardinality
(capacity) cut in hypergraphs.

7.2. And-Or graphs

An And-Or graphis a digraphG = (N, A)where each aralJA is assigned &bel I(a) with the
property that if(a)=I(b) for two arcsa,b O A, thena andb have a common tail, i.e. ET(b).

An arca is anAnd arcif it shares its label with some other arc, while anarg anOr arc if
l(a)%l(b) for all b #za.

In the literature, different notations have been used by different authors. Particularly relevant are
the work of Nilsson (1971), in which the nodes are defined as amignodesor Or nodes
according to the type of the ingoing arcs, and that of Martelli and Montanari (1973), in which the
nodes are defined as beiAgd node®r Or nodesaccording to the type of the outgoing arcs. The
definition adopted here is more general and include the others as particular cases.

A connectiorfrom a node< to a nodey in an And-Or graph is a minimal set of aAssuch that:

i) allA* andl(a)=I(a) O a' [ A*; ii) G*=(N,A*) is the union of paths fromtoy.

An And-Or graph can be viewed as an F-graph, with the same set of nodes and one F-arc for ea
set of arcs with the same label. It is easy to see that a connection on an And-Or graph is a F-path
the corresponding F-graph.

Nilsson (1971), Martelli and Montanari (1973), Levi and Sirovich (1976) and Gnesi, Martelli and
Montanari (1981) have studied the problem of finding a minimum cost connection between two
nodes in an And-Or graph where each arc is assigned a real cost. With respect to the prese
framework, this is the problem of finding a minimum length F-path on a F-graph considered in
section 6.2.

It is interesting to note that most often the problems considered in the literature lead to acyclic
And-Or graphs. In this case the algorithms presented in section 6.2 can be further simplified if the
(acyclic) F-graptH=(V ,E) corresponding to the And-Or graph is pre-processed in order to re-
number its nodes in inverse topological order such that:

17



EOE (TE)={i}) OGOHE) O (j<i). (8)
Such node pre-ordering can be accomplished by the following procdéifeyclic, a
generalization of the classical procedure described in Knuth (1968), proposed by Longo (1989).

Procedure F-AcyclicH):
begin
for eachiOV dor:=0;
for each E=({i},H(E)) O E dor :=r +[T(E)|;
k=0; Q:=7;
for eachi OV do if rj= 0then Q:= QO {i};
while Q # @ do
begin
select and removalQ;
k:i= k+1; g:=k;
for each E=({i},H(E)) OBS(u) do
beginr :=r - 1;if rj = 0then Q:= QU {i} end-for
end-while;
if k = nthen return “H is acyclic”else return“H is not acyclic”
end-procedure.

The number of nodes (with repetitions) which follow noded are not yet scanned is maintained
in counterrj. Initially rj is equal to the sum of the cardinalities of the heads of the F-arcs having
nodei as tail. Wherrj = 0, then nodé can be inserted into the set of candidate ndges
implemented as a queue. Procedew&cyclic checks whether the F-graph is acyclic or not. In the
case it is acyclic, a labe], satisfying conditions (8) is assigned to each node

Since each F-arc is examined only once, the procedure r@qsizgH)).

Let H=(V,E) be an acyclic F-graph whose nodes satisfy conditions (8). The following procedure
SFT-Acyclic (Shortest F-Tree for Acyclic F-graphs the adaptation to F-graphs of procedure
SBT described in section 6.2 in which conditions (8) are exploited; it finds a shortest F-path
starting from root node=|V|, which is the last-one in the ordering.

Procedure SFT-Acyclic(rH):
begin
for eachi OV do
begin
Pv[i] :=0;
if FS(i)=@then W(i):=0 else W(i):=c
end-for
for each§ 0 E do k; :=0;
for i = 1to IV|-1do for eachE=({y},H(E))IBS(i) do
begin
ki ==k +1;
if kj = |H(B)|then
begin
f 1= F(H(E));
if W(y)>w(E)+f then
begin W(y) := w(E)+f; Pvly] := g end-if
end-if
end-for
end-procedure.

18



ProcedureSFT-Acyclic selects all the nodes following the inverse topological order. A F-arc
E=({y},H(E)) is considered for the improvement of the F-path originating from notéy when a
shortest F-path is known for each node belonging ) H{hus, each node and each F-arc are
selected at most once leading to an overall complexi®y(sizeH)).

7.3. Relational data bases
In the last years a substantial amount of research has been devoted to the analysis of relational d
bases using graph related techniques (Martin (1977), Maier (1980), Ullman (1982), Ausiello,
D'Atri and Sacca (1983, 1985), Smith (1985), Yang (1989)).
A Relational Data BaséRDB) is often represented by a set of relations over a certain domain of
attribute values, together with a set of Functional Dependencies.
Functional Dependencies have been studied by means of several types of generalized graphs, st
as FD-graphs, Implication Graphs, Deduction Graphs, etc.
Let N be the set of attributes of a RDB.FAinctional Dependency(K,Y), with bothX andY
subsets oN, defines uniquely the value of the attribute¥ ionce the value of the attributesXns
given.
A set of Functional Dependencies together with smfeeence rulesllows us to derive new facts
from that explicitly stored in the data base. Typical inference rules are (see Yang (1986, 1989)):
i) reflexivity.  F(X,Y) if YUX;
i) transitivity. F(X,2) if F(X,Y) andF(Y,2);
i) conjunction F(X,YOZ) if F(X,Y), F(X,2).
Given a set of Functional Dependencleswe might need to solve problems such as:
a) find whether a given Functional DependeRg),Y)OJF can bederivedfrom F based on inference
rules;
b) given a set of attribute$0F, find its closurewith respect td-, i.e. find the largest sé¢* such
thatF(X,X*) either belongs to or can be derived frbm

Here we show briefly that hypergraphs provide a natural and unifying formalism to deal with
most problems arising in the analysis of Functional Dependencies in RDB.

A setF of Functional Dependencies on the attributeNsetin be represented by a hypergraph
H=(V ,E), with V =N andE = {(X,Y\X): F(X,Y)OF, Y[J/X}. It is easy to see that a B-path bh
corresponds to a sequence of implications based on rules (i), (ii) and (iii). For example, the B-patl
of Fig.9 corresponds to the derivation 6{1,2,3,4},{9,10}) starting from the implication
relationshipsF({2},{5}), F({3,4},{6,7,8}), F({5,7},{9}) and F({4,8},{10}), where attributes
are denoted by natural numbers.

19



10

CYOXOXO,
& Q© ©

Fig. 9 - A B-path representation of a sequence of implications.

ProcedureB-Visit solves problems (a) and (b) @(siz€H)) = O(sizgF)) time. In both cases,
the setQ used inB-Visit is initialized toX. Let X' be the set of nodes visited by the procedure,
i.e. the set of nodes B-connectedktdn problem (a), the answer is tH&iX,Y) is derivable from
F if and only if YOX', while in problem (b) the answer X=X

When the set Y is a singleton, i.e. the Functional Dependency is of thE(kypewhereylIN.
The directed hypergraphs representing sets of Functional Dependencies of this type are B-grapt
This interesting case has been studied in Ausiello, D'Atri and Sacca (1985, 1986), Ausiello, Italianc
and Nanni (1990) and Italiano and Nanni (1989), where several problems on sets of Functione
Dependencies are defined, and graph algorithms for their solution presented. All these algorithm
have a natural interpretation in terms of hypergraph algorithms.

7.4. Urban transit application

The analysis of passenger distribution in a transit system is an interesting application of F-graph
(Nguyen and Pallottino (1986, 1988, 1989)).

A transit system can be modelled as a special network in which transit lines are superimposed on
ground network. Each transit line is a circuit, i.e. a close alternating sequence of nodes representir
theline-stopsandarcsrepresenting thm-vehicleline segments.

The ground network is formed by nodes representing geographical points $&ibsor zone-
centroidg in the urban area, and arcs representialixing pathdbetween centroids and/or stops.

For each stop nodeon the ground network, I&§ be the set of lines which stopiaEach node
will be connected to the corresponding nodes on the lines belongindyoaleaving arcand a
boarding arc An example is given in Fig. 10.

line 1 >
line 2 >
line 3
g
L N
leaving arcs boarding arcs
stop node

Fig. 10 - A stop served by three lines.

20



From a local standpoint, consider a passenger waiting at a, sty wishes to reach his/her
destinatiors with the least expected travel time. The problem consists in determining the optimal
subsetL} UL, the so calledttractive setsuch that by always boarding the first carrier of these
lines arriving at the stop, the expected travel time will be minimized.

Consider the following notation:

- @ the frequency of lingOL;;
- d(L') the “combined” frequency of the lines-4¢t

- (L") the probability that a carrier serving lihewill arrive at stog before carriers serving
other lines ol}';
- 1 the expected travel time between stamd the destination, if lingis used, not including the

waiting time at;
- w(Lj') the average waiting time at stop
In general, the travel timeggsare composed of walking times, in-vehicle travel times and waiting
times associated with transfers from one line to another which can occur in the sequel of the trig

These times are the lengths of the associated arcs of the network; the lengths of in-vehicle arcs ¢

the corresponding carrier travel times, the lengths of walking arcs are walking times, and the

lengths of leaving arcs are set to 0. The waiting times are associated with boarding arcs; the value

a boarding arcifj) from a stog to the corresponding line-stop of lifedepends on the subset of

linesLly' considered. Moreover, all the boarding arcs of lines belongihyltave the same length,

which is theaverage waiting timev(Lj' ).
Under reasonable hypotheses on the distribution of passenger and carrier arrivals at the stops, t
following results are obtained:
; , 1 ;
o) = 0y 0 W)= (L) :;‘("b ,

and the expected travel time between stapd the destination, when the Kets selected, is:
- + 200! i@ :%+ 2oL 0
20(L) o) o (L)

The optimal seL} is the subset df; which minimizes the expected travel time:

T(LT) = min{T(L'): L' OL}.

When travel timeg for everyl;[JL; are known, the optimal skt is easily found with a local
greedy algorithm. This algorithm works as follows: first, sort the lines in non-decreasing order of
travel times, and then iteratively insert the lines one by onéjntmtil a linelj for whichtj > T(L}

) is found (Nguyen and Pallottino (1986, 1988)).

The global problem is that of determining the least expected traveltiinfh@severy originr and a
given destinatios. To solve this, the least expected travel titnefer everyl;UL; and the optimal
setsL} for all stops must be computed simultaneously.

For this purpose, F-graphs have been introduced to represent transit networks; boarding arc
corresponding td;' may be modelled by a boarding F-&(&;' ) with lengthw(L' ). The resulting
F-graph is saidull because if there is a F-dEs({i},H(E)), then eacte'=({i},H(E")) with E'UE
also existsE' is called aontainedr-arc. The contained F-arcs are treated implicitly to keep the size
of the F-graph at a reasonable level.

T() =w(l) + Doy 4L =

21



Let H=(V,E) be the F-graph in which contained F-arcs are omitted. The problem of finding the
least expected travel times for destinat®rs equivalent to that of finding shortest F-paths
terminating ats in F-graphH. In section 5 we mentioned that F-visits are easy when they are
organized from the destination node towards origin nodes; this is also true for shortest F-paths. Fc
the above transportation problem, the following generalized Bellman's equations can be written, it
which the weighted average distances are defined separately for stops and other ndigbel et
the set of stops, then:

dy(s) = 0;
ds(X) = min{tyy + dg(y): (x,y) OFS()} xdV \Vg
ds(x) = min{w(Lx )+2y0H(E(Ly ) dsj )TG(Lx): E(Lx )OFSE)}
Elg + 2y, OH(E(LY) As(Y)) @ 5
= min[] ! X : E(Ly)OF Il xOV's.
g (L) (LI

Similar to procedureSBT, Shortest F-Tre@roceduresFT) have been developed to solve the
above equations. Both type 8FT-queueandSFT-Dijkstra procedures are described in
Nguyen and Pallottino (1988, 1989).

REFERENCES

Ausiello, G., A. D’'Atri and D. SaccdGraph algorithms for functional dependency manipulatibnACM, 30
(1983), 752-766.

Ausiello, G., A. D'Atri and D. SaccaStrongly equivalent directed hypergraphs: Analysis and Design of
Algorithms for Combinatorial Problems (G. Ausiello e M. Lucertini, eds.)Annals of Discrete
Mathematics, 25 (1985), 1-25.

Ausiello, G., A. D’Atri and D. SaccaMinimal representation of directed hypergrap&$AM J. Comput., 15
(1986), 418-431.

Ausiello, G., G.F. Italiano and U. Nanridynamic maintenance of directed hypergraphseor. Comp. Sci. 72
(1990), 97-117.

Berge, C..Graphs and Hypergraphs North-Holland, Amsterdam (1973).

Berge, C.:Minimax theorems for normal hypergraphs and balanced hypergraphs - a s@nmis of Discrete
Mathematics, 21 (1984), 3-19.

Berge, C.:Hypergraphs: Combinatorics of Finite Sets North-Holland, Amsterdam (1989).

Boley, H.:Directed recursive labelnode hypergraphs: a new representation langAatiféecial Intelligence, 9
(1977), 49-85.

Cook, S.: The complexity of theorem-proving proceduyrBsoc. 3-th ACM Symp. on Theory of
Computing (1971), 151-158.

Dowling, W. and J. Galliefinear-time algorithms for testing the satisfiability of propositional Horn formulaef
Logic Programming, 3 (1984), 267-284.

Furtado, A.L.:Formal aspects of the relational modeiform. Systems, 3(1978), 131-140.

Gallo, G., G. Longo, S. Nguyen and S. Pallotti@&di:ipergrafi orientati: un nuovo approccio per la formulazione e
risoluzione di problemi combinatgritti AIRO 89, (1989), 217-236.

Gallo, G. and S. Pallottin@shortest path methods: a unifying approgefath. Progr. Study, 26 (1986), 38-64.

Gallo, G. and G. UrbaniAlgorithms for testing the satisfiability of propositional formulde of Logic
Programming, 7 (1989), 45-61.

22



Garey, M.R. and D.S. JohnsorComputers and Intractability: A Guide to the Theory of NP-
completenessW. H. Freeman, San Francisco, CA (1979).

Gnesi, S., U. Montanari and A. MartelDynamic programming as graph searching: an algebraic apprpach
Assoc. Comp. Mach., 28(1981), 737-751.

Itai, A. and J. MakowskyOn the complexity of Herbrand's theorehech. Rept. 243 Dept. Comp. Sci., Israel
Inst. of Technology (1982).

Italiano, G.F. and U. NannDn line maintenance of minimal directed hypergrgptrec. 3° Convegno Italiano
di Informatica Teorica, Mantova, World Science Press (1989), 335-349.

Jaumard, B. and B. Simeon®n the complexity of the maximum satisfiability problem for Horn forminés
Proc. Letters, 26 (1987), 1-4.

Jeroslow, R.G., R.K. Martin, R.R. Rardin and J. WaBginfree Leontiev flows problemiBech. Rept, School of
Business, University of Chicago (1989).

Knuth, D.E.:The Art of Computer Programming, Addison-Wesley, Reading, MA (1968).

Levi, G. and F. SirovichGeneralized And/Or graphértificial Intelligence, 7 (1976), 243-259.

Longo, G.:Per una nuova teoria degli ipergrafi orientatesi di laurea, Dip. Informatica, Univ. Pisa (1989).

Maier, D.: Minimum covers in the relational data base modelAssoc. Comp. Mach., 271980), 664-674.

Martelli, A. and U. MontanariAdditive ANDOR graphsProc. 1JCAI, 3 (1973), 1-11.

Martin, J.:Computer Data-Base Organization Prentice-Hall, Englewood Cliffs, NJ (1977).

Nguyen, S. and S. Pallottinékssegnamento dei passeggeri ad un sistema di linee urbane: determinazione degli
ipercammini minimiRicerca Operativa, 38(1986), 28-47.

Nguyen, S. and S. Pallottin&quilibrium traffic assignment for large scale transit netwdtkr. J. of Oper.
Res., 37(1988), 176-186.

Nguyen, S. and S. Pallottindiyperpaths and shortest hyperpaths: Combinatorial Optimization (B.
Simeone, ed,)Lecture Notes in Mathematics, 1403Springer-Verlag, Berlin (1989), 258-271.

Nilsson, N.J.:Problem Solving Methods in Artificial Intelligence, McGraw-Hill, New York, NY (1971).

Nilsson, N.J.:Principles of Artificial Intelligence, Morgan Kaufmann, Los Altos, CA (1980).

Smith, H.C.:Database design: composing fully normalized tables from a rigourous dependency d@gramnun.
ACM, 28 (1985), 826-838.

Torres, A.F. and J.D. ArdoLombinatorial models for searching in knowledge babtesthematicas, Acta
Cientifica Venezolana, 39(1988) 387-394.

Ullman, J.D.:Principles of Database SystemsComputer Science Press, Rockville, MD (1982).

Yang, C.C.:Relational Databases Prentice-Hall, Englewood Cliffs, NJ (1986).

Yang, C.C.:Deduction graphs: an algorithm and applicatiohSEE Tans. on Software Engng., 151989) 60-
67.

23



