
On the Scalability of Parallel Genetic
Algorithms

Erick Cantú-Paz�
Center for Applied Scientific Computing
Lawrence Livermore

National Laboratory
P.O. Box 808, L-551
Livermore, CA 94551, USA
cantupaz@llnl.gov

David E. Goldberg
Department of General Engineering
University of Illinois

at Urbana-Champaign
Urbana, IL 61801, USA
deg@illigal.ge.uiuc.edu

Abstract

This paper examines the scalability of several types of parallel genetic algorithms (GAs).
The objective is to determine the optimal number of processors that can be used by each
type to minimize the execution time. The first part of the paper considers algorithms with
a single population. The investigation focuses on an implementation where the population
is distributed to several processors, but the results are applicable to more common master-
slave implementations, where the population is entirely stored in a master processor and
multiple slaves are used to evaluate the fitness. The second part of the paper deals with
parallel GAs with multiple populations. It first considers a bounding case where the
connectivity, the migration rate, and the frequency of migrations are set to their maximal
values. Then, arbitrary regular topologies with lower migration rates are considered and the
frequency of migrations is set to its lowest value. The investigation is mainly theoretical, but
experimental evidence with an additively-decomposable function is included to illustrate
the accuracy of the theory. In all cases, the calculations show that the optimal number of
processors that minimizes the execution time is directly proportional to the square root of
the population size and the fitness evaluation time. Since these two factors usually increase
as the domain becomes more difficult, the results of the paper suggest that parallel GAs can
integrate large numbers of processors and significantly reduce the execution time of many
practical applications.

Keywords

Master-slave genetic algorithms, multiple demes, island model, deme size, topology, mi-
gration rate, bounding cases.

1 Introduction

Early proposals of parallel genetic algorithms (GAs) recognized two forms of parallelization
that are still common today: multiple communicating populations, and single-population
master-slave implementations (Bethke, 1976; Grefenstette, 1981). The two types of parallel
GAs have been extensively used to reduce the execution time of a variety of applications.

The choice between the two types of parallel GAs is determined by several factors such
as ease of use or implementation, and by their potential to reduce the execution time. In

�Work was conducted while the author was a student at the University of Illinois, Department of Computer
Science.

c1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(4): 429-449



E. Cantú-Paz and D. Goldberg

general, single-population parallel GAs are the easiest to use and implement, because any
available knowledge about configuring serial GAs can be applied directly to them, and their
implementation as master-slave algorithms is not complicated. In contrast, parallel GAs
with multiple populations are more difficult to use, because one must choose adequate values
for several additional parameters that affect the efficiency and the quality of the solutions
that the algorithms reach. Among other things, to use multiple-deme GAs, one must decide
the number and the size of the populations (also called demes), the frequency of migration,
and the number and destination of the migrants. This paper examines the scalability of
both single and multiple-population parallel GAs. The goal of the paper is to determine
the optimal number of processors that minimize the execution time of each type of parallel
GA. Examination of single-population algorithms is straightforward, and for multiple-
population GAs, the paper examines cases that use upper and lower bounds of some of
their parameters. The results suggest that the optimal number of processors for the two the
classes of algorithms is of the same order, and that it is proportional to the square root of the
product of the population size and the function evaluation time. There are other classes of
parallel GAs such as fine-grained (Gorges-Schleuter, 1989; Mühlenbein, 1989; Manderick
and Spiessens, 1989) and hierarchical parallel GAs (Gruau, 1994; Lin et al., 1997), but these
classes are outside of the scope of this paper.

The study is mainly theoretical, but experimental results with an additively-
decomposable test function are included to illustrate the accuracy of the models of solution
quality. Only one function was used in the tests reported here, because the models are
based on the gambler’s ruin model of population sizing (Harik et al., 1997), which has been
verified extensively with multiple additively-decomposable functions of varying difficulty.
This leads us to believe that the results described here hold for any function of this class.
The remainder of this paper is organized as follows. The next section discusses single-
population algorithms and calculates the optimal number of processors that minimize the
execution time. Section 3 briefly reviews previous studies on bounding cases of multi-deme
GAs, and it describes the similarities of the single distributed population algorithm with a
bounding case of multi-population GAs. Section 4 summarizes a model that relates the size
of the population of a serial GA with the quality of the solutions it reaches. This model
is extended in the following sections to multiple populations that communicate after they
converge (i.e., all the individuals are identical, not necessarily representing the optimal solu-
tion). The populations restart after migration, and each convergence-migration sequence is
called an epoch. Section 5 describes how the deme size, the migration rate, and the degree
of the connectivity graph affect the chance that the desired solution is reached after two
epochs. Section 6 generalizes the modeling to multiple epochs. Section 7 integrates the
modeling of the previous sections with an estimate of the critical number of epochs until
all the demes converge to the same solution and no further improvement is possible. The
result is an estimate of the long-term execution time, which is then optimized with respect
to the number of processors. Finally, Section 8 summarizes the results of this paper and
presents the conclusions of this study.

2 Single-Population Parallel GAs

Probably the easiest way to parallelize GAs is to distribute the evaluation of fitness among
several slave processors while one master executes the GA operations (selection, crossover,
and mutation). Master-slave GAs are important for several reasons: (1) they explore the
search space in exactly the same manner as a serial GA, and therefore the existing design

430 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

guidelines for simple GAs are directly applicable; (2) they are very easy to implement, which
makes them popular with practitioners; and (3) in many cases master-slave GAs result in
significant improvements in performance.

An alternative to storing the entire population in one node is to distribute the popu-
lation to several nodes. However, the algorithm has to be modified so that the distributed
population behaves as a single panmictic unit. As one might expect, the form of the exe-
cution time of the algorithm with a distributed population is very similar to the time of a
simple master-slave algorithm, so the conclusions of this section apply to the two types of
single-population parallel GAs. Moreover, the calculations are also important on another
front: the algorithm with a distributed panmictic population resembles a bounding case of
multi-deme parallel GAs, and therefore the predictions shed some light on the expected
performance of this class of algorithms. This issue is explored in Section 3 and focuses on
the single distributed population algorithm.

2.1 Description and Analysis

Assume that n is the population size required to reach the desired quality in a particular
problem. In Section 4 we shall discuss how to determine n, but for now assume that the pop-
ulation size is given. The population is partitioned into equally-sized parts and distributed
to P processors. In every generation, all the nodes perform the four basic GA tasks on
their fraction of the population: fitness evaluation, selection, crossover, and mutation. The
evaluations of fitness and mutation are not an issue, because they can be performed on each
fraction of the population independently. However, to ensure that the distributed popula-
tion behaves as a panmictic one, the selection and crossover operations must be modified.
We begin the presentation of the algorithm with the parallel implementation of crossover,
because ensuring that every individual is considered exactly once is straightforward.

In a sequential GA, each selected individual forms part of exactly one mating pair per
generation. The pairs are formed randomly, and any two individuals in the population may
be chosen to mate. To maintain this property in the parallel GA, each of the P processors
randomly divides its fraction of the population into P equally-sized parts and sends each
part to a different processor. These communications take time Tx = (P � 1)Tc, where Tc is
the average time used to communicate with one processor. The processors incorporate the
incoming individuals into their fractions of the population by replacing the individuals sent
to a particular deme with the individuals received from it. Then, each processor randomly
chooses pairs of mates and proceeds to exchange material between them. There are, of
course, other ways to preserve the panmictic property in a distributed population (e.g.,
Braud and Vrain (1999)), but the calculations would be similar.

The required modifications to selection are specific to the selection method used.
To illustrate the modifications we consider tournament selection only, but other types
of selection may be used. Recall that tournament selection without replacement works
by choosing non-overlapping random sets of s individuals from the population and then
selecting the best individual from each set to serve as a parent for the next generation.
There are n=s such sets, and each tournament produces one winner; therefore to generate
all the parents for the next generation, it is necessary to repeat this procedure s times. Any
individual in the population may participate in any given tournament, and the key idea in
the parallel algorithm is to maintain this property.

The first step in the parallel selection consists of each processor randomly dividing its

Evolutionary Computation Volume 7, Number 4 431



E. Cantú-Paz and D. Goldberg

fraction of the population into P equally-sized parts and sending a different part to every
other processor. These communications take time (P � 1)Tc. The processors receive and
incorporate the individuals into their fraction of the population. Then, each processor
picks random non-overlapping sets of s individuals to compete in tournaments. Note that
the individuals who participate in a given tournament may have been received from any
processor or may have been already present in the processor. In any case, all the individuals
in the population have the same chance to participate in a given tournament, just as they
do in the serial case. To select all the parents for the next generation, the process has to be
repeated s times, and therefore the total communication time is Ts = s(P � 1)Tc.

The execution time of one generation of the algorithm is the sum of communications
and computation times. Our calculations ignore the time used in the GA computations
(selection, crossover, and mutation), because we assume that they are much smaller than
the time used to evaluate and communicate individuals. Under this assumption, the com-
putation time per node is nTf

P , where Tf is the time used to evaluate the fitness of one
individual.

Communication is used during both selection (Ts) and crossover (Tx). The general
form of the time used in communication during selection is Ts = �s(P � 1)Tc, where �s is
a constant that depends on the selection method. In the case of tournament selection, �s
equals to the size of the tournament s. The communication time used during crossover is
Tx = (P�1)Tc, so we may write the total time used in communication as (�s+1)(P�1)Tc.
To simplify the calculations we define � = �s+1. Adding computation and communication
times we obtain the total execution time per generation:

Tp =
nTf

P + �(P � 1)Tc (1)

As more processors are used, the computation time decreases as desired, but the
communication time increases. This tradeoff entails the existence of an optimal number
of processors that minimizes the execution time. The optimum may be found by solving
@Tp
@P = 0 for P to obtain

P� =
r

nTf

�Tc
(2)

In the case of a traditional master-slave algorithm, there is only one communication
event per generation and therefore � = 1. This result agrees with a previous calculation
reported elsewhere (Cantú-Paz, 1998b).

In many practical situations, the function evaluation time is much greater than the
time of communication, Tf � Tc, and the population size required to reach an acceptable
solution is very large. Under those conditions, the optimal number of processors can be
quite large and we can expect near-linear speedups for a wide range of processors as can be
seen in Figure 1.

3 Bounding Cases of Multi-population GAs

Consider the typical parallel GA with multiple populations. Essentially, it consists of
multiple GAs doing their normal selection-recombination-mutation cycle, but occasionally
the GAs exchange some individuals (see the work by Grefenstette (1981), Grosso (1985),

432 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

1 5 10 50 100 500 1000
Processors

1

5

10

50

100

500

1000

Speedup

Figure 1: Theoretical speedups of single population parallel GAs varying the ratio of Tf
Tc

.
The thin line corresponds to Tf

Tc
= 1, the intermediate to 10, and the thick to 100. The

dotted line is the ideal (linear) speedup.

and Tanese (1987) for some early examples). These exchanges (migrations) are controlled
by several parameters: the destination of the migrants, the frequency of migrations, and the
number of individuals that are exchanged (the migration rate). It is difficult to predict the
outcome of a run of multi-population GAs, because their parameters have non-linear effects
on their efficiency and on the quality of the solutions that they reach. However, all of these
parameters have minimum and maximum bounding values, and by studying parallel GAs
that use the extreme values, we may gain some insight into the effects of the parameters.

Previous theoretical studies of bounding cases of multi-deme GAs focused on the
number of demes and their sizes (Cantú-Paz and Goldberg, 1997a, 1997b). Those studies
considered two configurations that bound the migration rate and the connectivity between
the populations. In the first bounding case the demes are completely isolated, and it
represents a lower bound on both the connectivity and the migration rate. The demes
execute until they are composed of identical individuals, which is possible assuming that
there is no mutation. The results of those studies suggest that the expected speedups in the
isolated bounding case are only marginal, and therefore it should be avoided in practice.

In the second bounding case, each deme communicates with all the others, which
is an upper bound on the connectivity, and the migration rate is set to its maximal value.
Interdeme communications result in significant improvements in the quality of the solutions,
which translate into important reductions of the deme size and the computational effort.
However, using more processors requires additional communication and there is a tradeoff
between increasing communication cost and decreasing computations. Cantú-Paz and
Goldberg (1997b) showed how to use this tradeoff to compute the optimal number of
processors that minimize the total execution time. Their investigation considered that
communication between populations occurs after the populations converge, implying a
lower bound on the frequency of migration.

The upper bound of the migration frequency is to exchange individuals every genera-
tion. In light of the significant reductions in computational effort caused by migration, it
would be interesting to study the bounding case with the most intense migration possible.
In fact, the distributed population described in the previous section resembles this bounding
case: each processor executes a selection-crossover-mutation cycle, and there is an exchange

Evolutionary Computation Volume 7, Number 4 433



E. Cantú-Paz and D. Goldberg

of individuals every generation. The topology of the communications is a fully connected
graph (because processors communicate with every other), and dividing the population into
P equal parts corresponds to the maximum possible migration rate.

However, the distributed population algorithm has multiple communications per gen-
eration and that is its major difference from the multi-population parallel GAs, where there
is at most one migration event in a generation. In multi-population GAs, migrations occur
after (or before) the selection-recombination-mutation sequence. This means that selection
and recombination consider only a subset of the population, and the search may be biased
toward some region of the search space. To our knowledge, there have been no studies of
this bias, but it may be not very significant if migration occurs as often as every generation.

Another difference is that in multi-population algorithms the migrants and the individ-
uals that they replace can be chosen in different ways. In particular, the (outgoing) migrants
can be the best individuals in the population, or they may be chosen randomly. Likewise,
when migrants arrive at a deme, they may replace individuals randomly or they may replace
the worst. Each of these decisions affects the speed of convergence in some way, except
when both the migrants and the individuals they replace are chosen randomly (Cantú-Paz,
1999a, 1999b), which is the case used in the algorithm described in the previous section.

The differences between a single distributed population and fully-connected popu-
lations that exchange the maximal number of individuals every generation are small, and
therefore the calculations in the previous section serve as guidelines on how to choose the
optimal number of populations for this bounding case.

4 The Gambler’s Ruin Model

How does one determine the size of the populations? This section briefly reviews the
gambler’s ruin (GR) model that predicts the quality of solutions found by a GA with one
population based on its size and the number of building blocks (BBs) present initially.
Subsequent sections extend the model to consider multiple populations that communicate
using arbitrary topologies.

To obtain a model of the quality of the solution of a GA, Harik et al. (1997) modeled
the selection process in a GA as a biased one-dimensional random walk. The model
considers one partition of order k, and it assumes that decisions are independent across
partitions. We refer to the order-k schema that leads to the global optimum as the correct
BB. Other schemata in the same partition—even if they have a high average fitness—are
labeled as incorrect. In the GR model, the number of copies of the correct BB in a partition
is represented by the position x of a particle on a one-dimensional space. The space is
bounded with absorbing barriers at x = 0 and x = n, which represent ultimate convergence
to the wrong and to the right solutions, respectively. The initial position of the particle x0
is the expected number of copies of the correct BB in a randomly initialized population, and
is equal to x0 = n=2k, where k is the order of the BB and n is the population size.

At each step of the random walk there is a probability p of obtaining one additional
copy of the correct BB. This probability depends on the particular problem that the GA is
facing, and it represents the probability of deciding correctly in a one-to-one competition
between the best and the second best schemata of the partition. For functions composed by
adding several uniformly-scaled subfunctions, p was computed by Goldberg et al. (1992) in
their study of population sizing as

434 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

p = �

�
d

�bb
p
2m0

�
; (3)

where � denotes the cumulative distribution function (CDF) of a normal distribution with a
mean of zero and a standard distribution of one. d is the difference of the fitness contribution
of the best and the second best schemata in the partition, m0

= m� 1, m is the number of
subfunctions, and �2bb is the average RMS variance of k-th order partitions.

A well-known result of random walks is the probability that a particle will eventually
be captured by the absorbing barrier at x = n (Feller, 1966):

Pbb =
1�

�
q
p

�x0
1�

�
q
p

�n � 1�
�
q

p

�x0

; (4)

where q = 1� p. For increasing values of n, the denominator in Equation 4 approaches 1
very quickly, and therefore it may be ignored in the calculations.

We measure the quality of the solutions as the number of partitions that converged to
the correct BB at the end of a run, and we denote the desired target quality as Q̂. Using
the assumption that partitions are independent, we can solve Pbb = Q̂

m
for n and obtain the

following population sizing equation:

n =
2
k
ln(1� Q̂

m
)

ln
q
p

(5)

There are a number of assumptions in the gambler’s ruin model. First, the GR model
considers that decisions in a GA occur one at a time until all then individuals in its population
converge to the same value. In other words, in the model there is no explicit notion of
generations. The model also assumes, conservatively, that all competitions occur between
strings with the best and the second best schemata in a partition, and that the probability
of deciding correctly remains constant during the run. Furthermore, the Goldberg et al.
(1992) calculation of p implicitly assumed that the GA uses pairwise tournament selection
(two strings compete), but adjustments for other selection schemes are possible, as Harik
et al. (1997) showed in their paper.

The boundaries of the random walk are absorbing; this means that once a partition
contains n copies of the correct BB it cannot lose one, and likewise, when the correct BB
disappears from a partition there is no way of recovering it. This is related to another
important assumption of the GR model: mutation and crossover do not create or destroy
significant numbers of BBs. In the model, the only source of BBs is the random initialization
of the population.

We must recognize that the GR model is a simplification, but experimental results
with multiple additively decomposable functions of varying difficulty suggest that is it a
reasonable one (Harik et al., 1997). The models in subsequent sections are largely based on
the GR model, and therefore they inherit the assumptions, limitations, and applicability of
the GR model.

In cases with multiple demes, success is defined when at least one of them reaches
the desired target quality Q̂. An equivalent success criterion is to require that the highest

Evolutionary Computation Volume 7, Number 4 435



E. Cantú-Paz and D. Goldberg

quality found by any of the r demes equals the target quality. As a consequence, the quality
required in each deme can be relaxed in the following way (Cantú-Paz and Goldberg, in
press):

P̂ =
Q̂

m
� �r:r

2
p
m
� Q̂

m
�
p
ln rp
2m

; (6)

where �r:r is the expected value of the highest order statistic of r samples taken from a
standard normal distribution with mean 0 and standard distribution of 1. The values of �r:r
have been tabulated extensively (Harter, 1970), and the approximation �r:r =

p
2 ln r used

above was suggested by Beyer (1993). Note that P̂ varies very slowly with respect to r, and
that when r = 1, P̂ = Q̂.

5 Multiple Demes and Regular Topologies

An important property of the connectivity graph between the demes is its degree, which
is the number of neighbors of each deme. This paper assumes that all the demes have
the same degree, and we denote it as �. The degree completely determines the cost of
communications, and as we shall see, it also influences the size of the demes and consequently
the time of computations.

This section examines how the deme size, the migration rate, and the degree of the
topology affect the probability that the parallel GA reaches the desired solution. The cal-
culations consider that the populations communicate only after they have converged. After
migration, the algorithm restarts. This represents a lower bound on the frequency of mi-
grations. Similar algorithms were investigated empirically by Grosso (1985), Braun (1990),
and Munetomo et al. (1993). Only the first two epochs of the algorithm are considered
initially, because closed-form expressions may be derived easily. The next section extends
the modeling to multiple epochs. Some of the results in this section have been presented
elsewhere (Cantú-Paz and Goldberg, in press).

The modeling has several steps. First, we compute how many copies of the correct
BB are necessary to reach the target quality per deme (P̂ , given by Equation 6). Next,
the probability that a given configuration brings together the critical number of BBs is
calculated. The success probability is then used to derive a deme sizing equation, which in
turn is used to minimize the execution time.

The first step of the modeling is straightforward. To determine how many BBs cx1 are
needed at the beginning of the second epoch to reach P̂ , we may use the solution of the
gambler’s ruin problem. Making

P̂ = 1�
�
q

p

�
cx1

;

and solving forcx1 results in

cx1 =
ln(1� P̂ )

ln
q
p

(7)

The next step is to determine the probability that a deme receives at least cx1 BBs from
its � neighbors. The probability that one neighbor sends the right BB is the same probability

436 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

that it converged correctly in the first epoch, and is given by Pbb. Assuming that all the
neighbors of a deme use the same migration rate � then at least �̂ =

cx1
�nd

neighbors must
contribute the correct BB. Since the demes have evolved in isolation until this moment, the
probability of receiving at least cx1 BBs has a binomial probability:

Px1 = 1�
�̂�1X
i=0

�
�

i

�
P i
bb(1� Pbb)

��i; (8)

which can be approximated as

Px1 = 1��

 
�̂ � �Pbbp

�Pbb(1� Pbb)

!
(9)

Figure 2 shows the results of experiments that illustrate the accuracy of Px1 . The test
problem used in these experiments and in the remainder of the paper is f =

P20

i=1 f4(u4i),
where u4i is the number of bits set to 1 in the 4-bit substring that starts at position 4i, and
f4 is a fully deceptive trap function defined as:

f4(u) =

(
3� u if u 2 [0; 3];

4 if u = 4:

Fully deceptive trap functions are used in many studies of genetic algorithms, because
their difficulty is well understood and it can be regulated easily (by changing the size of
the deceptive basin or the fitness difference between the two peaks). The test function
used in this paper has m = 20 copies of the trap function, the difference between the best
and second best schemata is d = 1, the fitness variance in one partition is �2bb = 1:215,
and therefore p = 0:5585. For the experiments, a simple generational GA is used in each
deme with pairwise tournament selection without replacement, two-point crossover with
probability 1, and no mutation. The graphs show the average of 100 independent runs.

With higher migration rates, fewer neighbors must contribute the correct BB, and
therefore it is more likely that the deme receives the critical number of BBs and succeeds
to find the solution. This observation agrees with other studies that concluded that the
solution’s quality improves with higher migration rates (Cantú-Paz, 1998b).

Note that even if a deme receives less thancx1 BBs, it may still reach the right solution,
because the deme itself could have converged correctly in the first epoch, and it may contain
enough BBs to converge correctly again. Also, a deme may start the second epoch with less
thancx1 BBs and converge correctly sometimes. However, we ignore these two possibilities
and conservatively assume that a deme does not converge to the right answer if it does not
receive at least cx1 BBs from its neighbors. Under this assumption, Px1 is the probability
that at the end of the second iteration the deme will converge correctly.

There are different configurations that can bring together the critical number of BBs
with the same probability. Configurations with large demes and few neighbors have the same
chance of success than some configurations with smaller demes but with more neighbors
(see Figure 3). This is the usual tradeoff between computation and communication: smaller
demes require more neighbors to succeed. We would like to use the configuration that
achieves the desired objective with the minimum cost.

Evolutionary Computation Volume 7, Number 4 437



E. Cantú-Paz and D. Goldberg

20 40 60 80 100 120 140 Deme size

0.2

0.4

0.6

0.8

1

P

(a) 10% migration

20 40 60 80 100 120 140 Deme size

0.2

0.4

0.6

0.8

1

P

(b) Maximal migration

Figure 2: Probability (Equation 9) of reaching the critical number of BBs required to find
a solution with at least 16 out of 20 BBs (Q̂ = 0:8). The graphs show experimental results
and the theoretical predictions using topologies with �=1, 2, and 4 neighbors (from right to
left in each graph) and different migration rates.

2

4

6

8

Neighbors
20

40

60

80

Deme size

0
0.25
0.5

0.75
1

P

2

4

6Neighbors

Figure 3: Plot of the probability of success with different configurations of deme sizes
and number of neighbors (Equation 9). The fitness function is a 20-BB, 4-bit trap. The
migration rate is � = 0:10.

438 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

The execution time of the parallel program is the sum of communication and compu-
tation times:

Tp = gndTf + �Tc; (10)

where g is the domain-dependent number of generations until convergence, nd is the deme
size, Tf is the time of one fitness evaluation, and Tc is the time required to communicate
with one neighbor. Tc; Tf ; and g can be easily determined empirically, but the required
deme size depends on the degree of the topology, the migration rate, and the desired quality.

5.1 Finding the Deme Size

To find the deme size we need to make Px1 = P̂ and solve for nd. First, the normal
distribution of Px1 has to be approximated as �(z) = (1 + exp(�1:6z))�1 (Valenzuela-
Rendón, 1989). With this approximation, Px1 becomes

Px1 = 1� (1 + exp(�1:6z))�1; (11)

where z =
�̂��Pbbp

�Pbb(1�Pbb)
is the normalized number of successes. We may bound z by

considering that the variance is maximal when Pbb = 0:5, and thus it becomes z � 2p
�
(�̂ �

�Pbb) (In the remainder we conservatively ignore the inequality.). Additionally, Pbb may be
roughly approximated as Pbb � cn

2k
, where c = 1 � q=p. Substituting this form of Pbb and

�̂ = cx1
�nd

into the bound of z gives

z =
2p
�

� cx1
�nd

� �
cnd

2k

�

Making the approximate form of Px1 = P̂ and solving for z yields the ordinate, where
the probability of success reaches the required value:

ẑ = 0:625 ln

 
P̂

1� P̂

!

Making z = ẑ, solving for nd, and simplifying terms gives the deme size:

nd =
2
k�2
p
�

ẑ +
q
ẑ2 + ccx1

�2k�2

c
(12)

Observe that the deme size decreases with higher migration rates and as the number
of neighbors increases, which is what we expected. For clarity, this deme-sizing equation
may be rewritten in a more compact form by grouping all the domain-dependent constants
into one (n0) as follows:

nd =
n0p
�

(13)

Evolutionary Computation Volume 7, Number 4 439



E. Cantú-Paz and D. Goldberg

1 2 3 4 5 6 7
Neighbors

200000

220000

240000

260000

280000

300000
Time

Figure 4: Comparison of theoretical (thick line) and experimental (thin line) execution
times (in microseconds) of eight demes connected by topologies with different degrees.

Now, the total execution time as given by Equation 10 may be easily optimized with
respect to � by making @Tp

@�
= 0 and solving for �:

�� =

�
gn0Tf

2Tc

�2=3

; (14)

and the optimal deme size can be found by substituting �� in Equation 12.

Figure 4 compares the theoretical predictions of the execution time with experimental
results on a network of eight IBM workstations. In this example, the fitness function
consists of 20 copies of a 4-bit trap, and the objective is to find a solution with at least
16 partitions correct. The time to evaluate a single individual is Tf = 51 microseconds,
the communications time is Tc = 29 ms, and the number of generations until convergence
is g = 50. Figure 4 shows the average of 100 runs using pairwise tournament selection,
two-point crossover with probability 1.0, and no mutation. The migration rate is � = 0:1.

5.2 Fully Connected Topologies Revisited

Sometimes the magnitude of the optimal degree will be greater than the number of demes,
because it depends on the ratio of computation to communications, and this ratio may be
arbitrarily large. In those situations, the topology that is closest to the optimal and that
is realizable with the available demes would be a fully connected topology. This section
revisits this bounding case and shows that, despite its poor scalability, the fully connected
topology may be a good choice to reduce the execution time.

The calculation of the optimal degree may be used to find an expression for the optimal
number of demes in a fully connected topology. At some deme count r the optimal degree
will be �� = r � 1, which is the degree of the fully connected topology. Solving for r gives
the optimal number of fully-connected demes,

r� = �� + 1 (15)

Figure 5 has an example with the same 20-BB, 4-bit trap function used before. The
figure clearly shows that the optimal time varies very slowly when more than r� demes are
used, and that the optimal execution time of the fully connected case is very close to the
optimal times of other topologies.

440 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

5 10 15 20 25 30
Demes

300

350

400

450

500

Time

Figure 5: The execution time using the optimal degree decreases very slowly (bold line).
It is bounded (and well approximated) by the optimal time of the fully connected topology
(thin line). See the text for an explanation of the points at r = 2; 3. The execution time of
a topology of degree r=4 (dotted line) is plotted as an example.

In this example, �� � 2:5, which should be interpreted as �� = 3. However, it is
not possible to connect r = 2 or r = 3 demes together using more than r � 1 edges, and
therefore the first two points in the plot of the optimal time correspond to a fully connected
topology.

Although the fully connected topology cannot integrate many demes efficiently, its
optimal configuration is a good choice to reduce the execution time. Optimally configured
topologies that use more demes reach solutions faster, but the reductions are not substantial.
In fact, since the optimal time decreases very slowly when more than r� demes are used,
after that point, the efficiency drops almost linearly with the number of demes. However,
we shall see that optimally configured topologies can reduce the execution time significantly
after multiple epochs.

6 Considering Multiple Epochs

The previous section showed how to find the optimal degree of connectivity that minimizes
the execution time for a particular domain. However, even with a fixed degree there are�
r�1
�

�
ways to connect the demes, and we still face the question of how to choose a particular

topology. Certainly, if the algorithm is only executed for two epochs, it does not matter how
the demes are connected, because only the immediate neighbors affect the search. After
more than two epochs, however, a deme receives indirect contributions from other demes.
The purpose of this section is to quantify the effect of those contributions on the quality
of the search, and to determine how to minimize the execution time after multiple epochs.
Some of these results can also be found in Cantú-Paz (1999c).

Consider the topologies with degree � = 2 depicted in Figure 6. These are only
three of the

�
7

2

�
= 21 possible topologies of degree two. Figure 7 shows the results of

experiments with a 20-BB 4-bit trap function on eight demes connected with the +1+2 and
+2+3 topologies of figure 6 and a bi-directional ring. The results are averaged over 100
repetitions at each deme size; the demes used pairwise tournament selection, two-point
crossover with probability 1.0, and no mutation. The migration rate was set to its maximal
value of 1/3. Figure 7 shows the proportion of correct BBs per deme after one, two, three,
and four epochs. The quality of the solutions improves after successive epochs, and the
largest increase occurs after the second epoch. As one would expect, the results for different

Evolutionary Computation Volume 7, Number 4 441



E. Cantú-Paz and D. Goldberg

0 ‘

2 3

4 5

6 7

(a) Lad-
der.

0 1

2

3

45

6

7

(b) +1+2 topology.

10

2

3

45

6

7

(c) +2+3 topology.

Figure 6: Different topologies with two neighbors.

20 40 60 80 100 120 140
Deme size

0.2

0.4

0.6

0.8

1

Proportion BBs

Figure 7: Average quality per deme after one, two, three, and four epochs (from right to
left) using eight demes connected with different topologies of degree two.

442 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

1

2 3

54

3

5 6

4

2

7 86 7

0

(a) +1+2 Topology.

3

8

2

4 5 65

6 77

11 11 12

98

109 10

0

(b) +2+3 Topology.

Figure 8: Tree representations of the extended neighborhood of deme 0 of two different
topologies of degree two with 16 demes. The black nodes represent the new members
of the extended neighborhood after each epoch. The white nodes represent demes that
already belong to the extended neighborhood, and they are not expanded to avoid clutter
in the graphs.

topologies after the first two epochs are indistinguishable, and the difference after three
and four epochs is very small. This observation will be used to derive a model of solution
quality that depends only on the degree of the connectivity graph and on the migration
rate, but that ignores the specific topology. Before doing so, we first introduce the concept
of the extended neighborhood of a deme.

6.1 Extended Neighborhoods

To visualize how the choice of topology affects the quality of the search, imagine a tree
rooted on a particular deme. The descendants of a node in the tree are the immediate
neighbors of the deme it represents, and the �-th level in the tree contains the demes
that are reachable from the root deme after � epochs. These demes form the extended
neighborhood of the root and are taken into account only the first time they are reached.1
Figure 8 shows two such trees that correspond to the +1+2 and +2+3 topologies with 16
demes.

A simple way to bound the contribution from the extended neighborhood is to assume
that the demes form panmictic groups as soon as they come in contact with others. In this
view, after � epochs, the aggregate population size would be r�nd, where r� is the number
of demes in the extended neighborhood after the �-th epoch, and nd is the size of each
deme. Under this assumption, the solution quality would be given by Pbb(r�nd). Of course,
demes do not become panmictic as soon as they reach one another, and therefore the size
of the extended neighborhood should be adjusted with a mixing coefficient cm < 1. Then,

1More formally, the definition of the extended neighborhood is as follows. Consider a directed graph G =

(V;E), where V is the set of vertices that represent the demes, and E is the set of edges that represent connections

between demes. The extended neighborhood of a deme v is the set R� =
S

�

i=0
a : a

i

! v, where a i

! v denotes
a path of length i from a to v. r� = jR� j.

Evolutionary Computation Volume 7, Number 4 443



E. Cantú-Paz and D. Goldberg

20 40 60 80 100 120 140
Deme size

0.2

0.4

0.6

0.8

1
Proportion BBs

Figure 9: Theoretical predictions (line) and experimental results (dots) of the average quality
per deme after 1, 2, 3, and 4 epochs (from right to left) using eight demes connected by a
+1+2 topology.

the quality becomes Pbb(cmr�nd).

6.2 Designing for Multiple Epochs

The observation that topologies of the same degree reach almost identical solutions has an
important implication: if an accurate quality predictor can be derived for one topology, it
would be accurate for any topology of the same degree.

Some topologies are easier to study than others, because the size of their extended
neighborhoods increases in a regular form. In particular, there are topologies where the
size of the extended neighborhood is simply r� = �(� � 1) + 1 = �� 0 + 1. Examples of
such topologies are the +1+2 binary topology depicted in Figure 6 and a +1+2+3 ternary
topology. We will use this class of topologies to study the effect of the degree of the network
on the solution quality after several epochs.

Using the simple model introduced in the previous subsection, the quality after �
epochs is Pbb� = Pbb(cmr�nd). For simplicity, we use n� = cmr�nd to represent the
number of individuals in the extended neighborhood. The key to obtain an accurate quality
prediction is to adjust n� with an appropriate cm. We can deduce the value of the mixing
coefficient by considering some of the properties it should have. For instance, n� should
increase as � grows, and when � = 1, the value of n� should be equal to nd, because the
demes are isolated during the first epoch. In addition, the previous section showed that the
deme size nd / 1p

�
(Equation 13). Putting everything together, we may write n� as:

n� = (

p
�� 0 + 1)nd; (16)

which means that cm =

p
�� 0+1
�� 0+1

� 1p
�
. Experimental tests were performed to assess the

accuracy of this model. The experiments use eight demes connected by a +1+2 topology and
the same test function and experimental conditions as previous experiments in this paper:
100 repetitions at each deme size, pairwise tournament selection, two-point crossover with
probability 1.0, and no mutation. The quality was measured at the end of the first four
epochs. Figure 9 shows that the predictions of Pbb(n� ) match very well the experimental
results.

444 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

The next step is to find a deme-sizing equation. The procedure is straightforward
using the gambler’s ruin model. Making Pbb(n� ) = 1 � (

q
p
)
n�=2

k

= P̂ and solving for nd
results in

nd =
1p

�� 0 + 1

2
k
ln(1� P̂ )

ln
q
p

; (17)

which can be rewritten in a more compact form by grouping all the problem-dependent
constants (the second term above) into one constant n0, so nd =

n0p
�� 0+1

:

This form of the deme size with � = 2 is similar to the equation found in the previ-
ous section. With a closed-form expression for the deme size after multiple epochs, the
execution time of the parallel GA may be easily minimized. In this case, the time is

Tp = � (gndTf + �Tc) ; (18)

and � is restricted by Equation 22. To simplify the calculations, nd may be approximated as
n0p
�� 0

. Making @Tp
@�

= 0 and solving for � gives the optimal degree of the topology as

�� =

�
gn0Tf

2� 0Tc

�2=3

; (19)

which is equivalent to the optimum found in the previous section when � = 2.

Note that �� depends very weakly on r. The dependency on r is in the ln(1 � P̂ )

term of n0. P̂ is approximately Q
m
�
p
ln rp
2m

, so the dependency of the optimal degree on r

is O(ln ln r). This is significant, because if �� does not change much as more demes are
used, then the execution time (Equation 18) would not change much either. However, we
should not to dismiss the algorithm’s capability to reduce the execution time. After all,
�� depends strongly on the number of epochs � , and both �� and the execution time will
decrease significantly as more epochs are used.

This raises another point: sometimes the choice of topology is restricted by hardware
constraints. In this case, � may be considered to be constant and the execution time may be
optimized with respect to � . Making @Tp

@�
= 0 and solving for � gives the optimal number

of epochs:

�� = 1 +

s
gn0Tf

�3=2Tc
(20)

The corresponding deme size may be found by substituting �� (or ��) in Equation 17.

7 Parallel Demes in the Long Run

This section focuses on an important property of parallel GAs with multiple populations.
In the long run, r demes of size nd that repeatedly communicate with each other after

Evolutionary Computation Volume 7, Number 4 445



E. Cantú-Paz and D. Goldberg

convergence with the maximum migration rate possible, reach the same solution as a simple
GA with a population with rnd individuals (Cantú-Paz, 1998a, 1998b). We denote �c as the
critical number of epochs necessary to reach a solution as good as a GA with an aggregate
population.

Recall that the execution time of the parallel GA depends directly on the number of
epochs (Equation 18). When �c epochs are used, the size of the demes is reduced to nd =

n
r

,
so the execution time becomes:

Tp = �c

�
gnTf

r
+ �Tc

�
(21)

Our objective is to minimize this time. All of the terms of this equation are known,
except for �c. To derive an estimate of �c, note that lim�!1 Pbb(n� ) = 1, because n�
grows without limit as more epochs are used, which is incorrect. The derivation of n� is
based on the concept of extended neighborhoods, but physically, the size of the extended
neighborhood is bounded by the sum of the sizes of all the demes (rnd). Making n� = rnd
and solving for � gives an approximation of the number of epochs it takes the algorithm to
converge:

�max =
r � 1p

�
+ 1: (22)

Substituting �c = �max into Equation 21, making @Tp
@r

= 0, and solving for r results in
the optimal number of demes:

r� =

s
g

p
� � 1

�

r
nTf

Tc
(23)

Note that the second term also appears in the optimal number of processors of single-
population parallel GAs, suggesting that, asymptotically, the two types of parallel GAs can
use the same number of processors to reduce the execution time. However, the question
of which algorithm is the fastest depends on the particular application. Users can use the
equations presented here to estimate the execution time of the two types of parallel GAs
and decide which one to use.

8 Summary and Conclusions

The paper began with an examination of the execution time of parallel GAs with a sin-
gle population. The calculations focused on an implementation where the population is
distributed among several processors, but the general form of the time is also applicable
to more conventional master-slave implementation. The main result is that the optimal

number of processors is O(

q
nTf
Tc

). Since n and Tf increase as the problem becomes more
difficult, this result suggests that single-population parallel GAs can use a large number of
processors to reduce the execution time.

446 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

The single distributed population closely resembles multiple populations that commu-
nicate every generation using a fully connected topology and the maximal migration rate.
Therefore, the previous calculation of the optimal number of processors also serves as an
indication of the scalability of multi-deme parallel GAs.

The rest of the paper dealt with parallel GAs with multiple populations and arbitrary
topologies, but migration occurs only after the demes converge, which is a lower bound
of the migration frequency. The gambler’s ruin model was used to derive an accurate
prediction of the solution quality after multiple epochs. The models should be directly
applicable to any additively decomposable function. The quality model was first used to
determine the optimal topology when the number of demes is fixed, and later to calculate
the optimal number of processors when the topology is fixed and the algorithm is executed
until all the populations converge to the same solution. The result is that the optimal

number of populations is also O(

q
nTf
Tc

).

The results of this study suggest that, regardless of their type, parallel GAs can integrate
large numbers of processors and reduce significantly the execution time of many practical
applications. Although parallel GAs have long been regarded as highly scalable, the closed-
form expressions of the optimal number of processors make it possible to quantify those
claims taking into account the particular problem domain and the hardware platform.

Acknowledgments

Erick Cantú-Paz was partially supported by a Fulbright-Garcı́a Robles Fellowship. The
work was sponsored by the Air Force Office of Scientific Research, Air Force Materiel Com-
mand, USAF, under grant number F49620-97-1-0050. Research funding for this project
was also provided by a grant from the US Army Research Laboratory Program, Coop-
erative Agreement DAAL01-96-2-003. The US Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies and endorsements, either
expressed or implied, of the Air Force Office of Scientific Research or the US Government.

References

Bethke, A. D. (1976). Comparison of genetic algorithms and gradient-based optimizers on parallel processors:
Efficiency of use of processing capacity. Technical Report 197, Logic of Computers Group, University
of Michigan, Ann Arbor, Michigan.

Beyer, H.-G. (1993). Toward a theory of evolution strategies: Some asymptotical results from the
(1+; �)-Theory. Evolutionary computation, 1(2):165–188.

Braud, A. and Vrain, C. (1999). A parallel genetic algorithm based on the BSP model. In Evolutionary
Computation and Parallel Processing Workshop, Proceedings of the 1999 GECCO Workshops, Morgan
Kaufmann, San Mateo, California.

Braun, H. C. (1990). On solving travelling salesman problems by genetic algorithms. In Schwefel, H.-
P. and Männer, R., editors, Parallel Problem Solving from Nature, pages 129–133, Springer-Verlag,
Berlin, Germany.

Cantú-Paz, E. (1998a). A Markov chain analysis of parallel genetic algorithms with arbitrary topologies and
migration rates. IlliGAL Technical Report 98010, University of Illinois at Urbana-Champaign,
Urbana, Illinois.

Evolutionary Computation Volume 7, Number 4 447



E. Cantú-Paz and D. Goldberg

Cantú-Paz, E. (1998b). Using Markov chains to analyze a bounding case of parallel genetic algorithms.
In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H.,
Goldberg, D. E., Iba, H. and Riolo, R. L., editors, Genetic Programming 1998: Proceedings of the
Third Annual Conference, pages 456–462, Morgan Kaufmann, San Francisco, California.

Cantú-Paz, E. (1999a). Migration Policies and Takeover Times in Parallel Genetic Algorithms. In
Banzhaf, W., editor, Proceedings of the 1999 Genetic and Evolutionary Computation Conference, page
775, Morgan Kaufmann, San Mateo, California.

Cantú-Paz, E. (1999b). Migration policies, selection pressure, and parallel evolutionary algorithms. IlliGAL
Technical Report 99015, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Cantú-Paz, E. (1999c). Topologies, migration rates, and multi-population parallel genetic algorithms.
In Banzhaf, W., editor, Proceedings of the 1999 Genetic and Evolutionary Computation Conference,
pages 91–98, Morgan Kaufmann, San Mateo, California.

Cantú-Paz, E. and Goldberg, D. E. (1997a). Modeling idealized bounding cases of parallel genetic
algorithms. In Koza, J., Deb, K., Dorigo, M., Fogel, D., Garzon, M., Iba, H. and Riolo, R.,
editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 353–361,
Morgan Kaufmann, San Francisco, California.

Cantú-Paz, E. and Goldberg, D. E. (1997b). Predicting speedups of idealized bounding cases of
parallel genetic algorithms. In Bäck, T., editor, Proceedings of the Seventh International Conference
on Genetic Algorithms, pages 113–121, Morgan Kaufmann, San Francisco, California.

Cantú-Paz, E. and Goldberg, D. E. (in press). Parallel genetic algorithms: theory and practice.
Computer Methods in Applied Mechanics and Engineering.

Feller, W. (1966). An introduction to probability theory and its applications. 2d ed. Volume 1. John Wiley
and Sons, New York, New York.

Goldberg, D. E., Deb, K. and Clark, J. H. (1992). Genetic algorithms, noise, and the sizing of
populations. Complex Systems, 6:333–362.

Gorges-Schleuter, M. (1989). ASPARAGOS: An asynchronous parallel genetic optimization strategy.
In Schaffer, J. D., editor, Proceedings of the Third International Conference on Genetic Algorithms,
pages 422–428, Morgan Kaufmann, San Mateo, California.

Grefenstette, J. J. (1981). Parallel adaptive algorithms for function optimization. Technical Report CS-
81-19, Computer Science Department, Vanderbilt University, Nashville, Tennessee.

Grosso, P. B. (1985). Computer simulations of genetic adaptation: Parallel subcomponent interaction in a mul-
tilocus model. Unpublished doctoral dissertation, University Microfilms No. 8520908, University
of Michigan, Ann Arbor, Michigan.

Gruau, F. (1994). Neural network synthesis using cellular encoding and the genetic algorithm. Unpublished
doctoral dissertation, L’Universite Claude Bernard-Lyon I, Lyon, France.

Harik, G., Cantú-Paz, E., Goldberg, D. E. and Miller, B. L. (1997). The gambler’s ruin problem,
genetic algorithms, and the sizing of populations. In Proceedings of the 1997 IEEE International
Conference on Evolutionary Computation, pages 7–12, IEEE Press, Piscataway, New Jersey.

Harter, H. L. (1970). Order statistics and their use in testing and estimation, U.S. Government Printing
Office, Washington, D.C.

Lin, S.-C., Goodman, E. D. and Punch III, W. F. (1997). A genetic algorithm approach to dynamic job
shop scheduling problems. In Bäck, T., editor, Proceedings of the Seventh International Conference
on Genetic Algorithms, pages 481–488), Morgan Kaufmann, San Francisco, California.

Manderick, B. and Spiessens, P. (1989). Fine-grained parallel genetic algorithms. In Schaffer, J. D.,
editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 428–433,
Morgan Kaufmann, San Mateo, California.

448 Evolutionary Computation Volume 7, Number 4



Scalability of Parallel GAs

Mühlenbein, H. (1989). Parallel genetic algorithms, population genetics and combinatorial opti-
mization. In Schaffer, J. D., editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 416–421, Morgan Kaufmann, San Mateo, California.

Munetomo, M., Takai, Y. and Sato, Y. (1993). An efficient migration scheme for subpopulation-based
asynchronously parallel genetic algorithms. In Forrest, S., editor, Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, page 649, Morgan Kaufmann, San Mateo, California.

Tanese, R. (1987). Parallel genetic algorithm for a hypercube. In Grefenstette, J. J., editor, Proceedings
of the Second International Conference on Genetic Algorithms, pages 177–183), Lawrence Erlbaum
Associates, Hillsdale, New Jersey.

Valenzuela-Rendón, M. (1989). Two analysis tools to describe the operation of classifier systems. Doctoral
dissertation, University of Alabama, Tuscaloosa, Alabama. Also available as TCGA Report 89005.

Evolutionary Computation Volume 7, Number 4 449


