
5. Ant Colony Optimization

Vittorio Maniezzo, Luca Maria Gambardella, Fabio de Luigi

5.1 Introduction

Ant Colony Optimization (ACO) is a paradigm for designing metaheuristic algo-
rithms for combinatorial optimization problems. The first algorithm which can be
classified within this framework was presented in 1991 [21, 13] and, since then,
many diverse variants of the basic principle have been reported in the literature.
The essential trait of ACO algorithms is the combination of a priori information
about the structure of a promising solution with a posteriori information about the
structure of previously obtained good solutions.

Metaheuristic algorithms are algorithms which, in order to escape from local
optima, drive some basic heuristic: either a constructive heuristic starting from a
null solution and adding elements to build a good complete one, or a local search
heuristic starting from a complete solution and iteratively modifying some of its
elements in order to achieve a better one. The metaheuristic part permits the low-
level heuristic to obtain solutions better than those it could have achieved alone,
even if iterated. Usually, the controlling mechanism is achieved either by con-
straining or by randomizing the set of local neighbor solutions to consider in local
search (as is the case of simulated annealing [46] or tabu search [33]), or by com-
bining elements taken by different solutions (as is the case of evolution strategies
[11] and genetic [43] or bionomic [56] algorithms).

The characteristic of ACO algorithms is their explicit use of elements of previ-
ous solutions. In fact, they drive a constructive low-level solution, as GRASP [30]
does, but including it in a population framework and randomizing the construction
in a Monte Carlo way. A Monte Carlo combination of different solution elements
is suggested also by Genetic Algorithms [40], but in the case of ACO the probabil-
ity distribution is explicitly defined by previously obtained solution comp onents.

The particular way of defining components and associated probabilities is prob-
lem-specific, and can be designed in different ways, facing a trade-off between the
specificity of the information used for the conditioning and the number of solu-
tions which need to be constructed before effectively biasing the probability dis-
tribution to favor the emergence of good solutions. Different applications have fa-
vored either the use of conditioning at the level of decision variables, thus

 2

requiring a huge number of iterations before getting a precise distribution, or the
computational efficiency, thus using very coarse conditioning information.

The chapter is structured as follows. Section 2 describes the common elements
of the heuristics following the ACO paradigm and outlines some of the variants
proposed. Section 3 presents the application of ACO algorithms to a number of
different combinatorial optimization problems and it ends with a wider overview
of the problem attacked by means of ACO up to now. Section 4 outlines the most
significant theoretical results so far published about convergence properties of
ACO variants.

5.2 Ant Colony Optimization

ACO [1, 24] is a class of algorithms, whose first member, called Ant System, was
initially proposed by Colorni, Dorigo and Maniezzo [13, 21, 18]. The main under-
lying idea, loosely inspired by the behavior of real ants, is that of a parallel search
over several constructive computational threads based on local problem data and
on a dynamic memory structure containing information on the quality of previ-
ously obtained result. The collective behavior emerging from the interaction of the
different search threads has proved effective in solving combinatorial optimization
(CO) problems.

Following [50], we use the following notation. A combinatorial optimization
problem is a problem defined over a set C = c1, ... , cn of basic components. A

subset S of components represents a solution of the problem; F ⊆ 2C is the subset
of feasible solutions, thus a solution S is feasible if and only if S ∈ F. A cost func-
tion z is defined over the solution domain, z : 2C à R, the objective being to find
a minimum cost feasible solution S*, i.e., to find S*: S* ∈ F and z(S*) ≤ z(S),
∀S∈F.

Given this, the functioning of an ACO algorithm can be summarized as follows
(see also [27]). A set of computational concurrent and asynchronous agents (a col-
ony of ants) moves through states of the problem corresponding to partial solu-
tions of the problem to solve. They move by applying a stochastic local decision
policy based on two parameters, called trails and attractiveness. By moving, each
ant incrementally constructs a solution to the problem. When an ant completes a
solution, or during the construction phase, the ant evaluates the solution and modi-
fies the trail value on the components used in its solution. This pheromone infor-
mation will direct the search of the future ants.

Furthermore, an ACO algorithm includes two more mechanisms : trail evapora-
tion and, optionally, daemon actions. Trail evaporation decreases all trail values
over time, in order to avoid unlimited accumulation of trails over some comp o-
nent. Daemon actions can be used to implement centralized actions which cannot
be performed by single ants, such as the invocation of a local optimization proce-
dure, or the update of global information to be used to decide whether to bias the
search process from a non-local perspective [27].

 3

More specifically, an ant is a simple computational agent, which iteratively
constructs a solution for the instance to solve. Partial problem solutions are seen as
states. At the core of the ACO algorithm lies a loop, where at each iteration, each
ant moves (performs a step) from a state ι to another one ψ, corresponding to a
more complete partial solution. That is, at each step σ, each ant k computes a set
Ak

σ(ι) of feasible expansions to its current state, and moves to one of these in

probability. The probability distribution is specified as follows. For ant k , the
probability pιψ

k of moving from state ι to state ψ depends on the combination of

two values:

• the attractiveness ηιψ of the move, as computed by some heuristic indicating
the a priori desirability of that move;

• the trail level τιψ of the move, indicating how proficient it has been in the past

to make that particular move: it represents therefore an a posteriori indication
of the desirability of that move.

Trails are updated usually when all ants have completed their solution, increas-
ing or decreasing the level of trails corresponding to moves that were part of
"good" or "bad" solutions, respectively.

The general framework just presented has been specified in different ways by
the authors working on the ACO approach. The remainder of Section 2 will out-
line some of these contributions.

5.2.1 Ant System

The importance of the original Ant System (AS) [13, 21, 18] resides mainly in be-
ing the prototype of a number of ant algorithms which collectively implement the
ACO paradigm. AS already follows the outline presented in the previous subsec-
tion, specifying its elements as follows.

The move probability distribution defines probabilities pιψk to be equal to 0 for
all moves which are infeasible (i.e., they are in the tabu list of ant k , that is a list
containing all moves which are infeasible for ants k starting from state ι), other-
wise they are computed by means of formula (5.1), where α and β are user-
defined parameters (0 ≤ α,β ≤ 1):














∉






 ⋅+

+

= ∑
∉

otherwise0

tabu)(if

p

k

)(
k

ιψ
ητ

ητ

ιζ

β
ιζ

α
ιζ

β
ιψ

α
ιψ

ιψ ktabu
 (5.1)

 4

In formula 5.1, tabuk is the tabu list of ant k , while parameters α and β specify
the impact of trail and attractiveness, respectively.

After each iteration t of the algorithm, i.e., when all ants have completed a solu-
tion, trails are updated by means of formula (5.2):

τιψ (τ) = ρ τιψ (τ − 1) + ∆τιψ (5.2)

where ∆τιψ represents the sum of the contributions of all ants that used move

(ιψ) to construct their solution, ρ, 0 ≤ ρ ≤ 1, is a user-defined parameter called
evaporation coefficient, and ∆τιψ represents the sum of the contributions of all

ants that used move (ιψ) to construct their solution. The ants’ contributions are
proportional to the quality of the solutions achieved, i.e., the better solution is, the
higher will be the trail contributions added to the moves it used.

For example, in the case of the TSP, moves correspond to arcs of the graph,
thus state ι could correspond to a path ending in node i, the state ψ to the same
path but with the arc (ij) added at the end and the move would be the traversal of
arc (ij). The quality of the solution of ant k would be the length Lk of the tour

found by the ant and formula (5.2) would become τij(t)=ρ τij(t-1)+∆τij , with

∑
=

∆=∆
m

k

k
ijij

1

ττ
 (5.3)

where m is the number of ants and
k
ijτ∆ is the amount of trail laid on edge (ij)

by ant k , which can be computed as







=∆
otherwise 0

 touritsin (ij) arc uses ant if
L
Q

k
k
ij

k
τ (5.4)

Q being a constant parameter.
The ant system simply iterates a main loop where m ants construct in parallel

their solutions, thereafter updating the trail levels. The performance of the algo-
rithm depends on the correct tuning of several parameters, namely: α, β, relative
importance of trail and attractiveness, ρ, trail persistence, τij(0), initial trail level,

m, number of ants, and Q, used for defining to be of high quality solutions with
low cost. The algorithm is the following.

1. {Initialization}
 Initialize τιψ and ηιψ, ∀(ιψ).

2. {Construction}
 For each ant k (currently in state ι) do
 repeat
 choose in probability the state to move into.
 append the chosen move to the k-th ant's set tabuk.

 5

 until ant k has completed its solution.
 end for

3. {Trail update}
 For each ant move (ιψ) do
 compute ∆τιψ
 update the trail matrix.
 end for

4. {Terminating condition}
 If not(end test) go to step 2

5.2.2 Ant Colony System

AS was the first algorithm inspired by real ants behavior. AS was initially applied
to the solution of the traveling salesman problem but was not able to compete
against the state-of-the art algorithms in the field. On the other hand he has the
merit to introduce ACO algorithms and to show the potentiality of using artificial
pheromone and artificial ants to drive the search of always better solutions for
complex optimization problems. The next researches were motivated by two
goals: the first was to improve the performance of the algorithm and the second
was to investigate and better explain its behavior. Gambardella and Dorigo pro-
posed in 1995 the Ant-Q algorithm [35], an extension of AS which integrates
some ideas from Q-learning, and in 1996 Ant Colony System (ACS) [36, 25] a
simplified version of Ant-Q which maintained approximately the same level of
performance, measured by algorithm complexity and by comp utational results.
Since ACS is the base of many algorithms defined in the following years we focus
the attention on ACS other than Ant-Q. ACS differs from the previous AS because
of three main aspects:

Pheromone

In ACS once all ants have computed their tour (i.e. at the end of each iteration) AS
updates the pheromone trail using all the solutions produced by the ant colony.
Each edge belonging to one of the computed solutions is modified by an amount
of pheromone proportional to its solution value. At the end of this phase the
pheromone of the entire system evaporates and the process of construction and
update is iterated. On the contrary, in ACS only the best solution computed since
the beginning of the computation is used to globally update the pheromone. As
was the case in AS, global updating is intended to increase the attractiveness of
promising route but ACS mechanism is more effective since it avoids long con-
vergence time by directly concentrate the search in a neighborhood of the best tour
found up to the current iteration of the algorithm.

In ACS, the final evaporation phase is substituted by a local updating of the
pheromone applied during the construction phase. Each time an ant moves from

 6

the current city to the next the pheromone associated to the edge is modified in the
following way: () () 0)1(τρτρτ ⋅−+⋅= 1-tt ijij where 0 ≤ ρ ≤ 1 is a parameter

(usually set at 0.9) and τ0 is the initial pheromone value. τ0 is defined as
τ0=(n·Lnn)-1, where Lnn is the tour length produced by the execution of one ACS
iteration without the pheromone component (this is equivalent to a probabilistic
nearest neighbor heuristic). The effect of local-updating is to make the desirability
of edges change dynamically: every time an ant uses an edge this becomes
slightly less desirable and only for the edges which never belonged to a global best
tour the pheromone remains τ0. An interesting property of these local and global
updating mechanisms is that the pheromone τij(t) of each edge is inferior limited
by τ0. A similar approach was proposed with the Max-Min-AS (MMAS, [70]) that
explicitly introduces lower and upper bounds to the value of the pheromone trials.

State Transition Rule

During the construction of a new solution the state transition rule is the phase
where each ant decides which is the next state to move to. In ACS a new state
transition rule called pseudo-random-proportional is introduced. The pseudo-
random-proportional rule is a compromise between the pseudo-random state
choice rule typically used in Q-learning [WQ92] and the random-proportional ac-
tion choice rule typically used in Ant System. With the pseudo-random rule the
chosen state is the best with probability q0 (exploitation) while a random state is
chosen with probability 1-q0 (exploration). Using the AS random-proportional
rule the next state is chosen randomly with a probability distribution depending on
ηij and τij. The ACS pseudo-random-proportional state transition rule provides a
direct way to balance between exploration of new states and exploitation of a pri-
ori and accumulated knowledge. The best state is chosen with probability q0 (that
is a parameter 0 ≤ q0 ≤ 1 usually fixed to 0.9) and with probability (1-q0) the next
state is chosen randomly with a probability distribution based on ηij and τ ij

weighted by α (usually equal to 1) and β (usually equal to 2) .

{ }











 ≤⋅
∉

 on)(explorati otherwise 2.1 rule AS

 ion)(exploitat if maxarg

=

)(

0qq

s

ijij
ktabuij

βα ητ

 (5.5)

Hybridization and performance improvement

ACS was applied to the solution of big symmetric and asymmetric traveling
salesman problems (TSP/ATSP) [36],[25]. For these purpose ACS incorporates an

 7

advanced data structure known as candidate list [60]. A candidate list is a static
data structure of length cl which contains, for a given city i, the cl preferred cities
to be visited. An ant in ACS first uses candidate list with the state transition rules
to choose the city to move to. If none of the cities in the candidate list can be vis-
ited the ant chooses the nearest available city only using the heuristic value ηij.
ACS for TSP/ATSP has been improved by incorporating local optimization heu-
ristic (hybridization): the idea is that each time a solution is generated by the ant it
is taken to its local minimum by the application of a local optimization heuristic
based on an edge exchange strategy, like 2-opt, 3-opt or Lin-Kernighan [48]. The
new optimized solutions are considered as the final solutions produced in the cur-
rent iteration by ants and are used to globally update the pheromone trails.

This ACS implementation combining a new pheromone management policy, a
new state transition strategy and local search procedures was finally competitive
with state-of-the-art algorithm for the solution of TSP/ATSP problems [5]. This
opened a new frontier for ACO based algorithm. Following the same approach
that combines a constructive phase driven by the pheromone and a local search
phase that optimizes the computed solution, ACO algorithms were able to break
several optimization records, including those for routing and scheduling problems
that will be presented in the following paragraphs.

5.2.3 ANTS

ANTS is an extension of the AS proposed in [50], which specifies some underde-
fined elements of the general algorithm, such as the attractiveness function to use
or the initialization of the trail distribution. This turns out to be a variation of the
general ACO framework that makes the resulting algorithm similar in structure to
tree search algorithms. In fact, the essential trait which distinguishes ANTS from a
tree search algorithm is the lack of a complete backtracking mechanism, which is
substituted by a probabilistic (Non-deterministic) choice of the state to move into
and by an incomplete (Approximate) exploration of the search tree: this is the ra-
tionale behind the name ANTS, which is an acronym of Approximated Non-
deterministic Tree Search . In the following, we will outline two distinctive ele-
ments of the ANTS algorithm within the ACO framework, namely the attractive-
ness function and the trail updating mechanism.

Attractiveness

The attractiveness of a move can be effectively estimated by means of lower
bounds (upper bounds in the case of maximization problems) on the cost of the
completion of a partial solution. In fact, if a state ι corresponds to a partial prob-
lem solution it is possible to compute a lower bound on the cost of a complete so-
lution containing ι. Therefore, for each feasible move ι,ψ, it is possible to compute
the lower bound on the cost of a complete solution containing ψ: the lower the
bound the better the move. Since a large part of research in ACO is devoted to the

 8

identification of tight lower bounds for the different problems of interest, good
lower bounds are usually available.

When the bound value becomes greater than the current upper bound, it is ob-
vious that the considered move leads to a partial solution which cannot be com-
pleted into a solution better than the current best one. The move can therefore be
discarded from further analysis. A further advantage of lower bounds is that in
many cases the values of the decision variables, as appearing in the bound solu-
tion, can be used as an indication of whether each variable will appear in good so-
lutions. This provides an effective way of initializing the trail values. For more de-
tails see [50].

Trail update

A good trail updating mechanism avoids stagnation, the undesirable situation in
which all ants repeatedly construct the same solutions making any further explora-
tion in the search process impossible. Stagnation derives from an excessive trail
level on the moves of one solution, and can be observed in advanced phases of the
search process, if parameters are not well tuned to the problem.

The trail updating procedure evaluates each solution against the last k solutions
globally constructed by ANTS. As soon as k solutions are available, their moving
average z is computed; each new solution zcurr is compared with z (and then

used to compute the new moving average value). If zcurr is lower than z , the trail

level of the last solution's moves is increased, otherwise it is decreased. Formula
(5.6) specifies how this is implemented:








−
−

−⋅=∆
LBz

LBzcurr
ij 10ττ (5.6)

where z is the average of the last k solutions and LB is a lower bound on the
optimal problem solution cost. The use of a dynamic scaling procedure permits
discrimination of a small achievement in the latest stage of search, while avoiding
focusing the search only around good achievement in the earliest stages.

One of the most difficult aspects to be considered in metaheuristic algorithms is
the trade-off between exploration and exploitation. To obtain good results, an
agent should prefer actions that it has tried in the past and found to be effective in
producing desirable solutions (exploitation); but to discover them, it has to try ac-
tions not previously selected (exploration). Neither exploration nor exploitation
can be pursued exclusively without failing in the task: for this reason, the ANTS
algorithm integrates the stagnation avoidance procedure to facilitate exploration
with the probability definition mechanism based on attractiveness and trails to de-
termine the desirability of moves.

Based on the elements described, the ANTS algorithm is as follows.

1. Compute a (linear) lower bound LB to the problem

 9

 Initialize τιψ (∀ι,ψ) with the primal variable values

2. For k=1,m (m= number of ants) do

 repeat

2.1 compute ηιψ ∀(ιψ)

2.2 choose in probability the state to move into

2.3 append the chosen move to the k-th ant’s tabu list

 until ant k has completed its solution

2.4 carry the solution to its local optimum
 end for

3. For each ant move (ιψ),

 compute ∆τιψ and update trails by means of (5.6)

4. If not(end_test) goto step 2.

It can be noted that the general structure of the ANTS algorithm is closely akin
to that of a standard tree search procedure. At each stage we have in fact a partial
solution which is expanded by branching on all possible offspring; a bound is then
computed for each offspring, possibly fathoming dominated ones, and the current
partial solution is selected from among those associated to the surviving offspring
on the basis of lower bound considerations. By simply adding backtracking and
eliminating the MonteCarlo choice of the node to move to, we revert to a standard
branch and bound procedure. An ANTS code can therefore be easily turned into
an exact procedure.

5.3 Significant problems

In the following of this section we will present applications of ACO algorithms to
some significant combinatorial optimization problems. This is to give the reader
an idea of what is involved by the use of an ACO algorithm for a problem: even
though the last subsection presents an overview of recent application the list is by
no means exhaustive, as it becomes readily evident by searching the web under the
keywords “ant colony optimization”.

5.3.1 Sequential ordering problem

The first ACO applications were devoted to solve the symmetric and the asymmet-
ric traveling salesman problem. Given a set of cities V = {v1, ... , vn}, a set of

 10

edges A = {(i,j) : i,j ∈V} and a cost dij = dji associated with edge (i,j) ∈ A, the TSP
is the problem of finding a minimal length closed tour that visits each city once. In
case dij ? dji for at least one edge (i,j) than the TSP becomes an Asymmetric TSP
(ATSP). The first algorithm that applies an ACO based algorithm to a more gen-
eral version of the ATSP problem is Hybrid Ant System for the Sequential Order-
ing Problem (HAS-SOP, [34]). HAS-SOP was intended to solve the sequential or-
dering problem with precedence constraints (SOP). The SOP in an NP-hard
combinatorial optimization problem first formulated by Escudero [29] to design
heuristics for a production planning system. The SOP mo dels real-world problems
like production planning [29], single -vehicle routing problems with pick-up and
delivery constraints [64], and transportation problems in flexible manufacturing
systems [2]. The SOP can be seen as a general case of both the ATSP and the
pick-up and delivery problem [47]. It differs from ATSP because the first and the
last nodes are fixed, and in the additional set of precedence constraints on the or-
der in which nodes must be visited. It differs from the pick-up and delivery prob-
lem because this is usually based on symmetric TSPs, and because the pick-up and
delivery problem includes a set of constraints between nodes with a unique prede-
cessor defined for each node, in contrast to the SOP where multiple precedences
can be defined.
HAS-SOP combines a constructive phase (ACS-SOP) based on the ACS algo-
rithm [36] with a new local search procedure called SOP-3-exchange. SOP-3-
exchange is based on a lexicographic search heuristic due to [64], on a new label-
ing procedure and on a new data structure called don’t push stack inspired by the
don’t look bit [5] both introduced by the authors. SOP-3-exchange is the first local
search able to handle multiple precedence constraints in constant time.

ACS-SOP implements the constructive phase of HAS-SOP but differs from
ACS in the way the set of feasible nodes is computed and in the setting of one of
the algorithm’s parameters that is made dependent on the problem dimensions.
ACS-SOP generates feasible solutions that does not violate the precedence con-
straints with a computational cost of order O(n2) like the traditional ACS heuris-
tic.

A set of experiments based on the TSPLIB data shows that HAS-SOP algo-
rithm is more effective than other existing methods for the SOP. HAS-SOP was
compared against the two previous most effective algorithms: a branch-and-cut al-
gorithm [2] that proposed a new class of valid inequalities and Maximum Partial
Order/Arbitrary Insertion (MPO/AI), a genetic algorithm by Chen and Smith [17].

To better understand the role of the constructive ACS-SOP phase and the role
of the SOP-3-exchange local search MPO/AI was also coupled with the SOP-3-
exchange local search. Experimental results shows that MPO/AI alone is better
than ACS-SOP due to the use of a simple local search embedded in its crossover
operator. On the contrary, the combination between constructive phase and local
search shows that HAS-SOP is better than both MPO/AI alone and MPO/AI +
SOP-3-exchange. This is probably due to the fact that MPO/AI generates solutions
that are already optimized and therefore the SOP-3-exchange procedure quickly
gets stuck. On the contrary, ACS-SOP solution is a very effective starting point
for the SOP-3-exchange local search therefore the HAS-SOP hybridization is very

 11

effective. Currently HAS-SOP is the best known method to solve the SOP and was
able to improve 14 over 22 best known results in the TSPLIB data set.

5.3.2 Vehicle routing problems

A direct extension of the TSP, the first problem AS was applied to, are Vehicle
routing problems (VRPs). These are problems where a set of vehicles stationed at
a depot has to serve a set of customers before returning to the depot, and the ob-
jective is to minimize the number of vehicles used and the total distance traveled
by the vehicles. Capacity constraints are imposed on vehicle trips, as well as pos-
sibly a number of other constraints deriving from real-world applications, such as
time windows, backhauling, rear loading, vehicle objections, maximum tour
length, etc. The basic VRP problem is the Capacitated VRP (CVRP): ASrank , the

rank-based version of AS, was applied to this problem by Bullnheimer, Hartl and
Strauss [7, 8] with good results. These authors used various standard heuristics to
improve the quality of VRP solutions and modified the construction of the tabu
list considering constraints on the maximum total tour length of a vehicle and on
its capacity.

Following these results, and the excellent ones obtained by ACS with TSP,
SOP and QAP problems, ACS was applied to a VRP version more close to actual
logistic practice, called VRPTW. VRPTW is defined as the problem of minimiz-
ing time and costs in case a fleet of vehicles has to distribute goods from a depot
to a set of customers. The VRPTW minimizes a multiple, hierarchical objective
function: the first objective is to minimize the number of tours (or vehicles) and
the second objective is to minimize the total travel time. A solution with a lower
number of tours is always preferred to a solution with a higher number of tours
even if the travel time is higher. This hierarchical objectives VRPTW is very
common in the literature and in case problem constraints are very tight (for exa m-
ple when the total capacity of the minimum number of vehicles is very close to the
total volume to deliver or when customers time windows are narrow), both objec-
tives can be antagonistic: the minimum travel time solution can include a number
of vehicles higher than the solution with minimum number of vehicles (see e.g.
Kohl et al., [45]).

To adapt ACS to a multiple objectives the Multiple Ant Colony System for the
VRPTW (MACS-VRPTW [38]) has been defined. MACS-VRPTW is organized
with a hierarchy of artificial ACS colonies designed to hierarchically optimize a
multiple objective function: the first ACS colony (ACS-VEI) minimizes the num-
ber of vehicles while the second ACS colony (ACS-TIME) minimizes the traveled
distances. Both colonies use independent pheromone trails but they collaborate by
exchanging information through mutual pheromone updating. In the MACS-
VRPTW algorithm both objective functions are optimized simultaneously: ACS-
VEI tries to diminish the number of vehicles searching for a feasible solution with
always one vehicle less than the previous feasible solution.

 12

0. MACS-VRPTW algorithm

1. {Initialization}

 Initialize gbψ the best feasible solution: lowest number
of vehicles and shortest travel time.

2. {Main loop}
 Repeat

2.1 Vehicles ← #active_vehicles(gbψ)/* The actual number of used vehi-
cles is computed */

2.3 Activate ACS-VEI(Vehicles - 1) /* ACS-VEI searches for a feasible so-
lution with always one vehicle less
by maximising the num. of visited
customers */

2.4 Activate ACS-TIME(Vehicles) /* ACS-TIME is a traditional ACS col-
ony that minimises the travel time */

 While ACS-VEI and ACS-TIME are active

 Wait for an improved solution ψ from ACS-VEI or ACS-
TIME

2.5 gbψ ← ψ

 if #active_vehicles(gbψ) < Vehicles then

2.6 kill ACS-TIME and ACS-VEI

 End While

 until a stopping criterion is met

ACS-VEI is therefore different from the traditional ACS applied to the TSP. In

ACS-VEI the current best solution is the solution (usually unfeasible) with the
highest number of visited customers, while in ACS the current best solution is the
shortest one. On the contrary, ACS-TIME is a more traditional ACS colony: ACS-
TIME, optimizes the travel time of the feasible solutions found by ACS-VEI. As
in HAS-SOP, ACS-TIME is coupled with a local search procedure that improves
the quality of the computed solutions. The local search uses data structure similar
to the data structure implemented in HAS-SOP [36] and is based on the exchange
of two sub-chains of customers. One of this sub-chain may eventually be empty,
implementing a more traditional customer insertion.

Experimentally has been shown that the performance of the system increases in

case the best solution gbψ calculated in ACS-TIME is used, in combination with
the ACS-VEI best solution VEIACS −ψ , to update the pheromone in ACS-VEI equa-
tion (5.7).

 13

() VEI-ACSVEI-ACS
),(1)1()(ψρτρτ ψ ∈∀−+−⋅= jiLtijtij (5.7)

() gbgb
jiLtijtij ψρτρτ ψ ∈∀−+−⋅=),(1)1()(

MACS-VRPTW has been experimentally proved to be most effective than the
best known algorithms in the field such as the the tabu search of Rochat and Tail-
lard [61], the large neighbourhood search of Shaw [71] and the genetic algorithm
of Potvin and Bengio [58]. MACS-VRPTW was also able to improve many results
in the Solomon problem set both decreasing the number of vehicle or the travelled
time.

MACS-VRPTW introduces a new methodology for optimising multiple objec-
tive functions. The basic idea is to coordinate the activity of different ant colonies,
each of them optimizing a different objective. These colonies work by using inde-
pendent pheromone trails but they collaborate by exchanging information. This is
the first time a multi-objective function minimization problem is solved with a
mu ltiple ant colony optimization algorithm.

5.3.3 Quadratic Assignment Problem

The quadratic assignment problem (QAP) is the problem of assigning n facilities
to n locations so that the assignment cost is minimized, where the cost is defined
by a quadratic function. The QAP is considered one of the hardest CO problems,
and can be solved to optimality only for small instances. Several ACO applica-
tions dealt with the QAP, starting using AS [MC94] and then by means of several
of the more advanced versions [54], [66]. The limited effectiveness of AS was in
fact improved using a well-tuned local optimizer [53], but several other systems
previously introduced were also adapted to the QAP. For example, two efficient
techniques are the MMAS-QAP algorithm [71] and HAS-QAP [39]. For the test-
ing of QAP solution algorithms, Taillard [75] proposed to categorize instances
into four groups: (i) unstructured, uniform random (ii) unstructured, grid distance,
(iii) real-world and (iv) real-world-like. Both MMAS-QAP and HAS-QAP have
been applied to problem instances of type i and iii. The performances of these two
heuristic approaches are strongly dependent on the type of problem. Comparisons
with some of the best heuristics for the QAP have shown that HAS-QAP performs
well as far as real-world, irregular and structured problems are concerned. On the
other hand, on random, regular and unstructured problems the performance of this
technique is less competitive.

This problem-dependency was not shown by ANTS, which was also applied to
QAP. In order to apply ANTS to QAP (or any other problem), it is necessary to
specify the lower bound to use and what is a move in the problem context (step
2.2). The application described in [50] made the following choices.

As for the lower bound, since there is currently no lower bound for QAP, which
is both tight and efficient to compute, the LBD bound was used, which can be

 14

computed in O(n) but which is unfortunately on the average quite far from the op-
timal solution.

As for the moves, it was declared that a move corresponds to the assignment of
a facility to a location, thus adding a new component to the partial solution corre-
sponding to the state from which the move originated. Some considerations on the
move structure were used to improve the computational effectiveness of the result-
ing algorithm.

ANTS was tested on instances up to n=40 and showed to be effective on all in-
stance types; moreover its direct transposition into an exact branch and bound was
also effective when compared to other exact algorithms.

5.3.4 Other problems

This section outlines some of the more recent applications of ACO approaches to
problems other than those listed in the previous ones. This variety is well repre-
sented in the many diverse conference with tracks entirely dedicated to ACO and
most notably in ANTS conference series, entirely dedicated to algorithms inspired
by the observation of ants' behavior (ANTS'98, ANTS'2000 and ANTS'2002).
Many different applications have been presented: from plan merging to routing
problems, from driver scheduling to search space sharing, from set covering to
nurse scheduling, from graph coloring to dynamic multiple criteria balancing
problems. A large part of the relevant literature can be accessed online from [1].

Moreover, several introductory overviews have been published. We refer the
reader to [23], [24] and [52] for other overviews on ACO.

Among the problems not in the list above, a prominent role is played by the
TSP. In fact, TSP has been and in many cases still is the first testbed for ACO
variants, and more in general for most combinatorial optimization metaheuristics
[68]. It was already on this problem that the limited effectiveness of the first vari-
ants emerged, and this fostered the design of improved approaches modifying
some algorithm element and possibly hybridizing the framework with greedy local
search or with other approaches, such as genetic algorithms or tabu seach [69],
[42], [73]. These variants were then applied to other problems, for exa mple MAX-
MIN ant system was applied to the flow shop problem in [63], a problem then
faced also with other ACO modifications [10], whereas in [8] a rank-based ap-
proach for the TSP is described or in [14] a so-called best-worst variant.

More recently, different authors ([76], [77], [44]) have tackled the TSP with
hybrid variants, mainly using tabu search, but also, in the case of large TSP in-
stances, also with genetic evolution and nearest neighbor search, in order to im-
prove both efficiency and efficacy. Moreover, variations of the basic TSP, such as
the orienteering problem [49] or the probabilistic TSP where clients have to be
visited with a certain probability [4] have also been studied.

Scheduling problems provide another common area for testing the effectiveness
of ACO algorithms. An ACO approach for the job-shop scheduling is presented in
[12], whereas applications to real-world scheduling cases have been recently de-
scribed in [3] and [62].

 15

More recently, the maturity of the field is showed by the fact that ACO ap-
proaches began to be proposed also for problems which are not standard combina-
torial optimization testbed, but which are more directly connected to actual prac-
tice. For example, the problem of searching and clustering records of large
databases is faced by means of ACO in [59], while an algorithm for document
clustering is described in [80]. Even more theoretical problems linked to spatial
data analysis were tackled with ACO techniques in [74] and [37].

Finally, a recent interesting research branch of ACO, not directly related to
combinatorial optimization, is about telecommunication. In fact, the area of packet
switching communications appear to be a promising field for ACO-related routing
approaches [19, 20]. Whereas a standard optimization version of the frequency as-
signment problem was described in [51], an application to wavelength allocation
was presented in [57], while techniques for path adaptive search are described in
[79], [22], [9], [81] and an application to a satellite network in [67]. Moreover,
applications directly related to communication Quality of Service (QoS) have been
presented in [28], and more recently in [15], while an application which optimizes
communication systems with GPS techniques is described in [16].

5.4 Convergence proofs

Recently, some works appeared which provide theoretical insight into the conver-
gence properties of ant colony algorithms. All proofs refer to simplified versions
of actually used systems, and do not provide direct guidelines for real-world us-
age, but they are of interest for the ascertainment of general properties of the sys-
tems used.

The first such proofs was proposed by Gutjahr [31], who worked on an ACO
variant called Graph-Based Ant System (GBAS). The name derives from the
analysis being carried on a so-called construction graph, which is a graph as-
signed to an instance of the optimization problem under consideration, encoding
feasible solutions by “walks” on the graph. The objective function value of the
walk is equal to the objective function value of the corresponding feasible solution
of the original problem. It is always possible to design a construction graph for
any given combinatorial optimization problem instance, with a number of nodes
linear in the number of bits needed for the representation of a solution, and a num-
ber of arcs quadratic in this number of bits. Gutjahr proved that, under the condi-
tions listed below, the solutions generated in each iteration of this Graph-based
Ant System converge with a probability that can be made arbitrarily close to 1 to
the optimal solution of the given problem instance. Essential conditions are: (i)
there is only one optimal walk in W, i.e., the optimal solution is unique, and it is
encoded by only one walk in W; (ii) along the optimal walk w*, the desirability
values satisfy ηkl.(u) > 0 for all arcs (k,l) of w* and the corresponding partial

walks u of w*; (iii) a version of what is called elitist strategy is used, where only
the best walks are rewarded: walks that are dominated by another already trav-

 16

ersed walk do not get pheromone increments anymore. Especially the first of these
conditions is quite restrictive.

Stützle and Dorigo [65] propose another convergence proof. They consider
both the MAX-MIN Ant System and the ACS outlined in Section 3, and they
show that in this case it is possible to prove that allowing more and more iterations
the cost of the best solution found converges with probability equal to 1 to the op-
timal cost. This a property already guaranteed by random search alone, and it does
not get lost imposing a minimum trail value. Moreover, the authors show that it is
possible to compute a lower bound for the probability of the current best solution
to be optimal.

Finally, Gutjahr [32] in a recent paper builds upon these results context of ACO
and shows that for a particular ACO algorithm, a time-dependent modification of
GBAS, the current solutions converge to an optimal solution with probability ex-
actly one. More specifically, he shows that by using suitable parameter schemes, it
can be guaranteed that the optimal paths get attractors of the stochastic dynamic
process realized by the algorithm. This improves all previous results and proves a
property of the same strength of the tightest one so far obtained in the whole
metaheuristic area, which was that obtained by Hajek [41] for Simulated Anneal-
ing.

5.5 Conclusions

Ant Colony Optimization has been and continues to be a fruitful paradigm for de-
signing effective combinatorial optimization solution algorithms. After more than
ten years of studies, both its application effectiveness and its theoretical ground-
ings have been demonstrated, making ACO one of the most successful paradigm
in the metaheuristic area.

This overview tries to propose the reader both introductory elements and point-
ers to recent results, obtained in the different directions pursued by current re-
search on ACO.

No doubt new results will both improve those outlined here and widen the area
of applicability of the ACO paradigm.

References

1. M. Dorigo, Ant colony optimization web page,
 http://iridia.ulb.ac.be/mdorigo/ACO/ACO.html.
2. N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexible manu-

facturing systems. Ph.D.Thesis, Technische Universität Berlin, Germany, 1995
3. M. E. Bergen, Canstraint-based assembly line sequencing, Lecture Notes in Computer

Science, 2001
4. L. Bianchi, L.M. Gambardella, M.Dorigo. An ant colony optimization approach to the

probabilistic traveling salesman problem. In Proceedings of PPSN-VII, Seventh Inter-

 17

national Conference on Parallel Problem Solving from Nature, Lecture Notes in Com-
puter Science. Springer Verlag, Berlin, Germany, 2002

5. E. Bonabeau, M. Dorigo, G. Theraulaz, Nature, Volume 406, Number 6791, Pag. 39 -
42 (2000)

6. J.L. Bentley, Fast algorithms for geometric traveling salesman problem, ORSA Journal
on Computing, vol. 4, pp. 387–411, 1992.

7. B. Bullnheimer, R.F. Hartl, and C. Strauss, Applying the ant system to the vehicle
routing problem, In: Voss S., Martello S., Osman I.H., Roucairol C. (eds.) Meta-
Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Klu-
wer, Boston, 1999.

8. B. Bullnheimer, R.F. Hartl, and C. Strauss, A new rank-based version of the ant sys-
tem: a computational study, Central European Journal of Operations Research 7 (1)
(1999), 25–38.

9. C. N. Bendtsen, T. Krink, Phone routing using the dynamic memory model, in Pro-
ceedings of the 2002 congress on Evolutionary Computation, Honolulu, USA

10. C. Blum, M. Sampels, Ant colony optimization for FOP shop scheduling: a case study
on different pheromone representations, in Proceedings of the 2002 congress on Evo-
lutionary Computation, Honolulu, USA

11. T. Bäck and H.-P. Schwefel, An overview of evolutionary algorithms for parameter
optimization, Evolutionary Computation 1(1), (1993), 1-23.

12. M. den Besten, T. Stützle, M. Dorigo, Ant colony optimization for the total weighted
tardiness problem, Parallel Problem Solving from Nature: 6th international confer-
ence, September 2000. Springer Verlag.

13. A. Colorni, M. Dorigo, and V. Maniezzo, Distributed optimization by ant colonies,
Proceedings of ECAL'91, European Conference on Artificial Life, Elsevier Publishing,
Amsterdam, 1991.

14. O. Cordon, I. Fernandez de Viana, F. Herrera, L. Moreno, A new ACO model integrat-
ing evolutionary computation concepts: the best-worst ant system, in Proceedings of
ANTS2000 –from ant colonies to artificial ants , Universitè Libre de Bruxelles

15. C. Chao-Hsien, G. JunHua, H. Xiang Dan, G. Qijun, A heuristic ant algorithm for solv-
ing QoS multicast routing problem, in Proceedings of the 2002 congress on Evolution-
ary Computation, Honolulu, USA

16. D. Camara, A.A.F. Loureiro, A GPS/ant-like routing algorithm for ad hoc networks, in
2000 IEEE Wireless Communications and Networking Conference, Chicago, USA

17. S. Chen, S. Smith., Commonality and genetic algorithms . Technical Report CMU-RI-
TR-96-27, The Robotic Institute, Carnegie Mellon University, Pittsburgh, PA, USA,
1996

18. M. Dorigo, Optimization, learning and natural algorithms , Ph.D. Thesis , Politecnico di
Milano, Milano, 1992.

19. G. di Caro and M. Dorigo, Antnet: distributed stigmergetic control for communications
networks, Journal of Artificial Intelligence Research, 9 (1998), 317-365.

20. G. di Caro and M. Dorigo, Mobile agents for adaptive routing, Proceedings of HICSS-
31, 1998.

21. M. Dorigo, V. Maniezzo, and A. Colorni, The ant system: an autocatalytic optimizing
process, Technical Report TR91-016, Politecnico di Milano (1991).

22. G. di Caro and M. Dorigo, AntNet: distributed stigmergetic control for communica-
tions network , Journal of Artificial Intelligence Research (JAIR), Vol. 9, Pag. 317-
365, 1998

 18

23. M. Dorigo and G. Di Caro (1999). The Ant Colony Optimization Meta-Heuristic. In
D. Corne, M. Dorigo and F. Glover, editors, New Ideas in Optimization, McGraw-Hill,
11-32.

24. M. Dorigo, G. Di Caro & L.M. Gambardella (1999). Ant Algorithms for Discrete Op-
timization. Artificial Life, 5(2):137-172.

25. M. Dorigo and L.M. Gambardella, Ant colony system: a cooperative learning approach
to the traveling salesman problem, IEEE Transaction on Evolutionary Computation 1
(1997), 53--66.

26. M. Dorigo, V. Maniezzo, and A. Colorni, The ant system: optimization by a colony of
cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics-Part B
26(1) (1996), 29--41.

27. M. Dorigo, T. Stützle. The ant colony optimization metaheuristic: Algorithms, applica-
tions and advances. In F. Glover and G. Kochenberger, editors, Handbook of Metaheu-
ristics. Kluwer Academic Publishers, To appear in 2002.

28. G. Di Caro, Vasilakos T., Ant-SELA: Ant-agents and stochastic automata learn adap-
tive routing tables for QoS routing in ATM networks , ANTS'2000 - From Ant Colonies
to Artificial Ants: Second International Workshop on Ant Algorithms, Brussels, Bel-
gium, September 2000.

29. L.F. Escudero, An inexact algorithm for the sequential ordering problem. European
Journal of Operational Research 37 (1988), 232–253.

30. T.A. Feo and M.G.C. Resende, Greedy randomized adaptive search procedures, Jour-
nal of Global Optimization 6 (1995), 109--133.

31. W.J. Gutjahr, A graph-based Ant System and its convergence. Future Generation
Computer Systems. 16, 873 - 888, 2000.

32. W.J. Gutjahr: ACO algorithms with guaranteed convergence to the optimal solution.
Information Processing Letters 82(3): 145-153 (2002).

33. F. Glover, Tabu search, ORSA Journal on Computing 1 (1989), 190--206.
34. L.M. Gambardella and M. Dorigo, An ant colony system hybridized with a new local

search for the sequential ordering problem, INFORMS Journal on Computing 12
(2000), no. 3, 237--255.

35. L.M. Gambardella and M. Dorigo, Ant-Q: a reinforcement learning approach to the
travelling salesman problem, Proceedings of the Twelfth International Conference on
Machine Learning, ML-95, Palo Alto, CA, Morgan Kaufmann, Palo Alto, California,
USA, 1995.

36. L.M Gambardella and M. Dorigo M, Solving Symmetric and Asymmetric TSPs by
Ant Colonies , Proceedings of the IEEE Conference on Evolutionary Computation,
ICEC96, Nagoya, Japan, May 20-22, 1996, pp. 622-627.

37. Y. Gabriely, E. Rimon “ Spanning-tree based coverage of continuous areas by a mo-
bile robot”, in Proceedings of the IEEE international conference on Robotics and
Automation, 2001, Seoul, South Korea

38. L.M. Gambardella, E. Taillard, and G. Agazzi, Ant colonies for vehicle routing prob-
lems, vol. New Ideas in Optimization, McGraw-Hill, London, 1999.

39. L.M. Gambardella, E. Taillard, and M. Dorigo, Ant colonies for the quadratic assign-
ment problem, Journal of the Operational Research Society 50 (1999), 167--176.

40. J.H. Holland, Adaptation in natural and artificial systems, University of Michigan
Press, 1975.

41. B. Hajek, Cooling schedules for optimal annealing, Math. of OR, 13, pag. 311–329,
1988.

 19

42. H.M. Botee, E. Bonabeau, Evolving ant colony optimization, (SFI Working Paper Ab-
stract, 1999)

43. C. Hurkens and S. Tiourine, Upper and lower bounding techniques for frequency as-
signment problems, Technical Report 95-34, T.U. Eindhoven (1995).

44. T. Kaji, Approach by ant tabu agents for Traveling Salesman Problem, 2001 IEEE In-
ternational Conference on System, Man and Cybernetics

45. N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, F. Soumis, K-Path Cuts for
the Vehicle Routing Problem with Time Windows, Technical Report IMM-REP-1997-
12, Technical University of Denmark, 1997.

46. S. Kirkpatrik, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated annealing,
Science 220 (1983), 671--680.

47. G.A.P. Kindervater, Savelsbergh. M.W.P. Vehicle routing: handling edge exchanges,
E. H. Aarts, J. K. Lenstra, eds. Local Search in Combinatorial Optimization. John
Wiley & Sons, Chichester, UK. (1997), 311–336.

48. S. Lin and B.W. Kernighan, “An effective heuristic algorithm for the traveling sales-
man problem,” Operations Research, vol. 21, pp. 498–516, 1973.

49. Yun-Chia Liang, S. Kulturel-Konak, A.E. Smith “Meta heurustic for the orienteering
problem”, in Proceedings of the 2002 congress on Evolutionary Computation, Hono-
lulu, USA

50. V. Maniezzo, Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem, INFORMS Journal of Computing 11(4) (1999), 358--
369.

51. V. Maniezzo, A. Carbonaro (2000), An ANTS Heuristic for the Frequency Assignment
Problem, Future Generation Computer Systems; 16, North-Holland/Elsevier, Amster-
dam, pag 927 – 935.

52. V. Maniezzo, A.Carbonaro (2001), Ant Colony Optimization: an overview, in
C.Ribeiro (eds.) Essays and Surveys in Metaheuristics , Kluwer, pag.21-44.

53. V. Maniezzo and A. Colorni, The ant system applied to the quadratic assignment prob-
lem, IEEE Trans. Knowledge and Data Engineering 11(5) (1999), 769--778.

54. V. Maniezzo and A. Carbonaro, A bionomic approach to the capacitated p-median
problem, Future Generation Computer Systems 16(8) (2000), 927--935.

55. V. Maniezzo and R. Montemanni, An exact algorithm for the radio link frequency as-
signment problem, Technical Report CSR99-02 (1999).

56. V. Maniezzo, A. Mingozzi, and R. Baldacci, A bionomic approach to the capacitated
p-median problem, Journal of Heuristics 4(3) (1998), 263--280.

57. G. Navarro Varela, M. C. Sinclair, Ant Colony Optimization for virtual wavelength –
path routing and wavelength allocations, in Proceeding of the Congress on Evolution-
ary Computation (CEC ’99), Washington DC, USA

58. J.Y. Potvin and S. Bengio, The vehicle routing problem with time windows - part {II:
genetic search, Informs Journal of Computing 8 (1996), 165--172.

59. R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with ant colony optimization
algorithm, in IEEE trasactions on Evolutionary Computation, Volume 6, August 2002

60. G. Reinelt, The traveling salesman: computational solutions for TSP applications.
Springer-Verlag, 1994.

61. Y. Rochat and E.D. Taillard, Probabilistic diversification and intensification in local
search for vehicle routing, Journal of Heuristics 1 (1995), 147--167.

 20

62. H. Shyh-Jier, Enhancement of hydroelectric generation scheduling using ant colony
system based organization approach, in IEEE Transactions of Energy Conversion,
Volume 16, September 2001

63. T. Stützle, An Ant Approach to the Flow Shop Problem, Proceedings of EUFIT'98 ,
Aachen, pag. 1560-1564, 1998.

64. M.W.P. Savelsbergh, An efficient implementation of local search algorithms for con-
strained routing problems. European Journal of Operational Research 47 (1990), 75–
85.

65. T. Stützle and M. Dorigo, A Short Convergence Proof for a Class of ACO Algorithms,
IEEE Transactions on Evolutionary Computation, 6 (4), 2002 (in press).

66. T. Stützle and M. Dorigo, Aco algorithms for the quadratic assignment problem, New
Ideas in Optimization, McGraw-Hill, London, 1999, pp. 3--50.

67. E. Siegel, B. Denby, S. Le Hégarat-Mascle, Application of ant colony optimizatio to
adaptive routing in a leo telecommunications satellite network, submitted to IEEE
Trasactions on Networks, july 2000

68. T. Stützle, A .Grün, S. Linke, M. Rüttger, A comparison of nature inspired heuristic on
the traveling salesman problem, In Deb et al, editors, Proceedings of PPSN-VI, Sixth
International Conference on Parallel Problem Solving from Nature, volume 1917 of
LNCS, pages 661-670, 2000

69. T. Stützle, H. H. Hoos, MAX-MIN ant system, Future Generation Computer Systems,
Vol. 16 (2000)

70. T. Stützle and H. Hoos, Improvements on the ant system: Introducing $max-min$ ant
system, Proceedings of ICANNGA'97, Int. Conf. on Artificial Neural Networks and
Genetic Algorithms, Springer Verlag, Vienna, 1997.

71. P. Shaw, Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems, Proceedings of the Fourth International Conference on Principles
and Practice of Constraint Programming (CP '98), M. Maher and J.-F. Puget (eds.),
Springer-Verlag, 1998, 417-431.

72. T. Stützle and H. Hoos, Ant system and local search for combinatorial optimization
problems, S. Voss, S. Martello, I.H. Osman and C. Roucairol editors, vol. Meta-
Heuristics: Advanced and Trends in Local Search Paradigms for Optimization, Klu-
wer, Boston, 1998.

73. T. Stützle, H. Hoos The MAX-MIN Ant System and Local Search for Combinatorial
Optimization Problems: Towards Adaptive Tools for Combinatorial Global Optimiza-
tion In S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors, Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization, Kluwer Academic
Publishers, pages 313-329, 1998.

74. M. Schreyer, G. R. Raidl, Letting ants labeling point feature, in Proceedings of the
2002 congress on Evolutionary Computation, Honolulu, USA

75. E.D. Taillard, Comparison of iterative searches for the quadratic assignment problem,
Location Science, 3, 1995, pag. 87-105.

76. C. Tsai, C. Tsai, A new approach for solving large traveling salesman problem using
evolutionary ant rules, in Proceeding of the 2002 International Joint Conference on
Neural Networks

77. C. Tsai, C. Tsai, C. Tseng, A new approach for solving large traveling salesman prob-
lem, in Proceeding of the 2002 Congress of Evolutionary Computation

78. C.J. Watkins and P. Dayan, Q-learning, Machine Learning, 8:1992, 279--292.

 21

79. O. Wittnr, B. E. Helvik, Cross-entropy guided ant-like agents finding dependable pri-
mary/backup path patterns in networks, in Proceedings of the 2002 congress on Evolu-
tionary Computation, Honolulu, USA

80. B. Wu, Y. Zheng, S. Liu, Z. Shi, CSIM: a document clustering algorithm based on
swarm intelligence, in Proceedings of the 2002 congress on Evolutionary Computa-
tion, Honolulu, USA

81. W. Ying, X. Jianying, Ant colony optimization for multicast routing, in the 2000 IEEE
Asia-Pacific Conference on Circuits and Systems, Tianjin, China

