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Abstract. Update propagation and transaction atomicity are major obstacles to the development
of replicated databases. Many practical applications, such as automated teller machine networks,
flight reservation, and part inventory control, do not require these properties. In this paper
we present an approach for incrementally updating a distributed, replicated database without
requiring multi-site atomic commit protocols. We prove that the mechanism is correct, as it
asymptotically performs all the updates on all the copies. Our approach has two important
characteristics: it is progressive, and non-blocking. Progressive means that the transaction’s
coordinator always commits, possibly together with a group of other sites. The update is later
propagated asynchronously to the remaining sites. Non-blocking means that each site can take
unilateral decisions at each step of the algorithm. Sites which cannot commit updates are brought
to the same final state by means of a reconciliation mechanism. This mechanism uses the history
logs, which are stored locally at each site, to bring sites to agreement. It requires a small auxiliary
data structure, called reception vector, to keep track of the time unto which the other sites are
guaranteed to be up-to-date. Several optimizations to the basic mechanism are also discussed.
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1. Introduction

Replicated databases are becoming of increasing interest for real-life applications.
They may provide increased performance, availability, and site autonomy. However,
these advantages mainly apply to read-only applications, and are jeopardized by
the need for propagating updates to all sites.

The first problem with propagation of updates i1s to guarantee that a sufficient
number of copies be updated so that their consistency is constantly preserved;
strategies developed for this purpose include voting or token passing [1], [18], [26];
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they are generally very complex and difficult to implement. In [8] we have given a
classification and overview of many of these update strategies.

The second problem with propagation of updates is transaction atomicity; two-
phase commit is the most widely used commit protocol in commercial database
systems [11]. Commit protocols have intrinsic disadvantages, such as cost, delay,
and reduced availability. Sites may be blocked once they have transferred their
right to decide on abort or commit to the commit coordinator. Network partitions
or site failures may thus lead to smaller availability of the database system.

Not all applications should pay the price for maintaining a consistent view on
replicated data and immediate update propagation [16], [20], [30]. Examples of
such applications are automated teller machine networks, flight reservation, and
part inventory control. For instance, it is clearly unacceptable for a flight reser-
vation system to become globally unavailable in case of a site failure or network
partition. Tt is preferable to take the risk to overbook a plane (and possibly cor-
rect this situation at the end of the failure), than to stop making reservations.
Therefore, current research focuses on delayed propagation of updates [32], [33],
and transformation of global constraints into local constraints (thereby increasing
local autonomy) [4], [5]. Some commercial systems are also developing products for
dealing with asynchronous updates to replicated databases (e.g., Sybase, [12]).

In this paper we allow updates to be initiated at any site, and propagate them
to other sites immediately if possible, or otherwise later. However, if a site cannot
accept an update, the other sites still continue with the transaction. Also, we do
not use an atomic commitment protocol across sites, thereby avoiding sites to get
blocked; atomicity of transactions at each site is enforced during transaction execu-
tion. Transactions consist of actions being performed on data objects; we initially
assume commutative actions, later we drop this assumption. We propose a recon-
ctliation mechanism that will incrementally bring sites to agreement. Eventually,
all sites will reflect all transactions, some of which may have been executed inde-
pendently (e.g., during a network partition). The disadvantages of our approach
are loss of strict serializability of transactions, and less strict constraint enforce-
ment, but such disadvantages are acceptable for many applications. Some global
constraints can be split into local constraints (e.g., using the demarcation protocol
[4]) and therefore still be enforced; compensating actions can be applied to restore
consistency after violation of global constraints [17], [35].

The main contribution of the paper is to combine gossip techniques for update
propagation and techniques for transaction reconciliation in a unique framework.
Algorithms for indipendent update executions and for reconciliations in such a
framework are illustrated together with the proofs of their correctness.

1.1. Previous related work

Several update propagation strategies to replicated databases guarantee full con-
sistency [1], [6], [14], [18], [26]. In case of network partitions, either updates are
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accepted on a subset of the sites, or transactions that are known not to lead to
inconsistency are the only ones allowed to run [3].

These protocols suffer from unrealistically strong assumptions [34]; therefore, a
lot of work has been done to allow some more flexibility [4], [9], [25]. A noticeable
example of this is the work on epsilon-serializability [32], [33]. Updates are allowed
to propagate through the system asynchronously; eventual consistency of the sys-
tem 1s an asymptotical property. A whole family of methods, each one different in
the level of asynchrony, can be described using the concept of epsilon-serializability.
Another example of research that does not enforce immediate propagation of up-
dates is the work on quasi-copies [2]; here, each replica is allowed a certain bounded
deviation from the actual data value. Along the same lines, the work on the demar-
cation protocol [5] allows some degree of independence among the sites, allowing
some updates to execute locally and be propagated asynchronously to other sites.

Another way of providing somewhat more flexibility is to avoid regular two-phase
commit. For instance, in [23] a distributed transaction is split into several single-
site atomic transactions that are put into a logical tree structure. Each of these
subtransactions commits locally, with the provision that if the root of the tree
commits, all its children commit too. In this approach, persistent transmission of
messages is required, for instance, by mean of stable queues [7], or gossip mecha-
nisms [22], [37]. Another approach that avoids two-phase commit is given in [29];
transactions commit at a primary site and are propagated asynchronously. A par-
tial order among transactions is defined for controlling update propagation; the use
of a partial order is also proposed in [27] and in [15] (in the context of concurrency
control for groupware systems).

Finally, some systems allow even more flexibility. In [13] a system is described
for maintaining weak consistency among various database systems. Updates are
accepted at any site, and are guaranteed to be reflected at all other sites eventu-
ally. In [36] a system is described that uses timestamp-based concurrency control
and proposes to apply updates to replicated data in their arrival order, possibly
restoring inconsistencies when arrivals violate the timestamp ordering of transac-
tions. This mechanism achieves consistency by undoing and re-executing updates
which are out-of-order, and saves some of these operations at the cost of restoring
additional information, such as read/write sets for update transactions. In [19] a
timestamp message delivery protocol that implements eventual delivery is proposed.
The approach uses periodic exchanges of messages between pairs of principals to
propagate messages to groups of sites. Incoming messages are stored in a log and
later delivered to the application in a defined order. The protocol maintains sum-
mary information on the messages it has received to decrease communication and to
purge messages from the log. The use of the history log for propagation of updates
was suggested in [24], and a preliminary description of how to apply history logs
for propagating independent updates was given by us in [10].

Update propagation was considered also in the context of maintaining replicated
dictionaries, with an approach which has several similarities with the one proposed
in this paper. In [16], a vector is introduced in order to keep track, at each site, of the
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events that originated in the system. However, only the insert and delete operations
are allowed, and the vector does not give any indication of how up to date other
sites of the system are. Therefore, this approach requires a site to send its entire
copy of a dictionary at each message. In [37], the approach of [16] was extended by
storing at each site a matrix, instead of a vector. The matrix at each site indicates
how up to date all sites are, thus limiting the communication requirements among
sites. As we will see, [37] has therefore many features in common with our paper;
however there are also major differences. [37] is limited to solving the dictionary
problem, and both [16], [37] do not consider a reconciliation phase, which is one
of the main component of our approach. Instead of using a specific reconciliation
mechanism, a site can synchrously send part of its log and matrix to other sites.
The use of vectors for update propagation is also suggested in [27]; this is based on
gossip messages, where update propagation is enforced by two kinds of messages:
update messages through which events are propagated, and ack messages by which
a site acknowledges the reception of updates.

1.2. Outline

The paper is organized as follows. In Sec. 2 we describe our model of the database
system and the transactions, and we state our assumptions. In Sec. 3 we describe
the regular execution of transactions. In Sec. 4 we describe the reconciliation mech-
anism that achieves incremental agreement among sites. In Sec. 5 we illustrate an
example of transaction execution and reconciliation. In Sec. 6 we describe the
reconciliation mechanism for non-commutative actions. In Sec. 7 we describe a
technique for migrating part of the log to archive. In Sec. 8 we describe the possi-
ble application scenarios of the reconciliation mechanism. Finally, Sec. 9 presents
our conclusions.

2. Assumptions and preliminary definitions

In this section, we illustrate our assumptions and explain our notation.

2.1. Assumptions

We assume a fully replicated database, characterized by the following properties.

Communication Communication is order-preserving between any pair of sender
and receiver sites, and message content is assumed to be correctly received.
Furthermore, we assume a time-out mechanism that allows a process to detect
that its messages were not acknowledged within a given time interval.

Time FEach site has a logical local clock. Global ordering of actions executed at
different sites is possible using a Lamport-style timestamping mechanism [28].
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Objects For the purpose of our reconciliation mechanism, we assume a universal
space of object identifiers. Objects are distinct (i.e., non-overlapping). We do
not, however, make any assumptions on the granularity of objects; for example,
they could be pages in a disk-based system.

Actions inside transactions We assume that actions on the database are unary
(i.e., they affect a single data object), take constant arguments, and are commu-
tative. Note, however, that we do not allow conditional branching on the value
of database items. An example of such an action is to increment a specific bank
account with a given amount of money. In Sec. 6 we will drop the assumption
that actions be commutative.

Logging FEach site logs all actions on a local history log on stable storage using the
Write Ahead Log protocol [21]. Conventional transaction mechanisms ensure
that all actions that are logged and then committed, are subsequently correctly
reflected in the database. We assume that the local history log kept at each site
is a sequence of unique records. Each record has the following structure:

(trans_id, timestamp, coordinator_site, object_id, action)

Its meaning is as follows. For each action that i1s executed in the course of a
transaction, we record in the log the transaction identifier, the timestamp for
when the action is recorded in the log of the coordinator, the site number of
the transaction’s coordinator, the object identifier, and the action executed. An
action is usually described through the action’s name, the identifiers of the items
used by the action, and the input parameters provided by the user’s transaction,
e.g., (sum, tuple-id.field-id, 10). We assume that actions are executed on data
items that are contained within a single object, therefore, items have smaller
granularity than objects.

Locking When a transaction or the reconciliation process reads or writes an ob-
ject, it follows the 2-phase locking protocol locally [21].

2.2. Notation and invariant condition
In the following ag denotes an action a executed on object o with site ¢ as coordina-
tor of the transaction, time(a(‘;) denotes the timestamp of action ag. H, denotes the
history log at site ¢, containing records with the format illustrated in the previous
section.

For each site ¢ and each object o, we introduce a small auxiliary data structure
called reception vector, denoted by RV;. This vector has an entry for each site k,
RV7[1,...,n]. (The idea of using a vector for detecting inconsistency among sites,
was proposed before in [16], [27], [31].) The semantics of the reception vector is
illustrated by the following invariant condition:
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Invariant 1 For all sites  and y, objects o, and actions aj): aj € Hy < time(ag) <
RV2[y].

, on object

o originated at site y, 1t has also executed all actions on o that were previously
originated at y. Thus, RV?[y] is the timestamp of the latest action on object o
with site y as coordinator that was executed at site #. (The invariant ensures that
site & includes any action originated at y up to the time indicated by the entry
RV?[y].) Initially all reception vector entries are assigned a value ¢g.

The meaning of the invariant is that if site # has executed some action a

3. Transaction execution

We now describe execution of transactions that update the database. First we
describe the algorithm, then the behavior during failures, and finally show the
correctness of the algorithm.

3.1. Regular execution

We now describe transaction execution in absence of failures. In the description
we refer to a coordinator, which is the site where the transaction is originated, and
to participants the other sites where the transaction i1s executed. Note however
that the description is easily generalizable to a client/server environment. In a
client/server architecture, the client process calls several servers at various sites
and then calls a system process for commit coordination; each server does its own
logging. Our approach can be extended to such an architecture by assuming that the
commit coordinator commits all available servers and that servers perform logging
of reception vectors; the coordinator site is the site of the commit coordinator.
The proposed algorithm has two significant properties:

1. It is progressive: the coordinator can always commit, possibly with other sites.

2. It is non-blocking: each site can take unilateral decisions at each step of the
algorithm, and as a result is never blocked.

The coordinator site ¢ executes all its reads locally. All writes are also executed
locally, and they are transmitted to all other sites together with the reception vector
entry for ¢, RV?[c]. On each write, a participant p compares this entry with its
own entry for the coordinator site, RVpo[c]. If the entries are equal, 1.e., site p has
executed all actions on o originated at ¢, p will execute the write. If the comparison
fails for a write operation, p will abort the transaction locally and not accept any
further write for this particular transaction. If p accepts a write on object o, it
also updates its reception vector entry for site ¢, RV} [c], with the time of the write
action.

At the end of a transaction, the coordinator, with a synchronous write, forces all
log records together with the commit record; this causes the atomic, independent
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commit at the coordinator site. Note that, at this point, the coordinator can inform
the calling client or user’s process that the transaction is successfully executed.
The coordinator then sends its decision to all other sites. Each site that has fully
participated in the transaction (i.e., has accepted all writes), commits upon receipt
of the coordinator’s decision, by forcing all log records in the log together with
the commit record. It then sends a message to the coordinator indicating the
commitment has been successfully executed. Given that the decision to commit
each subtransaction is made locally, the algorithm is non-blocking.

For each site that either did not participate, or executed a local abort, the coor-
dinator does not receive an acknowledgement of its commit decision. This means
that those sites do not agree with the coordinator on the objects written by the
transaction, and agreement has to be reached later by means of the reconciliation
mechanism. The need for reconciliation is stored at each site in the table Rec_Info,
which contains binary tuples of the form (object, site). When the coordinator of a
transaction notices that a participant p has not acknowledged its commit decision,
for each object o written by the transaction, it inserts the tuple (o,p) in its local
table Rec_Info..

The algorithm just described is presented in Fig. 1. The interaction between the
coordinator and an arbitrary participant is graphically depicted in Fig. 2, which
shows the records written on the log at each site, and the messages exchanged
between the two sites. With reference to Fig. 2, slanted arcs represent message
exchanges between the sites and vertical lines represent log recordings at a site.

Note that it 1s not required by this algorithm that the copies of the objects written
by a transaction at the various sites have the same final value. For example, sites
might have executed different sets of transactions in the past originating at other
coordinating sites, due to site failures or network partition that have not yet been
reconciled.

3.2. Dealing with failures

In the description of the algorithm we assumed no failures. Let us now study
what happens if failures occur. According to our objectives, transactions should
commit, even if some of the participants abort, and most importantly, sites should
not become blocked.

We consider three possible types of failure: site crash, message loss, and network
partition.

1. Site failures.

(A) Coordinator fails before commit. Upon recovery, the transaction’s
actions are undone at the coordinator site. Meanwhile, all participants will
have timed out and locally aborted the transaction.

(B) Coordinator fails after commit. Upon recovery, the transaction’s ac-
tions are redone locally and reception vectors are updated properly. The
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Coordinator ¢

Write Begin_transaction log record,

Send Begin_transaction to all sites;

Execute any read action r(0) locally;

repeat enter a log record for write action w(o);
send Write(RV?[c], w(0),ty) to all sites;
set RV?[c] := ty;

until end of write actions;

Force a Commit record into the log;

Send a Commit message to all sites;

After timeout enter (Rec(o,p)) in the
reconciliation log for all objects o written
and all sites p that did not acknowledge

Participant p (initiated by a begin_transaction message)

Write Begin_transaction log record
repeat receive write message
if RV[c] = RV?[c]
then enter a log record for the action;
set RV [e] 1=ty
else local abort; exit
until end of write actions
If Commit message is received before timeout
then Force a Commil record into the log;
send Ack to ¢
else abort

Figure 1. Transaction execution algorithm
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Begm T wo cee W Commlt End_T
Coordinator
\Bigm T Yne Ynmlt /
Participant
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Figure 2. Normal transaction, without failures

coordinator assumes all the other sites have aborted and records the need
for reconciliation in its Rec_Info table as described previously. Note that
reconciliations may be requested for participants that have committed, al-
though the coordinator was unaware of it. This conservative approach does
not cause a problem (see Sec. 4.3).

(C) Participant fails before commit. Upon recovery, the transaction’s ac-
tions are undone. Meanwhile, the coordinator has timed out on the Ack
message and assumed that the participant has failed, recording the need for
reconciliation in its Rec_Info table. The coordinator and participants that
did receive the commit decision message have already decided on commit,
and they will not change their decision.

(D) Participant fails after commit. Upon recovery, the transaction’s ac-
tions are redone locally (unless the participant can safely assure that they
were successfully executed on the database) and reception vectors are up-
dated properly. Note that if the failure occurred before sending the Ack
message, then the coordinator has assumed failure and recorded the need
for reconciliation locally, but again the reconciliation will not cause prob-
lems (see Sec. 4.3). Note that neither in case 1(C) nor in case 1(D) does
the participant become blocked. Also, the participant does not have to per-
form a remote recovery request, as the coordinator will record the need for
reconciliation if it did not receive the commit acknowledgement from the
participant.

2. Message failures. We assumed that messages were delivered in proper order;
hence, if a message fails to reach a site, following messages will also fail to reach
it and eventually time-outs will expire. Message failure is thus equivalent to
some of the site failures just described.
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3. Network partition. A network partition is equivalent to multiple site failures
from the perspective of the coordinator. If a network partition occurs before
the coordinator transmits its commit decision, the participant sites that become
disconnected unilaterally abort as in case 1(A), and the coordinator commits as
in case 1(C). If a network partition occurs after the coordinator has transmitted
its decision, participants receiving the commit message will locally commit;
upon timeout expiration the coordinator will record in its Rec_Info requests for
reconciliation for participants that committed but did not successfully transmit
an acknowledgement to the coordinator.

As the description shows, all sites with no local failures may commit a transaction.

3.3. Correctness

In this section we prove the correctness of transaction execution by proving the
following theorem.

Theorem 1 Transaction execution preserves Invariant 1.

Proof By assumption the invariant held before the execution of a transaction.
At all sites where the transaction i1s not committed, the data values, history log,
and reception vectors remain unchanged. Moreover data values, history log, and
reception vectors of all objects not written by the transaction remain unchanged.

Let us now consider a site p that committed a transaction (either during normal
execution or during recovery after commit) and an object o written by the trans-
action. Since the object is locked during transaction execution no other action on
o besides those in the transaction is executed at site p. Since the entries of the
reception vector for sites different from the transaction coordinator do not change,
we have to prove only the following: a? € H) < time(a?) < RV,’[c], where ¢ is the
transaction coordinator.

(<) Upon commit, RV) [c] is equal to the timestamp of the last write action on o
in the transaction. Site p executed the transaction, therefore we know that before
the execution of the first write action RV,’[c] = RV.’[c]. Since by assumption, the
invariant held before the transaction execution, and RV.?[c] is the time of the last
action originated at site ¢, all actions originated at site ¢ before the transaction
execution are contained in f,. Since p committed the transaction, all actions part
of the transaction are in H,. Moreover no other action could have been originated
by ¢ outside the transaction, which locked the object. Therefore, the invariant is
satisfied.

(=) Since RV;[c] is updated with the time of the latest action on o, after this
action was inserted in the log, the implication trivially holds. a
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4. Reconciliation

We now describe the reconciliation mechanism. First we describe the algorithm,
then the behavior in case of failures, and finally the correctness of the algorithm.

4.1. Algorithm

We now describe the basic step of the reconciliation mechanism, i.e., the reconcili-
ation between two sites on a given object. Section 8 describes when to invoke the
reconciliation mechanism, and the options that exist in its use. The basic step is
as follows.

If a site s has a tuple (o, p) in its local table Rec_Info, it may start a reconciliation
by sending a reconciliation-request to site p. Included with this message i1s the
reception vector of s for the object o. If p is willing to take part in the reconciliation,
it replies by sending its own reception vector for object o to s. From then on, the
algorithm is completely symmetric (expressed by procedure Reconcile in Fig. 3).

Each site uses the reception vector it has received to scan its own history log and
extracting those actions that have not been executed at the other site. Such actions
are selected by comparing the timestamp of each of the actions with the entry for
its coordinating site in the reception vector. From Invariant 1, the actions on object
o which were executed at site z and not executed at site y, denoted with AZ , are
A7, = 1ag € Hy [time(ag) > RV,’[q]}. These actions are thus extracted from the
log at both sites and sent to the other site. When a site receives the actions from
the other site, it executes them and appends them to its history log. At the end
of the reconciliation, the reception vector at both sites 1s updated: each entry is
assigned the maximum value of the corresponding entries of the two vectors.

After the update of the reception vector, a site commits the reconciliation locally
by forcing the log records and a commit record into the log. Note that, once sites
have transmitted the relevant actions to each other, there is no need for further
communication between them. Indeed, either site s or site p could abort while the
other one commits.

The description of the algorithm is given in Fig. 3 and is depicted graphically in
Fig. 4.

4.2. Dealing with failures

In the description of the reconciliation algorithm, we assumed no failures. Let us
now study what happens if failures occur. We have already noticed the algorithm is
symmetric, except for the first part in which one of the sites behaves as the starter
of the reconciliation process. This symmetry is also reflected in the behavior of
sites upon failures.

If site z locally aborts a reconciliation on object o with site y, tuple (o, y) will not
be deleted from Rec_Info,. This ensures that the information regarding the need
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Starter s

Send reconciliation(s, RV, 0) to site p;
Wait for RV, from site p;

Reconcile (s, p, 0, RV;)

Delete rec(o, p) from Rec_Infos;
Commit

Participant p

Receive reconciliation(s, RV?, o) from site s;
If rec(o, s) not in Rec_Info,

then insert it;

Send RV’ to site s

Reconcile (p, s, 0, RV?)

Delete rec(o, s) from Rec_Infop;

Commit

Reconcile (z,y,0, RV)

A7, = {ag € Hy [time(ag) > RV, [q]};
/* all actions executed at site x

and not executed at site y */
Send AZ | to site y;
Wait for Af , from site y;

Execute all actions a € A7

/* update object value */
H, =H,U AZ,xS

/* append actions to the history log */
Yq : RV [q] := max(RV;[q], RV} [q]);

/* update reception vector */

Figure 3. Reconciliation algorithm
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Begin_rec(o, p) ‘wo ce W ‘ } new RV ‘ Commit
Starter
RV?
RV
Participant
Begin_rec(o, p) \wo woJ \ new RV \ Commit

Figure 4. Reconciliation without failures

of a reconciliation will be deleted only if both sites commit the reconciliation. The
insertion of this entry is always executed upon local abort and we will not indicate
it in the following.

We now describe the behavior of the algorithm for the different types of failures.

1. Site failures.
(A) Before commit. Upon recovery, the site aborts the reconciliation locally,
by undoing all write actions.
(B) After commit. Upon recovery, the site commits the reconciliation locally,

by redoing all write actions.

2. Lost messages. The site that is waiting for the lost message will timeout and
abort the reconciliation locally, by undoing all write actions.

3. Network partition.

(A) Prior to message exchange. This case is similar to case 2.

(B) After message exchange. Since the sites operate independently and do
not need to interact after the reception of the history information, both of
them will commit the reconciliation independently.

4.3. Correctness

We now prove that the reconciliation algorithm is correct. Correctness means that
the value of an object o at commit of reconciliation reflects the timestamp-ordered
execution of all the actions executed on o at the reconciling sites, and that Invari-
ant 1 still holds.
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Theorem 2 If site x commits a reconciliation on object o with site y, the value
of o at site & after reconciliation reflects the timestamp-ordered execution of all the
distinct actions executed at x and y before reconciliation.

Proof First, we prove that all actions executed at site y and not executed at
site z are communicated to z from y upon reconciliation, i.e., aj € Hy A aj &
Hy; = ag € A} . Consider an action ag such that aj € Hy Aaj ¢ H;. Since
Invariant 1 held at the start of reconciliation, we know that before reconciliation
RV?[q] < time(ag) < RV,/[q]. Therefore, aj € Ay . and the implication holds.

Moreover, we prove that no action has been executed more than once, i.e., actions
already executed at site x are not communicated by y upon reconciliation: ag €
AZx = ag ¢ Hy before reconciliation. Consider an action aq € Aj . Since
ag € Ay ., we know that before reconciliation RV?[q] < tlme( 9) < RVO[ ]. Since
the 1nvar1ant held at the start of reconciliation, we had ag € Hy and ag ¢ H,, and
the implication holds.

Finally, we notice that since actions are commutative, any execution order will

produce the same result. Hence, the theorem is satisfied. a
Theorem 3 The reconciliation algorithm preserves Invariant 1.

Proof By assumption the invariant held before the execution of the reconciliation.
Consider site x that reconciles on object o with site y, we show that the following
holds: Vg : aj € H, < time(ay) < RV7[q]. If x did not commit the reconciliation,
no changes were made to the object, its reception vector, and the history log, and
hence the invariant holds. If x committed the reconciliation, we will now prove that
the invariant still holds.

(<) Consider an action ag, such that time(aj) < RV;?[q]. After reconciliation, we
know that RV;’[q] = max(RV;[¢], RV;[¢]) holds, and before reconciliation either
RV?[q] > time(a]) or RV,;[q] > time(ag) holds. Therefore, before reconciliation
either ag € H, or ag € Hy. If ag € H, the implication obviously holds. If ag € Hy,
by Theorem 2, ag E H, at the end of reconciliation.

(=) Consider an action a(‘; € H,. Since a(‘; € H, after reconciliation, either
ag € Hy before reconciliation, or ag € Ay .. If ag € H, before reconciliation,
time(ay) < RV;[q] before reconciliation. Hence, after reconciliation RV;’[q] =
max(RV"[ 1, RVO[ 1) and thus RV?[q] > time(a ) and the implication holds. If

ag € Ay ., then ag € Hy before the reconcﬂlatlon and via an analogous reasoning
the 1mphcat10n holds. a

4.4. Global agreement

Theorem 4 If Rec_Info is empty at each site, all sites have identical values, his-
tory log, and reception vectors, and the values reflect the timestamp-ordered execu-
tion of all actions originated at any site.

Proof Theorem 2 ensures that no action is executed more than once at any site
and the execution order is equivalent to the timestamp execution order. We now
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prove that if all Rec_Info tables are empty, all actions have been executed at every
site. We will prove it by negation.
Suppose that all Rec_Info tables are empty and there exist a site  and an action
g such that ag ¢ H,. Since aj ¢ Hy, site z did not commit the transaction in
which ag was executed. Hence, site y did not receive an acknowledgement from site
z, and the tuple (o, %) was inserted in Rec_Info at site y. This entry could only
have been deleted upon a reconciliation between sites y and x on object o, where
site y commits the reconciliation. Since all the Rec_Info tables are empty, such a
reconciliation took place. If the reconciliation was also committed at site z, then
ag € Hy from Theorem 2, and we have a contradiction. If site # did not commit the
reconciliation, the tuple (o, y) was inserted in Rec_Info,. This entry could only have
been deleted upon commit of a reconciliation at z on o with y. Again, since from
the hypothesis all the logs are empty such a reconciliation must have taken place.
Then, from Theorem 2, it must be ag € H; and we have derived a contradiction.
In the beginning, all sites had the same data values, history log, and reception
vectors. Since the same actions have been executed at each site and all the actions
are commutative, we know that the data values and reception vectors are the same
and the history logs contain the same information at every site. a

a

5. Example

In this section we illustrate through a simple example our algorithms. We consider
three sites, x, y, and z, and an object o and item ¢ replicated at every site. We
assume that initially all copies of the item at each site have value 0, all history logs
and Rec_Info tables are empty, and reception vector entries are all equal to g.

Fig. 5 illustrates the sequence of events (committed transactions or reconcili-
ations) that occurs at each site. FEach event is denoted by a transaction-id or
reconciliation-id, the timestamp of the transaction/reconciliation, the value of item
t, history log H, reception vector RV, and Rec_Info table. Fig. 6 illustrates the
actions that are performed during the observed time interval on object o; each en-
try contains a transaction-id, a timestamp, a site-id, an object-id, and the action
performed on the object.

We described the following sequence of events. Initially, transaction 77 is started
at site x and executed at all sites. Then, a network partition occurs such that
sites  and y cannot communicate with site z. During the partition transaction 75
originates at site  and 1s executed at site z and y and transaction 73 originates and
executes at site z. Upon execution of Th, site z inserts tuple (o, z) in its Rec_Info
table indicating the need for reconciliating with z on object 0. Analogously, upon
execution of T3, site z inserts tuples (o, z) and (o, y) in its Rec_Info table indicating
the need of reconciling with z and y on object 0. Then, site y fails and the partition
between sites x and z 1s repaired. A reconciliation is called between z and z, and
the corresponding need for reconciliation is deleted from the Rec_Info tables at
these sites. Then, transaction 7} originates at site # and commits at site « and z.
Upon execution of the transaction, site z inserts tuple (o,y) in its Rec_Info table



16

S.CERI, M.A.'W. HOUTSMA, A.M. KELLER, P. SAMARATI

| T-id / Rec-id | timestamp || | # | RV® | Rec_Info |
T1 tl 1000 a [tl to to]
site x T2 tz 1500 ab [tz to to] (O, Z)
T€Ce ta 1300 | abc [ta to ts]
T4 t5 1100 abed [t5 to t3] (O, y)
T€Co y ts 1100 | abed | [t5tp ts]
| T-id / Rec-id | timestamp || | # | RV® | Rec_Info |
. T1 tl 1000 a [tl to to]
site y T2 tz 1500 ab [tz to to]
T€Co y ts 1100 | abed | [t5tp ts]
T€Cs y t7 1100 | abed | [t5tp ts]
| T-id / Rec-id | timestamp || 1 | H | RV?® | Rec_Info
T1 tl 1000 a [tl to to]
site 2 | I3 i3 800 [titots] | (0, ), (0, y)
T€Ce ta 1300 | acb [tatots] | (0, y)
T4 t5 1100 achd [t5 to t3] (O, y)
T€Cs y t7 1100 | acbd | [t5 o t3]

Figure 5. Sequence of events at sites z, vy, z

(Th,t1, X, 0, credit(i, 1000))
(Ta,t2, X, 0, credit(i, 500))
(Ts, 3, Z, 0, debit (i, 200))
(T4, 14, Y, 0, debit(i, 200))

QU o e

Figure 6. Actions executed during observed time interval

indicating the need of reconciling with y on object 0. Later on, site y recovers.
A reconciliation 1s executed between z and y, deleting the need for reconciliation
stored at site . Finally a reconciliation is performed between z and y. Notice that
this reconciliation does not bring any new information for any of the two sites. The
Rec_Info tables at all sites are now empty, all sites agree on their status and all the
actions that have been executed are reflected in the database.
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6. Reconciliation algorithm for non-commutative actions

We now drop the assumption that all actions are commutative, and assume we can
have non-commutative actions as well. Commutativity implies that correctness is
independent of the order of action execution. Non-commutative actions, however,
have to be executed in timestamp order. Therefore, when actions arrive out-of-
order, previously executed actions may have to be undone. Hence, we need to add
the assumption that every action has an inverse which undoes its effect.

The reconciliation algorithm for non-commutative actions is similar to the algo-
rithm for commutative actions (see Sec. 4.1). In particular, message exchanges and
behavior upon failures are the same. The only difference is in the determination
of the new value for an object. Instead of directly applying the actions commu-
nicated by the other site (in A;yy), the reconciling site now must ensure that the
actions are applied in the correct order, as follows. First it determines the mini-
mum timestamp of all actions it received from the other site. Then it has to undo
in reverse timestamp order all actions with timestamp greater than this minimum
timestamp. Finally, it merges the actions that were undone and the actions it
received, in timestamp order, and applies them. The Reconcile procedure of the
reconciliation algorithm is presented in Fig. 7; this change is the only difference
with the algorithm in Fig. 3.

6.1. Correctness

In Sec. 4.3 the reconciliation algorithm for commutative actions was proven correct.
The only place where we used the commutativity of actions, was in the proof
of Theorem 2. We now restate that theorem, and prove it for the case of non-
commutative actions.

Theorem 5 If a site x commuts a reconciliation on object o with site y, the value
of o at x after reconciliation is the value obtained by timestamp-ordered execution
of all the distinct actions executed at x and y before reconciliation.

Proof The first two steps of the proof remain the same (all actions in H, and not
in H, are communicated to z, and no action which is already in H, is communi-
cated to x). What remains to be proved, is that after reconciliation the value of o
reflects the timestamp-ordered execution of the actions at a site. By assumption,
this invariant held before reconciliation; undoing actions at the site z does not af-
fect this invariant. All actions that were undone and the actions communicated by
y were merged and sorted in timestamp-order. Since all actions that had a time-
stamp bigger than the minimum timestamp of the actions communicated by y were
undone, after applying the merged and sorted actions, the value of o reflects the
timestamp-ordered execution of the actions in H, and H,. a
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Reconcile (z,y,0, RV})

A7, = Hag € Hy |time(ag) > RV [q]};
/* all actions executed at site x
and not executed at site y */
Send Af  to site y;
Wait for Af , from site y;
t:= min({time(a(‘;) | a; € Ale}).
/*time of the earliest action in Aj :*/
Ug = {aj gHHtime(aS) >t}
/*actions to be undone*/
Sort U7 in reverse timestamp order;
Undo all actions in U};
Sort A? . in timestamp order;

Y@
Rj := sorted merge of U7 and Ay ;
/*actions to be executed*/
Execute actions in R;
/* update object value */
H, =H,U AZ,xS
/* append actions to the history */
Vg : RV?[q] := max(RV?[q], RV} [q]);

/* update reception vector */

Figure 7. Reconciliation (non-commutative actions)
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7. Log maintenance

To avoid that the history log becomes too large, we can archive the oldest part of
it. However, we have to avoid disposing that part of the log that might still be
needed for pending reconciliations. The log can be managed as follows.

At each site ¢ and for each object o, an auxiliary structure, called propagation
vector PV is kept. There is an entry in PV} for each site of the system. The
semantics of the propagation vector is illustrated by the following invariant condi-
tion:

Invariant 2 For dll sites z, y, ¢, objects o, and actions ag: time(a(‘;) < PVPly] =
ag € Hy.

Thus, entry PV?[y] indicates the time of the latest action executed at site y, such
that site x is certain that all actions with a smaller timestamp have already been
executed at y. Intuitively, as a reception vector gives information about actions
executed at a site itself, a propagation vector gives information about actions exe-
cuted at all the other sites. Communication of the respective propagation vectors
PV? is included in the message exchange at the beginning of the reconciliation
between two sites.

Propagation vectors are updated in the following way. At initialization, all en-
tries are assigned time f5. At commit at site x of a reconciliation on object o
with site y, PV;? is updated as follows: PV[z] := min,(RV?[¢]), and PV?[q] :=
max(PV?[q], PV lq]) Vg # =. From Invariant 1 and the way propagation vectors
are updated, 1t is trivial to prove that Invariant 2 holds.

Theorem 6 The reconciliation algorithm preserves Invariant 2.

Proof By assumption the invariant held before the execution of the reconcili-
ation. Consider site x which reconciles on object o with site y, we show that
the following holds: time(a?) < PV?ly] = af € H, at the end of reconcilia-

q q
tion. Consider an action aj such that time(aj) < PV?[y]. If y = x, we have

PV2lz] = ming(RV?[q]) < RV[z]. Hence, from Invariant 1, aj € H, and the
implication holds. If y # =, PV?[q] = max(PV;[y], PV, [y]). Hence, before recon-
ciliation either time(ag) < PV;’[y] or time(ag) < PV,’[y]. Since Invariant 2 held
before reconciliation, ag € Hy and hence the implication is satisfied. a

A cleaning procedure archives part of the log off-line. This procedure is called
periodically at each site and removes all the information that is not required any-
more, by removing all actions with a timestamp smaller than the minimum entry
of the site’s propagation vector, as shown in Fig. 8.

Theorem 7 Algorithm cleanup never removes an action which may be used in a
reconciliation.

Proof To prove that all the actions removed by the cleanup process at site x are
no longer needed, we have to prove that they have already been executed at all
sites, and that they will not need to be undone.
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Cleanup ()

For all actions a(‘; € H,
If time(ag) < min, (PV,;’[2])
then delete a(‘; from H,

Figure 8. Algorithm for cleaning the log

We first prove that all actions that were removed have already been executed at
any site. That s, for all sites z, y, and ¢, objects o and actions ag the following holds:
time(ag) < min, (PV7[z]) = af € H,. Consider action ag such that time(ag) <
min, (PV;?[2]); thus, time(ag) < PV?[y]. Hence, from Invariant 2 af € H, and the
implication is satisfied.

We now prove that the removed actions will not need to be undone at site z.
Suppose we remove an action ag at site x that needs to be undone, i.e., not all
actions with a smaller timestamp have been executed yet. Therefore, there is some
other action a? such that time(a?) < time(a?) and a2 ¢ H,. Clearly, this situation

q
contradicts the implication we just proved. a

8. Application of reconciliation

In the previous section, we described the basic step of the reconciliation mechanism:
reconciliation between two sites on an object 0. For application of this basic step,
there are several options.

Immediate The basic step of reconciliation is applied immediately after sites that
participate in a transaction discover that a reconciliation is required, because the
comparison on the reception vector entries fails. In such a case, a reconciliation
can be called for the object on which the comparison failed.

Periodically Reconciliation is called periodically, at a given point in time (for
instance at midnight) or after fixed time interval (for instance every hour), by
applying the basic step to all objects for all pairs of communicating sites. This
option is viable in an environment where, e.g., the night is used to bring all
sites to agreement, whereas during the day they may “drift apart.”

Upon demand Reconciliation is called for all objects and all pairs of communi-
cating sites once a user demands it. This option is appropriate before running
a transaction that requires full consistency.

At full connectivity Reconciliation is performed only when the full connectivity
of all sites in the system is established. Then we may iterate over all sites and
objects and apply the basic step of the reconciliation mechanism.
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Note that a full reconciliation involves a quadratic number of binary reconcilia-
tions. However, at each binary reconciliation, two reception vectors are updated.
This reduces the work in some of the subsequent binary reconciliations and, there-
fore, the workload of the last reconciliations.

An optimization reduces the number of binary reconciliations to o(n) under the
assumption that no failures or partitions of the reconciling sites occur during these
reconciliations. All n sites are ordered in a linear chain using their site number.
First reconciliations are performed “forward,” between sites 1 and site 2, 2 and 3,
and so on, until the binary reconciliation between site n — 1 and site n. At that
point, sites n and n — 1 have all actions executed by all sites in their history log.
A subsequent “backwards” execution of reconciliations, starting with sites n — 1
and n — 2 and ending with sites 2 and 1, brings all sites to agreement. As all sites
now reflect all actions, the local tables Rec_Info can be emptied since they call for
reconciliations that are not needed.

9. Conclusions

In this paper we described an approach to update propagation in replicated databases
that is progressive (the transaction’s coordinator always commits) and non-blocking
(each site may make unilateral decisions).

In our approach each site s maintains two vectors. The first one, called reception
vector, indicates how up to date the site is. The other one, called propogation vec-
tor, indicates how up to date other sites are, according to the information avaliable
at site s; the information in this vector is used by every site to prune the log and
avoid it to grow indefinitely. We then described a reconciliation protocol that sites
can follow to update their databases and arrive to an agreement. The reconciliation
is preceded by a phase where sites exchange their vectors to determine which part of
the log should be exchanged during the reconciliation procedure. This phase avoids
unnecessary communication. We have illustrated the behaviour of sites, during
reconciliation, during normal operation, and at failures.

Our approach is a viable alternative for those applications that cannot tolerate the
overhead and performance degradation induced by synchronous update propagation
and atomic transactions (which are implemented in many replicated databases).
Examples of such applications include automated teller machine networks, airline
reservations, and part inventory control.
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