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Abstract

A formal approach for modeling and analyzing concurrent systems is proposed which integrates perfor-
mance characteristics in the early stages of the design process. The approach relies on both stochastically
timed process algebras and stochastically timed Petri nets in order to exploit their complementary ad-
vantages. The approach is instantiated to the case of EMPA (Extended Markovian Process Algebra),
introduced together with the collection of its four semantics and the notion of equivalence that are re-
quired in order to implement the approach. Finally, the case study of the alternating bit protocol is
presented to illustrate the adequacy of the approach.

1 Introduction

The desirability of taking into account the performance aspects of a concurrent system in the early stages
of its design has been widely recognized [YK82, Fer86, Har86, BV88]. Nevertheless, it often happens that a
concurrent system is tested for efficiency only after it has been fully designed and tested for functionality.
This results in two problems. On the one hand, the detection of poor performance causes the system to be
designed again, so that the cost of the project increases and the deadline for the delivery of the system might
not be fulfilled. On the other hand, functionality related tests and performance related tests are carried out
on two different models of the system, so that one has to make sure that these two models are consistent,
i.e. they really describe (different aspects of) the same system.

In the past two decades a remarkable effort has been taking place in order to make existing formal
description techniques suitable to support performance modeling and analysis. The key feature common
to all of the proposals is to enhance the expressiveness of the existing formal description techniques by
introducing the concept of time, represented either in a deterministic way or in a stochastic way.

Stochastically timed Petri nets (see [Ajm90] and the references therein) are probably the most successful
formal description technique which accounts for functional as well as performance characteristics of concur-
rent systems, due to the underlying well-established theory and the related tool support. Once we get a
stochastically timed Petri net as a model for a given concurrent system, both its functional and performance
characteristics are described, and these can then be separately analyzed on two different projected models
(a classical Petri net and a stochastic process) obtained from the same integrated model (the stochastically
timed Petri net), so we are guaranteed that the projected models are consistent. However, two shortcomings
still need to be addressed: lack of compositionality, i.e. the capability of constructing nets by composing
smaller ones, and inability to perform an integrated analysis, i.e. an analysis carried out directly on the
integrated model, which can be much more efficient as there is no need to build projected models.

Both drawbacks can be overcome by resorting to stochastically timed process algebras (see [PAPM93,
PAPM94, PAPM95, PAPM96, PAPM97] and the references therein). The reason is that, first of all, stochasti-
cally timed process algebras naturally provide compositionality, since they are algebraic languages composed
of a small set of powerful operators whereby it is possible to construct process terms from simpler ones,
without incurring in the graphical complexity of nets. Second, functional and performance properties of a
system modeled by means of a term of a stochastically timed process algebra can be investigated not only



on two consistent projected semantic models (a transition system labeled only on the type of the actions and
a stochastic process), but also directly on the integrated semantic model (a transition system labeled with
both the type and the duration of the actions) provided that a suitable notion of integrated equivalence is
developed.

CWB- NC Mar CA

(1]

representation of the concurrent

functional

analysis evaluation

by, e.g., system by means of aterm of the by, eg.,
model stochastically timed process algebra mathematical
checking

(2]

representation of the concurrent
system by means of a
stochastically timed Petri net

functional
analysis
by, e.g.,

computing

invariants

simulative
anaysis

G eat SPN G eat SPN

Figure 1: Integrated approach

The purpose of this paper is to combine stochastically timed process algebras and stochastically timed
Petri nets so as to devise a formal approach for modeling and analyzing concurrent systems which should
allow us to cope with the problems cited at the beginning of this section. Actually, the approach we are
going to introduce results in three orthogonal integrations:
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The first integration relates the two different formalisms, hence two different views of concurrent
systems according to [Old91]. The abstract view is provided by process terms: they give an algebraic
representation of system components and their interactions, whose semantic model is obtained by
interleaving actions of concurrent components. The concrete view is provided instead by Petri nets:
they give a machine-like representation of systems with the explicit description of concurrency. This
integration results in the two phases depicted in Fig. 1.

The second integration relates functional and performance aspects of concurrent systems. This inte-
gration is depicted in Fig. 1 by means of the contrast between the nonshaded part and the shaded
part.

The third integration consists of exploiting several existing tools tailored for specific purposes in order
to analyze the various models.

Let us explain in more detail the two phases in light of the three orthogonal integrations mentioned above.

1.

The first phase requires the designer to specify the concurrent system as a term of the stochastically
timed process algebra. Because of compositionality, the designer is allowed to develop the algebraic
representation of the system in a modular way: every subsystem can be modeled separately, then these
models can be put together through the operators of the algebra. From the algebraic representation,
an integrated interleaving semantic model is automatically derived in the form of a transition system
labeled on both the type and the duration of the actions. The integrated interleaving semantic model
can be analyzed as a whole by a notion of integrated equivalence or is projected on a functional semantic
model and a performance semantic model that can be analyzed by means of tools like CWB-NC [CS96]
and MarCA [Ste94], respectively.

The functional analysis can be carried out by resorting to methods such as equivalence checking,
preorder checking and model checking [CPS93]. Equivalence checking verifies whether a process term



meets the specification of a given system in the case when the specification is a process term as
well. Preorder checking requires that the specification is still a process term treated as the minimal
requirement to be met, owing to the fact that specification can contain don’t care points. Model
checking requires specifications to be formalized as modal logic formulas to be satisfied, expressing
assertions about safety, liveness, or fairness constraints.

The performance analysis permits obtaining quantitative measures by typically resorting to the study
of a Markov chain.

2. The second phase consists of automatically obtaining from the algebraic representation of the system an
equivalent representation in the form of a stochastically timed Petri net. The net representation turns
out to be useful whenever a less abstract representation is required highlighting dependencies, conflicts,
and synchronizations among system activities, and helpful detecting some properties (e.g., partial
deadlock) that can be easily checked only in a distributed setting. Additionally, the net representation
is usually more compact than the integrated interleaving semantic model resulting from the algebraic
representation, since concurrency is kept explicit instead of being simulated by alternative computations
obtained by interleaving actions of concurrent components. The functional and performance analysis
of the net representation can be assisted by tools like GreatSPN [Chi91].

The functional analysis aims at detecting behavioral and structural properties of nets (see, e.g.,
[Mur89]), i.e. both properties depending on the initial marking of the net and properties depend-
ing only upon the structure of the net. Concerning structural analysis, the technique of net invariants
is frequently used. Such a technique (see, e.g., [Rei85]) consists of computing the solutions of linear
equation systems based on the incidence matrix of the net under consideration. These solutions single
out places that do not change their token count during transition firings or indicate how often each
transition has to fire in order to reproduce a given marking. By means of these solutions, properties
such as boundedness, liveness, and deadlock can be studied.

The performance analysis aims at determining efficiency measures by resorting to either the numerical
solution of a Markov chain or the event driven simulation of the net.

Since the two phases above are complementary, the choice between them is made according to the adequacy
of the related representation with respect to the analysis of the concurrent system under consideration and
the availability of the corresponding tools. In any case, the designer is forced to start with an algebraic
representation of the system in order to take advantage of compositionality of algebras and avoid graphical
complexity of nets.

In order to implement the integrated approach, we have to choose a class of stochastically timed Petri
nets and then a stochastically timed process algebra having possibly the same expressive power. The class of
stochastically timed Petri nets we have chosen is that of Generalized Stochastic Petri Nets (GSPNs) [ABC84,
ABCCS8T7] because they have been extensively studied and successfully applied. Since in the literature there
is no stochastically timed process algebra having the same expressive power as GSPNs, we have developed
a new one called Extended Markovian Process Algebra (EMPA) on the basis of MTIPP [GHR93b] and
PEPA [Hil96], which is endowed with expressive features typical of GSPNs. The name of the algebra stems
from the fact that action durations are mainly expressed by means of exponentially distributed random
variables (hence Markovian), but it is also possible to express prioritized probabilistic actions having duration
zero as well as actions whose duration is unspecified (hence Extended). In order to support the various phases
and analyses of the integrated approach, EMPA has been equipped with a collection of semantics as well as
a notion of integrated equivalence based on ideas in [LS91, HR94, Hil96, Buc94, Tof94, Mil89], as depicted
in Fig. 2. Each term has an integrated interleaving semantics represented by a labeled transition system
(LTS for short) whose labels consist of both the type and the duration of the actions and an integrated net
semantics represented by a GSPN. From the integrated interleaving semantic model, two projected semantic
models can be obtained: a functional model given by a LTS labeled only on the type of the actions, and a
performance model given by a Markov chain (MC for short).

As it can be noted, although the integrated approach has in principle a general validity, in this paper we

study its instantiation to the exponential case. The restriction to exponentially distributed durations ' sim-

1 Actually, in Sect. 5.1 we shall see that also phase type distributions are somehow expressible with EMPA.
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Figure 2: EMPA semantics and equivalence

plifies the performance evaluation, as the performance model turns out to be a MC. Also, such a restriction
affects the semantic treatment, because the memoryless property of the exponential distribution allows us
to define an integrated semantics for EMPA through the interleaving approach, in the same style as classical
process algebras. For instance, suppose we are given an action ¢ whose duration is exponentially distributed
with rate A and an action b whose duration is exponentially distributed with rate p. Then let us consider a
term F that executes either a followed by b or (operator “_+ ") b followed by a depending on whether the
initial a is completed before the initial b or not, and a term Ea that executes @ in parallel with (operator
) b
£ = <a, A>.<b,p>.04 <b, u>.<a, A>.0

Ey = <a,A>.0]p <b,p>.0
The LTSs representing their integrated interleaving semantics are isomorphic:

~a E1 ~a Ep

<b,u>-9\ /<a,)\>.g Q||o<hu>-9-\ /<8,7\>-QIIoQ
b . aA b . aA
0]

0llp0

This is correct from the functional point of view by definition of interleaving and also from the performance
point of view due to the memoryless property of the exponential distribution [Kle75]: if we assume that Fs
completes a before b, then the residual time to the completion of b is still exponentially distributed with rate
H, so the rate labeling the transition from state 0|y <b, u>.0 to state 0|y 0 is p itself instead of y conditional
on A.

This paper, which is an extended and revised version of [BDG94a, BDG94b, BDG9%4¢, BDG94d, BDG9%e,
BDG95, BDGY6], is organized as follows. In Sect. 2 we introduce EMPA by giving the syntax of its terms
and the meaning of its operators. In Sect. 3 the integrated interleaving semantics is defined together with
the related functional semantics, while the performance semantics is presented in Sect. 4. In Sect. 5 we stress
the expressiveness of EMPA | as well as the advantages of compositionality, by showing some examples about
queueing systems. In Sect. 6 we briefly report on a notion of integrated equivalence presented in [BG98].
In Sect. 7 we define the integrated net semantics and we investigate the relationship with the integrated
interleaving semantics. In Sect. 8 we apply the integrated approach to a case study: the alternating bit
protocol. Finally, in Sect. 9 we report some concluding remarks on related work, tool support, and open



problems. We would like to point out that this paper does not contain proofs of results concerned with the
integrated equivalence or a comparative study of the expressive power of EMPA: the interested reader is
therefore referred to the companion paper [BG98].

2 Syntax and Informal Semantics for EMPA

In this section we introduce EMPA by showing the syntax of its terms and explaining the meaning of its
operators. This section is organized as follows. In Sect. 2.1 we introduce the concept of action together with
a classification of actions based on their types and rates. In Sect. 2.2 we define the syntax of terms and we
informally explain the meaning of each operator. Finally, in Sect. 2.3 we illustrate the execution policy we
have adopted to choose among several simultaneously executable actions.

2.1 Actions: Types and Rates

The building blocks of EMPA are actions. Each action is a pair <a, A> consisting of the {ype of the action
and the rate of the action. The type denotes the kind of the action (e.g. transmission of a message), while
the rate indicates the speed at which the action occurs from the point of view of an external observer: rates
are used as a concise way to denote the random variables specifying the duration of the actions. Depending
on the type, like in classical process algebras, actions are divided into ezternal and internal depending on
whether they are observable or not: as usual, we denote by 7 the only internal action type we use. Moreover,
we have the following classification according to the rates:

e Active actions are actions whose rate is specified. An active action can be either exponentially timed
or immediate:

— FEzponentially timed actions are actions whose rate is a positive real number. Such a number
is interpreted as the parameter of the exponentially distributed random variable specifying the
duration of the action. We recall that an exponentially distributed random variable X has prob-
ability distribution function Fix (¢) = Pr[X <] = 1 — e~*"! for any t € R, expected value 1/\
and variance 1/A?, thus it is uniquely identified by its parameter A € R.

— Immediate actions are actions whose rate, denoted by o7, is infinite. Such actions have duration
zero, and each of them is given a priority levell € N4 and a weight w € R4

e Passive actions are actions whose rate, denoted by #*, is undefined. The duration of a passive action is
fixed only by synchronizing it with an active action of the same type.

The classification of actions based on their rates implies that exponentially timed actions model activities
that are relevant from the performance point of view, immediate actions model logical events as well as
activities that are either irrelevant from the performance point of view or unboundedly faster than the
others, and passive actions model activities waiting for the synchronization with timed activities and allow
for pure nondeterminism. While exponentially timed actions of EMPA are exactly the same as exponentially
timed actions of [HR94, Hil96], immediate actions and passive actions are different from those adopted in
other stochastically timed process algebras. In particular, immediate actions of EMPA, which have the same
structure as immediate transitions of GSPNs, differ from the immediate actions of [HRW95] since these
have neither associated priorities nor weights. Moreover, passive actions of EMPA | which resemble actions
of classical process algebras, differ from both the passive actions of [HR94] since these have an associated
duration and the passive actions of [Hil96] because these have an associated weight. Tt is worth noting that
the coexistence of different kinds of actions provides EMPA with a considerable expressive power. The reader
interested in a detailed comparison with process algebras including priorities, probabilities, and/or time is
referred to [BG98].

We denote the set of actions by Act = AType x ARate where AType is the set of types and ARate =
Ry UInf U {x}, with Inf = {oc0j | € Ny Aw € Ry}, is the set of rates. We use a, b, ... as metavariables
for AType, :\,[L, ... for ARate, and A, p, ... for Ry. Finally, we denote by APLev = {—1} U N the set of
action priority levels, and we assume that * < A < oo, for all A € Ry and o7 € Inf.



2.2 Syntax of Terms and Informal Semantics of Operators

Let Const be a set of constants, ranged over by A, B, ..., and let ARFun = {¢ : AType —> AType | o(1) =
T ANp(AType — {1}) C AType — {7}} be a set of action relabeling functions ranged over by ¢, ¢', .. ..

Definition 2.1 The set £ of process terms of EMPA is generated by the following syntax
E:=0|<a,A>.E|E/L|E[g] | E+E|E|sE|A
where L, S C AType — {7}. The set £ will be ranged over by E | F, . ... [ ]

In the rest of the section we informally explain the semantics of the operators: the formal semantics will
be presented in Sect. 3.2.

The null term “0” 1s the term that cannot execute any action.

The prefiz operator “<a, A>._” denotes the sequential composition of an action and a term: term <a, A>.E
can execute action <a, A> and then behaves as term E.

The functional abstraction operator “_/L” abstracts from the type of the actions: term E/L behaves as
term E except that the type of each executed action is turned into 7 whenever it 1s in L. The meaning
of this operator is the same as that of the hiding operator of CSP [Hoa85], thereby providing a means to
encapsulate or ignore functional information.

The functional relabeling operator “_[p]” changes the type of the actions: term E[g] behaves as term F
except that the type of each executed action is modified according to ¢. The meaning of this operator is
the same as that of the relabeling operator of CCS [Mil89], thus providing a means to obtain more compact
algebraic descriptions.

The alternative composition operator “_+ 7 expresses a choice between two terms: term £ + E5 behaves
as either term Ej or term F5 depending on whether an action of £ or an action of E is executed first. As
we shall see in Sect. 2.3, the way in which the choice is resolved depends on the kind of the actions involved
in the choice itself.

The parallel composition operator “_||s > expresses the concurrent execution of two terms according
to two synchronization disciplines. The synchronization discipline on action types is the same as that of
CSP [Hoa85], hence two actions can synchronize only if they have the same type, and this coincides with the
resulting type. The synchronization discipline on action rates states that action <a, A> can be synchronized
with action <a, > only if min(:\, jt) = *, and the resulting rate is given by max(:\, 1) up to normalization.
In other words, in a synchronization at most one active action can be involved and its rate determines the
rate of the synchronization itself, up to normalization as explained in Sect. 3.2. The main reason behind the
adoption of such a synchronization discipline on action rates is its simplicity, both from the modeling point
of view and from the semantic treatment point of view. The expressive power resulting from this apparently
restrictive discipline has been investigated in [BG98].

In order to avoid ambiguities, we assume the binary operators to be left associative and we introduce the
following operator precedence relation: functional abstraction = functional relabeling > prefix > alternative
composition > parallel composition.

Finally, EMPA is equipped with constants as well as a set Def : Const —e+ L of related defining equations.
In order to guarantee the correctness of recursive definitions given by means of constants, we restrict ourselves
to the set G of closed and guarded terms [BG98].

”

2.3 Execution Policy

Because of the presence of binary operators such as the alternative composition and the parallel composition,
the situation in which several active actions are simultaneously executable can arise. Both in the case of the
alternative composition operator (due to the choice it expresses) and in the case of the parallel composition
operator (as we have adopted an interleaving model, hence representing the execution of only one action at
a time, which is consistent with the fact that two exponentially timed actions cannot terminate at the same
time), we need a mechanism for choosing the action to be executed. In stochastically timed frameworks,
such a mechanism is usually referred to as the ezecution policy [ABBCCCR9].

Consider a term enabling two exponentially timed actions <a, A> and <b, u>. In this case we adopt
the race policy: the action sampling the least duration succeeds. This implies that (¢) the random variable



describing the sojourn time in the state corresponding to the term above is the minimum of the exponentially
distributed random variables describing the durations of the two actions, and (é¢) the ezecution probability
of the two actions is determined as well by the exponentially distributed random variables describing their
durations. In order to compute the two quantities above, we exploit the property that the minimum of
n independent exponentially distributed random variables is an exponentially distributed random variable
whose rate is the sum of the n original rates [Kle75]. As a consequence, for the term above we have that
the sojourn time of the corresponding state is exponentially distributed with rate A + p (hence the mean
sojourn time is 1/(A 4 p)) and the execution probabilities of the two actions are A/(A 4 p) and p/(A + p),
respectively.

Another important consequence of the adoption of the race policy is that immediate actions take prece-
dence over exponentially timed actions. If we consider a term enabling actions <a, A> and <b, 007 ,>, then
only the latter action can be actually executed since its duration is zero whereas the former action cannot
sample duration zero from its associated exponential distribution.

Consider now a term enabling two immediate actions <a, 007> and <b, cop s >. Since both actions
have the same duration and hence the race policy does not apply, we choose the action to execute according
to the preselection policy: only the actions having the highest priority level are executable, and each of them
is given a probability execution proportional to its own weight. The sojourn time of the state corresponding
to the term above is zero. If { > I’ (I’ > 1), then only action @, 00; 4 (b, c0p ) is actually executable. If
[ =1, then the execution probabilities of the two actions are w/(w + w') and w’/(w 4 w'), respectively.

Finally, consider a term enabling two passive actions <a, *> and <b,*>. Since the duration of passive
actions is undefined, and they are assigned neither priority levels nor weights, they can be chosen according
to neither the race policy nor the preselection policy. This means that passive actions can be viewed as
actions of classical process algebras, hence the term above expresses a purely nondeterministic choice, where
nondeterminism refers to the absence of a mechanism that specifies how the choice is resolved.

3 Integrated Interleaving Semantics of EMPA Terms

In order to implement the first phase of the integrated approach of Fig. 1, we provide each EMPA term with
a formally defined integrated semantics based on LTSs whose labels consist of both the type and the rate
of actions, from which two projected semantic models describing either functionality or performance can be
derived.

This section is organized as follows. In Sect. 3.1 we recall some notions about LTSs since they are the
semantic model in this framework. In Sect. 3.2 we define the integrated interleaving semantics of EMPA
terms, we introduce the related concepts of functional and performance semantics, and we formalize the
property of performance closure.

3.1 Rooted Labeled Transition Systems

In this section we recall the definition of LTS and some related notions [Par81].

Definition 3.1 A rooted labeled transition system (LTS} is a quadruple
(Sa Ua —>a 50)
such that:

e S is a set whose elements are called states;
e U is a set whose elements are called labels;
o —— C 5 xU xS is called transition relation;

e sq € S is called the initial state. [ |

In the graphical representation of a LTS, states are drawn as black dots and transitions are drawn as arrows
between pairs of states with the appropriate labels; the initial state is pointed to by an unlabeled arrow.



Below we recall two notions of equivalence for LTSs. The first one, isomorphism, considers two LTSs to
be equivalent if they have the same number of states, and any pair of corresponding states have identically
labeled transitions toward any pair of corresponding states. The second one, bisimilarity, is coarser than the
previous one since it considers two L'TSs to be equivalent if any pair of corresponding states have identically
labeled transitions toward any pair of corresponding states, regardless of the number of states.

Definition 3.2 Let 7; = (S1,U, ——1, s01) and Zy = (S2, U, —— 9, s02) be two LTSs.
e 71 1s 1somorphic to Zs if and only if there exists a bijection § : 57 — S such that:

- 5(801) = 502;
— for each 5,5’ € S and for each u € U
s—1 8 <= B(s) ——28(s")

o 73 is bistmilar to Z if and only if there exists a relation B C 51 x Sa such that:

— (501, s02) € B;
— for each (s1,s2) € B and for each u e U

U U
* whenever s; ——1 81, then s5 ——4 s}, and (s, s4) € B;

U U
* whenever so —q 85, then s1 —— 8] and (s, s4) € B. |

3.2 Integrated Interleaving Semantics

The main problem to tackle when defining the semantics for EMPA is that the actions executable by a
given term may have different priority levels, and only those having the highest priority level are actually
executable. Let us call the potential move of a given term a pair composed of an action executable by that
term when ignoring priority levels and the derivative term obtained by executing that action; let us denote by
PMove = Act x G the set of all the potential moves. To solve the problem above, we compute inductively the
multiset ? of the potential moves of a given term regardless of priority levels, and then we select those having
the highest priority level. This is motivated in our framework by the fact that the actual executability as well
as the execution probability of an action depend upon all the actions that are executable at the same time
when it 1s executable: only if we know all the potential moves of a given term, we can correctly determine
the transitions of the corresponding state and their rates. This is clarified by the following example.

Example 3.3 Consider term
E = <a,0031>.E1 + <e, 00271>.A + <g,%>.0

where
By = <b,A>(0]]p0) + <e,0011>.E
Ey = <h{>.Ez+<h,£>.E3
E3 = <d,/i>Q||{d}(<da*>gl|@<d’*>g)
A 2 <f>A

Suppose we apply to E standard semantic rules for classical process algebras, thereby disregarding priority
levels, probabilities, and durations. Then we obtain the LTS in Fig. 3(a) where
Ey Ol (Qllp <d, %>.0)
N . Es Qu{dﬁ(<d’*>'~QU“’Q)
where transitions are in exact correspondence with the potential moves.
Now assume that priority levels are taken into account. Then lower priority transitions must be pruned,
thus resulting in the LTS in Fig. 3(b): note that the passive transition labeled with <g,*> has not been
discarded. The new LTS is obtained by means of an auxiliary function we shall call Select.

2We use “{|” and “[}” as brackets for multisets, “_@® " and “. & " to denote multiset union and difference, Mu g, (S)
(P (S)) to denote the collection of finite multisets (sets) over set S, M(s) to denote the multiplicity of element s in multiset
M, and 7;(M) to denote the multiset obtained by projecting the tuples in multiset M on their ¢-th component. Thus, e.g.,
(m1(PM2))(<a,*>) in the fifth part of Table 1 denotes the multiplicity of tuples of PM> whose first component is <a,*>.
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Figure 3: Integrated interleaving models for Ex. 3.3

Finally, consider the rate of the transition from F5 to Fs3 and the rates of the two transitions from FEs
to F4 and Es. In the correct semantic model for E, such rates have to be like in Fig. 3(¢). Concerning
the transition from Fsy to Fs, its rate is 2 - £ instead of & because in Fy two exponentially timed actions
with rate & occur and the race policy has been adopted. The problem is that both exponentially timed
actions have the same type and results in the same derivative term, so with classical semantic rules only
one transition is produced. The same problem arises in the case of immediate actions. To overcome this,
instead of producing e.g. two transitions with two different auxiliary labels [HR94], one transition having
multiplicity two (which incidentally requires the adoption of a variant of LTS as a semantic model) [Hil96],
or directly one transition with the correct rate by means of auxiliary semantic rules [GHR93a], we keep track
of the multiplicity of potential moves and then we construct transitions by using an auxiliary function we
shall call Melt that merges together those potential moves having the same action type, the same priority
level, and the same derivative term. The rate of transitions derived by merging potential moves is computed
by means of another auxiliary function we shall call Min to remind the adoption of the race policy.

Concerning the transitions from E5 to E4 and Ej, their rate is u/2 instead of pu because in E3 only one
exponentially timed action with rate p occurs: the value p/2 stems from the assumption that independent
passive actions have the same probability to participate in a synchronization. The same considerations would
hold if in F3 we had an immediate action instead of an exponentially timed action or alternative passive
actions instead of independent passive actions. In all of these cases a normalization of rates is required, and
this 1s carried out by means of an auxiliary function we shall call Norm.

The reader is invited to look again at this example after examining the formal definition of the semantics,
in order to verify that the LTS of Fig. 3(¢) is exactly the result of the application to E of the rules in Table 1
equipped with the auxiliary functions mentioned above. [ |

The formal definition of the integrated interleaving semantics for EMPA is based on the transition relation
—, which 1s the least subset of G x Act x G satisfying the inference rule in the first part of Table 1. This
rule selects the potential moves that have the highest priority level (or are passive), and then merges together
those having the same action type, the same priority level and the same derivative term. The first operation
is carried out through functions Select : Mug,(PMove) — Mugp,(PMove) and PL : Act — APLev,
which are defined in the third part of Table 1. The second operation is carried out through function
Melt : Mug,(PMove) — Pg,(PMove) and partial function Min : (ARate X ARate) —e+ ARate, which are
defined in the fourth part of Table 1. We recall that function Melt, whose introduction is motivated by the
drawback cited in the example above, avoids burdening transitions with auxiliary labels as well as keeping
track of the fact that some transitions may have multiplicity greater than one. We also point out that the
name Min should recall the adoption of the race policy: the minimum of a set of random variables has to be
computed. We regard Min as an associative and commutative operation, thus we take the liberty to apply
it to multisets of rates.



(<a, >, E') € Melt(Select(PM(E)))

a,h
E——F

PM(0) =0
PM(<a,X>.E) ={l(<a,A> E)[}
M(E/L) = {|(<a,A> E'/L) | (<a,}>, E') € PM(E)Aa ¢ L} &
(<7, A>, E'/L) | (<a,\>, E") € PM(E)Aa € L]
PM(E[¢]) = {| (<¢(a), >, E'[¢]) | (<a,\>, E') € PM(E) [}
PM(E1 + Ey) = PM(Ey) & PM(E,)
PM(E,||s Bs) = {|(<a,A>, Ef ||s E2) | a ¢ S A(<a,\>, E}) € PM(Ey) |}
{(<a,A>,F1||s F4) |a ¢ S A(<a,A\>,Ey) € PM(FE») |}
{(<a, 7>, E1||s E3) |a € S A
(<a,A1>, E}) € PM(E1) A
(<a, o>, E%) € PM(E2) A
¥ = Norm(a, /\1,/\2,PM(E ), PM(FE2)) [}

D
D

PM(A)= PM(E) if A2 E

Select(PM) = {| (<a,\>, E) € PM | Y(<b, i>, E') € PM. PL(<a,A>) > PL(<b, i>) V
PL(<a,A>) = -1

PL(<a,+>)=—-1 PL(<a,A>)=0 PL(<a,c01wn>)=1

Melt(PM) = {(<a, >, E) | 3ji € ARate.(<a,ji>, E) € PM A
A= Min{7 | (<a,¥>,E) € PM A PL(<a,¥>) = PL(<a, i>) [}}

¥ Minx =+ Ay Minda =X+ Ao 007w, Min 001w, = 007wy 4w,

Split(Ar, 1/ (my(PM3))(<a,%>)) if Ay = =
Split(ha, 1/(m(PM1))(<a, *>)) if A = *

Split(x,p) =+  Split(A,p) =X-p  Split(corw,p) = O1wp

Norm(a, Ay, Ay, PMy, PM5) = {

Table 1: Inductive rules for EMPA integrated interleaving semantics

10




The multiset PM (E) € Mugn(PMove) of potential moves of E € G is defined by structural induction
in the second part of Table 1 according to the intuitive meaning of operators explained in Sect. 2.2. It is
worth noting that, unlike the definition of the semantics for classical process algebras, we compute all the
potential moves of a term at once instead of computing one potential move at a time, since this is the most
convenient way to correctly determine the transitions (Select) and their rates (Melt and Norm). In order to
enforce the bounded capacily assumption [Hil94], which establishes that the rate at which an activity is carried
out cannot be increased by synchronizing it with other activities, in the rule for the parallel composition
operator a normalization is required which suitably computes the rates of potential moves resulting from
the synchronization of the same active action with several independent or alternative passive actions. The
normalization operates in such a way that applying Min to the rates of the synchronizations involving the
active action gives as a result the rate of the active action itself, and that each synchronization is assigned
the same execution probability. This normalization is carried out through partial function Norm : (AType x
ARate x ARate x Mugn(PMove) x Mug,(PMove)) —o> ARate and function Split : (ARate x Ryg 17) —

ARate, which are defined in the fifth part of Table 1. Note that Norm(a, :\1, :\2, PMy, PM5) is defined if
and only if min(:\, f1) = #, which is the condition on action rates we have required in Sect. 2.2 in order for a
synchronization to be permitted. The name Split comes from the way this function 1s used to calculate the
performance semantics in Sect. 4.3.

Example 3.4 Consider term

E = Ev|l{a}(E2lo E3)

where
F— <Cl,A>.Q
Fy = <a, x>0+ <a,*x>.0
Ey = <a,x>.0

Then Fy has one potential move (<a,A>,0), E; has one potential move (<a,*>,0) with multiplicity
two, and E3 has one potential move (<a,*>,0). As a consequence, Fs||p Es has both potential move
(<a,x>,0]|p Fs) with multiplicity two and potential move (<a,*>, F2||g 0). Therefore, when computing
the potential moves for I, function Norm produces both (<a, A/3>,0|({41(0|[g £3)) with multiplicity two
and (<a, A/3>,0]|1a} (£2 ||g 0)), and subsequently function Melt produces both (<a,2-A/3>,0|/141(0 || E3))
and (<a, A/3>,0]|{a3(£2]]p 0)), as expected. [ ]

Definition 3.5 The integrated interleaving semantics of /' € G is the LTS
I[E]) = (ME, Act, — g, E)
where:

e TF is the least subset of G such that:
- F etk
—if By €tE and F, i)Ez, then Ey €1E;
e — g 1s the restriction of —— to TF£ x Actx 1F. [ |

Definition 3.6 F € G is performance closed if and only if Z[E] does not contain passive transitions. We
denote by £ the set of performance closed terms of G. [ |

Borrowing the terminology of GSPNs, a state of Z[E] is called tangible if it has at least one outgoing
exponentially timed transition and vanishing if it has at least one outgoing immediate transition. Because
of function Select, a tangible state has only outgoing exponentially timed transitions and, possibly, passive
transitions; likewise, a vanishing state has only outgoing immediate transitions of the same priority level and,
possibly, passive transitions. If the term at hand is performance closed, which means that it 1s completely
specified from the performance standpoint, then neither tangible states nor vanishing states have outgoing
passive transitions.

Given a term E € G, its integrated interleaving semantics Z[E] fully represents the behavior of E
because transitions are decorated by both the action type and the action rate, hence both the functional
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aspects and the performance aspects are described. In order to fully implement the first phase of the
integrated approach of Fig. 1, we need to derive two projected semantic models concerning functionality and
performance, respectively. One can think of obtaining the functional semantics F[E] and the performance
semantics P[E] of term E {rom its integrated interleaving semantics Z[E] by simply dropping action rates
and action types, respectively. As a matter of fact, this is the case for the functional semantics, and also
for the performance semantics whenever only exponentially timed transitions or only immediate transitions
are involved. Below we introduce the definition of the functional semantics, while the definition of the
performance semantics is deferred to Sect. 4 since it requires a more careful treatment due to the possible
coexistence of exponentially timed and immediate transitions.

Definition 3.7 The functional semantics of E € G is the LTS
f[[E]]:(TEaATypea )E,]:aE)
where —— g 7 is the restriction of ——pg to t£ x ATypex TE. [ |

4 Performance Semantics of EMPA Terms

In this section we complete the description of the implementation of the first phase of the integrated approach
of Fig. 1 by showing the performance projection of the integrated interleaving semantics, 1.e. the performance
semantics, for performance closed terms only.

Since in EMPA the durations of timed actions are expressed through exponentially distributed random
variables, it is natural to associate with each term a MC acting as a performance model. Given a term
E € &, its performance semantics P[E], hereafter called Markovian semaniics and denoted by M[E], is
derived by adequately manipulating Z[E]. Formally, M[E] represents the state transition diagram of the
MC associated with F, so it is defined as a variant of a LTS, called probabilistically rooted labeled transition
system (p-LTS), in which there is no initial state but a probability mass function that specifies, for every
state, the probability that it is the initial state.

This section is organized as follows. In Sect. 4.1 we introduce some notions about p-LTSs since they are
the means whereby the semantic model is expressed in this framework. In Sect. 4.2 we recall some notions
about MCs. In Sect. 4.3 we define the Markovian semantics of EMPA terms.

4.1 Probabilistically Rooted Labeled Transition Systems

In this section we present the definition of p-L'TS as well as the related notions of p-isomorphism and
p-bisimilarity we have introduced.

Definition 4.1 A probabilistically rooted labeled transition system (p-LTS) is a quadruple

(S, U, ——, P)
such that:
e S U, —— are defined as for a LTS;
o P:S — Ry is called initial state probability function and is such that >~ ¢ P(s) = 1. [ ]

In the graphical representation of a p-LTS, states and transitions are drawn as in a LTS, and each state
is labeled with its initial state probability unless it is zero. In this paper we consider only p-LTSs whose
set of labels is contained in Ry U Inf, such that the transitions leaving a state are either all labeled with
elements of R4 or all labeled with elements of Inf having the same priority level. The notions of equivalence
for such p-LTSs (p-isomorphism and p-bisimilarity) carry over from the corresponding notions for LTSs. In
particular, p-bisimilarity is developed according to [LS91], so it considers two p-LTSs to be equivalent if any
pair of corresponding states have the same aggregated rate to reach the same equivalence class.

Definition 4.2 Let 7, = (51, Ry U Inf, ——1, P1) and Z3 = (S2, R4 U Inf, ——4, Pa) be two p-LTSs.

e 71 18 p-isomorphic to Zy if and only if there exists a bijection g : S; — S5 such that:
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— for each s € 5
Pi(s) = P2(B(s))

— for each s,s’ € S; and for each Ae Ry U Inf

s Lﬁ s <= B(s) éz B(s")

o 7y is p-bisimilar to Z if and only if there exists an equivalence relation B C (57 U Sa) x (S1 U .S2) such
that:

— for each C' € (S1 U Sq)/B

YT Pis)= D Pufs)

seECNSy s€CNS2
— whenever (s1,$2) € BN (S1 x S2), then for each C' € (S1 U S3)/B

- 5 < by
Min{{A|s1——1 81 As1 €CNSL [} = Min{{A| sa——2s55AsheCNSsl [ ]

4.2 Markov Chains

In this section we recall some notions and properties about MCs [Kle75]. We shall start with the continuous
time variant.

Definition 4.3 A continuous time Markov chain (CTMC) is a continuous time stochastic process X =
{X(t) | t € T} with discrete state space Sx such that, foreachn € N4, dg, ..., ip_1,%n € Sx,t0,...,tn_1,1n €
T where tg < ... < t,_1 < tp, it turns out

Pr{X(tp) =in | X(tn-1) = tn—1 A .. AX (o) = io} = Pr{X () = in | X(tn—1) = n_1} ]

Definition 4.4 Let X be a CTMC.

e The transition matriz of X from time ¢ € T to time ¢’ € T is matrix P x(¢,t') defined by
Px(t,t') = [Pr{X(¥) = j | X(t) = i}}i jesx

The infinitesimal generator of X at time t € T is matrix Qx(?) defined by

. Px(t,t+A)—1
Qx(t) = g, j(D)i jesx = Jim_ Y

where I 1s the identity matrix.

X is a homogeneous CTMC (HCTMC) if and only if its infinitesimal generator is independent of the
time.

The state probability distribution function of X at time ¢ € T is vector wx (¢) defined by
wx (1) = [Pr{X (1) = i}]iesx

e The steady state probability distribution function of X is vector wx defined by
wx = lim 7x(1) [ |
t—o0

A HCTMC X is represented by means of its infinitesimal generator when we wish to determine its state
probability distribution functions, from which performance indices of interest can be derived. Whenever the
steady state probability distribution function exists, it can be determined by solving
ax - Qx = 0
Z ax[i]] = 1
The HCTMC X can equivalently be represenlteeilxby means of the p-LTS

(Sx, Ry, {(i,¢55,7) € Sx x Ry x Sx | ¢;; > 0}, wx(0))

Similar definitions and properties hold for the discrete time variant.
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Definition 4.5 A discrete time Markov chain (DTMC) is a discrete time stochastic process X = {X,, | n €
IN} with discrete state space Sx such that, for each n € Ny, 4g,...,%,-1,%, € Sx, it turns out
PI’{Xn = Zn | Xn—l = in—l AL ./\Xo = Zo} = PI’{Xn = Zn | Xn—l = in—l} [ ]

Definition 4.6 Let X be a DTMC.

e The transition matriz of X at step n € N is matrix Px(n) defined by
Px(n) = [Pr{Xnt1 =J | Xn =i}ijesx

e X is a homogeneous DTMC (HDTMC) if and only if its transition matrix is independent of the time.

o The state probability distribution function of X at step n € N is vector wx(n) defined by
mx(n) = [Pr{X, = i}]iesx

e The steady state probability distribution function of X is vector wx defined by
= I
= Jim a0 .
A HDTMC X is represented by means of its transition matrix when we wish to determine its state probabil-
ity distribution functions, from which performance indices of interest can be derived. Whenever the steady
state probability distribution function exists, it can be determined by solving

1rx~PX = PX
> omxl] = 1
1€Sx

The HDTMC X can equivalently be represented by means of the p-L'TS
(Sx, Riyo11, {(4,pij,J) € Sx x Ryp1) X Sx | pi,j > 0}, 7x(0))

We conclude with the notion of ordinary lumping [Sch84], which results in an aggregation method that
allows an exact analysis of a MC to be carried out on a smaller stochastic process which still is a MC. Exact
analysis refers to the fact that, whenever the steady state probability distribution function of the original
MC exists, the steady state probability of each macrostate of the lumped MC is the sum of the steady state
probabilities of the original states it contains. Though quite helpful, this aggregation should be avoided
when 1t may cause information loss, e.g. as a consequence of merging together states having different weights
with respect to a given performance measure. We now give the definition for the continuous time case (in
the discrete time case, transition probabilities substitute for transition rates).

Definition 4.7 Let X be a HCTMC. A partition A of Sx is an ordinary lumping of X if and only if for
every C;,C; € A and h,l € C;
Z 4k = Z 41,k

keC; keC;
If this is the case, the ordinarily lumped HCTMC X’ obtained from X has state space A and infinitesimal
generator Q'y, where ¢; ; = Zkecj qn x for some h € C. ]

It is easily seen that, if X is a MC and X’ is the MC obtained from X via the ordinary lumping A, then
the p-LTSs underlying X and X’ are p-bisimilar via the reflexive, symmetric and transitive closure of the
relation that associates each state of X with the state of X’ that contains it.
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4.3 Markovian Semantics

The Markovian semantics of a performance closed term 1s a HDTMC or a HCTMC depending on whether
the underlying integrated interleaving semantic model has only immediate transitions or not.

Definition 4.8 Let F € £ be such that Z[E] contains only immediate transitions. The Markovian seman-
tics of E is the p-LTS

MIE] = (1£, Ry 11, —E .M, PE.M)
where:

o — g am is the least subset of 15 x Rjg 1% T/ such that F L)E,M P’ whenever
a,007 a,00¢1 w
p=Y Jw|F—SpF' [}/ Jw|F—eF"}

1 fF=F
. PE,M3TE—>R[0,1],PE,M(F):{ 0 ifF£E -

Definition 4.9 Let E € £ be such that Z[E] contains only exponentially timed transitions. The Markovian
semantics of E is the p-LTS
M[E] = (1E, Ry, ——B,M, Pp.M)

where:

A
¢ — g am 1s the least subset of 1E x Ry x 1E such that ' ——p s F/ whenever
a,u
A=SMpl P )

1 fF=F
. PE,M3TE—>R[0,1],PE,M(F):{ 0 fFZE -

When FE € £ is such that Z[E] contains both exponentially timed and immediate transitions, a HCTMC
can still be derived by removing the immediate transitions and the related vanishing states, which is justified
from a stochastic point of view by the fact that the sojourn time in a vanishing state is zero. We now
present the algorithm transforming Z[F] into M[E] whenever both kinds of transitions coexist. Due to its
generality, such an algorithm can be regarded as an alternative to the technique of the embedded MC, which
has been used e.g. to define the MC underlying a GSPN [ABC84].

The first step of the algorithm consists of

1. dropping action types,

2. removing selfloops composed of an immediate transition (hereafter called immediate selfloops for short),
3. changing the weight of each immediate transition into the corresponding execution probability, and
4. determining the initial state probability function.

Formally, from Z[E] = (1£, Act, —— g, E)) we obtain the p-LTS Pi[E] = (Sg,1, Ry UInf, ——r 1, Pr1)
where: 3

o Sp1=1E.

- a,h
o Let PMq(s) = Melt({{(\,s") | s—— g s’ [}) for any s € Sg1. Then —— g1 is the least subset of
SeE1 %X (R4 U Inf) x Sg 1 such that:

A
— If s is tangible and (A, s') € PM(s), then s ——p 1 5.

3With abuse of notation, we apply function Melt to multisets of pairs whose first components are rates instead of actions.
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Figure 4: Graph reduction rule

— If s is vanishing and there are exactly m > 1 potential moves (007w, 55), 1 < j < m, in PM(s)
Ool,wj/w

such that s; # s, then there are m transitions s —— g 155, 1 < j < m, where w = Z;n:l w; .

1 ifs=F

e Pr1:Sg1 — Ry, Pei(s) = { 0 ifsZE

The k-th step, k > 2, consists of applying the graph reduction rule in Fig. 4 to a given vanishing state
50 € Sg,r—1. With this step we thus consider a fork of immediate transitions that is treated by

1. eliminating the related vanishing state as well as the immediate transitions themselves,
2. splitting the transitions entering the state upstream the fork,

3. removing immediate selfloops created by splitting immediate transitions leaving one of the states
downstream the fork and entering the state upstream the fork, and

4. distributing the initial state probability associated with the state upstream the fork among the states
downstream the fork.

Formally, if we assume that the vanishing state considered at the k-th step is the one in Fig. 4, we build the
p-LTS Px[E] = (Sex, Ry U Inf, —— g &, Pg 1) where:

e Ser=SEr-1— {50}

~ X ~ by
o Let PMy(s) = Melt({] (X, ¢') | s ——Emr_18 A8 Z so B (Split(A,pi),si) | s ——Er-150A1 <1<
n|t) for any s € Sg ;. Then —— g is the least subset of Sg; X (R4 U Inf) x Sg such that:
- X
— If s is tangible, or vanishing but s ¢ {s; | 1 <i < n}, and (A, s') € PM(s), then s —— g 5.

— If s is vanishing, s = s; and there are exactly m > 1 potential moves (c07p;,s;), 1 < j < m,

tp;/p
in PMy(s) such that s; # s, then there are m transitions s —J>E7k s;, 1 < j < m, where
p= Z;nzl p]
Ppgr-1(s) if s¢{si|1<i<n}

o Pgi:Spr — Ry, Pg y(s) = { Pox1(5) + Poa_i(s0) - ps if s = 5

Definition 4.10 Let £ € &£ be such that Z[E] contains both exponentially timed and immediate transi-
tions. The Markovian semantics of E 1s the p-LTS

MIE] = (Se,.m, Ry, —E M, PEM)
obtained by applying the algorithm above. [ |

We conclude by proving the correctness of the algorithm.

Theorem 4.11 Let £ € & be such that Z[E] contains both exponentially timed and immediate transitions.
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(1) For every k € N and s € Sg; vanishing, > {|p| s i)g;c sh=1.
(#i) For every k € Ny, ZseSE,k Pg y(s) = 1.

)
)
(#i7) The elimination of immediate selfloops is correct from the performance viewpoint.
(fv) M[E] is unique.

)

(v) If Z[E] has finitely many states, then the algorithm terminates after O(|1E]) steps.

Proof Let E € &£ be such that Z[E] contains both exponentially timed and immediate transitions.
(1) We proceed by induction on & € Ny:

— If k =1 then the result immediately follows from the definition of ——p ;.

— Let k > 1 and let the result hold for & — 1. Suppose that the fork considered at step k is the one
depicted in Fig. 4, and let s € Sg ;:

Ool’,pu

« If s ¢ {s’ € Sgr_1 | ¥ ——Er_150} then either s is tangible (hence the result is not
concerned with it), or s is vanishing but none of its immediate transitions enters sg, so the
result holds by the induction hypothesis or, if it 1s downstream the fork, by the renormalization
performed at step k.

OOll)
* Let s€{s' € Sgpp_1|5 —D>E7k_1 so}. If s is downstream the fork, then the result trivially
follows by the renormalization carried out at step k. Assume that s is not downstream the

fork. From the induction hypothesis it follows that

Ool’,p ,
YAlpls——Exs'lt =

O p , , OO pgpy

YAlpls——prs'Ns"ZEsol +2 Alpo-pils — mrsilt =
ool/) ool)pl

Spls —pro1s' As' Zsol+po SApi | so——pi1sif} =
Ool’,p

dApls——pr-18Ns Zsoll+po=
Ool’,p

YAlpls——rr1s't=1

(#i) We proceed by induction on k € N:

— If k =1 then the result immediately follows from the definition of Pg ;.

— Let k > 1 and let the result hold for & — 1. Suppose that the fork considered at step k is the one
depicted in Fig. 4. From the induction hypothesis and (¢) it follows that

Yosesn, PE(s) =
Yosespa—{sii<i<ny PEE=1(5) + 221 cicn(PEk—1(si) + P k-1(s0) - pi) =

YoseSmp—{sii<i<n} PER=108) + 21 <icn PEe-1(5:) + Pep-1(50) - 2 o1<i<n Pi =
Yosespy PER-1(5) + PEr-1(s0) =

ZSESE,k—l PEvk_l(S) =1

(#i7) Let us modify the fork of immediate transitions depicted in Fig. 4 by assuming that sy has also an
immediate selfloop labeled with oo 4, where >°""_ | p; + ¢ = 1 due to (i). Let us unfold the immediate
selfloop by introducing the set of states {sq; | j € N4} such that:

— the immediate selfloop is replaced by a transition labeled with oo; , from sg to sg 15

— for all j € N4, s0; has a transition labeled with oc; ,, reaching s;, and a transition labeled with
007,4 Teaching sg ;1.
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(b)

Figure 5: Confluence of the graph reduction rule in absence of immediate selfloops
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Figure 6: Confluence of the graph reduction rule in presence of immediate selfloops
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Starting from sg, the probability of reaching sy ; after j transition executions is ¢’ , while the probability
of reaching s; within j transition executions is Zi;é pi - q". As j grows, these probabilities approach
0 and p; /(1 —q) = pi/ >_r_, Pr, respectively.

(fv) The uniqueness of M[E] stems from the confluence of the graph reduction rule in Fig. 4. To prove
confluence, we proceed by induction on the length of the longest cycle of immediate transitions in Z[E].

— If the length of the longest cycle of immediate transitions is ¢ < 1, then the first step eliminates
all the cycles of immediate transitions (if any). In this case, at each step no immediate selfloop
arises, thus making unnecessary the possible renormalization of execution probabilities at states
downstream the fork. The confluence of the graph reduction rule then follows. Given two forks
of immediate transitions, there are the three cases below:

* There exists a state downstream a fork and upstream the other fork. Fig. 5(a) shows that
confluence holds in this case. This is achieved by property Split(Split(A, p),p’) = Split(A, p-p').

* There exists at least one state downstream both forks. Fig. 5(b) shows that confluence holds
in this case as well.

* There 1s no state shared by the two forks. In such a case, it is obvious that the order in which
the two forks are considered is irrelevant.

— Suppose that the length of the longest cycle of immediate transitions is ¢ > 2, and assume that
the result holds whenever the length of the longest cycle of immediate transitions is < ¢. Consider
the application of the graph reduction rule to one of the states in the cycle:

* If no immediate selfloop arises, the confluence is preserved by this step as shown above.

* If an immediate selfloop arises, the confluence is still preserved by this step as shown in Fig. 6
due to property Split(A, p) Min Split(A, p’') = Split(A,p+ p'). In fact, by exploiting (¢), it
turns out that

d=3 "1 chcnnngi P Pht 2Dicr<mnrsy Pr =
Doi<n<n Py PR =P Pit Yo icpcmnrgy Pr =
Pi =P Pit i <rcmarg Pr =

Di<remPr =P i =1—pj - p;
and

d" =3 ch<nnngi Pt 21 <rcmargj Pi Pr =
Yi<h<nPh = Pit D icramPi Py = Pi D) =
L—pi+pi—pip;=1-pi p
and for each h = 1,... n such that h # ¢
pr+pi Py opaf/d=pp(1+pi-pi/(1=p)-pi)) =
pa(1 =i -pi +pi-p;)/ (L=} - pi) = pn/d
The effect of such an application of the graph reduction rule is to shorten the longest cycle of
immediate transitions, so the induction hypothesis can be exploited.

(v) If Z[E] has finitely many states, then Z[E] has finitely many transitions because F is guardedly
closed. Therefore, the first phase of the algorithm terminates and the number of steps is bounded by
the number of vanishing states in T£. ]

5 Describing Queueing Systems with EMPA

Before continuing with the presentation of the integrated approach of Fig. 1, we wish to dwell upon EMPA.
The purpose of this section is to stress that an algebraic formalism like EMPA provides the designer with a
compositional linguistic support which 1s usually lacking in the performance evaluation field, thereby easing
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the modeling process. As an example, we shall consider a full overview of well known system models such as
queueing systems with memoryless arrival and service processes (some of which have already been described
e.g. in [GHRI3b, Hil96]), in order to exercise all the expressive capabilities of EMPA.

A queuneing system (QS) [KleT5h] is a model largely used for performance evaluation purposes to represent
a service center composed of a waiting queue and a given number of servers, which provide a certain service
(following a given discipline) to the customers arriving at the service center. For example, a QS M/M/n/q/m
with arrival rate A and service rate p is defined as follows:

1. The customer interarrival time is exponentially distributed with rate A.
2. The customer service time is exponentially distributed with rate p.

3. There are n independent servers.

4. There is a FIFO queue with ¢ — n seats.

5. There are m independent customers.

Since the customer arrival process and the customer service process are described as stochastic processes,
in Sect. 5.1 we show how to express with EMPA some frequently occurring probability distributions. Then, in
Sect. 5.2 we model a QS M/M/1/q, and we show that its underlying HCTMC coincides with the Markovian
semantics of the algebraic description in order to stress the correctness of the semantics itself. Afterwards, we
complicate the model by allowing for a service rate which depends on the workload of the system (Sect. 5.3),
by introducing customers requiring different service times (Sect. 5.4) or having different priorities (Sect. 5.5),
by considering the service request of each customer as being composed of several subrequests to be processed
in parallel after being split and before being rejoined (Sect. 5.6), and by considering a network of QSs instead
of a single one where the routing of customers is probabilistic. In each of the cases above we shall succeed
to get the desired EMPA model from the algebraic model of the QS M/M/1/q thanks to compositionality
and the powerful interplay of the three different kinds of actions.

5.1 Phase Type Distributions

In EMPA it is possible to directly express only actions having exponentially distributed durations as well as
zero durations. However, it 1s worth noting that through the interplay of exponentially timed actions and
immediate actions, all the phase type distributions are expressible by means of EMPA.

1 .#Q 1 .LQL e o o L’
(a) Exponential distribution (b) Hypoexponential distribution

1 PN A Ph-1An1
M N %ﬂ.
®
(c) Hyperexponential distribution (d) Coxian distribution

Figure 7: Phase type distributions
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A phase type distribution [Neu8l] is a continuous distribution function describing the time to absorption in
a finite state HCTMC having exactly one absorbing state. Well known examples of phase type distributions
are the exponential distribution, the hypoexponential distribution, the hyperexponential distribution, and
finally the Coxian distribution, which are characterized in terms of time to absorption in a finite state
HCTMC with an absorbing state as outlined in Fig. 7. Since an absorbing state can be modeled by term 0,
the distributions above can be easily represented by means of series parallel combinations of exponentially
timed actions as follows:

o An exponential distribution with rate A € Ry can be modeled by means of term
Frp, 2 <a,A>.0
whose Markovian semantics is p-isomorphic to the HCTMC in Fig. 7(a).

o An n-stage hypoexponential distribution with rates A\; € R4, 1 < ¢ < n, can be modeled by means of
the set of inductively defined terms
Hypoexpy, 5, A,

Hypoexp, Exp
whose Markovian semantics is p-isomorphic to the HCTMC in Fig. 7(b).

<Cl, A1>~Hyp06zpm—1,kg,... A 2<m< n,

yAm? — —

e e

e An n-stage hyperexponential distribution with rates A; € R4, 1 <7 < n, and branching probabilities
pi € Rjo1y, 1 <4 < n, where S pi = 1, can be modeled by means of the set of inductively defined
terms

Hypereffpn,xl,...,xn,pl,...,pn Honiohapryopns

Hm7>\17“~7>\m7p17~~7pm Hm_17>\17~~~7>\m—1yph“'ypm—l + <a, Oolypm>'EIp>\ma 2 <m<n,
Hixp <a, 001 p,>.Frp,
whose Markovian semantics is p-isomorphic to the HCTMC in Fig. 7(¢).

e e e

e An n-stage Coxian distribution with rates A; € Ry, 1 < ¢ < n, and branching probabilities p;, ¢; €
Rjo,1) where p;+¢; = 1,1 <i < n—1, can be modeled by means of the set of inductively defined terms

A
Cozm)\l7~~~7>\m7P17~~~7Pm—17‘]17~~~7(1m—1 = <a, /\1>'(<a’ 0017(11>'Q +
<a, OOLP1>'Cozm—1,>\27~~~7>\myp27~~7pm—17‘]27~~~,(1m—1)a 2<m<n,

Cozy a 2 Frp,
whose Markovian semantics is p-isomorphic to the HCTMC in Fig. 7(d).

The capability of expressing phase type distributions is quite important since many frequently occurring
distribution functions are such or can be approximated by means of them. However, it must be noticed
that in EMPA phase type distributions cannot be described in a direct manner, so they have to be used
carefully. For example, if we consider term Ezp, + Hyperezps, ), 3, p, », then we realize that the right hand
side term takes precedence over the left hand side term, so the whole term cannot be used to express the
choice between an activity whose duration is exponentially distributed and another activity whose duration
is hyperexponentially distributed. To overcome this drawback, the system designer should be enabled to
describe directly any distribution, as we shall discuss in Sect. 9(8).

5.2 Queueing Systems M/M/1/q

In this section we concentrate on QSs M/M/1/q: the absence of the value of the fifth parameter means that
the number of customers is unbounded. How can we model a QS M/M/1/q with arrival rate A and service
rate 7?7 Let a be the action type “a customer arrives at the queue of the service center”, d be the action
type “a customer is delivered by the queue to the server”, and s be the action type “a customer is served by
the server”. Then the QS under consideration can be modeled with EMPA as follows:

* QS /4 2 Arrivals l1a) (Queue ||;ay Server):

— Arrivals 2 <a, A>.Arrivals;
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<a,*>.Queueq,
<a,*>.Queue, | + <d,*>.Queue, _, 0<h<qg—1,
Queue,_, 2 <d,*>.Queue,_,;

|
Q
=
o
=
)
=)
e e

— Server 2 <d, 001 1>.<s, > .Server.

It is worth noting that we have described the whole system as the composition of the arrival process with
the composition of the queue and the server (using action types a and d as interfaces among components),
and that then we have separately modeled the arrival process, the queue, and the server. Since the queue is
independent of both the arrival rate and the service rate, passive actions have been exploited to represent it.
As a consequence, if we want to modify the description by changing the arrival rate or the service rate, only
component Arrivals or Server needs to be modified while component Queue is not affected. Additionally,

the delivery of a customer to the server can be neglected from the performance point of view: this is achieved
by means of the immediate action in component Server.

(@
1 A A A A A
(b)

Figure 8: Semantic models of QS yr/p1/1/4

We conclude by showing the HCTMC M[ @Sy p1/1/,] in Fig. 8(b), which is obtained from the LTS
Z[QS pyaay1yq] in Fig. 8(a), where AQyS stands for Arrivals||{ay(Queuney, [|{ay Server), AQyS" stands for
Arrwvals ||y (Queney, ||{ay <s,p>.Server), and 0 < h < ¢ — 1. We observe that M[[QSM/M 1 q]] is p-
isomorphic to the HCTMC underlying a queueing system M/M/1/q [Kle75]. In [BDG94b] we proved that

this result holds for each QS of the class M/M up to ordinary lumping, thus supporting our claim that we
have captured the correct Markovian semantics.

5.3 Queueing Systems M/M/1/q with Scalable Service Rate

Assume that a QS M/M/1/q with arrival rate A provides service at a speed depending on the number of
customers in the queue. Let us denote by p the basic service rate, and by sf : Ny — Ry the function
describing the scaling factor. This QS can be modeled as follows:

A ,
o SSRQS p/ary1yq = Arrivals l1a (Queney ||1a,1<n<q—1) Server):

— Arrivals 2 <a, A>.Arrivals;
— Queue, 2 <a,*>.Queueq,
Queue,, 2 <a,*>.Queuey | + <dp,*>.Queue, ;, 0<h<qg-—1,
A .
Queue, | = <dy—1,+>.Queue,_»;
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— Server 2 <di,001,1>.Servery + ... 4 <dg_1,001,1>.Servery_q:
* Servery, = <s,sf(h) - p>.Server, 1 <h<gq-—1.

It is worth noting that the structure of SSRQSM/M/l/q is the same as that of QSM/M/l/q. Only component
Server has been significantly modified in order to be able to provide service at a rate depending on the queue
length.

5.4 Queueing Systems M /M /1/q with Different Service Rates

Assume that a QS M/M/1/q must serve two different types of customers. Both types are characterized by
the same arrival rate A, but red customers require a service rate p, whereas black customers require a service
rate pp. Such a situation can arise, e.g., in a computer system where the central unit can be viewed as the
server and the various devices can be viewed as the customers. In this case, service requests can arrive from
several different points and may require different service rates; the type associated with each request singles
out the routing of the request itself. This QS can be modeled as follows:

® DSRQS pynyiyq 2 Arrivals l1a,,ap} (Quene, ||1a, a,) Server):

— Arrivals 2 <ap, A>. Arrivals + <ap, A>. Arrivals;

— Queue, 2 <ap, *>.Quene, + <ap, x>.Queuey,
A
Queue,,, = <a,,*>.Queue,,,,. + <ap, *>.Queue, ., + <d,, x> . Queue,,, 0<|w| <q—2,

A
Queuney,, = <ap, *>.Queney,,, + <ap, x>.Queney,, + <dp, *>.Queue,,, 0 < |w|<q—2,
Queue,.,, 2 <dp,*>.Queune,,, |w|=q—2,
Queuey, = <dp,*>.Queue,,, |w|=q—2;

— Server 2 <dp, 001,1>.<5p, iy >.Server + <dp, 001 1>.<sp, pp>.Server.

Again, note that the structure of DSRQS yr/pr/1/, 1 the same as that of Q5577174 Only the components
have been locally modified in order to be able to treat the two types of customers.

5.5 Queueing Systems M /M /1/q with Different Priorities

Assume that a QS M/M/1/q must serve two different types of customers characterized by the same arrival
rate A and the same service rate . Red customers are assigned a priority level » > b, where b is the priority
level assigned to black customers. There are two cases.

In the first case, we assume that the priority mechanism only affects the queueing discipline, i.e. we assume
that possible preemption on the customer being served cannot be exercised. This QS can be modeled as
follows:

* POQSy/m/iyg 2 Arrivals || {4, a) (Queneq o |14, 4, Server):

— Arrivals 2 <ap, A>. Arrivals + <ap, A>. Arrivals;

— Queueg g 2 <arp,*>.Queuey o + <ap, *>.Queue y,
Queue; 2 <ap,*>.Queue; o+ <ap,*x>.Queue; | + <dy,*>.Queuve; 1,5, 0<i<qg—1,
Queuey ; 2 <arp,*>.Queuey ; + <ap,*>.Queuey ;4 + <dp, *>.Queuey ;_y, 0<j<qg—1,

A
Queuem» = <a,, *>.Queuei+17j + <ay, *>.Queueiyj+1 +
<dp,x>.Queue;_; ; + <dp,*>.Queue; ;_1, 0 <iANO<jAi+j<qg-—1,

A

Queue,_ o = <dy,*>.Queue,_, ,
A

Queuey . = <dp,*>.Queuey ,_,

Queue; ; 2 <dp,*x>.Queue;_; ; + <dp,*>.Queue; ;_y, 0 <IANO<jANi+j=q—1;

J
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— Server 2 <dp, 00, 1>.<s, p>.Server + <dp, 005 1>.<s, pt>.Server.

Note that the precedence of red customers over black ones has been enforced by means of the two immediate
actions with different priority levels in Server.
In the second case, we assume that preemption on a black customer being served can be exercised by

red customers. This QS can be modeled as follows (Arrivals and Queue; ;

; are omitted since they stay the
same):

A ,
* PPQSy/mjyg = Arrivals||{a, a) (Queneq o |14, a,} Server):

A
— Server = <dy, 00, 1>.Server, + <dp, 003 1>.Servery:

A
*x Server, = <s, u>.Server;

* Servery 2 <s, u>.Server + <dp, 00, 1>.<s, u>.Servery.

Note that, due to the memoryless property of the exponential distribution, there 1s no difference between
the preemptive restart policy (i.e., the preempted customer restarts from the beginning) and the preemptive
resume policy (i.e., the preempted customer resumes from the point at which it has been interrupted).

5.6 Queueing Systems with Forks and Joins

In this section we want to model a QS with a fork and a join that is composed of n QSs M/M/1/q with
the same service rate p operating in parallel. The service request r of each customer arrived at the QS is
divided by the fork into n subrequests sr;, 1 < i < n, that are then sent to the n QSs M/M/1/q. After
being served, the n subrequests sr, 1 < ¢ < n, are delivered to the join; here they are merged together in /
and the whole request is considered fulfilled. This QS can be modeled as follows: *

A ,
o FJQS = In || (Fork||{sr,|1<i<n} Center||{s 1<i<ny Join) ||y Out:

— In 2 <r A>.In;
A
— Fork = Flei] gy Flez2] iy - - - lliry Flenl:
x I 2 <r, x>.<s1, 001 1> .1
¥ oy = {(sr,s1) U ld apype—qsry, 1 <0< m;
A
— Center = C[o1] |0 Cleb] o - - -lo Clel,):
x O £ Queue, ||{d} Server:
- Queue, 2 <sr, *>. Queuneq,
Queue, 2 <sr, *>. Queuey, g + <d,*>.Queuwe,_;, 0<h<q—1,
A
Queue,_; = <d,+>.Queue,_,;
- Server é <d, 00171>.<8,/¢L>.<87”/, 001,1>~Se7nve7n;
b = {(srsm), 7, 570} U Bty oy 1 <0<
A
= Join = Jo[e{]||{ry Joles] iy - - Algrry Jolen]:
* Jo 2 <sr!' x> Jy,

Jn 2 <sr! x> . Jpp1 + <r' x> Jp_1, h >0
* 30;/ = {(57”/, Srli)} U IdAType—{sr’}a 1 S ? S n;

— Oul 2 <r! o001 1>, 0ut.

4We denote by Id g the identity function over set S.
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Note that the availability of the functional relabeling operator has allowed us to obtain more compact
algebraic representations of components having the same structure but differring for some action types only.
Moreover, note the n-way synchronization over » among the fork components, and the n-way synchronization
over ' among the join components.

5.7 Queueing Networks

A queueing network (QN) is composed of a set of QSs linked to each other. In general, every QS can receive
customers from the outside (external sources), from the other QSs in the network, and from itself (feedback
paths). The case of open QNs, where interactions with the outside are allowed, is particularly interesting
because this kind of QN can be used to describe store and forward packet switched communication networks.

Let us focus our attention on an open QN composed of n QSs M/M/1/q with service rates p1, pa, . . ., fn,
respectively. Assume that there are n external sources of customers with rates Ai, A, ..., A, respectively.
Let us denote by r; ; and p; ; the routing action type and the routing probability, respectively, from QS ¢ to
QS j or the outside (j = n + 1). This QN can be modeled as follows:

A
. QN = QSl ||Rz QSZ ||Ra . ||Rn QSn
- QS 2 Arrivals; ||{al}(QueueZ»70 ||{dl,m,,} Server;), 1<i<mn:

, A ,
x Arrivals; = <ag, \i>.Arrivals;;
A
* Queue; o = <aj, *x>.Queue; | + <ry i, %> Queue; | + ...+ <rp i, k> Queue;

Queue; j, = <a;, *>.Queue; g + <rig,*> Queue; joq + ...+ <rp i, *> Queue; g +
<d;, *>.Queueiyh_1, 0<h<qg—1,

A
Queue; ,_ = <di,*>.Queue; ,_,:

g

A
¥ Server; = <d;, 001 1>.<s;, ;> . Router;:
A
- Router; = <ry 1,001, ,>.5erver; + ...+ <Py pnq1,001 p, .4 > SCTVET;

— Ry ={rij,ril1<i<j}, 2<j<m.

Observe that the description of the QN has been obtained by simply composing the descriptions of the single
QSs. Furthermore, routing probabilities have been easily specified by means of the weights of immediate
actions.

6 A Notion of Integrated Equivalence for EMPA

In order to complete the implementation of the first phase of the integrated approach of Fig. 1, we need to
equip EMPA with a notion of integrated equivalence in order to achieve () the capability of performing an
integrated analysis, i.e. without building projected semantic models, (#¢) semantic compositionality, i.e. the
possibility of studying separately the various system components thanks to the congruence property, and
(#i7) consistency with respect to the notion of ordinary lumping and its mathematical properties. Note that
the integrated equivalence allows for a qualitative analysis, because it tells us whether two terms represent
two concurrent systems with the same functional and performance properties regardless of their values. In
order to know whether a functional property holds, or the value of a performance measure, we have to study
the projected semantic models of (the simplest) one of the two terms.

The purpose of the notion of integrated equivalence is to relate terms describing systems that are indis-
tinguishable from the point of view of an external observer, i.e. having the same functional and performance
properties. As it turns out, it is straightforward to define two projected equivalences on the two projected
semantic models in the following way.

Definition 6.1 Let Eyi, Fs € G. We say that Ey is functionally equivalent to Fo, written Ey ~p E5, if and
only if F[E1] is bisimilar to F[F2]. [ |
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Definition 6.2 Let Ey, I/ € £. We say that Ey is performance equivalent to Eo, written By ~p Ey, if and
only if M[E1] is p-bisimilar to M[E4]. [ |

As a consequence, a natural candidate notion of integrated equivalence would be ~pp =~p N ~p. The
problem is that ~pp is not useful as it is not a congruence. As an example, if we consider terms

E, = <a,A>0+<b,p>.0

b, <a, p>.0+ <b, A>.0
where A # p, it turns out that £y ~pp B2 but 1|31 0 %p Eo||31 0 because the left hand side term can
execute only one action with rate A while the right hand side term can execute only one action with rate
pt. The example above shows that ~pp 1s unable to keep track of the link between the functional part and
the performance part of the actions. This means that to achieve semantic compositionality, it 18 necessary
to define an equivalence based on the integrated semantic model. Incidentally, this is even convenient with
respect to ~pp, since it avoids the need of building the two projected semantic models and checking them
for bisimilarity and p-bisimilarity, respectively.

In order to define an integrated equivalence in the bisimulation style, we can follow the guideline below:

e Active actions should be treated according to the notion of probabilistic bisimulation proposed in [LS91],
which consists of requiring a bisimulation to be an equivalence relation such that two bisimilar terms
have the same aggregated probability to reach the same equivalence class by executing actions of the
same type and priority level.

— As far as exponentially timed actions are concerned, the notion of probabilistic bisimulation must
be refined by requiring additionally that two bisimilar terms have identically distributed sojourn
times. For example, if we consider terms £y = <a, A>.F+<a, u>.G and Ey = <a,2-A>.F+<a,2-
p>.G, then both transitions labeled with a, A and a, 2- A have execution probability A/(A+ ), and
both transitions labeled with a,  and a, 2y have execution probability /(A4 ), but the average
sojourn time of F is twice the average sojourn time of E5. Due to the race policy, requiring that
two bisimilar terms have identically distributed sojourn times and the same aggregated probability
to reach the same equivalence class by executing exponentially timed actions of the same type
amounts to requiring that two bisimilar terms have the same aggregated rate to reach the same
equivalence class by executing exponentially timed actions of the same type [HR94, Hil96, Buc94].

— As far as immediate actions are concerned, the notion of probabilistic bisimulation must be re-
stated in terms of weights. As a consequence, two bisimilar terms are required to have the same
aggregated weight to reach the same equivalence class by executing immediate actions of the same
type and priority level [Tof94].

e Passive actions should be treated by following the classical notion of bisimulation [Mil89]. Thus,
bisimilar terms are required to have the same passive actions reaching the same equivalence class,
regardless of the actual number of these passive actions.

e Finally, priority levels should be treated carefully. It might seem useful to be able to write equations like
<e, 001> E+ <d,0op > F ~ <d, 0op > F if I > 1 or <a,A>.E 4 <b, 001> F ~ <b,001,>.F.
The problem is that the applicability of such equations depends on the context: e.g., terms F; =
(<a, A>. E4<b, 001> F) ||{p3 0 and Eo = (<b, 007, >.F") ||31 0 are not equivalent because £ can ex-
ecute one action while /5 cannot execute actions at all. To solve the problem, we follow the proposal
of [BBK96] by introducing a priority operator “©(_)”: priority levels are taken to be potential, and
they become effective only within the scope of the priority operator. We thus consider the language
Lo generated by the following syntax

E:=0|<a,\>.E|E/L|E[g] |&E)|E+E|E|sE|A
whose semantic rules are those in Table 1 except that the rule in the first part is replaced by
(<a,\>, B') € Melt(PM (E))

aA
E—— FE
and the following rule for the priority operator is introduced in the second part
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PM(O(FE)) = Select(PM(E))
It is easily seen that EMPA coincides with the set of terms {O(F) | E € £}. As explained in [BG98],
the priority operator is not part of EMPA in that useless from the modeling point of view. We have
therefore preferred to develop the equivalence theory for a slightly changed language in order not to
force the designer to unnecessarily burden the algebraic models of systems with priority operators.

All the conditions above that should be met in order for two terms to be considered equivalent can be
subsumed by means of the following function expressing the aggregated rate with which a term can reach a
class of terms by executing actions of a given type and priority level.

Definition 6.3 We define partial function Rate : (Go x AType x APLev x P(Go)) —o> ARate by
- a,A -
Rate(E,a,l,C)= Min{{\ | E—— F’' A PL(<a,A\>)=IANE € C|} u

Now we are in a position of defining the notion of integrated equivalence and showing its properties.
Proofs of results reported in this section can be found in [BG98].

Definition 6.4 An equivalence relation B C Go x Gg is a strong extended Markovian bisimulation (strong
FEMB) if and only if, whenever (E1, E2) € B, then for all a € AType, | € APLev and C' € Go /B

Rate(Eq,a,l,C) = Rate(Fs,a,l,C)
In this case we say that Fy and Es are strongly extended Markovian bisimilar (strongly EMB). [ |

Proposition 6.5 Let ~gpp be the union of all the strong EMBs. Then ~gyp is the largest strong EMB.
| |

Definition 6.6 We call ~gyp the strong extended Markovian bisimulation equivalence (strong EMBE). R
Theorem 6.7 ~gyp is a congruence for Gg. [ |

Example 6.8 Consider a QS M/M/n/n with arrival rate A and service rate . The QS at hand can be
given two different descriptions with EMPA: a state oriented description where the focus is on the state
of the set of servers (intended as the number of servers that are currently busy), and a resource oriented
description where the servers are modeled separately [VSSB91]. The state oriented description is given by

QS?&/M/”/” = Arrivals||{4y Serversg
Arrivals 2 <a, A>.Arrivals
Serversg 2 <a, *>.Servers;
Serversy, 2 <a,*>.Serverspp1 + <s,h-p>.Serversp_1, 1 <h<n-1
Serversy, 2 <s,n - pu>.Servers,_i

whereas the resource oriented description is given by

st\;/M/n/n 2 Arrivals |l {ay Servers
Arrivals 2 <a, A\>.Arrivals
Servers e SleSle- oS
S—_—
S = <a,x>.<s,u>.5

Since in these representations immediate actions do not occur, we have that @(QS?&/M/”/”) ~EMB
QS?&/M/”/” and @(QSﬁ/M/n/n) ~EMB QS?&/M/”/”. We now take advantage of the fact that ~gyp is a
congruence: to prove QS?&/M/”/” ~EMB QS?&/M/”/”, it suffices to prove Serversy ~gyp Servers. This is
the case because of the strong EMB (up to ~gayp) given by the reflexive, symmetric, and transitive closure
of the relation made out of the following pairs of terms:

Serversg, SllgS|lo---|lo S
Serversy, <s,pu>.S|lgSp---lg S
Serversy, <s,p>.S|lg<s,pu>.S|p...llo S

‘e

Servers,, <s,pu>.S|lg<s,pu>.Sllp...llo <s,p>.S [ |
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Theorem 6.9 Let B, Ey € G. If By ~gyp Eo then By ~p E5. [ |
Theorem 6.10 Let By, Fs € £. If By ~gyp F2 then By ~p E5. [ |

Corollary 6.11 Let By Es € €. If Ey ~gyp FEo then the coarsest ordinary lumping of M[E1] is p-
isomorphic to the coarsest ordinary lumping of M[FE>]. [ |

Theorem 6.12 Let £_.., be the set of terms in £ whose integrated interleaving semantic model does not
contain internal immediate transitions, and let £y, Fy € £_;oo. Then E| ~gyp E9 if and only if, for all
F € G and S C AType — {7} such that Fy + F, Fa + F, FE1||s F, E2l|s F € £—;c0, it turns out that
E1+F~FpEz—l—FandElngFNFpEzHSF. | |

The first three results reveal the adequacy of ~gap from both the functional point of view and the per-
formance point of view, and justify the fact that the notion of integrated equivalence has been developed
according to the bisimulation style, the main reason being that a clear connection with the notion of ordi-
nary lumping has been established. In fact, Corollary 6.11 states that whenever two terms are equivalent
according to ~gyp, then their coarsest ordinarily lumped Markovian semantics are the same, which means
that the two terms have exactly the same transient and steady state performance characteristics. The fourth
result shows that ~gpp 1s the coarsest congruence contained in ~pp as far as terms whose integrated in-
terleaving semantic model does not contain internal immediate transitions are concerned, thereby stressing
the need to define the integrated equivalence directly on the integrated semantic model in order to allow for
compositional reasoning.

We conclude by recalling that the interested reader can find in [BG98] a sound and complete axiomati-
zation of ~pgpp for nonrecursive terms, as well as an ~gyp checking algorithm (a variant of which can be
used to calculate the coarsest ordinary lumping of a MC).

7 Integrated Net Semantics of EMPA Terms

In order to implement the second phase of the integrated approach of Fig. 1, we must provide each EMPA term
with a net semantics accounting for both functional and performance aspects. As explained in Sect. 1, a good
candidate for the integrated net model 1s the class of GSPNs, because they take into account performance
aspects since the beginning of the design process, and are supported by tools for the analysis of projected
models.

This section is organized as follows. In Sect. 7.1 we recall some notions about GSPNs and we focus our
attention on an extension of them, acting as semantic model in this framework. In Sect. 7.2 we define the
integrated net semantics for EMPA. The consistency of this semantics with respect to the integrated inter-
leaving one is assessed in Sect. 7.3 by showing that it satisfies the functional and performance retrievability
principles, while its completeness is evaluated in Sect. 7.4 by showing that it meets the concurrency principle.

7.1 Passive Generalized Stochastic Petri Nets

In this section we shall be concerned with the class of the GSPNs [ABC84, ABCC87]. They are essentially
place/transition nets [Rei85] equipped with inhibitor arcs whose transitions are either exponentially timed or
immediate (with priority levels and weights) and have rates that can depend on the current marking M ey
of the net. Since GSPNs do not admit passive transitions, and since we need passive transitions to carry out
the translation of EMPA passive actions, we propose below an extension of GSPNs where passive transitions
are included.

Definition 7.1 A passive generalized stochastic Petri net (PGSPN) is a tuple
(Pa Ua Ta MOa La W)
such that:

e P is a set whose elements are called places;

o U/ = UMusin(P) g a set whose elements are called labels;
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T C Mugn(P) X Pan(P) x U x Mugn(P) whose elements are called transitions;

My € Mugn(P) is called the initial marking,

o L:T — APLev, called priority function, is such that:

— L(t) = =1 if ¢ is passive;

— L(t) = 0 if t is exponentially timed;

— L(t) € N is the priority level of ¢ if ¢ is immediate;

W:T — ({+}U Rfl\_/luf’"(P)), called weight function, is such that:

— W(t) =x%1f L(t) =-1;
- W() e ]Rfl\_/luf’"(P) is the rate of the exponential distribution associated with ¢ if L(¢) = 0;
— W(t) € RY™ ™) is the weight of ¢ if L(t) € N.. »

In the graphical representation of a PGSPN, places are drawn as circles and transitions are drawn as either
boxes (if exponentially timed), bars (if immediate), or black boxes (if passive), with the appropriate labels.
If the current marking of the net is M ypr, we draw Meyq-(p) black dots (called tokens) in every place p:
the current marking (i.e., the current state) of the net is then given a representation distributed among

places. Each transition ¢ can be written as (*¢,°t) L}t’ where *¢ is the preset of t (places where tokens
are consumed), °¢ is the inhibitor set of ¢ (places where tokens must be absent), u; is the label of ¢, and ¢*
is the postset of ¢ (places where tokens are produced). Places and transitions are linked as follows: given a
transition t, there is an arrow headed arc from each place in *t to ¢, a circle headed arc from each place in
°t to ¢, and an arrow headed arc from ¢ to each place in ¢*.

Definition 7.2 Let N = (P,U, T, My, L, W) be a PGSPN.

o A marking of N is an element of Mug,(P).

o Transition ¢ is enabled at marking M if and only if *¢ C M and dom(M)N°t = (). We denote by E(M)
the set of transitions enabled at marking M.

e Transition t € E(M) can fire if and only if either L(¢) = —1 or L(t) is the highest priority level among
the transitions in F(M). The firing of ¢ produces marking M’ = (M & *t) @& t*, written M [us) M.

o The reachability set R(M) of marking M is the least subset of Mug, (P) such that:
— M € R(M);
— if My € R(M) and My [us) Ma, then My € R(M).

o The reachability graph (or interleaving marking graph) of N is the LTS

Rg[[N]] = (R(MO)’U’ [>’M0) |

If U = Act, then from RG[N] we can extract the functional semantics F[N] and, provided that RG[N] has
no passive transitions, also the Markovian semantics M[N]. Since in the following inhibitor arcs will not

U
come into play, i.e. inhibitor sets will be empty, each transition ¢ will be written as *¢ — e
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7.2 Integrated Location Oriented Net Semantics

The integrated net semantics of a term £ € G is obtained by resorting to a suitable extension of the approach
followed in Sect. 3.2. The idea [DDM88, Old91] consists of associating with every term E a net such that:

1. Net places correspond to the sequential subterms of £ and its derivatives.
2. Net transitions are defined by induction on the syntactical structure of the sets of sequential terms.

3. Net markings correspond roughly to E and its derivatives.

This approach is called location oriented because all the information about the syntactical structure of terms
is encoded within places.

In this section we adapt the proposal of [Old91] to our stochastically timed framework. To be more
precise, we first introduce the syntax of net places, then we inductively define net transitions, and finally we
present nets associated with EMPA terms.

7.2.1 Net Places

The first step in the definition of the integrated net semantics consists of establishing a correspondence
between net places and sequential terms, thereby inducing a correspondence between net markings and
terms.

Definition 7.3 The set V of places is generated by the following syntax

Vi=0]<a, > E|V/L|V[e]|V+V |V]sid|id|sV]A
where L, S C AType — {r}. We use V, V', ... as metavariables for V, and Q,Q’, ... as metavariables for
MUﬁn(V) | |

The main difference with respect to the syntax of EMPA terms (Def. 2.1) is that the binary operator “_||g ”
has been replaced by the two unary operators “_||s id” and “id ||s -”. This is the means whereby it is possible
to express the decomposition of terms into sequential terms mapped onto places.

Definition 7.4 The decomposition function dec : G — Mug, (V) is defined by induction on the syntactical
structure of the terms in G as follows:

) ={<a,A>.E;
ec(B)/L={V/L|V € dec(E)|};

ce(B)pl ={{VIg] | V € dec(E) [};

.
=
o
=}
A

2
v
&

d
d

AVilsd [V € dec(Er) [} & {lad]|s V |V € dec(E2) [};
o dec(A) = dec(E)if A2 I,
where ) € Mugn(V) is complete if and only if there exists E € G such that dec(E) = Q. [ ]

The decomposition function is well defined because we consider only guardedly closed terms. It is injective
as well if we identify each constant with the right hand side term of its defining equation, and it assigns
place sets, rather than multisets, to terms. Note that the decomposition function embeds the syntactical
structure of terms into places.
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(norm(<a, \>,V, f), Q) € melts(melt,(PM(Q)))
norm(<a,)~\>,V,f)

Q Q'

PM({ <a,\>.E}) = { (norm(<a, \>, <a,\>.E, 1), dec(E)) |}

PM(Q/L) = {| (norm(<a,\>,V/L, f),Q'/L) | (norm(<a,X>,V, f),Q") € PM(Q)Aa ¢ L} &
{l(norm(<r, A>, V/L, f),Q'/L) | (norm(<a, A>,V, ), Q") € PM(Q) Aa € L[}

PM(Q[e]) = {l (norm(<p(a), A>, V[l f), Q'l¢]) | (norm(<a, A>,V, ), Q) € PM(Q) |}

PM((Q1 + Q2) ® Qs) = {| (norm(<a,A>,V +id, [),Q") | (norm(<a, 3>V, [),Q') € PM(Q1 ® Qs) |}
if Q1 not complete A Q2 complete A dom(Q1) N dom(Qs) =0

PM((Q1 4 Q2) ® Qs) = {| (norm(<a,\>,id + V, ), Q') | (norm(<a, >V, f),Q") € PM(Q: & Qs)
if Q1 complete A @2 not complete A dom(Q2) N dom(Qs) =0

PM(Q1 + Q2) = {l (norm(<a,X>,V +id, f),Q") | (norm(<a, \>,V, f),Q") € PM(Q1) [} &
{ (norm(<a, A\>,id + V, ), Q") | (norm(<a,A>,V, ), Q) € PM(Q2) [}
if @1 complete A @2 complete

PM(Q||s id) = {| (norm(<a, A>,V||s id, f), Q' ||5 id) | (norm(<a, \>,V, f),
PM(id||s Q) = {| (norm(<a, A>, id||s V, f),id ||s Q") | (norm(<a,A\>,V, f),

PM(Q1||sid @ id ||s Q2) = { (norm(<a, max(A, 1)>,V, ), Q) ||s id & ud Ils @3)
a € SAmMInA L) =* A
(norm(<a,A\>, Vi, f1), Q1) € PM(Q1) A
(norm(<a, i>,Va, f2),Q4) € PM(Q2) A
(A=fi=xAV=VilsidAf=fi-f2)V
AERLUIMfAV =Vi|lsidAf=f)V
(eERLUInfAV =id||sVaANf=1)]}

PM(Q) Na ¢ S|}

Q') €
Q') e PM(Q)Nag S|
|

~ ~ norm(<a,A>V, ")
norm(<a, A>,V, f) = <a, Split(/\, f/ Zﬂ f/ | Q1 Qa2 N Q C M yrr |})>

melty (PM) = {(norm(<a,A>,V, f),Q) | 3f' € Ny4. (norm(<a,/~\>~, V,f),Q) € PM A
F= S0/ | (norm(<a, 3.V, /). Q) € PM )}

melts(PM) = {(norm(<a, A>V, H,Q) 1
i € ARate. IV € V' (norm(<a, p>, V', ),Q) € PM A
A= Min{ ¥ | (norm(<a,¥>,V", f),Q) € PM A PL(<a,¥>) = PL(<a, i>) [} A
V = inner_yqa({V" | norm(<a,3>,V" f),Q) € PM A PL(<a,¥>) = PL(<a,1>)})}

Table 2: Inductive rules for EMPA integrated location oriented net semantics
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7.2.2 Net Transitions

The second step in the definition of the integrated net semantics consists of introducing an appropriate
relation over net places whereby net transitions are constructed. Following the guideline of Sect. 3.2, we
define the transition relation —— as the least subset of Mug, (V) x ActMusin(V) o Mugn (V) generated
by the inference rule reported in the first part of Table 2, which in turn is based on the multiset PM (Q) €
/\/luﬁn(ActM“f’"(V) X Mugn(V)) of potential moves of @@ € Mug, (V) defined by structural induction in the
second part of Table 2.

These rules are strictly related to those in Table 1 for the integrated interleaving semantics of EMPA
terms. The major differences are listed below and are clarified by the corresponding upcoming examples:

1. There are three rules for the alternative composition operator, instead of one. In the first two rules only
a part of the sequential terms needs to have an alternative, and such a part is not complete whereas its
alternative is. This guarantees that none of the sequential terms in the complete alternative has been
previously involved in an execution, so the noncomplete alternative has not been discarded yet due to
an action previously executed by a sequential term in the complete alternative (see Ex. 7.5).

2. There are three rules for the parallel composition operator, instead of one. This is a consequence of
the distributed notion of state typical of nets (see Ex. 7.6).

3. There are no rules for constants. The treatment of constants has been already embodied in function
dec (see Def. 7.4), which is used in the rule for the prefix operator.

4. Function Select does not appear because 1t is unnecessary, since the race policy is included in the net
firing rule, as well as difficult to implement, due to the distributed notion of state (see Ex. 7.7).

5. Rate normalization is carried out through function norm : (Act x V' x N4 ) — Act™®ri2(Y) defined
in the third part of Table 2, where )’ is generated by the same syntax as ) except that V + V is
replaced by V + ¢d and id + V. In order to determine the correct rate of transitions deriving from
the synchronization of the same active action with several independent or alternative passive actions
of the same type, function norm considers for each transition three parameters: the basic action, the
basic place and the passive contribution. The basic action is the action that will label the transition
after the normalization of its rate. The basic place is the place contributing with the basic action
to the transition (see Ex. 7.8). The passive contribution is the product of the number of alternative
passive actions of places contributing to the transition with such actions (see Ex. 7.9). These three
parameters are initialized by the rule for the prefix operator and then modified by the third rule for the
parallel composition operator: the second parameter is modified by every rule. The normalizing factor
for a given transition is the ratio of its passive contribution to the sum of the passive contributions of
the enabled (see Ex. 7.10) transitions having the same basic action and the same basic place as the
transition at hand. Unlike function Norm, function norm comes into play not only in the case of a
synchronization. Again, this is a consequence of the distributed notion of state.

6. Potential move merging is carried out through functions melt; : /\/luﬁn(ActMuf’"(V) X Mugp(V)) —
Prn(Act™MU1mV) s Mugn (V) and melly = Pan(Act™™ V) 5 Mug, (V) — Pn(ActMurinV)
Mugn(V)) defined in the fourth part of Table 2. Function melt; merges the potential moves having
the same basic action, the same basic place and the same postset by summing their passive contributions
(see Ex. 7.9). Function melts merges the potential moves having the same basic action type, the same
priority level, the same passive contribution and the same postset by applying operation Min to their
basic action rates: since the basic places of these potential moves can differ only due to “_ + id” or
“ed + 7 operators, and since the basic place of the resulting potential move must be uniquely defined
in order for function norm to work correctly, the choice is made by taking the basic place having the
innermost “_+ id” operator (see Ex. 7.11).

Example 7.5 Consider term
E = (<a, A>.0]lg <b, p>.0) + <c,v>.0
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whose decomposition is given by
dec(E) = {(<a,A>.0]p id) + <c,v>.0, (id ||p <b, p>.0) + <c,y>.0[}

By applying the rules in Table 2, we get the following transitions
norm(<a, >, (<a,A>.0 ||g 1d)+1d,1)

{l(<a,A>0]lg id) + <c,v>.0} 101lo 2d [}
] norm(<b, >, (id || g<b, 1>.0)+14d,1) ]
I (e flp <b, p>.0) + <c,7>.01 {lad|ls O}
norm(<e,y> td4<e,v>.0,1)
dec(E) 10}

If dec(FE) is the current marking then all the transitions above are enabled and firing the first transition
results in marking {| 0||g id, (id ||g <b, p>.0)+<c,¥>.0 [} which cannot be the preset of any transition labeled
with action type ¢, because the execution of either <a, A> or <b, > prevents <c¢,v> from being executed
according to the intended meaning of E. This fact is detected by the rules in Table 2, 1.e. they generate no
transition labeled with action type ¢ for the marking above, since the alternative id ||y <b, >.0 of <¢,v>.0
is not complete.

To understand the presence of ()3 in the first two rules for the alternative composition operator, let us
now slightly modify term £ in the following way

E' = (<a, A>.<b,%>.0||{py <b, p>.0) + <c,v>.0
where
dec(E') = { (<a, A>.<b,+>.0]|qp} id) + <c,v>.0, (id || oy <b, p>.0) + <c,y>.0[}

By applying the rules in Table 2, we get the two transitions
norm(<a,)\>,(<a,)\>.<b,*>.g||{b} id)+14d,1)
{ (<a, A>.<b, 4> 0|2y 1d) + <e,v> .0 {l <b, %> 0110y 2d }
norm(<e,y> td4<e,v>.0,1)
dec(E") 1)

If dec(E') is the current marking then all the transitions above are enabled and firing the first transition
results in marking {| <b,*>.0 |3y ¢d, (id |[{py <b, p>.0) + <c,¥>.0[} which is the preset of the following tran-
sition

] ] norm(<b, 1>, (id || (5y<b,1>.0)+14d,1) o
{1 <b, x>0 1]y 1d, (id [[{5) <b, p>.0) + <c,y>.0[} 101110y 2d, id [[ 11 O }

If Q5 were not taken into account, then the transition above would not be constructed. [ |

Example 7.6 Consider term
E=<a,A>0]p<b, >0

whose decomposition is given by

dec(E) = { <a,A>.0]|p id, id ||y <b, p>.0[}
By applying the rules in Table 2, we get the two independent transitions

. ] norm(<a,)~\>,<a,)~\>.g||m ud,1) ]

1<, A>.0]lp id [} {101[p 2d [}
) - norm(<b, i>,id || ¢<b,>.0,1) )

id g <b, >0} S Qidleoy .
as expected. If we replaced the three rules for the parallel composition operator with a single rule similar to
that in Table 1, then we would get instead the two alternative transitions

norm(<a,)~\>,<a,)~\>.g||m ud,1)

dec(E) {101lp 1d, id [lg <b, >0}
norm(<b, >, id || p<b, £>.0,1) - o
dec(E) 1<, 3> 0l id, id ||y O
which are not consistent with the fact that the two subterms of E are independent, thereby resulting in a
violation of the concurrency principle (see Sect. 7.4). ]

Example 7.7 Consider term
E=(<a,A>.0+ <c¢,0011>.0) |13 (<, p>.0 + <c, >.0)
whose decomposition comprises places V1 ||{.} id and id ||{.} V2 where
Vi = <a,A>.04<c,0011>.0
Vo = <bp>0+ <e,x>.0
By applying the rules in Table 2, we get the three transitions

34



norm(<a,X>,(<a,X>.041d) | (o} ¢d,1)

{ Vl”{c} i [} {|Q||{c} id [}
] norm(<b, i>,id || oy (<b,1>0+id),1) ]
{ladlge V2 [} {lad |y O
norm(<e,001,1>,(1d4<e,001,1>.0) || {3 d,1) o
dec(E) {1 0llycy id, 2d Iy Ot

If dec(F) is the current marking then all the transitions above are enabled, but the third transition prevents
both the first one and the second one from firing: this could not be caught by means of a function similar
to Select because the three transitions have different presets. [ |

Example 7.8 Consider term
E = (<a, >0t} <a,*>.(040)) + (<a, A>.0]|{a} <a,*>.0)

whose decomposition comprises places (Vi ||{a} id) + (V1 ||{a} id), (V1 |l{a} id) + (id||gay V3), (id |[{a} Vo) +

(V1 [l{ay 2d) and (ud ||gay V2) + (¢d ||{a) V5) where

T = <a,A>.0
Va = <a,x>.(0+0)
Vs = <a,x>.0

By applying the rules in Table 2, we get the foﬁowing two transitions

norm(<a, x> (Vi || {a) id)+2d,1) o

dec(E) {101lay id, id[[{a1 (0 + 0) }
norm(<a, x> id+(Vi || (a3 1d),1) o
. dee(E) — {10y id,2d |lyay O .

If dec(F) is the current marking then both transitions are enabled and the normalizing factor is 1 for both
transitions, as expected. This example motivates the use of V' instead of V for expressing the basic place: if
V were used, then the two transitions above would have the same basic place (beside the same basic action),

so they would be given the wrong normalizing factor 1/2 by function norm. ]

Example 7.9 Consider term
E=<a,A>.0]|{a((<a,*>.0 + <a, x>.0) ||p <a,*>.0)

whose decomposition comprises places V1 ||{a} id, id ||{4} (V2 ||g id) and id ||;4)(¢d ||y V3) where
Vi = <a,A>.0
Va <a,*>.0+ <a, *>.0
Vs = <a,x>.0

By applying the rules in Table 2, we get the following two transitions

norm(<a,X>V1 || {43 ¢d,2)

I Vill{ay id, d |[{a3 (Va2 |lp id) [} 1011ay 7d, id |11a3 (O l]g id) [}
norm(<a, >V ||{a} ud,1)

IVilliay id, 2d |l gay (ed Jlo V) [} {101[1ay 1d, id || {ay (2d |[9 0) [}

where value 2 for the passive contribution of the first transition is determined by function melt;. If dec(F) is
the current marking then both transitions are enabled and the normalizing factor is 2/3 for the first transition,
and 1/3 for the second transition, as expected. This example motivates the use of passive contributions: if
the normalizing factor were computed as the inverse of the number of enabled transitions having the same
basic action and the same basic place as the transition at hand, then we would obtain the wrong normalizing
factor 1/2 for the two transitions above. ]

Example 7.10 Consider term
E = <a, A>.0|[{a1(<a, x>.<a,*>.0||p <a, *>.0)
whose decomposition comprises places V1 ||{a} id, id ||{4} (V2 ||g id) and id ||;4)(¢d ||y V3) where

Vi = <a,A>.0
Vo = <a,*x>.<a,*>.0
Vs = <a,x>.0

By applying the rules in Table 2, we get the following three transitions
norm(<a,X>V1 |[fa} ¢d,1)

Vi lhay i iy V2l id) 10l i, i lgy (Vs l i) b
4 4 4 norm(<a, >V Il{a} id,1) . . .

19 ey i iy il Vi) 10lle) i, il (i o O
4 4 4 norm(<a, >V Il{a} id,1) X . .

I Villiay id, id (Vs I id) b 1011y i i lgay @l i)
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If dec(F) is the current marking then only the first and the second transitions are enabled and their normal-
izing factor computed by norm is 1/2 as expected. This example motivates the use of marking dependent
rates: if also the third transition were taken into account though not enabled at dec(FE), then we would
obtain the wrong normalizing factor 1/3 for the first two transitions. ]

Example 7.11 Consider term
E=(<a,X>.0+ <a,X>.0) |10 (<a, *>.0||p <a,*>.0)
whose decomposition comprises places V1 ||{a} id, id ||{4} (V2 ||g id) and id ||;4) (¢d ||y V2) where
Vi = <a,A>0+4<a,A>.0
Vo = <a,x>.0
By applying the rules in Table 2, we get the following two transitions
norm(<a,2-A>,(<a,A>.041d) || (o} 1d),1)
(I Villgay od, ed]¢ay (V2 llp ed) [} {101lgay 2d, id 110y (Qlo 2d) [
norm(<a,2-X>,(<a,X>.0+1d) ||{a} id),1)
(Vi llay od, ed ][y (ed [lg Vo) It {1 0llgay 1d, id |10y (id ||y ) [
each of which is obtained by applying function melts to two potential moves having as a basic place
(<a,A>.0 + id)||{qy id and (id + <a,A\>.0)||{a} id, respectively. If dec(F) is the current marking then
both transitions are enabled and the normalizing factor is 1/2 for both transitions, as expected. This ex-

ample motivates that fact that, if two potential moves having different basic places are merged by function
melts, the basic place of the resulting potential move must be uniquely identified: if the two transitions
above had as a basic place (<a,A>.0 4+ id) ||;q} id and (id + <a, A>.0) ||1a} id, respectively, then we would
obtain the wrong normalizing factor 1 for them. ]

7.2.3 Nets Associated with Terms

The third step in the definition of the integrated net semantics consists of associating with each term an
appropriate PGSPN by exploiting the previous two steps.

Definition 7.12 The integrated location oriented net semantics of a term E € G is the PGSPN
Nloc[[E]] = (Pa Ua Ta MOa La W)

where:
o P is the least subset of V such that:
— dom(dec(E)) C P;

. norm(<a,)~\>,V,f)
— if dom(Q1) C P and @ @2, then dom(Q2) C P;

o U= ActMurin(P).

e T is the restriction of —— to Mug,(P) x ActMurin(F) o Mugn(P);

My = dee(F);
o L. T — APLev such that:
- L(Qla norm(<a, *>a Va f)a QZ) = _1a

- L(Qla norm(<a, A>a Va f)a QZ) = Oa
— L(Q1, norm(<a, 001>, V, f),Q2) = 1;

W:T — ({+}U Rfl\_/luf’"(P)) such that:

- W(Qla norm(<a, *>a Va f)a QZ) = *;
— W(Q1, norm(<a, A>,V, f),Q2) = X if norm(<a, A\>,V, ) = <a, A'>;
— W(Q1, norm(<a, 014>, V, f),Q2) = w' if norm(<a,001,>,V, f) = <a, 00 w>. [ |
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Figure 9: Integrated net semantics of QS yr/pr/2/3/4

Example 7.13 Let us consider a QS M/M/2/3/4 with arrival rate A and service rate . Once the action
type “a customer leaves the service center” is denoted by [, its resource oriented representation is the
following:

® QSpimyoys)a 2 Customerss||{a 1y (Queune||yqy Serverss):

— Customersy = CllaCllaClloC:
« C2 <a, A>.<l,x>.C,
— Queue 2 <a,*>.<d, *>.Queue;

— Servers, 2 SllgS:
x S 2 <d, 001 1>.<s, p>.<l, 001 1>.5.

Its integrated net semantics Nloc[[QSM/M/Z/S/AL]] is the GSPN in Fig. 9, where the following shorthands
have been used:

o p1 = (((Cllpid)llgid)|[pid)]] a1y id,
p2 = (((#d)lo C)lpid)|lgid)|| a1y 7d,
ps = ((id|loC)l[pid)l{a 1y id,
pa = (id|[gC)|[{a,n d,
ps = (<L, +>.Cllgid)|lgid)|lgid )]l 10,11 7d,
pe = (((id|lg<l, %>.C)|[gid)lgid)|| a1y id,
pr = ((1d][p<l, %>.C)||pid)||{a,1y id,
ps = (id]|g<l, ¥>.C)||{a,1y 1d;
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o po = id||{a,} (Queune||;qyid),
pro = id||ja, (<d, x> Queune||;gyid);

o p11 = id||{a,ny (id||{ay (S[n2d)),

(
P12 = td|l{a,y (2d]| 10y (i[9 5)),
P13 = id| a1y (2d][ 14y (<5, p>.<l; 001 1>.5|g2d)),
Pla = id”{a’l}(id||{d}(id||q)<8,ﬂ>.<l, 00171>.S)),
P15 = idl| a1y (0| 10y (<L, 001 1>.5lg2d)),
pis = td|[tan (1d]|{a) (1d]lp<l, 001,1>.5)). L

Now we show two properties of the integrated net semantics, which can be demonstrated with a proof
similar to that provided in [O1d91].

Theorem 7.14 Let £ €G.

(1) N[ FE] is safe, i.e. every marking reachable from the initial one is a set.

(11) Nio[E] is finite if each subterm of F of the form E’/L, E'[¢], E1 ||s E2 is without constants. [ ]

It is interesting to identify a class of terms in G such that for each term FE in this class it turns out that
Nio[E] is a GSPN. As we can expect, the above class is given by £ and this will be proved later.

7.3 Retrievability Principles

In this section we assess the soundness of the integrated net semantics with respect to the integrated inter-
leaving semantics. To this aim, we adapt the proposal in [Old91] to our stochastically timed framework by
resorting to the following two principles:

e Functional retrievability principle: the functional semantics of each term should be retrievable from
its integrated net semantics. Such a principle can be formalized by requiring that, for each term,
its functional semantics is isomorphic or bisimilar to the functional semantics of its integrated net
semantics.

e Performance retrievability principle: the performance semantics of each term should be retrievable
from 1ts integrated net semantics. Such a principle can be formalized by requiring that, for each term,
its Markovian semantics 1s p-isomorphic or p-bisimilar to the Markovian semantics of its integrated
net semantics.

These two principles guarantee that each term and its integrated net semantics describe the same system
both from the functional and the performance point of view.

Theorem 7.15 Let F € G. Then RG[N,.[E]] is isomorphic to Z[E].

Proof The proof is divided into three parts.

(1st part) Suppose that priority levels are taken into account neither in EMPA nor in PGSPNs. More
accurately, assume that the active transitions of PGSPNs are not divided into different priority levels, and
consider Z'[ E] instead of Z[E], i.e. consider the LTS (whose set of states is denoted by 1'FE) representing
the integrated interleaving semantics of £ if function Select were not applied. Then we can demonstrate, by

following the proof developed in [01d91] Thm. 3.7.18, that RG[Ni,.[F]] is bisimilar to Z’'[ E] through relation
B={(F,Q)€tE x R(dec(E)) | Qswf A dec(F) = upd(Q)}

where:
e The definition of strongly well formed (swf) marking is the following:

— {0 and {|<a,A\>.E |} are swf.
— If @ is swi, then so are Q/L and Q[y].
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— If Q1 @ Qs is swl, dom(Q1) N dom(Q3) = B, either Q@3 = @ or not all components in Q3 contain
“4” as their topmost operator, and Q2 is complete, then (Q1+ Q2) P @3 and (Q2+ Q1) D Qs are
swif.

— If Q1 and Q5 are swf, then so is Q1 ||s id U id ||s Q2.
This property is satisfied by complete elements of Mug, (V) and is invariant for transition firing.

e The definition of the update operation (upd) on swf markings is the following:

— If @ is complete, then upd(Q) = Q.
If @ = Q'/L is incomplete, then upd(Q) = upd(Q')/L.
— If Q = Q'[¢] is incomplete, then upd(Q) = upd (Q')[¢].

FQ=(Q14+Q2)BQ30r Q= (Q2+ Q1) D Qs is incomplete, and (2 is complete, then upd(Q) =
upd (Q1 ® Q3).

- Q=Q1|lsidUid]|s Q2 is incomplete, then upd(Q) = upd(Q1)||s id U id||s upd(Q2).

For each swf marking @), it turns out that upd (@) is complete.

(2nd part) Now we want to prove, under the same assumption made at the beginning of the previous
part, that bisimulation B is actually an isomorphism between RGN, [E£]] and Z'[E].

First, we have to prove that B is a function. Given F €1'FE, since F is reachable from E and B is a
bisimulation, there must exist @ € R(dec(FE)) such that (F,Q) € B, i.e. dec(F) = upd(Q). Tt remains to
prove the uniqueness of such a swf reachable marking Q. Suppose that there exist @1, Q2 € R(dec(F)) swf
and different from each other such that upd(Q1) = upd(Q2) = dec(F'). This can stem only from the fact that
there exists at least a pair composed of a subterm G of a place ¥} in Q1 and a subterm G+G’ of a place V5 in
()2 that reside in the same position of the syntactical structure of V4 and V5 (if such a pair did not exist, @y
and @2 could not be different from each other). The existence of this pair contradicts the reachability of Q).
In fact, we recall that the decomposition function dec distributes all the alternative composition operators
between all the appropriate places and when one of these places is part of a marking involved in a transition
firing, either 1t remains unchanged or it gives rise to a new place where the alternative composition operator
disappears and only the alternative involved remains after it has been transformed (see the rules for the
alternative composition operator).

Second, we have to prove that B is injective. This is trivial, because if there exist Fy, F» €1’'F and
Q) € R(dec(E)) such that dec(F) = upd(Q) = dec(F2), then necessarily Fy = F as dec is injective.

Third, we have to prove that B is surjective. This is true because given @ € R(dec(F)), since @ is
reachable from dec(FE) and B is a bisimulation, there must exist F' € 1'E such that (F, Q) € B.

Finally, we have to prove that B satisfies the isomorphism clauses. This follows immediately from the
fact that B is a bijection fulfilling the bisimilarity clauses.

(3rd part) Now let us take into account the priority levels. Since the priority mechanism for EMPA
actions 1s exactly the same as the priority mechanism for PGSPN transitions, from the previous step it

follows that RG[AN:[E]] is isomorphic to Z[E]. [ |
Corollary 7.16 Let F € G. Then F[N,[F]] is isomorphic to F[E]. [ |
Corollary 7.17 Let F € £. Then M[N,[E]] is p-isomorphic to M[E]. [ |

From retrievability, the following result immediately follows.

Theorem 7.18 Let F € G. Then N, [F] is a GSPN if and only if E € £.

Proof (=) Suppose that N,.[E] is a GSPN, i.e. suppose that AN,.[F] has no passive transitions. Then
RG[ N[ E]] has no passive transitions hence, by virtue of Thm. 7.15, Z[E] has no passive transitions. Thus
Eef.

(<=) Suppose that £ € £, i.e. suppose that Z[E] has no passive transitions. We prove that N, [E] is
a GSPN by proceeding by induction on the syntactical structure of E:
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e If F =0 then N,[E] is obviously a GSPN.

o Let £ = <a, A>.E'. From E € £ it follows that A + % and E' € £, so by the induction hypothesis we
have that A, [E’] is a GSPN hence N,.[E] is a GSPN too.

o Let £ = E'/L. From E € £ it follows that E' € &, so by the induction hypothesis we have that
Nioe[E'] is a GSPN hence N, [E] is a GSPN too.

o Let E = E'[p]. From E € £ it follows that E/ € &, so by the induction hypothesis we have that
Nioe[E'] is a GSPN hence N, [E] is a GSPN too.

e Let F=FE1 + FE,. From E € £ it follows that £y € £ and Es € &€, so by the induction hypothesis we
have that A,.[F1] and Ny [FE2] are two GSPNs hence Ny, [E] is a GSPN too.

o Let F = F)||s Fa. There are two cases:

— If By € €A Ey € £ then, by the induction hypothesis, we have that Nj,.[E1] and Niy.[E2] are
two GSPNs hence ANy, [E] is a GSPN too.

—IfE, ¢ £V Ey ¢ & then Ey or Es can execute some passive actions which, due to the fact that
E € & have types in S and either do not synchronize at all or synchronize with active actions of
the same type present in the other subterm. By the rules for the parallel composition operator,
the passive transitions present in Nj,.[E1] or in Ny [E2] cannot be present in Nj,.[E]; hence
N [E] is a GSPN. [ ]

7.4 Concurrency Principle

In this section we assess the completeness of the integrated net semantics by resorting to the concurrency
principle [Old91], which requires that the intended concurrency of each term should be represented by its
integrated net semantics. The introduction of this principle is due to the fact that retrievability deals only
with individual transitions so it does not reject net semantics exhibiting too little concurrency.

To formalize the concurrency principle, we adapt to our stochastically timed framework some standard
operators on nets generally accepted as representing the intended concurrency of terms. In other words, fol-
lowing a standard practice (see, e.g., [O1d91]), we develop an integrated denotational net semantics for EMPA
and then we investigate whether the integrated net semantics admits the same concurrent computations as
the denotational one.

The operators on safe PGSPNs with no inhibitor arcs are presented below: the definitions of the set
of labels, the priority function and the weight function for the resulting net of each operator are omitted
because they are similar to those reported in Def. 7.12.

e 0=({p},U,0,{lpl,0,0);
o <a,\>.(P,U,T, My, L,W)= (P, U,T M L W') where:

- P'=PU{p},p¢P;
~ T =TU{{pl}, norma(<a, x>, p), Mo)};
- My =A{pl;
o (PUT, My, L', W)/L =(P,UT' My, L'!,ZW') where:

— T = {(My, norma(<a,\>,p), Ms) €T | a ¢ L} U )
{(My, normg(<7,A>,p), Ma) | Ja € L.(My, normg(<a, A\>,p), M2) € T};

o (PUT, My, L, W)[p] = (P,U,T', My, L', WW') where:

- T ={(My, norm(<g0(a),:\>,p),M2) | (M, norm(<a,/~\>,p),M2) €T}
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L4 (Pla Ua TlaMOIaLla Wl) + (PZa Ua TZaMOZaLZa WZ) = (Pa Ua Ta MOaLa W) Where:

- P= (dom(M01) X dom(Moz)) U P1 U Pz, P1 N P2 = @,

- T= {((M1 ®M02) @M{, normd(<a,/\>,p),M2) | My - My A
dom(Ml)ﬂdom(Ml)
R (My & M{, normg(<a
{((M01 ® Ml) D M{, normd(<a,/\>,p),M2) | My - Mya A
dom(Myi)Ndom(M{) =0 A
(M1 & M|, normg(<a, A>,p), Ma) € To};

::\ )Mz)ETl}U

ol

— Mo = Mo1 @ Moz;
L4 (Pla Ua TlaMOIaLla Wl) ||S(P2a Ua TZaMOZaLZa WZ) = (Pa Ua Ta MOaLa W) Where:

*PIP1UP2,P10PQI®;

— T = {(My, norma(<a,\>,p), M) e T, UTs |a ¢ S} U
{(My & M{, normd(<a,max(:\,ﬁ)>,p), Ms® Mj)|aeSA min(:\,ﬁ) =% A
(M, normg(<a, A\>,p"), Ma) € Th A
(M1, normg(<a, fi>,p"), My) € Ty A
(0= ji=*Ap=if) v
AeRyUInfAp=p) V
(A€ RLUInfAp=p")k
— Mo = Mo1 & Moz,

where function normg : (Act x P) — ActMusin(P) ig defined by
normgq(<a, :\>,p) = <a, Split(:\, 1/{(My, normg(<a, /N\>,p), M) €T | My C Meyrr }|)>

The effect of these net operators should be easy to understand, except for the alternative composition one.
It combines the standard alternative composition operator with the idea of root unwinding which ensures
that there are no cycles left at initially marked places; it then uses the Cartesian product to introduce choices
between all the pairs of initial transitions of the two nets to which it 1s applied. Root unwinding allows the
correct interplay of alternative composition and recursion to be implemented.

Example 7.19 Consider terms
A <a,A\>.A

B <b,u>.B
The integrated denotational net semantics of A is a net with one place p4 and one transition
normgq(<a,X>pa)
{lpalt {Ipal
The integrated denotational net semantics of B is a net with one place pp and one transition
norma(<b,p>pe)

{lpslt — {lpslt

e 1

Consider now term
E=A+1B
If we used the Cartesian product construction without root unwinding, then the integrated denotational net

semantics of E would be a net with one place (pa,pp) and two transitions
normgq(<a,X>pa)

{l(pa,pB) I} {l(pa,p)

normgq(<b,>pe)
{l(pa, pB) [ {(pa,ps)

This net is not the right integrated denotational net semantics of E since E can perform either infinitely
many actions <a, A> or infinitely many actions <b, u>, whereas the net above allows the two different
actions to be arbitrarily interleaved. [ |
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Function normg plays the same role as function norm. The main difference between them is that function
normg does not consider passive contributions. This is due to the fact that the integrated denotational net
semantics generates a new place whenever 0 or a prefix operator is encountered. As a consequence, 1t is not
possible that two or more transitions constructed by the alternative composition operator with the same
preset, have the same postset. This is reflected by the definition of the normalizing factor: 1t 1s simply the
inverse of the number of enabled transitions having the same basic actions and the same basic place as the
transition at hand.

Example 7.20 Consider term F of Ex. 7.9 and let E; = Vi, 3y = Vs, B3 = V3. The integrated denotational

net semantics of 1 is a net with two places p; 1, p1,2 and one transition
normg (<a,X>p1,1)

{lpial {lp12}

The integrated denotational net semantics of Ey is a net with three places (p2,1,p2,2), P23, P24 and two

transitions
normag(<a,¥>p2,1)
1 (p2,1,p2.2) It Up2slt
normag(<a,*>p2,2)
1 (p2,1,p2.2) [t Up2alt
The integrated denotational net semantics of E3 is a net with two places ps 1, p3,2 and one transition
normag(<a,*>ps 1)

{lpsa {lps2 [

Finally, the integrated denotational net semantics of E is a net having the same places as the previous nets
and three transitions

normga(<a,X>p1,1)

ip11, (p2,1,p22) [} Up12,p23lt
norma(<a,A>pi1,1)
ip11, (p2,1,p22) [} Up12,p2alt
norma(<a,A>pi1,1)
{Ip1,1,p3 t {Ip1,2, P32}
In the initial marking all the transitions above are enabled, and their normalizing factor is 1/3 as expected.
This example motivates the fact that passive contributions are unnecessary. [ |

Using the notion of place based bisimilarity (pl-bisimilarity ) on safe nets of [O1d91] Def. 2.3.8 suitably mod-
ified in order to take into account aggregated rates, and following a demonstration similar to that of [O1d91]
Thm. 3.8.3, we can now prove that for each n-ary operator op we have that Ni..[opeppa(Er, ..., En)] is
pl-bisimilar to oppaspy (Nioe[E1], - - s Nioc[En])- By virtue of [O1d91] Thm. 2.3.10, this means that the two
nets have the same causal semantics, i.e. they have the same concurrent computations.

Theorem 7.21 It turns out that:
(i) For every E € G and <a, \> € Act, Ni,.[<a, A\>.E] is pl-bisimilar to <a, A\>.Nj,.[E].
(i1) For every E € G and L C AType — {7}, Nio.[F/L] is pl-bisimilar to Aj,.[E]/L.

(iv) For every Fy, Fs € G, Ny [E1 + E2] is pl-bisimilar to N, [E1] + Nioc[E2]-

)
)
(iii) For every E € G and @ € ARFun, Ni,.[E[g]] is pl-bisimilar to Ny, [E][¢]-
)
)

(v) For every Ey, Ea € G and S C AType — {7}, Nioc[E1||s E=] is pl-bisimilar to Ny [E1] ||s Nioc[F2]. ®

8 The Alternating Bit Protocol

In this section we illustrate the application of the integrated approach of Fig. 1 to the alternating bit protocol.
The protocol is modeled by means of an EMPA term and then analyzed by studying the semantic models
associated with the term. The reason why we have chosen the alternating bit protocol as a case study to
illustrate the integrated approach is that such a protocol has become a standard example in the literature
(see, e.g., [Mil89, CPS93, Mol82, NY85, HMR94, ABCSV94]), so it can be used to compare the EMPA model

with other models.
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8.1 Informal Specification

The alternating bit protocol [BSW69] is a data link level communication protocol that establishes a means
whereby two stations, one acting as a sender and the other acting as a receiver, connected by a full duplex
communication channel that may lose messages, can cope with message loss. The name of the protocol stems
from the fact that each message is augmented with an additional bit: since consecutive messages that are
not lost are tagged with additional bits that are pairwise complementary, it is easy to distinguish between
an original message and its possible duplicates. Initially, if the sender obtains a message from the upper
level, it augments the message with an additional bit set to 0, sends the tagged message to the receiver,
and starts a timer: if an acknowledgement tagged with 0 is received before the timeout expires, then the
subsequent message obtained from the upper level will be sent with an additional bit set to 1, otherwise the
current tagged message is sent again. On the other side, the receiver waits for a message tagged with 0: if
it receives such a tagged message for the first time, then it passes the message to the upper level, sends an
acknowledgement tagged with 0 to the sender, and waits for a message tagged with 1, whereas if it receives a
duplicate tagged message (due to message loss, acknowledgement loss, or propagation taking an arbitrarily
long time), then it sends an acknowledgement tagged with the same additional bit to the sender.

8.2 Formal Description with EMPA

Since it 18 helpful to take advantage from compositionality, we figure out how to deal with three interacting
entities: Sender, Recewver, Channel. The interaction between Sender and Channel is described by action
types tm;, i € {0,1}, standing for “transmit message tagged with ¢’ and da;, ¢ € {0,1}, standing for
“deliver acknowledgement tagged with 7. The interaction between Receiwver and Channel is described by
action types dm;, ¢ € {0, 1}, standing for “deliver message tagged with ¢ and ta;, i € {0, 1}, standing for
“transmit acknowledgement tagged with 7. The scenario can be modeled as follows:
ABp 2 Senderg ||s Channel ||g Receiverg
S = {tmo,tml,dao,dal}
R = {dmo,dml,tao,tal}

Thanks to compositionality, we can now focus our attention on the single entities separately. Channel
i1s composed of two independent half duplex lines Line,, and Line,. The local activities of Channel are de-
scribed by action types pm,, 7 € {0, 1}, standing for “propagate message tagged with 7, and pa;, i € {0, 1},
standing for “propagate acknowledgement tagged with ¢”. Additionally, there are other two activities local
to Channel that are described by action type 7 and represent the fact that a message or an acknowledge-
ment is lost or not. As far as the timing of the actions in which Channel is involved is concerned, we
assume that the length of a message and the length of an acknowledgement are exponentially distributed, so
that message/acknowledgement transmission, propagation, and delivery times are exponentially distributed.
However, the three phases given by message/acknowledgement transmission, propagation and delivery are
temporally overlapped, i.e. they constitute a pipeline. As a consequence, in order to correctly determine the
time taken by a message/acknowledgement to reach Receiver/Sender, we model actions related to transmis-
sion and delivery as immediate and we associate the actual timing (i.e., the duration of the slowest stage
of the pipeline) with actions related to propagation. We thus assume that the message propagation time
is exponentially distributed with rate §, the acknowledgement propagation time is exponentially distributed
with rate v, and the loss probability is p € Rjg,i[. Channel can be modeled as follows:

Channel

Line,,

Liney, ||p Line,

<tmg, *>.<pmg, §>.(<T, 001 1-p>.<dmg, 001,1>.Liney, + <7,001 p>. Liney, ) +
<tmy, #>.<pmq,0>.(<T, 001 1_p>.<dm1,001 1> . Liney, + <7,001 ,>. Liney,)

Line, 2 <tag, *>.<pag, y>.(<T, 001 1-p>.<dag, 001 1>.Line, + <1,001 ,>.Line,) +
<tay, x>.<pay, > (<1, 001 1-p>.<da1, 001 1>.Line, + <7, 001 ,>. Line,)
Observe that the probabilistic choice between the reception and the loss of a message/acknowledgement has
been easily represented by means of the weights associated with the two immediate actions <7, 001 1-p>
and <7, 001 p>.
The local activities of Sender are described by action types gm standing for “generate message” and to

e (e

standing for “timeout”. We assume that the message generation time is exponentially distributed with rate

43



A and that the timeout period is exponentially distributed with rate . Of course, this is not realistic, but
EMPA does not enable us to express deterministic durations, and a Markovian analysis would not be possi-
ble otherwise. A good approximation would consist of describing the deterministic duration of the timeout
period by means of a sequence of exponentially timed actions with the same rate (thereby implementing
an Erlang distribution, which is a special case of the hypoexponential distribution of Sect. 5.1) as done
in [HMR94], but the underlying semantic model would be much bigger than the one in Fig. 10. Sender can
be modeled as follows:

Senderg 2 <gm,/\>.<7fmo,o<>171>.Sende7”fJ

Sendery, 2 <dag,*>.Sender; + <day, *>.Sendery + <to,0>.Sendery
Senderg 2 <tmg, 00171>.Sende7”6 + <dag, *>.Sender; + <daq, *>.Sender6’,
Senderq 2 <gm,/\>.<tm1,00171>.56nder/1

Sender’ 2 <day,*>.Senderg + <dag, ¥>.Sender| + <to,0>.Sender
Sender’f 2 <tmgq, 00171>.Sender/1 + <day,*x>.Senderg + <dag, *>.Sender/1/

An important observation (similar to the one reported in [CPS93] for a CCS model of the same protocol)
concerns terms Sender(, and Sender’. Since they model the situation after a timeout expiration, they should
comprise the retransmission action only in order to be consistent with the definition of the protocol. The
problem is that a deadlock may occur whenever, after a sequence of premature timeouts (i.e. timeouts expired
although nothing is lost), the sender is waiting to be able to retransmit the message, the receiver is waiting
to be able to retransmit the corresponding acknowledgement, the message line is waiting to be able to deliver
a previous copy of the message, and the acknowledgement line is waiting to be able to deliver a previous
copy of the acknowledgement. To destroy deadlock, Sender], and Sender] are allowed to receive possible
acknowledgements, thereby avoiding unnecessary retransmissions.

The only local activity of Receiver is described by action type ¢m standing for “consume message” which
is taken to be immediate in that it is irrelevant from the performance viewpoint. Receiver can be modeled
as follows:

Recetvery <dmg, *>.<cm, 001,1>.<tap, ooy 1>. Receivery + <dmq,*>.<tay,o0;1 1>. Receivery

a
A

Recetvery <dmy, ¥>.<cm, 001,1>.<tay,oo1 1> . Receiverg + <dmy, ¥>.<tag, oo 1>. Receiver;

8.3 Comparison with Other Formal Descriptions

At the beginning of this section we said that we have chosen the alternating bit protocol in order to compare
its EMPA model with others expressed with different formalisms. For example, it turns out that in [Mil89,
CPS93] performance aspects are completely neglected because a classical process algebra is used, while
in [Mol82] a stochastically timed Petri net model is adopted but the unrealistic assumption that the timeout
expires only if a loss actually occurs is made. In [HMR94] a stochastically timed process algebraic description
is given, where the deterministic duration of the timeout period has been better approximated by means of an
Erlang distribution. However, this description does not accurately take into account the division into three
temporally overlapped phases (like in [NY85, ABCSV94]), and represents the probabilistic choice between
the reception and the loss of a message/acknowledgement by giving a context dependent meaning to the rate
of the actions.

8.4 Functional Analysis

The integrated interleaving semantics of ABP is presented in Fig. 10. The LTS Z[ABP] has 302 states
(76 tangible, 226 vanishing) and 464 transitions (284 observable, 180 invisible; 140 exponentially timed, 324
immediate). Due to the symmetry of the protocol, only half of the state space has been drawn (dashed
transitions depict the link with the remaining states). Whenever neither losses nor premature timeouts
occur, the states visited by the protocol are 1, 3,5, 9, 15, 21, 25, 45, 51, 55 and the corresponding symmetric
ones, i.e. 2, 4, 6, 10, 16, 22, 26, 46, 52, 56. Following the proposed approach, we can use the LTS F[ABP]
(obtained from Z[ABP] by dropping action rates) to detect some functional properties. For example, we
see that each state has at least one incoming transition and one outgoing transition: this means that the
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protocol is deadlock free. If Sendery, and Sender had not been carefully designed (as explained in Sect. 8.2),
then we would have obtained eight deadlock states: 113, 197, 213, 301 and the corresponding symmetric
ones. As another example, by resorting to equivalence checking we have proved that, whenever all the action
types occurring in ABP are hidden except for gm and ¢m, then ABP behaves as a buffer with capacity one
that can engage in a sequence of alternating actions with the two observable types.

8.5 Performance Analysis

The Markovian semantics of ABP is presented in Fig. 11. The p-LTS M[ABP], which has 76 states and 204
transitions, has been obtained from Z[ABP] by applying the algorithm in Sect. 4.3. Since M[ABP] is finite
and strongly connected, it represents a HCTMC for which the steady state probability distribution function
exists. Following the proposed approach, we can exploit such a HCTMC for assessing some performance
indices. For example, the throughput of the protocol is given by the number A of messages per second that
arrive at the Sender multiplied by the probability that the Sender can accept a new message to send: this
probability 1s given by the sum of the steady state probabilities of the states having an outgoing transition
labeled with A. In the table below we report the value of the actual throughput for different values of the
offered load A. We assume that the protocol uses two 9600 baud lines and that the (mean) length of the
packets is 1024 bits, so that the propagation rate is § = v = 9.375 packets per second: we finally assume
that the timeout period is 1 second (# = 1) and that the loss probability is p = 0.05.

load (msg/sec) | throughput (msg/sec) || load (msg/sec) | throughput (msg/sec)
5 1.106630 30 1.588230
10 1.356460 35 1.607200
15 1.464435 40 1.621760
20 1.524200 45 1.633095
25 1.562150 50 1.642400

8.6 The Equivalent Net Description

The integrated net semantics of A BP is presented in Fig. 12. The GSPN N,.[A BP] comprises 28 places and
36 transitions. Since the integrated net semantics for EMPA meets the retrievability principles, ABP and
N [ABP] model exactly the same protocol in two different ways: the algebraic description is compositional
and more readable, the net description is more concrete and provides a means to detect dependencies,
conflicts, and synchronizations among activities which cannot be discovered in an interleaving model like
I[ABP]. Also notice that N,.[ABP] is considerably more compact than Z[ABP]: this fact may turn out
to be helpful in order to carry out a more efficient assessment of system properties.

9 Conclusion

In this paper we have proposed an integrated approach for modeling and analyzing functional and perfor-
mance properties of concurrent systems. In order to implement the integrated approach in the exponential
case, we have developed a new stochastically timed process algebra called EMPA.

Related work: The idea underlying the integrated approach comes from [Old91], where complementary
views of concurrent systems, each one describing the systems at a different level of abstraction, are brought
together in one uniform framework by establishing the appropriate semantic links. This realizes the stepwise
development of complex systems through various levels of abstraction, which is good practice in software
and hardware design. We have then extended the proposal of [O1d91] by considering an orthogonal form of
integration that relates functional and performance aspects of concurrent systems.
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The development of EMPA, instead, has been influenced by the stochastically timed process algebras
MTIPP [GHR93b] and PEPA [Hil96], and by the formalism of GSPNs [ABC84, ABCC87]. While designing
EMPA, emphasis has been placed on expressiveness.

In EMPA | action durations are mainly given by means of exponentially distributed random variables
like in MTIPP and PEPA | but it is also possible to express immediate actions each of which is assigned a
priority level and a weight like GSPN transitions. Immediate actions permit to model activities associated
with logical events (see, e.g., the delivery of a customer to the server in Sect. 5.2) as well as activities that are
irrelevant from the performance viewpoint (see, e.g., message consumption in Sect. 8), thereby providing a
mechanism for performance abstraction in the same way as action type 7 provides a mechanism for functional
abstraction: they also supply the designer with a good degree of flexibility (see, e.g., the description of the
pipeline in Sect. 8). Furthermore, immediate actions allow to model concurrent systems whose activities may
have different priorities (see, e.g., the QS in Sect. 5.5) and can be used to describe explicitly probabilistic
choices avoiding the need of a new operator (see, e.g., message and acknowledgement loss in Sect. 8). Finally,
the interplay of exponentially timed and immediate actions makes it possible, though not atomically, the
description of activities whose durations follow a phase type distribution (see Sect. 5.1). Tt is worth noting
that, e.g., hyperexponential distributions cannot be represented without weighted immediate actions, since
there is no term in which only exponentially timed actions occur such that its Markovian semantics is p-
isomorphic to the HCTMC reported in Fig. 7(¢). Actually, like weighted immediate transitions in GSPNs,
weighted immediate actions are essential in order to model HCTMCs where more than one state can be
initial.

EMPA is also endowed with passive actions somewhat different from those of MTIPP and PEPA. Passive
actions play a prominent role in EMPA because they allow for nondeterministic choices, and are essential
in the synchronization discipline on action rates since it requires that at most one active action is involved.
MTIPP and PEPA allow for more general kinds of synchronization [Hil94], but we think that our discipline
leads to a more intuitive treatment of the interaction among processes, and in [BG98] we have shown that
it 1s not so restrictive.

As recognized in [BG98], the resulting expressive power of EMPA is considerable: basically, it can be
viewed as the union of a classical process algebra, a prioritized process algebra, a probabilistic process
algebra, and an exponentially timed process algebra. On the other hand, this has required a great care in
the definition of the integrated interleaving semantics (reflected by the use of functions Melt, Select, and
Norm and the related computation of all the potential moves of a term at once), in the definition of the
Markovian semantics (because of the possible coexistence of exponentially timed and immediate transitions),
and in the definition of the integrated net semantics (witnessed by the handling of marking dependent rates).

Finally, the notion of integrated equivalence ~gyp has been set up by assembling complementary pro-
posals [L.S91, HR94, Hil96, Buc94, Tof94, Mil89] in an elegant and compact way, and it has turned out to
be the coarsest congruence contained in ~pp for a large class of terms, thereby allowing for compositional
reasoning and highlighting the necessity (beside the convenience) of defining a notion of equivalence directly
on the integrated semantic model.

Tool support: As the various semantics for EMPA can be fully mechanized, we are currently designing
a software tool called TwoTowers [BCSS98] which implements the integrated approach of Fig. 1 in the
exponential case. The tool is composed of a graphical user interface written in Tcl/Tk [Ous94], a tool driver,
an integrated kernel, a functional kernel and a Markovian kernel. The tool driver, which is written in C [KR88§]
and uses Lex [Les75] and YACC [Joh75], includes routines for parsing EMPA specifications and performing
lexical, syntactic, and static semantic (closure, guardedness, finiteness) checks on the specifications. The
integrated kernel, which is implemented in C, currently contains only the routines to generate the integrated
interleaving semantic model of EMPA specifications according to the rules of Table 1: this kernel will be
extended by implementing a ~gyp checking algorithm. The functional kernel, which is written in C, is based
on a version of CWB-NC [CS96] that was retargeted for EMPA using PAC-NC [CMS95]. The Markovian
kernel, which is written in C, is in turn based on MarCA [Ste94].

The current version of TwoTowers has been used to study the alternating bit protocol in Sect. 8. In the
future, we plan to add a net kernel which compiles EMPA terms to the corresponding integrated net models
and analyzes such nets by means of GreatSPN [Chi91].
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Future research: Finally we outline several open problems left for future research, some of which have
already been addressed since the first version of this paper was prepared, while others are currently being
studied.

1.

The Markovian semantics for EMPA is defined in the case of coexistence of exponentially timed and
immediate transitions by means of an algorithm that manipulates the LTS produced by the integrated
interleaving semantics. It would be useful in this case to find a compositional definition for the Marko-
vian semantics by considering the syntactical structure of the term itself, in order not to be forced to
scan the whole state space. Also, to tackle state space explosion, efficient aggregation and solution
techniques for the MCs underlying terms must be found, possibly exploiting compositionality of terms
themselves. Some work in this direction has been done in [Buc94, RS94, HM95, Ser95, HH95, MS96].
Additionally, for the time being the Markovian semantics is defined only for performance closed terms.
However it could be extended to all the terms, provided that passive transitions are treated as para-
metric active transitions. As a consequence, we would obtain parametric MCs suitable for sensitivity
analysis of performance.

The integrated equivalence ~gpp is strong, which means that it does not abstract from internal
immediate actions, i.e. those actions which are not observable and take no time. From the state space
reduction standpoint, it would be profitable to define an integrated equivalence which does abstract
from those actions, as it has already been done for some extensions of MTIPP [Ret95, HRW95, HR96].
A somewhat different kind of weak integrated equivalence based on insensitivity results has been instead
developed for PEPA [Hil96].

Moreover, it would be useful to introduce a notion of preorder for EMPA which sorts systems according
to their performance.

The integrated net semantics for EMPA is developed according to the location oriented approach, i.e.
the syntactical structure of terms is encoded within places. From the applicative viewpoint, its major
drawback is that the resulting nets are safe, hence huge. In [BBG95] this problem has been solved by
resorting to the label oriented approach: terms are decomposed into places that ignore the syntactical
structure of terms themselves, notably the presence of parallel composition operators, so that e.g. term
<a, /\> 0llg <a, A>.0 needs only one place <a, A>.0 marked with two tokens instead of two places
<a, >0 llg td and id ||g <a, A>.0. Another optimization concerns choices: alternative compositions
are translated by linear constructions instead of Cartesian product constructions. Given a term F| its
integrated label oriented net semantics N3 [ E] is in general smaller than Ay, [E], and sometimes even
finite instead of infinite. For instance, while NlOC[[QSM/M/Z/S/AL]] in Fig. 9 has 16 places, 16 transitions,
and 60 arcs, Nlab[[QSM/M/Z/B/4]] n [BBG95] has only 7 places, 4 transitions, and 14 arcs. The price
to pay is that inhibitor arcs come into play, except for terms in which all the choices are guarded. A
different approach for obtaining smaller net representations is proposed in [Rib95], where an integrated
denotational net semantics based on colored stochastically timed Petri nets is outlined.

A commonly used method to specify steady state performance measures for Markovian models is based
on rewards [How71]. The basic idea is that a number describing a reward (or weight) is attached to
every state of the Markovian model, and the performance index is defined as the weighted sum of the
steady state probabilities of the states of the Markovian model. In order to specify rewards without
having to manually scan the whole state space underlying a term of a stochastically timed process
algebra, in [Cla96] a method has been proposed which requires expressing a reward structure by means
of a logical formula and an arithmetical expression, such that every state satisfying the formula is
assigned the reward given by the arithmetical expression. In [Ber97b] we have proposed an alternative
method based on the idea of specifying rewards directly in the algebraic model of systems by suitably
extending the structure of actions, so that there is no need to resort to a logical formalism and an
algebraic treatment of terms which preserves performance measures by means of an extension of ~gysp
is possible. Besides, it is worth noting that the specification of rewards in the algebraic terms prevents
their Markovian models from being ordinarily lumped too much.

EMPA cannot be used to deal with those systems where data play a fundamental role. To achieve
this, in [Ber97a] we have enriched EMPA with value passing features, and the proposal of [HL95]
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relying on symbolic LTSs and symbolic bisimulations has been adapted to our framework by providing
suitable semantic rules based on lookahead in order to benefit as much as possible from the inherent
parametricity of value passing. As an example, the symbolic LTS underlying an EMPA value passing
description of the alternating bit protocol has only half as many states as the LTS in Fig. 10.

We also point out that with EMPA it is not possible to model mobility features. Such a topic has been
addressed in [Pri95].

6. In [BBCC92] it has been shown that GSPNs can be used to assess both the correctness and the
performance of concurrent algorithms, provided that translation rules are given in order to derive a
GSPN model from the code of the algorithm. Of course, the same idea can be applied to EMPA. In
particular, the translation rules may be set up by following the guideline in [Mil89], where an imperative
concurrent programming language is defined and its semantics is given by translation into CCS.

7. The integrated approach of Fig. 1 allows for the simulative analysis of concurrent systems by means
of GSPNs, which is quite helpful whenever the state space is huge or even infinite. In [Ber96] it has
been argued that this can be done directly with EMPA since its integrated interleaving semantics has
been defined in an operational way, thereby making it possible to build the state space on a by need
basis (a routine for the simulative analysis of EMPA terms is going to be introduced in TwoTowers).
Former algebraic approaches to discrete event simulation can be found in [HS95, KBLL96].

8. How can the integrated approach of Fig. 1 be scaled to general distributions? Although the combined
use of exponentially timed and immediate actions allows us to model or approximate many frequently
occurring distributions, from the modeling point of view it is advantageous to be able to directly express
any distribution, hence this question needs to be answered. Probably, this is the most challenging open
problem because we can no longer exploit the memoryless property of exponential distributions, which
allowed us to obtain MCs as performance models and to smoothly define the integrated semantics in
the interleaving style. Several proposals have been elaborated throughout these years, which can be
found in [GHR93a, HS95, ABCSV94, BKLL95, Her96, Pri96]. Our proposal [BBGI7], in particular,
retains the interleaving approach by adding suitable information to LTSs; and relies on generalized
semi Markov processes as performance models since these can be always analyzed via simulation and
sometimes by solving the corresponding HCTMUCs whenever insensitivity conditions are met which
allow for the substitution of exponential distributions for general distributions with the same mean.
The purpose is to be able to integrate deterministic and probabilistic durations since they both often
occur in the description of systems, and to manage the simultaneous termination of actions whose
duration is expressed by noncontinuous distributions. A comparison among the different proposals can

be found in [BBGIT].
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