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ight reservation, and part inventory control, do not require these properties. In this paperwe present an approach for incrementally updating a distributed, replicated database withoutrequiring multi-site atomic commit protocols. We prove that the mechanism is correct, as itasymptotically performs all the updates on all the copies. Our approach has two importantcharacteristics: it is progressive, and non-blocking. Progressive means that the transaction'scoordinator always commits, possibly together with a group of other sites. The update is laterpropagated asynchronously to the remaining sites. Non-blocking means that each site can takeunilateral decisions at each step of the algorithm. Sites which cannot commit updates are broughtto the same �nal state by means of a reconciliation mechanism. This mechanism uses the historylogs, which are stored locally at each site, to bring sites to agreement. It requires a small auxiliarydata structure, called reception vector, to keep track of the time unto which the other sites areguaranteed to be up-to-date. Several optimizations to the basic mechanism are also discussed.Keywords: Replicated databases, update propagation, transaction reconciliation, failures.1. IntroductionReplicated databases are becoming of increasing interest for real-life applications.They may provide increased performance, availability, and site autonomy. However,these advantages mainly apply to read-only applications, and are jeopardized bythe need for propagating updates to all sites.The �rst problem with propagation of updates is to guarantee that a su�cientnumber of copies be updated so that their consistency is constantly preserved;strategies developed for this purpose include voting or token passing [1], [18], [26];



2 S.CERI, M.A.W. HOUTSMA, A.M. KELLER, P. SAMARATIthey are generally very complex and di�cult to implement. In [8] we have given aclassi�cation and overview of many of these update strategies.The second problem with propagation of updates is transaction atomicity; two-phase commit is the most widely used commit protocol in commercial databasesystems [11]. Commit protocols have intrinsic disadvantages, such as cost, delay,and reduced availability. Sites may be blocked once they have transferred theirright to decide on abort or commit to the commit coordinator. Network partitionsor site failures may thus lead to smaller availability of the database system.Not all applications should pay the price for maintaining a consistent view onreplicated data and immediate update propagation [16], [20], [30]. Examples ofsuch applications are automated teller machine networks, 
ight reservation, andpart inventory control. For instance, it is clearly unacceptable for a 
ight reser-vation system to become globally unavailable in case of a site failure or networkpartition. It is preferable to take the risk to overbook a plane (and possibly cor-rect this situation at the end of the failure), than to stop making reservations.Therefore, current research focuses on delayed propagation of updates [32], [33],and transformation of global constraints into local constraints (thereby increasinglocal autonomy) [4], [5]. Some commercial systems are also developing products fordealing with asynchronous updates to replicated databases (e.g., Sybase, [12]).In this paper we allow updates to be initiated at any site, and propagate themto other sites immediately if possible, or otherwise later. However, if a site cannotaccept an update, the other sites still continue with the transaction. Also, we donot use an atomic commitment protocol across sites, thereby avoiding sites to getblocked; atomicity of transactions at each site is enforced during transaction execu-tion. Transactions consist of actions being performed on data objects; we initiallyassume commutative actions, later we drop this assumption. We propose a recon-ciliation mechanism that will incrementally bring sites to agreement. Eventually,all sites will re
ect all transactions, some of which may have been executed inde-pendently (e.g., during a network partition). The disadvantages of our approachare loss of strict serializability of transactions, and less strict constraint enforce-ment, but such disadvantages are acceptable for many applications. Some globalconstraints can be split into local constraints (e.g., using the demarcation protocol[4]) and therefore still be enforced; compensating actions can be applied to restoreconsistency after violation of global constraints [17], [35].The main contribution of the paper is to combine gossip techniques for updatepropagation and techniques for transaction reconciliation in a unique framework.Algorithms for indipendent update executions and for reconciliations in such aframework are illustrated together with the proofs of their correctness.1.1. Previous related workSeveral update propagation strategies to replicated databases guarantee full con-sistency [1], [6], [14], [18], [26]. In case of network partitions, either updates are



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES3accepted on a subset of the sites, or transactions that are known not to lead toinconsistency are the only ones allowed to run [3].These protocols su�er from unrealistically strong assumptions [34]; therefore, alot of work has been done to allow some more 
exibility [4], [9], [25]. A noticeableexample of this is the work on epsilon-serializability [32], [33]. Updates are allowedto propagate through the system asynchronously; eventual consistency of the sys-tem is an asymptotical property. A whole family of methods, each one di�erent inthe level of asynchrony, can be described using the concept of epsilon-serializability.Another example of research that does not enforce immediate propagation of up-dates is the work on quasi-copies [2]; here, each replica is allowed a certain boundeddeviation from the actual data value. Along the same lines, the work on the demar-cation protocol [5] allows some degree of independence among the sites, allowingsome updates to execute locally and be propagated asynchronously to other sites.Another way of providing somewhat more 
exibility is to avoid regular two-phasecommit. For instance, in [23] a distributed transaction is split into several single-site atomic transactions that are put into a logical tree structure. Each of thesesubtransactions commits locally, with the provision that if the root of the treecommits, all its children commit too. In this approach, persistent transmission ofmessages is required, for instance, by mean of stable queues [7], or gossip mecha-nisms [22], [37]. Another approach that avoids two-phase commit is given in [29];transactions commit at a primary site and are propagated asynchronously. A par-tial order among transactions is de�ned for controlling update propagation; the useof a partial order is also proposed in [27] and in [15] (in the context of concurrencycontrol for groupware systems).Finally, some systems allow even more 
exibility. In [13] a system is describedfor maintaining weak consistency among various database systems. Updates areaccepted at any site, and are guaranteed to be re
ected at all other sites eventu-ally. In [36] a system is described that uses timestamp-based concurrency controland proposes to apply updates to replicated data in their arrival order, possiblyrestoring inconsistencies when arrivals violate the timestamp ordering of transac-tions. This mechanism achieves consistency by undoing and re-executing updateswhich are out-of-order, and saves some of these operations at the cost of restoringadditional information, such as read/write sets for update transactions. In [19] atimestampmessage delivery protocol that implements eventual delivery is proposed.The approach uses periodic exchanges of messages between pairs of principals topropagate messages to groups of sites. Incoming messages are stored in a log andlater delivered to the application in a de�ned order. The protocol maintains sum-mary information on the messages it has received to decrease communication and topurge messages from the log. The use of the history log for propagation of updateswas suggested in [24], and a preliminary description of how to apply history logsfor propagating independent updates was given by us in [10].Update propagation was considered also in the context of maintaining replicateddictionaries, with an approach which has several similarities with the one proposedin this paper. In [16], a vector is introduced in order to keep track, at each site, of the



4 S.CERI, M.A.W. HOUTSMA, A.M. KELLER, P. SAMARATIevents that originated in the system. However, only the insert and delete operationsare allowed, and the vector does not give any indication of how up to date othersites of the system are. Therefore, this approach requires a site to send its entirecopy of a dictionary at each message. In [37], the approach of [16] was extended bystoring at each site a matrix, instead of a vector. The matrix at each site indicateshow up to date all sites are, thus limiting the communication requirements amongsites. As we will see, [37] has therefore many features in common with our paper;however there are also major di�erences. [37] is limited to solving the dictionaryproblem, and both [16], [37] do not consider a reconciliation phase, which is oneof the main component of our approach. Instead of using a speci�c reconciliationmechanism, a site can synchrously send part of its log and matrix to other sites.The use of vectors for update propagation is also suggested in [27]; this is based ongossip messages, where update propagation is enforced by two kinds of messages:update messages through which events are propagated, and ack messages by whicha site acknowledges the reception of updates.1.2. OutlineThe paper is organized as follows. In Sec. 2 we describe our model of the databasesystem and the transactions, and we state our assumptions. In Sec. 3 we describethe regular execution of transactions. In Sec. 4 we describe the reconciliation mech-anism that achieves incremental agreement among sites. In Sec. 5 we illustrate anexample of transaction execution and reconciliation. In Sec. 6 we describe thereconciliation mechanism for non-commutative actions. In Sec. 7 we describe atechnique for migrating part of the log to archive. In Sec. 8 we describe the possi-ble application scenarios of the reconciliation mechanism. Finally, Sec. 9 presentsour conclusions.2. Assumptions and preliminary de�nitionsIn this section, we illustrate our assumptions and explain our notation.2.1. AssumptionsWe assume a fully replicated database, characterized by the following properties.Communication Communication is order-preserving between any pair of senderand receiver sites, and message content is assumed to be correctly received.Furthermore, we assume a time-out mechanism that allows a process to detectthat its messages were not acknowledged within a given time interval.Time Each site has a logical local clock. Global ordering of actions executed atdi�erent sites is possible using a Lamport-style timestamping mechanism [28].



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES5Objects For the purpose of our reconciliation mechanism, we assume a universalspace of object identi�ers. Objects are distinct (i.e., non-overlapping). We donot, however, make any assumptions on the granularity of objects; for example,they could be pages in a disk-based system.Actions inside transactions We assume that actions on the database are unary(i.e., they a�ect a single data object), take constant arguments, and are commu-tative. Note, however, that we do not allow conditional branching on the valueof database items. An example of such an action is to increment a speci�c bankaccount with a given amount of money. In Sec. 6 we will drop the assumptionthat actions be commutative.Logging Each site logs all actions on a local history log on stable storage using theWrite Ahead Log protocol [21]. Conventional transaction mechanisms ensurethat all actions that are logged and then committed, are subsequently correctlyre
ected in the database. We assume that the local history log kept at each siteis a sequence of unique records. Each record has the following structure:htrans id, timestamp, coordinator site, object id, actioniIts meaning is as follows. For each action that is executed in the course of atransaction, we record in the log the transaction identi�er, the timestamp forwhen the action is recorded in the log of the coordinator, the site number ofthe transaction's coordinator, the object identi�er, and the action executed. Anaction is usually described through the action's name, the identi�ers of the itemsused by the action, and the input parameters provided by the user's transaction,e.g., hsum, tuple-id.�eld-id, 10 i. We assume that actions are executed on dataitems that are contained within a single object, therefore, items have smallergranularity than objects.Locking When a transaction or the reconciliation process reads or writes an ob-ject, it follows the 2-phase locking protocol locally [21].2.2. Notation and invariant conditionIn the following aoq denotes an action a executed on object o with site q as coordina-tor of the transaction, time(aoq) denotes the timestamp of action aoq. Hq denotes thehistory log at site q, containing records with the format illustrated in the previoussection.For each site q and each object o, we introduce a small auxiliary data structurecalled reception vector, denoted by RV oq . This vector has an entry for each site k,RV oq [1; : : : ; n]. (The idea of using a vector for detecting inconsistency among sites,was proposed before in [16], [27], [31].) The semantics of the reception vector isillustrated by the following invariant condition:



6 S.CERI, M.A.W. HOUTSMA, A.M. KELLER, P. SAMARATIInvariant 1 For all sites x and y, objects o, and actions aoy: aoy 2 Hx , time(aoy) �RV ox [y].The meaning of the invariant is that if site x has executed some action aoy on objecto originated at site y, it has also executed all actions on o that were previouslyoriginated at y. Thus, RV ox [y] is the timestamp of the latest action on object owith site y as coordinator that was executed at site x. (The invariant ensures thatsite x includes any action originated at y up to the time indicated by the entryRV ox [y].) Initially all reception vector entries are assigned a value t0.3. Transaction executionWe now describe execution of transactions that update the database. First wedescribe the algorithm, then the behavior during failures, and �nally show thecorrectness of the algorithm.3.1. Regular executionWe now describe transaction execution in absence of failures. In the descriptionwe refer to a coordinator, which is the site where the transaction is originated, andto participants the other sites where the transaction is executed. Note howeverthat the description is easily generalizable to a client/server environment. In aclient/server architecture, the client process calls several servers at various sitesand then calls a system process for commit coordination; each server does its ownlogging. Our approach can be extended to such an architecture by assuming that thecommit coordinator commits all available servers and that servers perform loggingof reception vectors; the coordinator site is the site of the commit coordinator.The proposed algorithm has two signi�cant properties:1. It is progressive: the coordinator can always commit, possibly with other sites.2. It is non-blocking : each site can take unilateral decisions at each step of thealgorithm, and as a result is never blocked.The coordinator site c executes all its reads locally. All writes are also executedlocally, and they are transmitted to all other sites together with the reception vectorentry for c, RV oc [c]. On each write, a participant p compares this entry with itsown entry for the coordinator site, RV op [c]. If the entries are equal, i.e., site p hasexecuted all actions on o originated at c, p will execute the write. If the comparisonfails for a write operation, p will abort the transaction locally and not accept anyfurther write for this particular transaction. If p accepts a write on object o, italso updates its reception vector entry for site c, RV op [c], with the time of the writeaction.At the end of a transaction, the coordinator, with a synchronous write, forces alllog records together with the commit record; this causes the atomic, independent



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES7commit at the coordinator site. Note that, at this point, the coordinator can informthe calling client or user's process that the transaction is successfully executed.The coordinator then sends its decision to all other sites. Each site that has fullyparticipated in the transaction (i.e., has accepted all writes), commits upon receiptof the coordinator's decision, by forcing all log records in the log together withthe commit record. It then sends a message to the coordinator indicating thecommitment has been successfully executed. Given that the decision to commiteach subtransaction is made locally, the algorithm is non-blocking.For each site that either did not participate, or executed a local abort, the coor-dinator does not receive an acknowledgement of its commit decision. This meansthat those sites do not agree with the coordinator on the objects written by thetransaction, and agreement has to be reached later by means of the reconciliationmechanism. The need for reconciliation is stored at each site in the table Rec Info,which contains binary tuples of the form (object, site). When the coordinator of atransaction notices that a participant p has not acknowledged its commit decision,for each object o written by the transaction, it inserts the tuple (o; p) in its localtable Rec Infoc.The algorithm just described is presented in Fig. 1. The interaction between thecoordinator and an arbitrary participant is graphically depicted in Fig. 2, whichshows the records written on the log at each site, and the messages exchangedbetween the two sites. With reference to Fig. 2, slanted arcs represent messageexchanges between the sites and vertical lines represent log recordings at a site.Note that it is not required by this algorithm that the copies of the objects writtenby a transaction at the various sites have the same �nal value. For example, sitesmight have executed di�erent sets of transactions in the past originating at othercoordinating sites, due to site failures or network partition that have not yet beenreconciled.3.2. Dealing with failuresIn the description of the algorithm we assumed no failures. Let us now studywhat happens if failures occur. According to our objectives, transactions shouldcommit, even if some of the participants abort, and most importantly, sites shouldnot become blocked.We consider three possible types of failure: site crash, message loss, and networkpartition.1. Site failures.(A) Coordinator fails before commit. Upon recovery, the transaction'sactions are undone at the coordinator site. Meanwhile, all participants willhave timed out and locally aborted the transaction.(B) Coordinator fails after commit. Upon recovery, the transaction's ac-tions are redone locally and reception vectors are updated properly. The
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Coordinator cWrite Begin transaction log record;Send Begin transaction to all sites;Execute any read action r(o) locally;repeat enter a log record for write action w(o);send Write(RV oc [c]; w(o); tw) to all sites;set RV oc [c] := tw;until end of write actions;Force a Commit record into the log;Send a Commit message to all sites;After timeout enter (Rec(o; p)) in thereconciliation log for all objects o writtenand all sites p that did not acknowledgeParticipant p (initiated by a begin transaction message)Write Begin transaction log recordrepeat receive write messageif RV op [c] = RV oc [c]then enter a log record for the action;set RV op [c] := twelse local abort; exituntil end of write actionsIf Commit message is received before timeoutthen Force a Commit record into the log;send Ack to celse abortFigure 1. Transaction execution algorithm



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES9Coordinator 6Begin TAAAAAAUBegin T 6wo : : : woAAAAAAUWrite 6CommitAAAAAAUCommit 6End TParticipant ?Begin T ?then execute wo,RV op [c] := twif RV op [c] = RV oc [c] ?Commit�������AckFigure 2. Normal transaction, without failurescoordinator assumes all the other sites have aborted and records the needfor reconciliation in its Rec Info table as described previously. Note thatreconciliations may be requested for participants that have committed, al-though the coordinator was unaware of it. This conservative approach doesnot cause a problem (see Sec. 4.3).(C) Participant fails before commit. Upon recovery, the transaction's ac-tions are undone. Meanwhile, the coordinator has timed out on the Ackmessage and assumed that the participant has failed, recording the need forreconciliation in its Rec Info table. The coordinator and participants thatdid receive the commit decision message have already decided on commit,and they will not change their decision.(D) Participant fails after commit. Upon recovery, the transaction's ac-tions are redone locally (unless the participant can safely assure that theywere successfully executed on the database) and reception vectors are up-dated properly. Note that if the failure occurred before sending the Ackmessage, then the coordinator has assumed failure and recorded the needfor reconciliation locally, but again the reconciliation will not cause prob-lems (see Sec. 4.3). Note that neither in case 1(C) nor in case 1(D) doesthe participant become blocked. Also, the participant does not have to per-form a remote recovery request, as the coordinator will record the need forreconciliation if it did not receive the commit acknowledgement from theparticipant.2. Message failures. We assumed that messages were delivered in proper order;hence, if a message fails to reach a site, following messages will also fail to reachit and eventually time-outs will expire. Message failure is thus equivalent tosome of the site failures just described.



10 S.CERI, M.A.W. HOUTSMA, A.M. KELLER, P. SAMARATI3. Network partition. A network partition is equivalent to multiple site failuresfrom the perspective of the coordinator. If a network partition occurs beforethe coordinator transmits its commit decision, the participant sites that becomedisconnected unilaterally abort as in case 1(A), and the coordinator commits asin case 1(C). If a network partition occurs after the coordinator has transmittedits decision, participants receiving the commit message will locally commit;upon timeout expiration the coordinator will record in its Rec Info requests forreconciliation for participants that committed but did not successfully transmitan acknowledgement to the coordinator.As the description shows, all sites with no local failures may commit a transaction.3.3. CorrectnessIn this section we prove the correctness of transaction execution by proving thefollowing theorem.Theorem 1 Transaction execution preserves Invariant 1.Proof By assumption the invariant held before the execution of a transaction.At all sites where the transaction is not committed, the data values, history log,and reception vectors remain unchanged. Moreover data values, history log, andreception vectors of all objects not written by the transaction remain unchanged.Let us now consider a site p that committed a transaction (either during normalexecution or during recovery after commit) and an object o written by the trans-action. Since the object is locked during transaction execution no other action ono besides those in the transaction is executed at site p. Since the entries of thereception vector for sites di�erent from the transaction coordinator do not change,we have to prove only the following: aoc 2 Hp , time(aoc) � RV op [c], where c is thetransaction coordinator.(() Upon commit, RV op [c] is equal to the timestamp of the last write action on oin the transaction. Site p executed the transaction, therefore we know that beforethe execution of the �rst write action RV op [c] = RV oc [c]. Since by assumption, theinvariant held before the transaction execution, and RV oc [c] is the time of the lastaction originated at site c, all actions originated at site c before the transactionexecution are contained in Hp. Since p committed the transaction, all actions partof the transaction are in Hp. Moreover no other action could have been originatedby c outside the transaction, which locked the object. Therefore, the invariant issatis�ed.()) Since RV op [c] is updated with the time of the latest action on o, after thisaction was inserted in the log, the implication trivially holds. 2



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES114. ReconciliationWe now describe the reconciliation mechanism. First we describe the algorithm,then the behavior in case of failures, and �nally the correctness of the algorithm.4.1. AlgorithmWe now describe the basic step of the reconciliation mechanism, i.e., the reconcili-ation between two sites on a given object. Section 8 describes when to invoke thereconciliation mechanism, and the options that exist in its use. The basic step isas follows.If a site s has a tuple (o; p) in its local table Rec Info, it may start a reconciliationby sending a reconciliation-request to site p. Included with this message is thereception vector of s for the object o. If p is willing to take part in the reconciliation,it replies by sending its own reception vector for object o to s. From then on, thealgorithm is completely symmetric (expressed by procedure Reconcile in Fig. 3).Each site uses the reception vector it has received to scan its own history log andextracting those actions that have not been executed at the other site. Such actionsare selected by comparing the timestamp of each of the actions with the entry forits coordinating site in the reception vector. From Invariant 1, the actions on objecto which were executed at site x and not executed at site y, denoted with �ox;y, are�ox;y = faoq 2 Hx j time(aoq) > RV oy [q]g. These actions are thus extracted from thelog at both sites and sent to the other site. When a site receives the actions fromthe other site, it executes them and appends them to its history log. At the endof the reconciliation, the reception vector at both sites is updated: each entry isassigned the maximum value of the corresponding entries of the two vectors.After the update of the reception vector, a site commits the reconciliation locallyby forcing the log records and a commit record into the log. Note that, once siteshave transmitted the relevant actions to each other, there is no need for furthercommunication between them. Indeed, either site s or site p could abort while theother one commits.The description of the algorithm is given in Fig. 3 and is depicted graphically inFig. 4.4.2. Dealing with failuresIn the description of the reconciliation algorithm, we assumed no failures. Let usnow study what happens if failures occur. We have already noticed the algorithm issymmetric, except for the �rst part in which one of the sites behaves as the starterof the reconciliation process. This symmetry is also re
ected in the behavior ofsites upon failures.If site x locally aborts a reconciliation on object o with site y, tuple (o; y) will notbe deleted from Rec Infox. This ensures that the information regarding the need



12 S.CERI, M.A.W. HOUTSMA, A.M. KELLER, P. SAMARATIStarter sSend reconciliation(s;RV os ; o) to site p;Wait for RV op from site p;Reconcile (s; p; o;RV op )Delete rec(o; p) from Rec Infos;CommitParticipant pReceive reconciliation(s;RV os ; o) from site s;If rec(o; s) not in Rec Infopthen insert it;Send RV op to site sReconcile (p; s; o;RV os )Delete rec(o; s) from Rec Infop;CommitReconcile (x; y; o;RV oy )�ox;y := faoq 2 Hx j time(aoq ) > RV oy [q]g;/* all actions executed at site xand not executed at site y */Send �ox;y to site y;Wait for �oy;x from site y;Execute all actions a 2 �oy;x;/* update object value */Hx := Hx [�oy;x;/* append actions to the history log */8q : RV ox [q] := max(RV ox [q]; RV oy [q]);/* update reception vector */Figure 3. Reconciliation algorithm



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES13Starter 6Begin rec(o, p)AAAAAAURV os AAAAAAU�os;p6wo : : : wo 66new RV 6CommitParticipant ?Begin rec(o, p)�������RV op ��������op;s ?wo : : : wo??new RV ?CommitFigure 4. Reconciliation without failuresof a reconciliation will be deleted only if both sites commit the reconciliation. Theinsertion of this entry is always executed upon local abort and we will not indicateit in the following.We now describe the behavior of the algorithm for the di�erent types of failures.1. Site failures.(A) Before commit. Upon recovery, the site aborts the reconciliation locally,by undoing all write actions.(B) After commit. Upon recovery, the site commits the reconciliation locally,by redoing all write actions.2. Lost messages. The site that is waiting for the lost message will timeout andabort the reconciliation locally, by undoing all write actions.3. Network partition.(A) Prior to message exchange. This case is similar to case 2.(B) After message exchange. Since the sites operate independently and donot need to interact after the reception of the history information, both ofthem will commit the reconciliation independently.4.3. CorrectnessWe now prove that the reconciliation algorithm is correct. Correctness means thatthe value of an object o at commit of reconciliation re
ects the timestamp-orderedexecution of all the actions executed on o at the reconciling sites, and that Invari-ant 1 still holds.



14 S.CERI, M.A.W. HOUTSMA, A.M. KELLER, P. SAMARATITheorem 2 If site x commits a reconciliation on object o with site y, the valueof o at site x after reconciliation re
ects the timestamp-ordered execution of all thedistinct actions executed at x and y before reconciliation.Proof First, we prove that all actions executed at site y and not executed atsite x are communicated to x from y upon reconciliation, i.e., aoq 2 Hy ^ aoq 62Hx ) aoq 2 �oy;x. Consider an action aoq such that aoq 2 Hy ^ aoq 62 Hx. SinceInvariant 1 held at the start of reconciliation, we know that before reconciliationRV ox [q] < time(aoq ) � RV oy [q]. Therefore, aoq 2 �oy;x and the implication holds.Moreover, we prove that no action has been executed more than once, i.e., actionsalready executed at site x are not communicated by y upon reconciliation: aoq 2�oy;x ) aoq 62 Hx before reconciliation. Consider an action aoq 2 �oy;x. Sinceaoq 2 �oy;x, we know that before reconciliation RV ox [q] < time(aoq ) � RV oy [q]. Sincethe invariant held at the start of reconciliation, we had aoq 2 Hy and aoq 62 Hx, andthe implication holds.Finally, we notice that since actions are commutative, any execution order willproduce the same result. Hence, the theorem is satis�ed. 2Theorem 3 The reconciliation algorithm preserves Invariant 1.Proof By assumption the invariant held before the execution of the reconciliation.Consider site x that reconciles on object o with site y, we show that the followingholds: 8q : aoq 2 Hx , time(aoq) � RV ox [q]. If x did not commit the reconciliation,no changes were made to the object, its reception vector, and the history log, andhence the invariant holds. If x committed the reconciliation, we will now prove thatthe invariant still holds.(() Consider an action aoq , such that time(aoq ) � RV ox [q]. After reconciliation, weknow that RV ox [q] = max(RV ox [q]; RV oy [q]) holds, and before reconciliation eitherRV ox [q] � time(aoq ) or RV oy [q] � time(aoq) holds. Therefore, before reconciliationeither aoq 2 Hx or aoq 2 Hy. If aoq 2 Hx the implication obviously holds. If aoq 2 Hy,by Theorem 2, aoq 2 Hx at the end of reconciliation.()) Consider an action aoq 2 Hx. Since aoq 2 Hx after reconciliation, eitheraoq 2 Hx before reconciliation, or aoq 2 �oy;x. If aoq 2 Hx before reconciliation,time(aoq ) � RV ox [q] before reconciliation. Hence, after reconciliation RV ox [q] =max(RV ox [q]; RV oy [q]) and thus RV ox [q] � time(aoq ) and the implication holds. Ifaoq 2 �oy;x, then aoq 2 Hy before the reconciliation and via an analogous reasoningthe implication holds. 24.4. Global agreementTheorem 4 If Rec Info is empty at each site, all sites have identical values, his-tory log, and reception vectors, and the values re
ect the timestamp-ordered execu-tion of all actions originated at any site.Proof Theorem 2 ensures that no action is executed more than once at any siteand the execution order is equivalent to the timestamp execution order. We now



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES15prove that if all Rec Info tables are empty, all actions have been executed at everysite. We will prove it by negation.Suppose that all Rec Info tables are empty and there exist a site x and an actionaoq such that aoq 62 Hx. Since aoq 62 Hx, site x did not commit the transaction inwhich aoq was executed. Hence, site y did not receive an acknowledgement from sitex, and the tuple (o; x) was inserted in Rec Info at site y. This entry could onlyhave been deleted upon a reconciliation between sites y and x on object o, wheresite y commits the reconciliation. Since all the Rec Info tables are empty, such areconciliation took place. If the reconciliation was also committed at site x, thenaoq 2 Hx from Theorem 2, and we have a contradiction. If site x did not commit thereconciliation, the tuple (o; y) was inserted in Rec Infox. This entry could only havebeen deleted upon commit of a reconciliation at x on o with y. Again, since fromthe hypothesis all the logs are empty such a reconciliation must have taken place.Then, from Theorem 2, it must be aoq 2 Hx and we have derived a contradiction.In the beginning, all sites had the same data values, history log, and receptionvectors. Since the same actions have been executed at each site and all the actionsare commutative, we know that the data values and reception vectors are the sameand the history logs contain the same information at every site. 25. ExampleIn this section we illustrate through a simple example our algorithms. We considerthree sites, x, y, and z, and an object o and item i replicated at every site. Weassume that initially all copies of the item at each site have value 0, all history logsand Rec Info tables are empty, and reception vector entries are all equal to t0.Fig. 5 illustrates the sequence of events (committed transactions or reconcili-ations) that occurs at each site. Each event is denoted by a transaction-id orreconciliation-id, the timestamp of the transaction/reconciliation, the value of itemi, history log H, reception vector RV , and Rec Info table. Fig. 6 illustrates theactions that are performed during the observed time interval on object o; each en-try contains a transaction-id, a timestamp, a site-id, an object-id, and the actionperformed on the object.We described the following sequence of events. Initially, transaction T1 is startedat site x and executed at all sites. Then, a network partition occurs such thatsites x and y cannot communicate with site z. During the partition transaction T2originates at site x and is executed at site x and y and transaction T3 originates andexecutes at site z. Upon execution of T2, site x inserts tuple (o; z) in its Rec Infotable indicating the need for reconciliating with z on object o. Analogously, uponexecution of T3, site z inserts tuples (o; x) and (o; y) in its Rec Info table indicatingthe need of reconciling with x and y on object o. Then, site y fails and the partitionbetween sites x and z is repaired. A reconciliation is called between x and z, andthe corresponding need for reconciliation is deleted from the Rec Info tables atthese sites. Then, transaction T4 originates at site x and commits at site x and z.Upon execution of the transaction, site x inserts tuple (o; y) in its Rec Info table



16 S.CERI, M.A.W. HOUTSMA, A.M. KELLER, P. SAMARATIsite x T-id / Rec-id timestamp i H RV o Rec InfoT1 t1 1000 a [t1 t0 t0]T2 t2 1500 ab [t2 t0 t0] (o, z)recx;z t4 1300 abc [t2 t0 t3]T4 t5 1100 abcd [t5 t0 t3] (o, y)recx;y t6 1100 abcd [t5 t0 t3]site y T-id / Rec-id timestamp i H RV o Rec InfoT1 t1 1000 a [t1 t0 t0]T2 t2 1500 ab [t2 t0 t0]recx;y t6 1100 abcd [t5 t0 t3]recz;y t7 1100 abcd [t5 t0 t3]site z T-id / Rec-id timestamp i H RV o Rec InfoT1 t1 1000 a [t1 t0 t0]T3 t3 800 [t1 t0 t3] (o, x), (o, y)recx;z t4 1300 acb [t2 t0 t3] (o, y)T4 t5 1100 acbd [t5 t0 t3] (o, y)recz;y t7 1100 acbd [t5 t0 t3]Figure 5. Sequence of events at sites x, y, za : hT1; t1; X; o; credit(i; 1000)ib : hT2; t2; X; o; credit(i; 500)ic : hT3; t3; Z; o; debit(i; 200)id : hT4; t4; Y; o; debit(i; 200)iFigure 6. Actions executed during observed time intervalindicating the need of reconciling with y on object o. Later on, site y recovers.A reconciliation is executed between x and y, deleting the need for reconciliationstored at site x. Finally a reconciliation is performed between z and y. Notice thatthis reconciliation does not bring any new information for any of the two sites. TheRec Info tables at all sites are now empty, all sites agree on their status and all theactions that have been executed are re
ected in the database.



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES176. Reconciliation algorithm for non-commutative actionsWe now drop the assumption that all actions are commutative, and assume we canhave non-commutative actions as well. Commutativity implies that correctness isindependent of the order of action execution. Non-commutative actions, however,have to be executed in timestamp order. Therefore, when actions arrive out-of-order, previously executed actions may have to be undone. Hence, we need to addthe assumption that every action has an inverse which undoes its e�ect.The reconciliation algorithm for non-commutative actions is similar to the algo-rithm for commutative actions (see Sec. 4.1). In particular, message exchanges andbehavior upon failures are the same. The only di�erence is in the determinationof the new value for an object. Instead of directly applying the actions commu-nicated by the other site (in �ox;y), the reconciling site now must ensure that theactions are applied in the correct order, as follows. First it determines the mini-mum timestamp of all actions it received from the other site. Then it has to undoin reverse timestamp order all actions with timestamp greater than this minimumtimestamp. Finally, it merges the actions that were undone and the actions itreceived, in timestamp order, and applies them. The Reconcile procedure of thereconciliation algorithm is presented in Fig. 7; this change is the only di�erencewith the algorithm in Fig. 3.6.1. CorrectnessIn Sec. 4.3 the reconciliation algorithm for commutative actions was proven correct.The only place where we used the commutativity of actions, was in the proofof Theorem 2. We now restate that theorem, and prove it for the case of non-commutative actions.Theorem 5 If a site x commits a reconciliation on object o with site y, the valueof o at x after reconciliation is the value obtained by timestamp-ordered executionof all the distinct actions executed at x and y before reconciliation.Proof The �rst two steps of the proof remain the same (all actions in Hy and notin Hx are communicated to x, and no action which is already in Hx is communi-cated to x). What remains to be proved, is that after reconciliation the value of ore
ects the timestamp-ordered execution of the actions at a site. By assumption,this invariant held before reconciliation; undoing actions at the site x does not af-fect this invariant. All actions that were undone and the actions communicated byy were merged and sorted in timestamp-order. Since all actions that had a time-stamp bigger than the minimum timestamp of the actions communicated by y wereundone, after applying the merged and sorted actions, the value of o re
ects thetimestamp-ordered execution of the actions in Hx and Hy. 2



18 S.CERI, M.A.W. HOUTSMA, A.M. KELLER, P. SAMARATI
Reconcile (x; y; o;RV oy )�ox;y := faoq 2 Hx j time(aoq ) > RV oy [q]g;/* all actions executed at site xand not executed at site y */Send �ox;y to site y;Wait for �oy;x from site y;t := min(ftime(aoq ) j aoq 2 �oy;xg)/*time of the earliest action in �oy;x;*/U ox := faoq 2 Hxjtime(aoq) > tg;/*actions to be undone*/Sort U ox in reverse timestamp order;Undo all actions in U ox ;Sort �oy;x in timestamp order;Rox := sorted merge of U ox and �oy;x;/*actions to be executed*/Execute actions in Rox;/* update object value */Hx := Hx [�oy;x;/* append actions to the history */8q : RV ox [q] := max(RV ox [q]; RV oy [q]);/* update reception vector */Figure 7. Reconciliation (non-commutative actions)



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES197. Log maintenanceTo avoid that the history log becomes too large, we can archive the oldest part ofit. However, we have to avoid disposing that part of the log that might still beneeded for pending reconciliations. The log can be managed as follows.At each site q and for each object o, an auxiliary structure, called propagationvector PV oq is kept. There is an entry in PV oq for each site of the system. Thesemantics of the propagation vector is illustrated by the following invariant condi-tion:Invariant 2 For all sites x, y, q, objects o, and actions aoq : time(aoq) � PV ox [y])aoq 2 Hy.Thus, entry PV ox [y] indicates the time of the latest action executed at site y, suchthat site x is certain that all actions with a smaller timestamp have already beenexecuted at y. Intuitively, as a reception vector gives information about actionsexecuted at a site itself, a propagation vector gives information about actions exe-cuted at all the other sites. Communication of the respective propagation vectorsPV o is included in the message exchange at the beginning of the reconciliationbetween two sites.Propagation vectors are updated in the following way. At initialization, all en-tries are assigned time t0. At commit at site x of a reconciliation on object owith site y, PV ox is updated as follows: PV ox [x] := minq(RV ox [q]), and PV ox [q] :=max(PV ox [q]; PV oy [q]) 8q 6= x. From Invariant 1 and the way propagation vectorsare updated, it is trivial to prove that Invariant 2 holds.Theorem 6 The reconciliation algorithm preserves Invariant 2.Proof By assumption the invariant held before the execution of the reconcili-ation. Consider site x which reconciles on object o with site y, we show thatthe following holds: time(aoq) � PV ox [y] ) aoq 2 Hy at the end of reconcilia-tion. Consider an action aoq such that time(aoq) � PV ox [y]. If y = x, we havePV ox [x] = minq(RV ox [q]) � RV ox [x]. Hence, from Invariant 1, aoq 2 Hx and theimplication holds. If y 6= x, PV ox [q] = max(PV ox [y]; PV oy [y]). Hence, before recon-ciliation either time(aoq) � PV ox [y] or time(aoq ) � PV oy [y]. Since Invariant 2 heldbefore reconciliation, aoq 2 Hy and hence the implication is satis�ed. 2A cleaning procedure archives part of the log o�-line. This procedure is calledperiodically at each site and removes all the information that is not required any-more, by removing all actions with a timestamp smaller than the minimum entryof the site's propagation vector, as shown in Fig. 8.Theorem 7 Algorithm cleanup never removes an action which may be used in areconciliation.Proof To prove that all the actions removed by the cleanup process at site x areno longer needed, we have to prove that they have already been executed at allsites, and that they will not need to be undone.



20 S.CERI, M.A.W. HOUTSMA, A.M. KELLER, P. SAMARATICleanup (x)For all actions aoq 2 HxIf time(aoq ) � minz(PV ox [z])then delete aoq from HxFigure 8. Algorithm for cleaning the logWe �rst prove that all actions that were removed have already been executed atany site. That is, for all sites x, y, and q, objects o and actions aoq the following holds:time(aoq ) � minz(PV ox [z]) ) aoq 2 Hy. Consider action aoq such that time(aoq ) �minz(PV ox [z]); thus, time(aoq) � PV ox [y]. Hence, from Invariant 2 aoq 2 Hy and theimplication is satis�ed.We now prove that the removed actions will not need to be undone at site x.Suppose we remove an action aoq at site x that needs to be undone, i.e., not allactions with a smaller timestamp have been executed yet. Therefore, there is someother action aoz such that time(aoz ) < time(aoq ) and aoz 62 Hx. Clearly, this situationcontradicts the implication we just proved. 28. Application of reconciliationIn the previous section, we described the basic step of the reconciliation mechanism:reconciliation between two sites on an object o. For application of this basic step,there are several options.Immediate The basic step of reconciliation is applied immediately after sites thatparticipate in a transaction discover that a reconciliation is required, because thecomparison on the reception vector entries fails. In such a case, a reconciliationcan be called for the object on which the comparison failed.Periodically Reconciliation is called periodically, at a given point in time (forinstance at midnight) or after �xed time interval (for instance every hour), byapplying the basic step to all objects for all pairs of communicating sites. Thisoption is viable in an environment where, e.g., the night is used to bring allsites to agreement, whereas during the day they may \drift apart."Upon demand Reconciliation is called for all objects and all pairs of communi-cating sites once a user demands it. This option is appropriate before runninga transaction that requires full consistency.At full connectivity Reconciliation is performed only when the full connectivityof all sites in the system is established. Then we may iterate over all sites andobjects and apply the basic step of the reconciliation mechanism.



INDEPENDENT UPDATES AND INCREMENTAL AGREEMENT IN REPLICATED DATABASES21Note that a full reconciliation involves a quadratic number of binary reconcilia-tions. However, at each binary reconciliation, two reception vectors are updated.This reduces the work in some of the subsequent binary reconciliations and, there-fore, the workload of the last reconciliations.An optimization reduces the number of binary reconciliations to o(n) under theassumption that no failures or partitions of the reconciling sites occur during thesereconciliations. All n sites are ordered in a linear chain using their site number.First reconciliations are performed \forward," between sites 1 and site 2, 2 and 3,and so on, until the binary reconciliation between site n � 1 and site n. At thatpoint, sites n and n � 1 have all actions executed by all sites in their history log.A subsequent \backwards" execution of reconciliations, starting with sites n � 1and n� 2 and ending with sites 2 and 1, brings all sites to agreement. As all sitesnow re
ect all actions, the local tables Rec Info can be emptied since they call forreconciliations that are not needed.9. ConclusionsIn this paper we described an approach to update propagation in replicated databasesthat is progressive (the transaction's coordinator always commits) and non-blocking(each site may make unilateral decisions).In our approach each site s maintains two vectors. The �rst one, called receptionvector, indicates how up to date the site is. The other one, called propogation vec-tor, indicates how up to date other sites are, according to the information avaliableat site s; the information in this vector is used by every site to prune the log andavoid it to grow inde�nitely. We then described a reconciliation protocol that sitescan follow to update their databases and arrive to an agreement. The reconciliationis preceded by a phase where sites exchange their vectors to determine which part ofthe log should be exchanged during the reconciliation procedure. This phase avoidsunnecessary communication. We have illustrated the behaviour of sites, duringreconciliation, during normal operation, and at failures.Our approach is a viable alternative for those applications that cannot tolerate theoverhead and performance degradation induced by synchronous update propagationand atomic transactions (which are implemented in many replicated databases).Examples of such applications include automated teller machine networks, airlinereservations, and part inventory control.AcknowledgmentsThe work reported in this paper was performed as part of the Fauve project andstarted while some of the authors were visiting Stanford, and was partially sup-ported by NSF grant IRI-9007753, by the LOGIDATA+ project of Italian CNR,and by the Center for Integrated Systems at Stanford University. The research of
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