
A Formal Approach to the Integration of Performance Aspects inthe Modeling and Analysis of Concurrent SystemsMarco Bernardo Lorenzo Donatiello Roberto GorrieriUniversit�a di Bologna, Dipartimento di Scienze dell'InformazioneMura Anteo Zamboni 7, 40127 Bologna, ItalyE-mail: fbernardo, donat, gorrierig@cs.unibo.itAbstractA formal approach for modeling and analyzing concurrent systems is proposed which integrates perfor-mance characteristics in the early stages of the design process. The approach relies on both stochasticallytimed process algebras and stochastically timed Petri nets in order to exploit their complementary ad-vantages. The approach is instantiated to the case of EMPA (Extended Markovian Process Algebra),introduced together with the collection of its four semantics and the notion of equivalence that are re-quired in order to implement the approach. Finally, the case study of the alternating bit protocol ispresented to illustrate the adequacy of the approach.1 IntroductionThe desirability of taking into account the performance aspects of a concurrent system in the early stagesof its design has been widely recognized [YK82, Fer86, Har86, BV88]. Nevertheless, it often happens that aconcurrent system is tested for e�ciency only after it has been fully designed and tested for functionality.This results in two problems. On the one hand, the detection of poor performance causes the system to bedesigned again, so that the cost of the project increases and the deadline for the delivery of the system mightnot be ful�lled. On the other hand, functionality related tests and performance related tests are carried outon two di�erent models of the system, so that one has to make sure that these two models are consistent,i.e. they really describe (di�erent aspects of) the same system.In the past two decades a remarkable e�ort has been taking place in order to make existing formaldescription techniques suitable to support performance modeling and analysis. The key feature commonto all of the proposals is to enhance the expressiveness of the existing formal description techniques byintroducing the concept of time, represented either in a deterministic way or in a stochastic way.Stochastically timed Petri nets (see [Ajm90] and the references therein) are probably the most successfulformal description technique which accounts for functional as well as performance characteristics of concur-rent systems, due to the underlying well-established theory and the related tool support. Once we get astochastically timed Petri net as a model for a given concurrent system, both its functional and performancecharacteristics are described, and these can then be separately analyzed on two di�erent projected models(a classical Petri net and a stochastic process) obtained from the same integrated model (the stochasticallytimed Petri net), so we are guaranteed that the projected models are consistent. However, two shortcomingsstill need to be addressed: lack of compositionality, i.e. the capability of constructing nets by composingsmaller ones, and inability to perform an integrated analysis, i.e. an analysis carried out directly on theintegrated model, which can be much more e�cient as there is no need to build projected models.Both drawbacks can be overcome by resorting to stochastically timed process algebras (see [PAPM93,PAPM94, PAPM95, PAPM96, PAPM97] and the references therein). The reason is that, �rst of all, stochasti-cally timed process algebras naturally provide compositionality, since they are algebraic languages composedof a small set of powerful operators whereby it is possible to construct process terms from simpler ones,without incurring in the graphical complexity of nets. Second, functional and performance properties of asystem modeled by means of a term of a stochastically timed process algebra can be investigated not only1



on two consistent projected semantic models (a transition system labeled only on the type of the actions anda stochastic process), but also directly on the integrated semantic model (a transition system labeled withboth the type and the duration of the actions) provided that a suitable notion of integrated equivalence isdeveloped.
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Figure 1: Integrated approachThe purpose of this paper is to combine stochastically timed process algebras and stochastically timedPetri nets so as to devise a formal approach for modeling and analyzing concurrent systems which shouldallow us to cope with the problems cited at the beginning of this section. Actually, the approach we aregoing to introduce results in three orthogonal integrations:(i) The �rst integration relates the two di�erent formalisms, hence two di�erent views of concurrentsystems according to [Old91]. The abstract view is provided by process terms: they give an algebraicrepresentation of system components and their interactions, whose semantic model is obtained byinterleaving actions of concurrent components. The concrete view is provided instead by Petri nets:they give a machine-like representation of systems with the explicit description of concurrency. Thisintegration results in the two phases depicted in Fig. 1.(ii) The second integration relates functional and performance aspects of concurrent systems. This inte-gration is depicted in Fig. 1 by means of the contrast between the nonshaded part and the shadedpart.(iii) The third integration consists of exploiting several existing tools tailored for speci�c purposes in orderto analyze the various models.Let us explain in more detail the two phases in light of the three orthogonal integrations mentioned above.1. The �rst phase requires the designer to specify the concurrent system as a term of the stochasticallytimed process algebra. Because of compositionality, the designer is allowed to develop the algebraicrepresentation of the system in a modular way: every subsystem can be modeled separately, then thesemodels can be put together through the operators of the algebra. From the algebraic representation,an integrated interleaving semantic model is automatically derived in the form of a transition systemlabeled on both the type and the duration of the actions. The integrated interleaving semantic modelcan be analyzed as a whole by a notion of integrated equivalence or is projected on a functional semanticmodel and a performance semantic model that can be analyzed by means of tools like CWB-NC [CS96]and MarCA [Ste94], respectively.The functional analysis can be carried out by resorting to methods such as equivalence checking,preorder checking and model checking [CPS93]. Equivalence checking veri�es whether a process term2



meets the speci�cation of a given system in the case when the speci�cation is a process term aswell. Preorder checking requires that the speci�cation is still a process term treated as the minimalrequirement to be met, owing to the fact that speci�cation can contain don't care points. Modelchecking requires speci�cations to be formalized as modal logic formulas to be satis�ed, expressingassertions about safety, liveness, or fairness constraints.The performance analysis permits obtaining quantitative measures by typically resorting to the studyof a Markov chain.2. The second phase consists of automatically obtaining from the algebraic representation of the system anequivalent representation in the form of a stochastically timed Petri net. The net representation turnsout to be useful whenever a less abstract representation is required highlighting dependencies, con
icts,and synchronizations among system activities, and helpful detecting some properties (e.g., partialdeadlock) that can be easily checked only in a distributed setting. Additionally, the net representationis usually more compact than the integrated interleaving semantic model resulting from the algebraicrepresentation, since concurrency is kept explicit instead of being simulated by alternative computationsobtained by interleaving actions of concurrent components. The functional and performance analysisof the net representation can be assisted by tools like GreatSPN [Chi91].The functional analysis aims at detecting behavioral and structural properties of nets (see, e.g.,[Mur89]), i.e. both properties depending on the initial marking of the net and properties depend-ing only upon the structure of the net. Concerning structural analysis, the technique of net invariantsis frequently used. Such a technique (see, e.g., [Rei85]) consists of computing the solutions of linearequation systems based on the incidence matrix of the net under consideration. These solutions singleout places that do not change their token count during transition �rings or indicate how often eachtransition has to �re in order to reproduce a given marking. By means of these solutions, propertiessuch as boundedness, liveness, and deadlock can be studied.The performance analysis aims at determining e�ciency measures by resorting to either the numericalsolution of a Markov chain or the event driven simulation of the net.Since the two phases above are complementary, the choice between them is made according to the adequacyof the related representation with respect to the analysis of the concurrent system under consideration andthe availability of the corresponding tools. In any case, the designer is forced to start with an algebraicrepresentation of the system in order to take advantage of compositionality of algebras and avoid graphicalcomplexity of nets.In order to implement the integrated approach, we have to choose a class of stochastically timed Petrinets and then a stochastically timed process algebra having possibly the same expressive power. The class ofstochastically timed Petri nets we have chosen is that of Generalized Stochastic Petri Nets (GSPNs) [ABC84,ABCC87] because they have been extensively studied and successfully applied. Since in the literature thereis no stochastically timed process algebra having the same expressive power as GSPNs, we have developeda new one called Extended Markovian Process Algebra (EMPA) on the basis of MTIPP [GHR93b] andPEPA [Hil96], which is endowed with expressive features typical of GSPNs. The name of the algebra stemsfrom the fact that action durations are mainly expressed by means of exponentially distributed randomvariables (hence Markovian), but it is also possible to express prioritized probabilistic actions having durationzero as well as actions whose duration is unspeci�ed (hence Extended). In order to support the various phasesand analyses of the integrated approach, EMPA has been equipped with a collection of semantics as well asa notion of integrated equivalence based on ideas in [LS91, HR94, Hil96, Buc94, Tof94, Mil89], as depictedin Fig. 2. Each term has an integrated interleaving semantics represented by a labeled transition system(LTS for short) whose labels consist of both the type and the duration of the actions and an integrated netsemantics represented by a GSPN. From the integrated interleaving semantic model, two projected semanticmodels can be obtained: a functional model given by a LTS labeled only on the type of the actions, and aperformance model given by a Markov chain (MC for short).As it can be noted, although the integrated approach has in principle a general validity, in this paper westudy its instantiation to the exponential case. The restriction to exponentially distributed durations 1 sim-1Actually, in Sect. 5.1 we shall see that also phase type distributions are somehow expressible with EMPA.3
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_0,λ>. ,λ>.This is correct from the functional point of view by de�nition of interleaving and also from the performancepoint of view due to the memoryless property of the exponential distribution [Kle75]: if we assume that E2completes a before b, then the residual time to the completion of b is still exponentially distributed with rate�, so the rate labeling the transition from state 0 k;<b; �>:0 to state 0 k; 0 is � itself instead of � conditionalon �.This paper, which is an extended and revised version of [BDG94a, BDG94b, BDG94c, BDG94d, BDG94e,BDG95, BDG96], is organized as follows. In Sect. 2 we introduce EMPA by giving the syntax of its termsand the meaning of its operators. In Sect. 3 the integrated interleaving semantics is de�ned together withthe related functional semantics, while the performance semantics is presented in Sect. 4. In Sect. 5 we stressthe expressiveness of EMPA, as well as the advantages of compositionality, by showing some examples aboutqueueing systems. In Sect. 6 we brie
y report on a notion of integrated equivalence presented in [BG98].In Sect. 7 we de�ne the integrated net semantics and we investigate the relationship with the integratedinterleaving semantics. In Sect. 8 we apply the integrated approach to a case study: the alternating bitprotocol. Finally, in Sect. 9 we report some concluding remarks on related work, tool support, and open4



problems. We would like to point out that this paper does not contain proofs of results concerned with theintegrated equivalence or a comparative study of the expressive power of EMPA: the interested reader istherefore referred to the companion paper [BG98].2 Syntax and Informal Semantics for EMPAIn this section we introduce EMPA by showing the syntax of its terms and explaining the meaning of itsoperators. This section is organized as follows. In Sect. 2:1 we introduce the concept of action together witha classi�cation of actions based on their types and rates. In Sect. 2:2 we de�ne the syntax of terms and weinformally explain the meaning of each operator. Finally, in Sect. 2:3 we illustrate the execution policy wehave adopted to choose among several simultaneously executable actions.2.1 Actions: Types and RatesThe building blocks of EMPA are actions. Each action is a pair <a; ~�> consisting of the type of the actionand the rate of the action. The type denotes the kind of the action (e.g. transmission of a message), whilethe rate indicates the speed at which the action occurs from the point of view of an external observer: ratesare used as a concise way to denote the random variables specifying the duration of the actions. Dependingon the type, like in classical process algebras, actions are divided into external and internal depending onwhether they are observable or not: as usual, we denote by � the only internal action type we use. Moreover,we have the following classi�cation according to the rates:� Active actions are actions whose rate is speci�ed. An active action can be either exponentially timedor immediate:{ Exponentially timed actions are actions whose rate is a positive real number. Such a numberis interpreted as the parameter of the exponentially distributed random variable specifying theduration of the action. We recall that an exponentially distributed random variable X has prob-ability distribution function FX (t) = Pr[X � t] = 1� e���t for any t 2 RI +, expected value 1=�and variance 1=�2, thus it is uniquely identi�ed by its parameter � 2 RI +.{ Immediate actions are actions whose rate, denoted by1l;w, is in�nite. Such actions have durationzero, and each of them is given a priority level l 2 NI + and a weight w 2 RI +.� Passive actions are actions whose rate, denoted by �, is unde�ned. The duration of a passive action is�xed only by synchronizing it with an active action of the same type.The classi�cation of actions based on their rates implies that exponentially timed actions model activitiesthat are relevant from the performance point of view, immediate actions model logical events as well asactivities that are either irrelevant from the performance point of view or unboundedly faster than theothers, and passive actions model activities waiting for the synchronization with timed activities and allowfor pure nondeterminism. While exponentially timed actions of EMPA are exactly the same as exponentiallytimed actions of [HR94, Hil96], immediate actions and passive actions are di�erent from those adopted inother stochastically timed process algebras. In particular, immediate actions of EMPA, which have the samestructure as immediate transitions of GSPNs, di�er from the immediate actions of [HRW95] since thesehave neither associated priorities nor weights. Moreover, passive actions of EMPA, which resemble actionsof classical process algebras, di�er from both the passive actions of [HR94] since these have an associatedduration and the passive actions of [Hil96] because these have an associated weight. It is worth noting thatthe coexistence of di�erent kinds of actions provides EMPA with a considerable expressive power. The readerinterested in a detailed comparison with process algebras including priorities, probabilities, and/or time isreferred to [BG98].We denote the set of actions by Act = AType � ARate where AType is the set of types and ARate =RI + [ Inf [ f�g, with Inf = f1l;w j l 2 NI + ^w 2 RI +g, is the set of rates. We use a; b; : : : as metavariablesfor AType, ~�; ~�; : : : for ARate, and �; �; : : : for RI +. Finally, we denote by APLev = f�1g [ NI the set ofaction priority levels, and we assume that � < � <1l;w for all � 2 RI + and 1l;w 2 Inf .5



2.2 Syntax of Terms and Informal Semantics of OperatorsLet Const be a set of constants, ranged over by A;B; : : :, and let ARFun = f' : AType �! AType j '(� ) =� ^ '(AType � f�g) � AType � f�gg be a set of action relabeling functions ranged over by '; '0; : : :.De�nition 2.1 The set L of process terms of EMPA is generated by the following syntaxE ::= 0 j <a; ~�>:E j E=L j E['] j E + E j E kS E j Awhere L; S � AType � f�g. The set L will be ranged over by E;F; : : :.In the rest of the section we informally explain the semantics of the operators: the formal semantics willbe presented in Sect. 3.2.The null term \0" is the term that cannot execute any action.The pre�x operator \<a; ~�>: " denotes the sequential composition of an action and a term: term<a; ~�>:Ecan execute action <a; ~�> and then behaves as term E.The functional abstraction operator \ =L" abstracts from the type of the actions: term E=L behaves asterm E except that the type of each executed action is turned into � whenever it is in L. The meaningof this operator is the same as that of the hiding operator of CSP [Hoa85], thereby providing a means toencapsulate or ignore functional information.The functional relabeling operator \ [']" changes the type of the actions: term E['] behaves as term Eexcept that the type of each executed action is modi�ed according to '. The meaning of this operator isthe same as that of the relabeling operator of CCS [Mil89], thus providing a means to obtain more compactalgebraic descriptions.The alternative composition operator \ + " expresses a choice between two terms: term E1+E2 behavesas either term E1 or term E2 depending on whether an action of E1 or an action of E2 is executed �rst. Aswe shall see in Sect. 2.3, the way in which the choice is resolved depends on the kind of the actions involvedin the choice itself.The parallel composition operator \ kS " expresses the concurrent execution of two terms accordingto two synchronization disciplines. The synchronization discipline on action types is the same as that ofCSP [Hoa85], hence two actions can synchronize only if they have the same type, and this coincides with theresulting type. The synchronization discipline on action rates states that action <a; ~�> can be synchronizedwith action <a; ~�> only if min(~�; ~�) = �, and the resulting rate is given by max(~�; ~�) up to normalization.In other words, in a synchronization at most one active action can be involved and its rate determines therate of the synchronization itself, up to normalization as explained in Sect. 3.2. The main reason behind theadoption of such a synchronization discipline on action rates is its simplicity, both from the modeling pointof view and from the semantic treatment point of view. The expressive power resulting from this apparentlyrestrictive discipline has been investigated in [BG98].In order to avoid ambiguities, we assume the binary operators to be left associative and we introduce thefollowing operator precedence relation: functional abstraction = functional relabeling > pre�x > alternativecomposition > parallel composition.Finally, EMPA is equipped with constants as well as a set Def : Const �!o L of related de�ning equations.In order to guarantee the correctness of recursive de�nitions given by means of constants, we restrict ourselvesto the set G of closed and guarded terms [BG98].2.3 Execution PolicyBecause of the presence of binary operators such as the alternative composition and the parallel composition,the situation in which several active actions are simultaneously executable can arise. Both in the case of thealternative composition operator (due to the choice it expresses) and in the case of the parallel compositionoperator (as we have adopted an interleaving model, hence representing the execution of only one action ata time, which is consistent with the fact that two exponentially timed actions cannot terminate at the sametime), we need a mechanism for choosing the action to be executed. In stochastically timed frameworks,such a mechanism is usually referred to as the execution policy [ABBCCC89].Consider a term enabling two exponentially timed actions <a; �> and <b; �>. In this case we adoptthe race policy: the action sampling the least duration succeeds. This implies that (i) the random variable6



describing the sojourn time in the state corresponding to the term above is the minimumof the exponentiallydistributed random variables describing the durations of the two actions, and (ii) the execution probabilityof the two actions is determined as well by the exponentially distributed random variables describing theirdurations. In order to compute the two quantities above, we exploit the property that the minimum ofn independent exponentially distributed random variables is an exponentially distributed random variablewhose rate is the sum of the n original rates [Kle75]. As a consequence, for the term above we have thatthe sojourn time of the corresponding state is exponentially distributed with rate � + � (hence the meansojourn time is 1=(� + �)) and the execution probabilities of the two actions are �=(� + �) and �=(� + �),respectively.Another important consequence of the adoption of the race policy is that immediate actions take prece-dence over exponentially timed actions. If we consider a term enabling actions <a; �> and <b;1l;w>, thenonly the latter action can be actually executed since its duration is zero whereas the former action cannotsample duration zero from its associated exponential distribution.Consider now a term enabling two immediate actions <a;1l;w> and <b;1l0;w0>. Since both actionshave the same duration and hence the race policy does not apply, we choose the action to execute accordingto the preselection policy: only the actions having the highest priority level are executable, and each of themis given a probability execution proportional to its own weight. The sojourn time of the state correspondingto the term above is zero. If l > l0 (l0 > l), then only action a;1l;w (b;1l0;w0) is actually executable. Ifl = l0, then the execution probabilities of the two actions are w=(w +w0) and w0=(w +w0), respectively.Finally, consider a term enabling two passive actions <a; �> and <b; �>. Since the duration of passiveactions is unde�ned, and they are assigned neither priority levels nor weights, they can be chosen accordingto neither the race policy nor the preselection policy. This means that passive actions can be viewed asactions of classical process algebras, hence the term above expresses a purely nondeterministic choice, wherenondeterminism refers to the absence of a mechanism that speci�es how the choice is resolved.3 Integrated Interleaving Semantics of EMPA TermsIn order to implement the �rst phase of the integrated approach of Fig. 1, we provide each EMPA term witha formally de�ned integrated semantics based on LTSs whose labels consist of both the type and the rateof actions, from which two projected semantic models describing either functionality or performance can bederived.This section is organized as follows. In Sect. 3:1 we recall some notions about LTSs since they are thesemantic model in this framework. In Sect. 3:2 we de�ne the integrated interleaving semantics of EMPAterms, we introduce the related concepts of functional and performance semantics, and we formalize theproperty of performance closure.3.1 Rooted Labeled Transition SystemsIn this section we recall the de�nition of LTS and some related notions [Par81].De�nition 3.1 A rooted labeled transition system (LTS) is a quadruple(S; U; ���!; s0)such that:� S is a set whose elements are called states;� U is a set whose elements are called labels;� ���! � S � U � S is called transition relation;� s0 2 S is called the initial state.In the graphical representation of a LTS, states are drawn as black dots and transitions are drawn as arrowsbetween pairs of states with the appropriate labels; the initial state is pointed to by an unlabeled arrow.7



Below we recall two notions of equivalence for LTSs. The �rst one, isomorphism, considers two LTSs tobe equivalent if they have the same number of states, and any pair of corresponding states have identicallylabeled transitions toward any pair of corresponding states. The second one, bisimilarity, is coarser than theprevious one since it considers two LTSs to be equivalent if any pair of corresponding states have identicallylabeled transitions toward any pair of corresponding states, regardless of the number of states.De�nition 3.2 Let Z1 = (S1; U; ���!1; s01) and Z2 = (S2; U; ���!2; s02) be two LTSs.� Z1 is isomorphic to Z2 if and only if there exists a bijection � : S1 �! S2 such that:{ �(s01) = s02;{ for each s; s0 2 S1 and for each u 2 Us u���!1 s0 () �(s) u���!2 �(s0)� Z1 is bisimilar to Z2 if and only if there exists a relation B � S1 � S2 such that:{ (s01; s02) 2 B;{ for each (s1; s2) 2 B and for each u 2 U� whenever s1 u���!1 s01, then s2 u���!2 s02 and (s01; s02) 2 B;� whenever s2 u���!2 s02, then s1 u���!1 s01 and (s01; s02) 2 B.3.2 Integrated Interleaving SemanticsThe main problem to tackle when de�ning the semantics for EMPA is that the actions executable by agiven term may have di�erent priority levels, and only those having the highest priority level are actuallyexecutable. Let us call the potential move of a given term a pair composed of an action executable by thatterm when ignoring priority levels and the derivative term obtained by executing that action; let us denote byPMove = Act�G the set of all the potential moves. To solve the problem above, we compute inductively themultiset 2 of the potential moves of a given term regardless of priority levels, and then we select those havingthe highest priority level. This is motivated in our framework by the fact that the actual executability as wellas the execution probability of an action depend upon all the actions that are executable at the same timewhen it is executable: only if we know all the potential moves of a given term, we can correctly determinethe transitions of the corresponding state and their rates. This is clari�ed by the following example.Example 3.3 Consider term E � <a;13;1>:E1 + <e;12;1>:A+<g; �>:0where E1 � <b; �>:(0 k; 0) + <c;11;1>:E2E2 � <h; �>:E3 + <h; �>:E3E3 � <d; �>:0kfdg(<d; �>:0k;<d; �>:0)A �= <f; 
>:ASuppose we apply to E standard semantic rules for classical process algebras, thereby disregarding prioritylevels, probabilities, and durations. Then we obtain the LTS in Fig. 3(a) whereE4 � 0 kfdg(0 k;<d; �>:0)E5 � 0 kfdg(<d; �>:0k; 0)where transitions are in exact correspondence with the potential moves.Now assume that priority levels are taken into account. Then lower priority transitions must be pruned,thus resulting in the LTS in Fig. 3(b): note that the passive transition labeled with <g; �> has not beendiscarded. The new LTS is obtained by means of an auxiliary function we shall call Select .2We use \fj" and \jg" as brackets for multisets, \ � " and \ 	 " to denote multiset union and di�erence, Mu�n(S)(P�n(S)) to denote the collection of �nite multisets (sets) over set S, M(s) to denote the multiplicity of element s in multisetM , and �i(M) to denote the multiset obtained by projecting the tuples in multiset M on their i-th component. Thus, e.g.,(�1(PM 2))(<a; �>) in the �fth part of Table 1 denotes the multiplicity of tuples of PM 2 whose �rst component is <a;�>.8
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Figure 3: Integrated interleaving models for Ex. 3.3Finally, consider the rate of the transition from E2 to E3 and the rates of the two transitions from E3to E4 and E5. In the correct semantic model for E, such rates have to be like in Fig. 3(c). Concerningthe transition from E2 to E3, its rate is 2 � � instead of � because in E2 two exponentially timed actionswith rate � occur and the race policy has been adopted. The problem is that both exponentially timedactions have the same type and results in the same derivative term, so with classical semantic rules onlyone transition is produced. The same problem arises in the case of immediate actions. To overcome this,instead of producing e.g. two transitions with two di�erent auxiliary labels [HR94], one transition havingmultiplicity two (which incidentally requires the adoption of a variant of LTS as a semantic model) [Hil96],or directly one transition with the correct rate by means of auxiliary semantic rules [GHR93a], we keep trackof the multiplicity of potential moves and then we construct transitions by using an auxiliary function weshall call Melt that merges together those potential moves having the same action type, the same prioritylevel, and the same derivative term. The rate of transitions derived by merging potential moves is computedby means of another auxiliary function we shall call Min to remind the adoption of the race policy.Concerning the transitions from E3 to E4 and E5, their rate is �=2 instead of � because in E3 only oneexponentially timed action with rate � occurs: the value �=2 stems from the assumption that independentpassive actions have the same probability to participate in a synchronization. The same considerations wouldhold if in E3 we had an immediate action instead of an exponentially timed action or alternative passiveactions instead of independent passive actions. In all of these cases a normalization of rates is required, andthis is carried out by means of an auxiliary function we shall call Norm.The reader is invited to look again at this example after examining the formal de�nition of the semantics,in order to verify that the LTS of Fig. 3(c) is exactly the result of the application to E of the rules in Table 1equipped with the auxiliary functions mentioned above.The formal de�nition of the integrated interleaving semantics for EMPA is based on the transition relation���!, which is the least subset of G �Act �G satisfying the inference rule in the �rst part of Table 1. Thisrule selects the potential moves that have the highest priority level (or are passive), and then merges togetherthose having the same action type, the same priority level and the same derivative term. The �rst operationis carried out through functions Select : Mu�n(PMove) �! Mu�n (PMove) and PL : Act �! APLev ,which are de�ned in the third part of Table 1. The second operation is carried out through functionMelt :Mu�n(PMove) �! P�n (PMove) and partial function Min : (ARate � ARate) �!o ARate, which arede�ned in the fourth part of Table 1. We recall that function Melt , whose introduction is motivated by thedrawback cited in the example above, avoids burdening transitions with auxiliary labels as well as keepingtrack of the fact that some transitions may have multiplicity greater than one. We also point out that thenameMin should recall the adoption of the race policy: the minimum of a set of random variables has to becomputed. We regard Min as an associative and commutative operation, thus we take the liberty to applyit to multisets of rates. 9



(<a; ~�>;E0) 2 Melt(Select(PM (E)))E a;~����!E0PM (0) = ;PM (<a; ~�>:E) = fj (<a; ~�>;E) jgPM (E=L) = fj (<a; ~�>;E0=L) j (<a; ~�>;E0) 2 PM (E) ^ a =2 L jg �fj (<�; ~�>;E0=L) j (<a; ~�>;E0) 2 PM (E) ^ a 2 L jgPM (E[']) = fj (<'(a); ~�>;E0[']) j (<a; ~�>;E0) 2 PM (E) jgPM (E1 +E2) = PM (E1)� PM (E2)PM (E1 kS E2) = fj (<a; ~�>;E01 kS E2) j a =2 S ^ (<a; ~�>;E01) 2 PM (E1) jg �fj (<a; ~�>;E1 kS E02) j a =2 S ^ (<a; ~�>;E02) 2 PM (E2) jg �fj (<a; ~
>;E01 kS E02) j a 2 S ^(<a; ~�1>;E01) 2 PM (E1) ^(<a; ~�2>;E02) 2 PM (E2) ^~
 = Norm(a; ~�1; ~�2;PM (E1);PM (E2)) jgPM (A) = PM (E) if A �= ESelect(PM ) = fj (<a; ~�>;E) 2 PM j 8(<b; ~�>;E0) 2 PM :PL(<a; ~�>) � PL(<b; ~�>) _PL(<a; ~�>) = �1 jgPL(<a; �>) = �1 PL(<a; �>) = 0 PL(<a;1l;w>) = lMelt(PM ) = f(<a; ~�>;E) j 9~� 2 ARate : (<a; ~�>;E) 2 PM ^~� = Minfj ~
 j (<a; ~
>;E) 2 PM ^ PL(<a; ~
>) = PL(<a; ~�>) jgg�Min � = � �1Min �2 = �1 + �2 1l;w1 Min1l;w2 =1l;w1+w2Norm(a; ~�1; ~�2;PM 1;PM 2) = � Split(~�1; 1=(�1(PM 2))(<a; �>)) if ~�2 = �Split(~�2; 1=(�1(PM 1))(<a; �>)) if ~�1 = �Split(�; p) = � Split(�; p) = � � p Split(1l;w; p) =1l;w�pTable 1: Inductive rules for EMPA integrated interleaving semantics10



The multiset PM (E) 2 Mu�n (PMove) of potential moves of E 2 G is de�ned by structural inductionin the second part of Table 1 according to the intuitive meaning of operators explained in Sect. 2.2. It isworth noting that, unlike the de�nition of the semantics for classical process algebras, we compute all thepotential moves of a term at once instead of computing one potential move at a time, since this is the mostconvenient way to correctly determine the transitions (Select) and their rates (Melt and Norm). In order toenforce the bounded capacity assumption [Hil94], which establishes that the rate at which an activity is carriedout cannot be increased by synchronizing it with other activities, in the rule for the parallel compositionoperator a normalization is required which suitably computes the rates of potential moves resulting fromthe synchronization of the same active action with several independent or alternative passive actions. Thenormalization operates in such a way that applying Min to the rates of the synchronizations involving theactive action gives as a result the rate of the active action itself, and that each synchronization is assignedthe same execution probability. This normalization is carried out through partial function Norm : (AType �ARate � ARate �Mu�n(PMove) �Mu�n (PMove)) �!o ARate and function Split : (ARate � RI ]0;1]) �!ARate, which are de�ned in the �fth part of Table 1. Note that Norm(a; ~�1; ~�2;PM 1;PM 2) is de�ned ifand only if min(~�; ~�) = �, which is the condition on action rates we have required in Sect. 2.2 in order for asynchronization to be permitted. The name Split comes from the way this function is used to calculate theperformance semantics in Sect. 4.3.Example 3.4 Consider term E � E1 kfag(E2 k;E3)where E1 � <a; �>:0E2 � <a; �>:0 + <a; �>:0E3 � <a; �>:0Then E1 has one potential move (<a; �>; 0), E2 has one potential move (<a; �>; 0) with multiplicitytwo, and E3 has one potential move (<a; �>; 0). As a consequence, E2 k;E3 has both potential move(<a; �>; 0k;E3) with multiplicity two and potential move (<a; �>;E2 k; 0). Therefore, when computingthe potential moves for E, function Norm produces both (<a; �=3>; 0kfag(0 k;E3)) with multiplicity twoand (<a; �=3>; 0kfag(E2 k; 0)), and subsequently functionMelt produces both (<a; 2 ��=3>; 0kfag(0 k;E3))and (<a; �=3>; 0kfag(E2 k; 0)), as expected.De�nition 3.5 The integrated interleaving semantics of E 2 G is the LTSI[[E]] = ("E;Act; ���!E ; E)where:� "E is the least subset of G such that:{ E 2"E;{ if E1 2"E and E1 a;~����!E2, then E2 2"E;� ���!E is the restriction of ���! to "E �Act� "E.De�nition 3.6 E 2 G is performance closed if and only if I[[E]] does not contain passive transitions. Wedenote by E the set of performance closed terms of G.Borrowing the terminology of GSPNs, a state of I[[E]] is called tangible if it has at least one outgoingexponentially timed transition and vanishing if it has at least one outgoing immediate transition. Becauseof function Select , a tangible state has only outgoing exponentially timed transitions and, possibly, passivetransitions; likewise, a vanishing state has only outgoing immediate transitions of the same priority level and,possibly, passive transitions. If the term at hand is performance closed, which means that it is completelyspeci�ed from the performance standpoint, then neither tangible states nor vanishing states have outgoingpassive transitions.Given a term E 2 G, its integrated interleaving semantics I[[E]] fully represents the behavior of Ebecause transitions are decorated by both the action type and the action rate, hence both the functional11



aspects and the performance aspects are described. In order to fully implement the �rst phase of theintegrated approach of Fig. 1, we need to derive two projected semantic models concerning functionality andperformance, respectively. One can think of obtaining the functional semantics F [[E]] and the performancesemantics P[[E]] of term E from its integrated interleaving semantics I[[E]] by simply dropping action ratesand action types, respectively. As a matter of fact, this is the case for the functional semantics, and alsofor the performance semantics whenever only exponentially timed transitions or only immediate transitionsare involved. Below we introduce the de�nition of the functional semantics, while the de�nition of theperformance semantics is deferred to Sect. 4 since it requires a more careful treatment due to the possiblecoexistence of exponentially timed and immediate transitions.De�nition 3.7 The functional semantics of E 2 G is the LTSF [[E]] = ("E;AType; ���!E;F ; E)where ���!E;F is the restriction of ���!E to "E �AType� "E.4 Performance Semantics of EMPA TermsIn this section we complete the description of the implementation of the �rst phase of the integrated approachof Fig. 1 by showing the performance projection of the integrated interleaving semantics, i.e. the performancesemantics, for performance closed terms only.Since in EMPA the durations of timed actions are expressed through exponentially distributed randomvariables, it is natural to associate with each term a MC acting as a performance model. Given a termE 2 E , its performance semantics P[[E]], hereafter called Markovian semantics and denoted by M[[E]], isderived by adequately manipulating I[[E]]. Formally,M[[E]] represents the state transition diagram of theMC associated with E, so it is de�ned as a variant of a LTS, called probabilistically rooted labeled transitionsystem (p-LTS), in which there is no initial state but a probability mass function that speci�es, for everystate, the probability that it is the initial state.This section is organized as follows. In Sect. 4:1 we introduce some notions about p-LTSs since they arethe means whereby the semantic model is expressed in this framework. In Sect. 4:2 we recall some notionsabout MCs. In Sect. 4:3 we de�ne the Markovian semantics of EMPA terms.4.1 Probabilistically Rooted Labeled Transition SystemsIn this section we present the de�nition of p-LTS as well as the related notions of p-isomorphism andp-bisimilarity we have introduced.De�nition 4.1 A probabilistically rooted labeled transition system (p-LTS) is a quadruple(S; U; ���!; P )such that:� S; U; ���! are de�ned as for a LTS;� P : S �! RI [0;1] is called initial state probability function and is such that Ps2S P (s) = 1.In the graphical representation of a p-LTS, states and transitions are drawn as in a LTS, and each stateis labeled with its initial state probability unless it is zero. In this paper we consider only p-LTSs whoseset of labels is contained in RI + [ Inf , such that the transitions leaving a state are either all labeled withelements of RI + or all labeled with elements of Inf having the same priority level. The notions of equivalencefor such p-LTSs (p-isomorphism and p-bisimilarity) carry over from the corresponding notions for LTSs. Inparticular, p-bisimilarity is developed according to [LS91], so it considers two p-LTSs to be equivalent if anypair of corresponding states have the same aggregated rate to reach the same equivalence class.De�nition 4.2 Let Z1 = (S1; RI + [ Inf ; ���!1; P1) and Z2 = (S2; RI + [ Inf ; ���!2; P2) be two p-LTSs.� Z1 is p-isomorphic to Z2 if and only if there exists a bijection � : S1 �! S2 such that:12



{ for each s 2 S1 P1(s) = P2(�(s)){ for each s; s0 2 S1 and for each ~� 2 RI + [ Infs ~����!1 s0 () �(s) ~����!2 �(s0)� Z1 is p-bisimilar to Z2 if and only if there exists an equivalence relation B � (S1 [S2)� (S1 [S2) suchthat:{ for each C 2 (S1 [ S2)=B Xs2C\S1 P1(s) = Xs2C\S2 P2(s){ whenever (s1; s2) 2 B \ (S1 � S2), then for each C 2 (S1 [ S2)=BMinfj ~� j s1 ~����!1 s01 ^ s01 2 C \ S1 jg = Minfj ~� j s2 ~����!2 s02 ^ s02 2 C \ S2 jg4.2 Markov ChainsIn this section we recall some notions and properties about MCs [Kle75]. We shall start with the continuoustime variant.De�nition 4.3 A continuous time Markov chain (CTMC) is a continuous time stochastic process X =fX(t) j t 2 Tgwith discrete state space SX such that, for each n 2 NI +, i0; : : : ; in�1; in 2 SX , t0; : : : ; tn�1; tn 2T where t0 < : : : < tn�1 < tn, it turns outPrfX(tn) = in j X(tn�1) = in�1 ^ : : :^X(t0) = i0g = PrfX(tn) = in j X(tn�1) = in�1gDe�nition 4.4 Let X be a CTMC.� The transition matrix of X from time t 2 T to time t0 2 T is matrix PX(t; t0) de�ned byPX(t; t0) = [PrfX(t0) = j j X(t) = ig]i;j2SX� The in�nitesimal generator of X at time t 2 T is matrix QX(t) de�ned byQX(t) = [qi;j(t)]i;j2SX = lim�t!0 PX(t; t+�t)� I�twhere I is the identity matrix.� X is a homogeneous CTMC (HCTMC) if and only if its in�nitesimal generator is independent of thetime.� The state probability distribution function of X at time t 2 T is vector ��X(t) de�ned by��X(t) = [PrfX(t) = ig]i2SX� The steady state probability distribution function of X is vector ��X de�ned by��X = limt!1��X(t)A HCTMC X is represented by means of its in�nitesimal generator when we wish to determine its stateprobability distribution functions, from which performance indices of interest can be derived. Whenever thesteady state probability distribution function exists, it can be determined by solving��X �QX = 0Pi2SX ��X [i] = 1The HCTMC X can equivalently be represented by means of the p-LTS(SX ; RI +; f(i; qi;j; j) 2 SX � RI + � SX j qi;j > 0g; ��X(0))Similar de�nitions and properties hold for the discrete time variant.13



De�nition 4.5 A discrete time Markov chain (DTMC) is a discrete time stochastic process X = fXn j n 2NI g with discrete state space SX such that, for each n 2 NI +, i0; : : : ; in�1; in 2 SX , it turns outPrfXn = in j Xn�1 = in�1 ^ : : :^X0 = i0g = PrfXn = in j Xn�1 = in�1gDe�nition 4.6 Let X be a DTMC.� The transition matrix of X at step n 2 NI is matrix PX(n) de�ned byPX(n) = [PrfXn+1 = j j Xn = ig]i;j2SX� X is a homogeneous DTMC (HDTMC) if and only if its transition matrix is independent of the time.� The state probability distribution function of X at step n 2 NI is vector ��X(n) de�ned by��X(n) = [PrfXn = ig]i2SX� The steady state probability distribution function of X is vector ��X de�ned by��X = limn!1��X(n)A HDTMC X is represented by means of its transition matrix when we wish to determine its state probabil-ity distribution functions, from which performance indices of interest can be derived. Whenever the steadystate probability distribution function exists, it can be determined by solving��X �PX = PXPi2SX ��X [i] = 1The HDTMC X can equivalently be represented by means of the p-LTS(SX ; RI ]0;1]; f(i; pi;j; j) 2 SX � RI ]0;1] � SX j pi;j > 0g; ��X(0))We conclude with the notion of ordinary lumping [Sch84], which results in an aggregation method thatallows an exact analysis of a MC to be carried out on a smaller stochastic process which still is a MC. Exactanalysis refers to the fact that, whenever the steady state probability distribution function of the originalMC exists, the steady state probability of each macrostate of the lumped MC is the sum of the steady stateprobabilities of the original states it contains. Though quite helpful, this aggregation should be avoidedwhen it may cause information loss, e.g. as a consequence of merging together states having di�erent weightswith respect to a given performance measure. We now give the de�nition for the continuous time case (inthe discrete time case, transition probabilities substitute for transition rates).De�nition 4.7 Let X be a HCTMC. A partition � of SX is an ordinary lumping of X if and only if forevery Ci; Cj 2 � and h; l 2 Ci Xk2Cj qh;k = Xk2Cj ql;kIf this is the case, the ordinarily lumped HCTMC X 0 obtained from X has state space � and in�nitesimalgenerator Q0X0 where q0i;j =Pk2Cj qh;k for some h 2 Ci.It is easily seen that, if X is a MC and X 0 is the MC obtained from X via the ordinary lumping �, thenthe p-LTSs underlying X and X 0 are p-bisimilar via the re
exive, symmetric and transitive closure of therelation that associates each state of X with the state of X 0 that contains it.14



4.3 Markovian SemanticsThe Markovian semantics of a performance closed term is a HDTMC or a HCTMC depending on whetherthe underlying integrated interleaving semantic model has only immediate transitions or not.De�nition 4.8 Let E 2 E be such that I[[E]] contains only immediate transitions. The Markovian seman-tics of E is the p-LTS M[[E]] = ("E; RI ]0;1];���!E;M; PE;M)where:� ���!E;M is the least subset of "E � RI ]0;1]� "E such that F p���!E;M F 0 wheneverp =Xfjw j F a;1l;w���!E F 0 jg=Xfjw j F a;1l;w���!E F 00 jg� PE;M : "E �! RI [0;1], PE;M(F ) = � 1 if F � E0 if F 6� E .De�nition 4.9 Let E 2 E be such that I[[E]] contains only exponentially timed transitions. The Markoviansemantics of E is the p-LTS M[[E]] = ("E; RI +;���!E;M; PE;M)where:� ���!E;M is the least subset of "E � RI +� "E such that F ����!E;M F 0 whenever� =Xfj� j F a;����!E F 0 jg� PE;M : "E �! RI [0;1], PE;M(F ) = � 1 if F � E0 if F 6� E .When E 2 E is such that I[[E]] contains both exponentially timed and immediate transitions, a HCTMCcan still be derived by removing the immediate transitions and the related vanishing states, which is justi�edfrom a stochastic point of view by the fact that the sojourn time in a vanishing state is zero. We nowpresent the algorithm transforming I[[E]] into M[[E]] whenever both kinds of transitions coexist. Due to itsgenerality, such an algorithm can be regarded as an alternative to the technique of the embedded MC, whichhas been used e.g. to de�ne the MC underlying a GSPN [ABC84].The �rst step of the algorithm consists of1. dropping action types,2. removing sel
oops composed of an immediate transition (hereafter called immediate sel
oops for short),3. changing the weight of each immediate transition into the corresponding execution probability, and4. determining the initial state probability function.Formally, from I[[E]] = ("E;Act; ���!E ; E) we obtain the p-LTS P1[[E]] = (SE;1; RI + [ Inf ; ���!E;1; PE;1)where: 3� SE;1 = "E.� Let PM 1(s) = Melt(fj (~�; s0) j s a;~����!E s0 jg) for any s 2 SE;1. Then ���!E;1 is the least subset ofSE;1 � (RI + [ Inf )� SE;1 such that:{ If s is tangible and (�; s0) 2 PM 1(s), then s ����!E;1 s0.3With abuse of notation, we apply functionMelt to multisets of pairs whose �rst components are rates instead of actions.15
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oops created by splitting immediate transitions leaving one of the statesdownstream the fork and entering the state upstream the fork, and4. distributing the initial state probability associated with the state upstream the fork among the statesdownstream the fork.Formally, if we assume that the vanishing state considered at the k-th step is the one in Fig. 4, we build thep-LTS Pk[[E]] = (SE;k; RI + [ Inf ; ���!E;k; PE;k) where:� SE;k = SE;k�1 � fs0g.� Let PM k(s) =Melt(fj (~�; s0) j s ~����!E;k�1 s0^ s0 6� s0 jg�fj (Split(~�; pi); si) j s ~����!E;k�1 s0 ^1 � i �n jg) for any s 2 SE;k. Then ���!E;k is the least subset of SE;k � (RI + [ Inf ) � SE;k such that:{ If s is tangible, or vanishing but s =2 fsi j 1 � i � ng, and (~�; s0) 2 PM k(s), then s ~����!E;k s0.{ If s is vanishing, s � si and there are exactly m � 1 potential moves (1l;pj ; sj), 1 � j � m,in PM k(s) such that sj 6� s, then there are m transitions s1l;pj=p���!E;k sj , 1 � j � m, wherep =Pmj=1 pj.� PE;k : SE;k �! RI [0;1], PE;k(s) = � PE;k�1(s) if s =2 fsi j 1 � i � ngPE;k�1(s) + PE;k�1(s0) � pi if s � si .De�nition 4.10 Let E 2 E be such that I[[E]] contains both exponentially timed and immediate transi-tions. The Markovian semantics of E is the p-LTSM[[E]] = (SE;M; RI +; ���!E;M; PE;M)obtained by applying the algorithm above.We conclude by proving the correctness of the algorithm.Theorem 4.11 Let E 2 E be such that I[[E]] contains both exponentially timed and immediate transitions.16



(i) For every k 2 NI + and s 2 SE;k vanishing,Pfj p j s 1l;p���!E;k s0 jg = 1.(ii) For every k 2 NI +, Ps2SE;k PE;k(s) = 1.(iii) The elimination of immediate sel
oops is correct from the performance viewpoint.(iv) M[[E]] is unique.(v) If I[[E]] has �nitely many states, then the algorithm terminates after O(j"Ej) steps.Proof Let E 2 E be such that I[[E]] contains both exponentially timed and immediate transitions.(i) We proceed by induction on k 2 NI +:{ If k = 1 then the result immediately follows from the de�nition of ���!E;1 .{ Let k > 1 and let the result hold for k � 1. Suppose that the fork considered at step k is the onedepicted in Fig. 4, and let s 2 SE;k:� If s =2 fs0 2 SE;k�1 j s0 1l0;p0���!E;k�1 s0g then either s is tangible (hence the result is notconcerned with it), or s is vanishing but none of its immediate transitions enters s0, so theresult holds by the induction hypothesis or, if it is downstream the fork, by the renormalizationperformed at step k.� Let s 2 fs0 2 SE;k�1 j s0 1l0 ;p0���!E;k�1 s0g. If s is downstream the fork, then the result triviallyfollows by the renormalization carried out at step k. Assume that s is not downstream thefork. From the induction hypothesis it follows thatPfj p j s 1l0;p���!E;k s0 jg =Pfj p j s 1l0;p���!E;k s0 ^ s0 6� s0 jg+Pfj p0 � pi j s1l0;p0�pi���! E;k si jg =Pfj p j s 1l0;p���!E;k�1 s0 ^ s0 6� s0 jg+ p0 �Pfj pi j s0 1l;pi���!E;k�1 si jg =Pfj p j s 1l0;p���!E;k�1 s0 ^ s0 6� s0 jg+ p0 =Pfj p j s 1l0;p���!E;k�1 s0 jg = 1(ii) We proceed by induction on k 2 NI +:{ If k = 1 then the result immediately follows from the de�nition of PE;1.{ Let k > 1 and let the result hold for k � 1. Suppose that the fork considered at step k is the onedepicted in Fig. 4. From the induction hypothesis and (i) it follows thatPs2SE;k PE;k(s) =Ps2SE;k�fsij1�i�ngPE;k�1(s) +P1�i�n(PE;k�1(si) + PE;k�1(s0) � pi) =Ps2SE;k�fsij1�i�ngPE;k�1(s) +P1�i�nPE;k�1(si) + PE;k�1(s0) �P1�i�n pi =Ps2SE;k PE;k�1(s) + PE;k�1(s0) =Ps2SE;k�1 PE;k�1(s) = 1(iii) Let us modify the fork of immediate transitions depicted in Fig. 4 by assuming that s0 has also animmediate sel
oop labeled with 1l;q, where Pni=1 pi + q = 1 due to (i). Let us unfold the immediatesel
oop by introducing the set of states fs0;j j j 2 NI +g such that:{ the immediate sel
oop is replaced by a transition labeled with 1l;q from s0 to s0;1;{ for all j 2 NI +, s0;j has a transition labeled with 1l;pi reaching si, and a transition labeled with1l;q reaching s0;j+1. 17
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Starting from s0, the probability of reaching s0;j after j transition executions is qj, while the probabilityof reaching si within j transition executions is Pj�1h=0 pi � qh. As j grows, these probabilities approach0 and pi=(1� q) = pi=Pnr=1 pr, respectively.(iv) The uniqueness of M[[E]] stems from the con
uence of the graph reduction rule in Fig. 4. To provecon
uence, we proceed by induction on the length of the longest cycle of immediate transitions in I[[E]].{ If the length of the longest cycle of immediate transitions is c � 1, then the �rst step eliminatesall the cycles of immediate transitions (if any). In this case, at each step no immediate sel
ooparises, thus making unnecessary the possible renormalization of execution probabilities at statesdownstream the fork. The con
uence of the graph reduction rule then follows. Given two forksof immediate transitions, there are the three cases below:� There exists a state downstream a fork and upstream the other fork. Fig. 5(a) shows thatcon
uence holds in this case. This is achieved by property Split(Split(~�; p); p0) = Split(~�; p�p0).� There exists at least one state downstream both forks. Fig. 5(b) shows that con
uence holdsin this case as well.� There is no state shared by the two forks. In such a case, it is obvious that the order in whichthe two forks are considered is irrelevant.{ Suppose that the length of the longest cycle of immediate transitions is c � 2, and assume thatthe result holds whenever the length of the longest cycle of immediate transitions is < c. Considerthe application of the graph reduction rule to one of the states in the cycle:� If no immediate sel
oop arises, the con
uence is preserved by this step as shown above.� If an immediate sel
oop arises, the con
uence is still preserved by this step as shown in Fig. 6due to property Split(~�; p)Min Split(~�; p0) = Split(~�; p + p0). In fact, by exploiting (i), itturns out thatd =P1�h�n^h6=i p0j � ph +P1�r�m^r 6=j p0r =P1�h�n p0j � ph � p0j � pi +P1�r�m^r 6=j p0r =p0j � p0j � pi +P1�r�m^r 6=j p0r =P1�r�m p0r � p0j � pi = 1� p0j � piand d0 =P1�h�n^h6=i ph +P1�r�m^r 6=j pi � p0r =P1�h�n ph � pi +P1�r�m pi � p0r � pi � p0j =1� pi + pi � pi � p0j = 1� pi � p0jand for each h = 1; : : : ; n such that h 6= iph + pi � p0j � ph=d = ph(1 + pi � p0j=(1� p0j � pi)) =ph(1� p0j � pi + pi � p0j)=(1� p0j � pi) = ph=d0The e�ect of such an application of the graph reduction rule is to shorten the longest cycle ofimmediate transitions, so the induction hypothesis can be exploited.(v) If I[[E]] has �nitely many states, then I[[E]] has �nitely many transitions because E is guardedlyclosed. Therefore, the �rst phase of the algorithm terminates and the number of steps is bounded bythe number of vanishing states in "E.5 Describing Queueing Systems with EMPABefore continuing with the presentation of the integrated approach of Fig. 1, we wish to dwell upon EMPA.The purpose of this section is to stress that an algebraic formalism like EMPA provides the designer with acompositional linguistic support which is usually lacking in the performance evaluation �eld, thereby easing20



the modeling process. As an example, we shall consider a full overview of well known system models such asqueueing systems with memoryless arrival and service processes (some of which have already been describede.g. in [GHR93b, Hil96]), in order to exercise all the expressive capabilities of EMPA.A queueing system (QS) [Kle75] is a model largely used for performance evaluation purposes to representa service center composed of a waiting queue and a given number of servers, which provide a certain service(following a given discipline) to the customers arriving at the service center. For example, a QSM=M=n=q=mwith arrival rate � and service rate � is de�ned as follows:1. The customer interarrival time is exponentially distributed with rate �.2. The customer service time is exponentially distributed with rate �.3. There are n independent servers.4. There is a FIFO queue with q � n seats.5. There are m independent customers.Since the customer arrival process and the customer service process are described as stochastic processes,in Sect. 5:1 we show how to express with EMPA some frequently occurring probability distributions. Then, inSect. 5.2 we model a QS M=M=1=q, and we show that its underlying HCTMC coincides with the Markoviansemantics of the algebraic description in order to stress the correctness of the semantics itself. Afterwards, wecomplicate the model by allowing for a service rate which depends on the workload of the system (Sect. 5:3),by introducing customers requiring di�erent service times (Sect. 5:4) or having di�erent priorities (Sect. 5:5),by considering the service request of each customer as being composed of several subrequests to be processedin parallel after being split and before being rejoined (Sect. 5:6), and by considering a network of QSs insteadof a single one where the routing of customers is probabilistic. In each of the cases above we shall succeedto get the desired EMPA model from the algebraic model of the QS M=M=1=q thanks to compositionalityand the powerful interplay of the three di�erent kinds of actions.5.1 Phase Type DistributionsIn EMPA it is possible to directly express only actions having exponentially distributed durations as well aszero durations. However, it is worth noting that through the interplay of exponentially timed actions andimmediate actions, all the phase type distributions are expressible by means of EMPA.
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A phase type distribution [Neu81] is a continuous distribution function describing the time to absorption ina �nite state HCTMC having exactly one absorbing state. Well known examples of phase type distributionsare the exponential distribution, the hypoexponential distribution, the hyperexponential distribution, and�nally the Coxian distribution, which are characterized in terms of time to absorption in a �nite stateHCTMC with an absorbing state as outlined in Fig. 7. Since an absorbing state can be modeled by term 0,the distributions above can be easily represented by means of series parallel combinations of exponentiallytimed actions as follows:� An exponential distribution with rate � 2 RI + can be modeled by means of termExp� �= <a; �>:0whose Markovian semantics is p-isomorphic to the HCTMC in Fig. 7(a).� An n-stage hypoexponential distribution with rates �i 2 RI +; 1 � i � n, can be modeled by means ofthe set of inductively de�ned termsHypoexpm;�1;:::;�m �= <a; �1>:Hypoexpm�1;�2;:::;�m ; 2 � m � n;Hypoexp1;� �= Exp�whose Markovian semantics is p-isomorphic to the HCTMC in Fig. 7(b).� An n-stage hyperexponential distribution with rates �i 2 RI +; 1 � i � n, and branching probabilitiespi 2 RI ]0;1]; 1 � i � n, where Pni=1 pi = 1, can be modeled by means of the set of inductively de�nedtermsHyperexpn;�1;:::;�n;p1 ;:::;pn �= Hn;�1;:::;�n;p1;:::;pn ;Hm;�1;:::;�m;p1;:::;pm �= Hm�1;�1;:::;�m�1 ;p1;:::;pm�1 + <a;11;pm>:Exp�m ; 2 � m � n;H1;�;p �= <a;11;p>:Exp�whose Markovian semantics is p-isomorphic to the HCTMC in Fig. 7(c).� An n-stage Coxian distribution with rates �i 2 RI +; 1 � i � n, and branching probabilities pi; qi 2RI ]0;1] where pi+qi = 1; 1 � i � n�1, can be modeled by means of the set of inductively de�ned termsCoxm;�1;:::;�m;p1;:::;pm�1 ;q1;:::;qm�1 �= <a; �1>:(<a;11;q1>:0 +<a;11;p1>:Coxm�1;�2;:::;�m;p2;:::;pm�1 ;q2;:::;qm�1 ); 2�m�n;Cox1;� �= Exp�whose Markovian semantics is p-isomorphic to the HCTMC in Fig. 7(d).The capability of expressing phase type distributions is quite important since many frequently occurringdistribution functions are such or can be approximated by means of them. However, it must be noticedthat in EMPA phase type distributions cannot be described in a direct manner, so they have to be usedcarefully. For example, if we consider term Exp� +Hyperexp2;�1;�2;p1;p2 then we realize that the right handside term takes precedence over the left hand side term, so the whole term cannot be used to express thechoice between an activity whose duration is exponentially distributed and another activity whose durationis hyperexponentially distributed. To overcome this drawback, the system designer should be enabled todescribe directly any distribution, as we shall discuss in Sect. 9(8).5.2 Queueing Systems M/M/1/qIn this section we concentrate on QSs M=M=1=q: the absence of the value of the �fth parameter means thatthe number of customers is unbounded. How can we model a QS M=M=1=q with arrival rate � and servicerate �? Let a be the action type \a customer arrives at the queue of the service center", d be the actiontype \a customer is delivered by the queue to the server", and s be the action type \a customer is served bythe server". Then the QS under consideration can be modeled with EMPA as follows:� QSM=M=1=q �= Arrivals kfag(Queue0 kfdg Server):{ Arrivals �= <a; �>:Arrivals; 22



{ Queue0 �= <a; �>:Queue1;Queueh �= <a; �>:Queueh+1 + <d; �>:Queueh�1; 0 < h < q � 1;Queueq�1 �= <d; �>:Queueq�2;{ Server �= <d;11;1>:<s; �>:Server.It is worth noting that we have described the whole system as the composition of the arrival process withthe composition of the queue and the server (using action types a and d as interfaces among components),and that then we have separately modeled the arrival process, the queue, and the server. Since the queue isindependent of both the arrival rate and the service rate, passive actions have been exploited to represent it.As a consequence, if we want to modify the description by changing the arrival rate or the service rate, onlycomponent Arrivals or Server needs to be modi�ed while component Queue is not a�ected. Additionally,the delivery of a customer to the server can be neglected from the performance point of view: this is achievedby means of the immediate action in component Server .
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{ Server �= <d1;11;1>:Server1 + : : :+<dq�1;11;1>:Serverq�1:� Serverh �= <s; sf (h) � �>:Server; 1 � h � q � 1.It is worth noting that the structure of SSRQSM=M=1=q is the same as that of QSM=M=1=q . Only componentServer has been signi�cantly modi�ed in order to be able to provide service at a rate depending on the queuelength.5.4 Queueing Systems M/M/1/q with Di�erent Service RatesAssume that a QS M=M=1=q must serve two di�erent types of customers. Both types are characterized bythe same arrival rate �, but red customers require a service rate �r whereas black customers require a servicerate �b. Such a situation can arise, e.g., in a computer system where the central unit can be viewed as theserver and the various devices can be viewed as the customers. In this case, service requests can arrive fromseveral di�erent points and may require di�erent service rates; the type associated with each request singlesout the routing of the request itself. This QS can be modeled as follows:� DSRQSM=M=1=q �= Arrivals kfar;abg(Queue� kfdr ;dbg Server ):{ Arrivals �= <ar; �>:Arrivals + <ab; �>:Arrivals;{ Queue� �= <ar ; �>:Queuer +<ab; �>:Queueb;Queuerw �= <ar; �>:Queuerwr + <ab; �>:Queuerwb + <dr; �>:Queuew; 0 � jwj < q � 2;Queuebw �= <ar; �>:Queuebwr +<ab; �>:Queuebwb + <db; �>:Queuew; 0 � jwj < q � 2;Queuerw �= <dr; �>:Queuew; jwj = q � 2;Queuebw �= <db; �>:Queuew; jwj = q � 2;{ Server �= <dr;11;1>:<sr ; �r>:Server +<db;11;1>:<sb; �b>:Server .Again, note that the structure of DSRQSM=M=1=q is the same as that of QSM=M=1=q. Only the componentshave been locally modi�ed in order to be able to treat the two types of customers.5.5 Queueing Systems M/M/1/q with Di�erent PrioritiesAssume that a QS M=M=1=q must serve two di�erent types of customers characterized by the same arrivalrate � and the same service rate �. Red customers are assigned a priority level r > b, where b is the prioritylevel assigned to black customers. There are two cases.In the �rst case, we assume that the priority mechanism only a�ects the queueing discipline, i.e. we assumethat possible preemption on the customer being served cannot be exercised. This QS can be modeled asfollows:� PQSM=M=1=q �= Arrivals kfar ;abg(Queue0;0 kfdr;dbg Server):{ Arrivals �= <ar; �>:Arrivals + <ab; �>:Arrivals;{ Queue0;0 �= <ar ; �>:Queue1;0 +<ab; �>:Queue0;1;Queue i;0 �= <ar; �>:Queue i+1;0 + <ab; �>:Queuei;1 +<dr; �>:Queuei�1;0; 0 < i < q � 1;Queue0;j �= <ar ; �>:Queue1;j + <ab; �>:Queue0;j+1 +<db; �>:Queue0;j�1; 0 < j < q � 1;Queue i;j �= <ar; �>:Queue i+1;j +<ab; �>:Queuei;j+1 +<dr; �>:Queue i�1;j + <db; �>:Queuei;j�1; 0 < i ^ 0 < j ^ i + j < q � 1;Queueq�1;0 �= <dr; �>:Queueq�2;0;Queue0;q�1 �= <db; �>:Queue0;q�2;Queue i;j �= <dr; �>:Queuei�1;j + <db; �>:Queuei;j�1; 0 < i ^ 0 < j ^ i+ j = q � 1;24



{ Server �= <dr;1r;1>:<s; �>:Server +<db;1b;1>:<s; �>:Server .Note that the precedence of red customers over black ones has been enforced by means of the two immediateactions with di�erent priority levels in Server .In the second case, we assume that preemption on a black customer being served can be exercised byred customers. This QS can be modeled as follows (Arrivals and Queue i;j are omitted since they stay thesame):� PPQSM=M=1=q �= Arrivals kfar ;abg(Queue0;0 kfdr ;dbg Server):{ Server �= <dr;1r;1>:Serverr + <db;1b;1>:Serverb:� Serverr �= <s; �>:Server ;� Serverb �= <s; �>:Server + <dr;1r;1>:<s; �>:Serverb.Note that, due to the memoryless property of the exponential distribution, there is no di�erence betweenthe preemptive restart policy (i.e., the preempted customer restarts from the beginning) and the preemptiveresume policy (i.e., the preempted customer resumes from the point at which it has been interrupted).5.6 Queueing Systems with Forks and JoinsIn this section we want to model a QS with a fork and a join that is composed of n QSs M=M=1=q withthe same service rate � operating in parallel. The service request r of each customer arrived at the QS isdivided by the fork into n subrequests sr i, 1 � i � n, that are then sent to the n QSs M=M=1=q. Afterbeing served, the n subrequests sr 0i, 1 � i � n, are delivered to the join; here they are merged together in r0and the whole request is considered ful�lled. This QS can be modeled as follows: 4� FJQS �= In kfrg(Fork kfsrij1�i�ngCenter kfsr 0ij1�i�ng Join) kfr0gOut :{ In �= <r; �>:In;{ Fork �= F ['1] kfrg F ['2] kfrg : : :kfrg F ['n]:� F �= <r; �>:<sr ;11;1>:F ;� 'i = f(sr ; sri)g [ IdAType�fsrg; 1 � i � n;{ Center �= C['01] k; C['02] k; : : :k;C['0n]:� C �= Queue0 kfdg Server :� Queue0 �= <sr ; �>:Queue1;Queueh �= <sr ; �>:Queueh+1 +<d; �>:Queueh�1; 0 < h < q � 1;Queueq�1 �= <d; �>:Queueq�2;� Server �= <d;11;1>:<s; �>:<sr 0;11;1>:Server;� '0i = f(sr ; sri); (sr 0; sr 0i)g [ IdAType�fsr;sr 0g; 1 � i � n;{ Join �= J0['001 ] kfr0g J0['002 ] kfr0g : : :kfr0g J0['00n]:� J0 �= <sr 0; �>:J1;Jh �= <sr 0; �>:Jh+1 + <r0; �>:Jh�1; h > 0;� '00i = f(sr 0; sr 0i)g [ IdAType�fsr 0g; 1 � i � n;{ Out �= <r0;11;1>:Out .4We denote by IdS the identity function over set S. 25



Note that the availability of the functional relabeling operator has allowed us to obtain more compactalgebraic representations of components having the same structure but di�erring for some action types only.Moreover, note the n-way synchronization over r among the fork components, and the n-way synchronizationover r0 among the join components.5.7 Queueing NetworksA queueing network (QN) is composed of a set of QSs linked to each other. In general, every QS can receivecustomers from the outside (external sources), from the other QSs in the network, and from itself (feedbackpaths). The case of open QNs, where interactions with the outside are allowed, is particularly interestingbecause this kind of QN can be used to describe store and forward packet switched communication networks.Let us focus our attention on an open QN composed of n QSs M=M=1=q with service rates �1; �2; : : : ; �n,respectively. Assume that there are n external sources of customers with rates �1; �2; : : : ; �n, respectively.Let us denote by ri;j and pi;j the routing action type and the routing probability, respectively, from QS i toQS j or the outside (j = n+ 1). This QN can be modeled as follows:� QN �= QS1 kR2 QS2 kR3 : : :kRn QSn:{ QS i �= Arrivalsi kfaig(Queue i;0 kfdi;ri;ig Server i); 1 � i � n:� Arrivalsi �= <ai; �i>:Arrivalsi;� Queuei;0 �= <ai; �>:Queuei;1 + <r1;i; �>:Queue i;1 + : : :+ <rn;i; �>:Queue i;1;Queuei;h �= <ai; �>:Queue i;h+1 + <r1;i; �>:Queuei;h+1 + : : :+ <rn;i; �>:Queuei;h+1 +<di; �>:Queue i;h�1; 0 < h < q � 1;Queuei;q�1 �= <di; �>:Queue i;q�2:� Server i �= <di;11;1>:<si; �i>:Router i:� Router i �= <ri;1;11;pi;1>:Serveri + : : :+<ri;n+1;11;pi;n+1>:Serveri;{ Rj = fri;j; rj;i j 1 � i < jg; 2 � j � n.Observe that the description of the QN has been obtained by simply composing the descriptions of the singleQSs. Furthermore, routing probabilities have been easily speci�ed by means of the weights of immediateactions.6 A Notion of Integrated Equivalence for EMPAIn order to complete the implementation of the �rst phase of the integrated approach of Fig. 1, we need toequip EMPA with a notion of integrated equivalence in order to achieve (i) the capability of performing anintegrated analysis, i.e. without building projected semantic models, (ii) semantic compositionality, i.e. thepossibility of studying separately the various system components thanks to the congruence property, and(iii) consistency with respect to the notion of ordinary lumping and its mathematical properties. Note thatthe integrated equivalence allows for a qualitative analysis, because it tells us whether two terms representtwo concurrent systems with the same functional and performance properties regardless of their values. Inorder to know whether a functional property holds, or the value of a performance measure, we have to studythe projected semantic models of (the simplest) one of the two terms.The purpose of the notion of integrated equivalence is to relate terms describing systems that are indis-tinguishable from the point of view of an external observer, i.e. having the same functional and performanceproperties. As it turns out, it is straightforward to de�ne two projected equivalences on the two projectedsemantic models in the following way.De�nition 6.1 Let E1; E2 2 G. We say that E1 is functionally equivalent to E2, written E1 �F E2, if andonly if F [[E1]] is bisimilar to F [[E2]]. 26



De�nition 6.2 Let E1; E2 2 E . We say that E1 is performance equivalent to E2, written E1 �P E2, if andonly if M[[E1]] is p-bisimilar to M[[E2]].As a consequence, a natural candidate notion of integrated equivalence would be �FP =�F \ �P . Theproblem is that �FP is not useful as it is not a congruence. As an example, if we consider termsE1 � <a; �>:0 +<b; �>:0E2 � <a; �>:0 +<b; �>:0where � 6= �, it turns out that E1 �FP E2 but E1 kfbg 0 6�P E2 kfbg 0 because the left hand side term canexecute only one action with rate � while the right hand side term can execute only one action with rate�. The example above shows that �FP is unable to keep track of the link between the functional part andthe performance part of the actions. This means that to achieve semantic compositionality, it is necessaryto de�ne an equivalence based on the integrated semantic model. Incidentally, this is even convenient withrespect to �FP , since it avoids the need of building the two projected semantic models and checking themfor bisimilarity and p-bisimilarity, respectively.In order to de�ne an integrated equivalence in the bisimulation style, we can follow the guideline below:� Active actions should be treated according to the notion of probabilistic bisimulation proposed in [LS91],which consists of requiring a bisimulation to be an equivalence relation such that two bisimilar termshave the same aggregated probability to reach the same equivalence class by executing actions of thesame type and priority level.{ As far as exponentially timed actions are concerned, the notion of probabilistic bisimulation mustbe re�ned by requiring additionally that two bisimilar terms have identically distributed sojourntimes. For example, if we consider terms E1 � <a; �>:F+<a; �>:G andE2 � <a; 2��>:F+<a; 2��>:G, then both transitions labeled with a; � and a; 2 �� have execution probability �=(�+�), andboth transitions labeled with a; � and a; 2 �� have execution probability �=(�+�), but the averagesojourn time of E1 is twice the average sojourn time of E2. Due to the race policy, requiring thattwo bisimilar terms have identically distributed sojourn times and the same aggregated probabilityto reach the same equivalence class by executing exponentially timed actions of the same typeamounts to requiring that two bisimilar terms have the same aggregated rate to reach the sameequivalence class by executing exponentially timed actions of the same type [HR94, Hil96, Buc94].{ As far as immediate actions are concerned, the notion of probabilistic bisimulation must be re-stated in terms of weights. As a consequence, two bisimilar terms are required to have the sameaggregated weight to reach the same equivalence class by executing immediate actions of the sametype and priority level [Tof94].� Passive actions should be treated by following the classical notion of bisimulation [Mil89]. Thus,bisimilar terms are required to have the same passive actions reaching the same equivalence class,regardless of the actual number of these passive actions.� Finally, priority levels should be treated carefully. It might seem useful to be able to write equations like<c;1l;w>:E + <d;1l0;w0>:F � <d;1l0;w0>:F if l0 > l or <a; �>:E + <b;1l;w>:F � <b;1l;w>:F .The problem is that the applicability of such equations depends on the context: e.g., terms E1 �(<a; �>:E+<b;1l;w>:F ) kfbg 0 and E2 � (<b;1l;w>:F ) kfbg 0 are not equivalent because E1 can ex-ecute one action while E2 cannot execute actions at all. To solve the problem, we follow the proposalof [BBK96] by introducing a priority operator \�( )": priority levels are taken to be potential, andthey become e�ective only within the scope of the priority operator. We thus consider the languageL� generated by the following syntaxE ::= 0 j <a; ~�>:E j E=L j E['] j �(E) j E + E j E kS E j Awhose semantic rules are those in Table 1 except that the rule in the �rst part is replaced by(<a; ~�>;E0) 2Melt(PM (E))E a;~����!E0and the following rule for the priority operator is introduced in the second part27



PM (�(E)) = Select(PM (E))It is easily seen that EMPA coincides with the set of terms f�(E) j E 2 Lg. As explained in [BG98],the priority operator is not part of EMPA in that useless from the modeling point of view. We havetherefore preferred to develop the equivalence theory for a slightly changed language in order not toforce the designer to unnecessarily burden the algebraic models of systems with priority operators.All the conditions above that should be met in order for two terms to be considered equivalent can besubsumed by means of the following function expressing the aggregated rate with which a term can reach aclass of terms by executing actions of a given type and priority level.De�nition 6.3 We de�ne partial function Rate : (G� � AType �APLev �P(G�)) �!o ARate byRate(E; a; l; C) = Minfj ~� j E a;~����!E0 ^ PL(<a; ~�>) = l ^E0 2 C jgNow we are in a position of de�ning the notion of integrated equivalence and showing its properties.Proofs of results reported in this section can be found in [BG98].De�nition 6.4 An equivalence relation B � G� � G� is a strong extended Markovian bisimulation (strongEMB) if and only if, whenever (E1; E2) 2 B, then for all a 2 AType, l 2 APLev and C 2 G�=BRate(E1; a; l; C) = Rate(E2; a; l; C)In this case we say that E1 and E2 are strongly extended Markovian bisimilar (strongly EMB).Proposition 6.5 Let �EMB be the union of all the strong EMBs. Then �EMB is the largest strong EMB.De�nition 6.6 We call �EMB the strong extended Markovian bisimulation equivalence (strong EMBE).Theorem 6.7 �EMB is a congruence for G�.Example 6.8 Consider a QS M=M=n=n with arrival rate � and service rate �. The QS at hand can begiven two di�erent descriptions with EMPA: a state oriented description where the focus is on the stateof the set of servers (intended as the number of servers that are currently busy), and a resource orienteddescription where the servers are modeled separately [VSSB91]. The state oriented description is given byQS soM=M=n=n �= Arrivals kfag Servers0Arrivals �= <a; �>:ArrivalsServers0 �= <a; �>:Servers1Serversh �= <a; �>:Serversh+1 +<s; h � �>:Serversh�1; 1 � h � n� 1Serversn �= <s; n � �>:Serversn�1whereas the resource oriented description is given byQS roM=M=n=n �= Arrivals kfag ServersArrivals �= <a; �>:ArrivalsServers �= S k; S k; : : :k; S| {z }nS �= <a; �>:<s; �>:SSince in these representations immediate actions do not occur, we have that �(QS soM=M=n=n) �EMBQS soM=M=n=n and �(QS roM=M=n=n) �EMB QS roM=M=n=n. We now take advantage of the fact that �EMB is acongruence: to prove QS soM=M=n=n �EMB QS roM=M=n=n, it su�ces to prove Servers0 �EMB Servers. This isthe case because of the strong EMB (up to �EMB ) given by the re
exive, symmetric, and transitive closureof the relation made out of the following pairs of terms:Servers0; S k; S k; : : :k; SServers1; <s; �>:S k; S k; : : :k; SServers2; <s; �>:S k;<s; �>:S k; : : :k; S: : : ; : : :Serversn; <s; �>:S k;<s; �>:S k; : : :k;<s; �>:S28



Theorem 6.9 Let E1; E2 2 G. If E1 �EMB E2 then E1 �F E2.Theorem 6.10 Let E1; E2 2 E . If E1 �EMB E2 then E1 �P E2.Corollary 6.11 Let E1; E2 2 E . If E1 �EMB E2 then the coarsest ordinary lumping of M[[E1]] is p-isomorphic to the coarsest ordinary lumping of M[[E2]].Theorem 6.12 Let E��1 be the set of terms in E whose integrated interleaving semantic model does notcontain internal immediate transitions, and let E1; E2 2 E��1. Then E1 �EMB E2 if and only if, for allF 2 G and S � AType � f�g such that E1 + F , E2 + F , E1 kS F , E2 kS F 2 E��1, it turns out thatE1 + F �FP E2 + F and E1 kS F �FP E2 kS F .The �rst three results reveal the adequacy of �EMB from both the functional point of view and the per-formance point of view, and justify the fact that the notion of integrated equivalence has been developedaccording to the bisimulation style, the main reason being that a clear connection with the notion of ordi-nary lumping has been established. In fact, Corollary 6.11 states that whenever two terms are equivalentaccording to �EMB , then their coarsest ordinarily lumped Markovian semantics are the same, which meansthat the two terms have exactly the same transient and steady state performance characteristics. The fourthresult shows that �EMB is the coarsest congruence contained in �FP as far as terms whose integrated in-terleaving semantic model does not contain internal immediate transitions are concerned, thereby stressingthe need to de�ne the integrated equivalence directly on the integrated semantic model in order to allow forcompositional reasoning.We conclude by recalling that the interested reader can �nd in [BG98] a sound and complete axiomati-zation of �EMB for nonrecursive terms, as well as an �EMB checking algorithm (a variant of which can beused to calculate the coarsest ordinary lumping of a MC).7 Integrated Net Semantics of EMPA TermsIn order to implement the second phase of the integrated approach of Fig. 1, we must provide each EMPA termwith a net semantics accounting for both functional and performance aspects. As explained in Sect. 1, a goodcandidate for the integrated net model is the class of GSPNs, because they take into account performanceaspects since the beginning of the design process, and are supported by tools for the analysis of projectedmodels.This section is organized as follows. In Sect. 7:1 we recall some notions about GSPNs and we focus ourattention on an extension of them, acting as semantic model in this framework. In Sect. 7:2 we de�ne theintegrated net semantics for EMPA. The consistency of this semantics with respect to the integrated inter-leaving one is assessed in Sect. 7:3 by showing that it satis�es the functional and performance retrievabilityprinciples, while its completeness is evaluated in Sect. 7:4 by showing that it meets the concurrency principle.7.1 Passive Generalized Stochastic Petri NetsIn this section we shall be concerned with the class of the GSPNs [ABC84, ABCC87]. They are essentiallyplace/transition nets [Rei85] equipped with inhibitor arcs whose transitions are either exponentially timed orimmediate (with priority levels and weights) and have rates that can depend on the current markingMcurrof the net. Since GSPNs do not admit passive transitions, and since we need passive transitions to carry outthe translation of EMPA passive actions, we propose below an extension of GSPNs where passive transitionsare included.De�nition 7.1 A passive generalized stochastic Petri net (PGSPN) is a tuple(P;U; T;M0; L;W )such that:� P is a set whose elements are called places;� U = ÛMufin(P ) is a set whose elements are called labels;29



� T �Mu�n (P )�P�n (P )� U �Mu�n (P ) whose elements are called transitions;� M0 2Mu�n(P ) is called the initial marking;� L : T �! APLev , called priority function, is such that:{ L(t) = �1 if t is passive;{ L(t) = 0 if t is exponentially timed;{ L(t) 2 NI + is the priority level of t if t is immediate;� W : T �! (f�g [ RI Mufin(P )+ ), called weight function, is such that:{ W (t) = � if L(t) = �1;{ W (t) 2 RI Mufin(P )+ is the rate of the exponential distribution associated with t if L(t) = 0;{ W (t) 2 RI Mufin(P )+ is the weight of t if L(t) 2 NI +.In the graphical representation of a PGSPN, places are drawn as circles and transitions are drawn as eitherboxes (if exponentially timed), bars (if immediate), or black boxes (if passive), with the appropriate labels.If the current marking of the net is Mcurr , we draw Mcurr (p) black dots (called tokens) in every place p:the current marking (i.e., the current state) of the net is then given a representation distributed amongplaces. Each transition t can be written as (�t; �t) ut���! t� where �t is the preset of t (places where tokensare consumed), �t is the inhibitor set of t (places where tokens must be absent), ut is the label of t, and t�is the postset of t (places where tokens are produced). Places and transitions are linked as follows: given atransition t, there is an arrow headed arc from each place in �t to t, a circle headed arc from each place in�t to t, and an arrow headed arc from t to each place in t�.De�nition 7.2 Let N = (P;U; T;M0; L;W ) be a PGSPN.� A marking of N is an element of Mu�n(P ).� Transition t is enabled at markingM if and only if �t �M and dom(M )\ �t = ;. We denote by E(M )the set of transitions enabled at marking M .� Transition t 2 E(M ) can �re if and only if either L(t) = �1 or L(t) is the highest priority level amongthe transitions in E(M ). The �ring of t produces marking M 0 = (M 	 �t) � t�, written M [utiM 0.� The reachability set R(M ) of marking M is the least subset of Mu�n (P ) such that:{ M 2 R(M );{ if M1 2 R(M ) and M1 [utiM2, then M2 2 R(M ).� The reachability graph (or interleaving marking graph) of N is the LTSRG[[N ]] = (R(M0); Û ; [i;M0)If Û = Act , then from RG[[N ]] we can extract the functional semantics F [[N ]] and, provided that RG[[N ]] hasno passive transitions, also the Markovian semantics M[[N ]]. Since in the following inhibitor arcs will notcome into play, i.e. inhibitor sets will be empty, each transition t will be written as �t ut���! t�.30



7.2 Integrated Location Oriented Net SemanticsThe integrated net semantics of a term E 2 G is obtained by resorting to a suitable extension of the approachfollowed in Sect. 3.2. The idea [DDM88, Old91] consists of associating with every term E a net such that:1. Net places correspond to the sequential subterms of E and its derivatives.2. Net transitions are de�ned by induction on the syntactical structure of the sets of sequential terms.3. Net markings correspond roughly to E and its derivatives.This approach is called location oriented because all the information about the syntactical structure of termsis encoded within places.In this section we adapt the proposal of [Old91] to our stochastically timed framework. To be moreprecise, we �rst introduce the syntax of net places, then we inductively de�ne net transitions, and �nally wepresent nets associated with EMPA terms.7.2.1 Net PlacesThe �rst step in the de�nition of the integrated net semantics consists of establishing a correspondencebetween net places and sequential terms, thereby inducing a correspondence between net markings andterms.De�nition 7.3 The set V of places is generated by the following syntaxV ::= 0 j <a; ~�>:E j V=L j V ['] j V + V j V kS id j id kS V j Awhere L; S � AType � f�g. We use V; V 0; : : : as metavariables for V, and Q;Q0; : : : as metavariables forMu�n (V).The main di�erence with respect to the syntax of EMPA terms (Def. 2.1) is that the binary operator \ kS "has been replaced by the two unary operators \ kS id" and \id kS ". This is the means whereby it is possibleto express the decomposition of terms into sequential terms mapped onto places.De�nition 7.4 The decomposition function dec : G �!Mu�n (V) is de�ned by induction on the syntacticalstructure of the terms in G as follows:� dec(0) = fj 0 jg;� dec(<a; ~�>:E) = fj<a; ~�>:E jg;� dec(E=L) = dec(E)=L = fjV=L j V 2 dec(E) jg;� dec(E[']) = dec(E)['] = fjV ['] j V 2 dec(E) jg;� dec(E1 + E2) = dec(E1) + dec(E2) = fjV1 + V2 j V1 2 dec(E1) ^ V2 2 dec(E2) jg;� dec(E1 kS E2) = dec(E1) kS id � id kS dec(E2) =fjV kS id j V 2 dec(E1) jg � fj id kS V j V 2 dec(E2) jg;� dec(A) = dec(E) if A �= E,where Q 2 Mu�n(V) is complete if and only if there exists E 2 G such that dec(E) = Q.The decomposition function is well de�ned because we consider only guardedly closed terms. It is injectiveas well if we identify each constant with the right hand side term of its de�ning equation, and it assignsplace sets, rather than multisets, to terms. Note that the decomposition function embeds the syntacticalstructure of terms into places. 31



(norm(<a; ~�>; V; f); Q0) 2 melt2(melt1(PM (Q)))Q norm(<a;~�>;V;f)���������������������!Q0PM (fj<a; ~�>:E jg) = fj (norm(<a; ~�>;<a; ~�>:E; 1); dec(E)) jgPM (Q=L) = fj (norm(<a; ~�>; V=L; f); Q0=L) j (norm(<a; ~�>; V; f); Q0) 2 PM (Q) ^ a =2 L jg �fj (norm(<�; ~�>; V=L; f); Q0=L) j (norm(<a; ~�>; V; f); Q0) 2 PM (Q) ^ a 2 L jgPM (Q[']) = fj (norm(<'(a); ~�>; V [']; f); Q0[']) j (norm(<a; ~�>; V; f); Q0) 2 PM (Q) jgPM ((Q1 + Q2) �Q3) = fj (norm(<a; ~�>; V + id ; f); Q0) j (norm(<a; ~�>; V; f); Q0) 2 PM (Q1 �Q3) jgif Q1 not complete ^Q2 complete ^ dom(Q1) \ dom(Q3) = ;PM ((Q1 + Q2) �Q3) = fj (norm(<a; ~�>; id + V; f); Q0) j (norm(<a; ~�>; V; f); Q0) 2 PM (Q2 �Q3) jgif Q1 complete ^Q2 not complete ^ dom(Q2) \ dom(Q3) = ;PM (Q1 + Q2) = fj (norm(<a; ~�>; V + id ; f); Q0) j (norm(<a; ~�>; V; f); Q0) 2 PM (Q1) jg �fj (norm(<a; ~�>; id + V; f); Q0) j (norm(<a; ~�>; V; f); Q0) 2 PM (Q2) jgif Q1 complete ^Q2 completePM (Q kS id) = fj (norm(<a; ~�>; V kS id ; f); Q0 kS id) j (norm(<a; ~�>; V; f); Q0) 2 PM (Q) ^ a =2 S jgPM (id kS Q) = fj (norm(<a; ~�>; id kS V; f); id kS Q0) j (norm(<a; ~�>; V; f); Q0) 2 PM (Q) ^ a =2 S jgPM (Q1 kS id � id kS Q2) = fj (norm(<a;max(~�; ~�)>; V; f); Q01 kS id � id kS Q02) ja 2 S ^min(~�; ~�) = � ^(norm(<a; ~�>; V1; f1); Q01) 2 PM (Q1) ^(norm(<a; ~�>; V2; f2); Q02) 2 PM (Q2) ^((~� = ~� = � ^ V � V1 kS id ^ f = f1 � f2) _(~� 2 RI + [ Inf ^ V � V1 kS id ^ f = f2) _(~� 2 RI + [ Inf ^ V � id kS V2 ^ f = f1)) jgnorm(<a; ~�>; V; f) = <a; Split(~�; f=Pfj f 0 j Q1 norm(<a;~�>;V;f 0)���������������������!Q2 ^Q1 �Mcurr jg)>melt1(PM ) = f(norm(<a; ~�>; V; f); Q) j 9f 0 2 NI +: (norm(<a; ~�>; V; f 0); Q) 2 PM ^f =Pfj f 00 j (norm(<a; ~�>; V; f 00); Q) 2 PM jggmelt2(PM ) = f(norm(<a; ~�>; V; f); Q) j9~� 2 ARate: 9V 0 2 V0: (norm(<a; ~�>; V 0; f); Q) 2 PM ^~� = Minfj ~
 j (norm(<a; ~
>; V 00; f); Q) 2 PM ^ PL(<a; ~
>) = PL(<a; ~�>) jg ^V = inner +id(fV 00 j norm(<a; ~
>; V 00; f); Q) 2 PM ^ PL(<a; ~
>) = PL(<a; ~�>)g)gTable 2: Inductive rules for EMPA integrated location oriented net semantics32



7.2.2 Net TransitionsThe second step in the de�nition of the integrated net semantics consists of introducing an appropriaterelation over net places whereby net transitions are constructed. Following the guideline of Sect. 3.2, wede�ne the transition relation ���! as the least subset of Mu�n(V) � ActMufin(V) �Mu�n(V) generatedby the inference rule reported in the �rst part of Table 2, which in turn is based on the multiset PM (Q) 2Mu�n (ActMufin(V)�Mu�n (V)) of potential moves of Q 2Mu�n (V) de�ned by structural induction in thesecond part of Table 2.These rules are strictly related to those in Table 1 for the integrated interleaving semantics of EMPAterms. The major di�erences are listed below and are clari�ed by the corresponding upcoming examples:1. There are three rules for the alternative composition operator, instead of one. In the �rst two rules onlya part of the sequential terms needs to have an alternative, and such a part is not complete whereas itsalternative is. This guarantees that none of the sequential terms in the complete alternative has beenpreviously involved in an execution, so the noncomplete alternative has not been discarded yet due toan action previously executed by a sequential term in the complete alternative (see Ex. 7.5).2. There are three rules for the parallel composition operator, instead of one. This is a consequence ofthe distributed notion of state typical of nets (see Ex. 7.6).3. There are no rules for constants. The treatment of constants has been already embodied in functiondec (see Def. 7.4), which is used in the rule for the pre�x operator.4. Function Select does not appear because it is unnecessary, since the race policy is included in the net�ring rule, as well as di�cult to implement, due to the distributed notion of state (see Ex. 7.7).5. Rate normalization is carried out through function norm : (Act � V 0 � NI +) �! ActMufin(V) de�nedin the third part of Table 2, where V 0 is generated by the same syntax as V except that V + V isreplaced by V + id and id + V . In order to determine the correct rate of transitions deriving fromthe synchronization of the same active action with several independent or alternative passive actionsof the same type, function norm considers for each transition three parameters: the basic action, thebasic place and the passive contribution. The basic action is the action that will label the transitionafter the normalization of its rate. The basic place is the place contributing with the basic actionto the transition (see Ex. 7.8). The passive contribution is the product of the number of alternativepassive actions of places contributing to the transition with such actions (see Ex. 7.9). These threeparameters are initialized by the rule for the pre�x operator and then modi�ed by the third rule for theparallel composition operator: the second parameter is modi�ed by every rule. The normalizing factorfor a given transition is the ratio of its passive contribution to the sum of the passive contributions ofthe enabled (see Ex. 7.10) transitions having the same basic action and the same basic place as thetransition at hand. Unlike function Norm, function norm comes into play not only in the case of asynchronization. Again, this is a consequence of the distributed notion of state.6. Potential move merging is carried out through functions melt1 :Mu�n(ActMufin(V) �Mu�n(V)) �!P�n(ActMufin(V) � Mu�n (V)) and melt2 : P�n(ActMufin(V) � Mu�n (V)) �! P�n (ActMufin(V) �Mu�n (V)) de�ned in the fourth part of Table 2. Function melt1 merges the potential moves havingthe same basic action, the same basic place and the same postset by summing their passive contributions(see Ex. 7.9). Function melt2 merges the potential moves having the same basic action type, the samepriority level, the same passive contribution and the same postset by applying operation Min to theirbasic action rates: since the basic places of these potential moves can di�er only due to \ + id" or\id + " operators, and since the basic place of the resulting potential move must be uniquely de�nedin order for function norm to work correctly, the choice is made by taking the basic place having theinnermost \ + id" operator (see Ex. 7.11).Example 7.5 Consider term E � (<a; �>:0k;<b; �>:0) + <c; 
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whose decomposition is given bydec(E) = fj (<a; �>:0 k; id ) + <c; 
>:0; (id k;<b; �>:0) +<c; 
>:0 jgBy applying the rules in Table 2, we get the following transitionsfj (<a; �>:0k; id) +<c; 
>:0 jg norm(<a;�>;(<a;�>:0 k; id)+id;1)���������������������! fj 0k; id jgfj (id k;<b; �>:0) +<c; 
>:0 jg norm(<b;�>;(id k;<b;�>:0)+id;1)���������������������! fj id k; 0 jgdec(E) norm(<c;
>;id+<c;
>:0;1)���������������������! fj 0 jgIf dec(E) is the current marking then all the transitions above are enabled and �ring the �rst transitionresults in marking fj 0k; id ; (id k;<b; �>:0)+<c; 
>:0 jg which cannot be the preset of any transition labeledwith action type c, because the execution of either <a; �> or <b; �> prevents <c; 
> from being executedaccording to the intended meaning of E. This fact is detected by the rules in Table 2, i.e. they generate notransition labeled with action type c for the marking above, since the alternative id k;<b; �>:0 of <c; 
>:0is not complete.To understand the presence of Q3 in the �rst two rules for the alternative composition operator, let usnow slightly modify term E in the following wayE0 � (<a; �>:<b; �>:0 kfbg<b; �>:0) + <c; 
>:0where dec(E0) = fj (<a; �>:<b; �>:0kfbg id) + <c; 
>:0; (id kfbg<b; �>:0) +<c; 
>:0 jgBy applying the rules in Table 2, we get the two transitionsfj (<a; �>:<b; �>:0kfbg id) + <c; 
>:0 jg norm(<a;�>;(<a;�>:<b;�>:0 kfbg id)+id;1)���������������������! fj<b; �>:0kfbg id jgdec(E0) norm(<c;
>;id+<c;
>:0;1)���������������������! fj 0 jgIf dec(E0) is the current marking then all the transitions above are enabled and �ring the �rst transitionresults in marking fj<b; �>:0 kfbg id ; (id kfbg<b; �>:0)+<c; 
>:0 jg which is the preset of the following tran-sitionfj<b; �>:0kfbg id ; (id kfbg<b; �>:0) +<c; 
>:0 jg norm(<b;�>;(id kfbg<b;�>:0)+id;1)���������������������! fj 0kfbg id ; id kfbg 0 jgIf Q3 were not taken into account, then the transition above would not be constructed.Example 7.6 Consider term E � <a; ~�>:0k;<b; ~�>:0whose decomposition is given bydec(E) = fj<a; ~�>:0 k; id ; id k;<b; ~�>:0 jgBy applying the rules in Table 2, we get the two independent transitionsfj<a; ~�>:0 k; id jg norm(<a;~�>;<a;~�>:0k; id;1)���������������������! fj 0k; id jgfj id k;<b; ~�>:0 jg norm(<b;~�>;id k;<b;~�>:0;1)���������������������! fj id k; 0 jgas expected. If we replaced the three rules for the parallel composition operator with a single rule similar tothat in Table 1, then we would get instead the two alternative transitionsdec(E) norm(<a;~�>;<a;~�>:0 k; id;1)���������������������! fj 0k; id ; id k;<b; ~�>:0 jgdec(E) norm(<b;~�>;id k;<b;~�>:0;1)���������������������! fj<a; ~�>:0k; id ; id k; 0 jgwhich are not consistent with the fact that the two subterms of E are independent, thereby resulting in aviolation of the concurrency principle (see Sect. 7:4).Example 7.7 Consider termE � (<a; �>:0 +<c;11;1>:0) kfcg(<b; �>:0 +<c; �>:0)whose decomposition comprises places V1 kfcg id and id kfcg V2 whereV1 � <a; �>:0 +<c;11;1>:0V2 � <b; �>:0 + <c; �>:0By applying the rules in Table 2, we get the three transitions34



fjV1 kfcg id jg norm(<a;�>;(<a;�>:0+id)kfcg id;1)���������������������! fj 0kfcg id jgfj id kfcg V2 jg norm(<b;�>;id kfcg (<b;�>:0+id);1)���������������������! fj id kfcg 0 jgdec(E) norm(<c;11;1>;(id+<c;11;1>:0)kfcg id;1)���������������������! fj 0kfcg id ; id kfcg 0 jgIf dec(E) is the current marking then all the transitions above are enabled, but the third transition preventsboth the �rst one and the second one from �ring: this could not be caught by means of a function similarto Select because the three transitions have di�erent presets.Example 7.8 Consider termE � (<a; �>:0kfag<a; �>:(0 + 0)) + (<a; �>:0kfag<a; �>:0)whose decomposition comprises places (V1 kfag id) + (V1 kfag id), (V1 kfag id ) + (id kfag V3), (id kfag V2) +(V1 kfag id) and (id kfag V2) + (id kfag V3) whereV1 � <a; �>:0V2 � <a; �>:(0 + 0)V3 � <a; �>:0By applying the rules in Table 2, we get the following two transitionsdec(E) norm(<a;�>;(V1 kfag id)+id;1)���������������������! fj 0kfag id ; id kfag(0 + 0) jgdec(E) norm(<a;�>;id+(V1 kfag id);1)���������������������! fj 0kfag id ; id kfag 0 jgIf dec(E) is the current marking then both transitions are enabled and the normalizing factor is 1 for bothtransitions, as expected. This example motivates the use of V 0 instead of V for expressing the basic place: ifV were used, then the two transitions above would have the same basic place (beside the same basic action),so they would be given the wrong normalizing factor 1=2 by function norm.Example 7.9 Consider termE � <a; �>:0kfag((<a; �>:0 +<a; �>:0) k;<a; �>:0)whose decomposition comprises places V1 kfag id , id kfag(V2 k; id) and id kfag(id k; V3) whereV1 � <a; �>:0V2 � <a; �>:0 +<a; �>:0V3 � <a; �>:0By applying the rules in Table 2, we get the following two transitionsfjV1 kfag id ; id kfag(V2 k; id) jg norm(<a;�>;V1 kfag id;2)���������������������! fj 0kfag id ; id kfag(0 k; id) jgfjV1 kfag id ; id kfag(id k; V3) jg norm(<a;�>;V1 kfag id;1)���������������������! fj 0kfag id ; id kfag(id k; 0) jgwhere value 2 for the passive contribution of the �rst transition is determined by function melt1. If dec(E) isthe current marking then both transitions are enabled and the normalizing factor is 2=3 for the �rst transition,and 1=3 for the second transition, as expected. This example motivates the use of passive contributions: ifthe normalizing factor were computed as the inverse of the number of enabled transitions having the samebasic action and the same basic place as the transition at hand, then we would obtain the wrong normalizingfactor 1=2 for the two transitions above.Example 7.10 Consider termE � <a; �>:0kfag(<a; �>:<a; �>:0 k;<a; �>:0)whose decomposition comprises places V1 kfag id , id kfag(V2 k; id) and id kfag(id k; V3) whereV1 � <a; �>:0V2 � <a; �>:<a; �>:0V3 � <a; �>:0By applying the rules in Table 2, we get the following three transitionsfjV1 kfag id ; id kfag(V2 k; id) jg norm(<a;�>;V1 kfag id;1)���������������������! fj 0kfag id ; id kfag(V3 k; id) jgfjV1 kfag id ; id kfag(id k; V3) jg norm(<a;�>;V1 kfag id;1)���������������������! fj 0kfag id ; id kfag(id k; 0) jgfjV1 kfag id ; id kfag(V3 k; id) jg norm(<a;�>;V1 kfag id;1)���������������������! fj 0kfag id ; id kfag(0 k; id ) jg35



If dec(E) is the current marking then only the �rst and the second transitions are enabled and their normal-izing factor computed by norm is 1=2 as expected. This example motivates the use of marking dependentrates: if also the third transition were taken into account though not enabled at dec(E), then we wouldobtain the wrong normalizing factor 1=3 for the �rst two transitions.Example 7.11 Consider termE � (<a; �>:0 + <a; �>:0) kfag(<a; �>:0k;<a; �>:0)whose decomposition comprises places V1 kfag id , id kfag(V2 k; id) and id kfag(id k; V2) whereV1 � <a; �>:0 +<a; �>:0V2 � <a; �>:0By applying the rules in Table 2, we get the following two transitionsfjV1 kfag id ; id kfag(V2 k; id) jg norm(<a;2��>;(<a;�>:0+id) kfag id);1)���������������������! fj 0kfag id ; id kfag(0 k; id) jgfjV1 kfag id ; id kfag(id k; V2) jg norm(<a;2��>;(<a;�>:0+id) kfag id);1)���������������������! fj 0kfag id ; id kfag(id k; 0) jgeach of which is obtained by applying function melt2 to two potential moves having as a basic place(<a; �>:0 + id ) kfag id and (id + <a; �>:0) kfag id , respectively. If dec(E) is the current marking thenboth transitions are enabled and the normalizing factor is 1=2 for both transitions, as expected. This ex-ample motivates that fact that, if two potential moves having di�erent basic places are merged by functionmelt2, the basic place of the resulting potential move must be uniquely identi�ed: if the two transitionsabove had as a basic place (<a; �>:0 + id) kfag id and (id + <a; �>:0) kfag id , respectively, then we wouldobtain the wrong normalizing factor 1 for them.7.2.3 Nets Associated with TermsThe third step in the de�nition of the integrated net semantics consists of associating with each term anappropriate PGSPN by exploiting the previous two steps.De�nition 7.12 The integrated location oriented net semantics of a term E 2 G is the PGSPNNloc [[E]] = (P;U; T;M0; L;W )where:� P is the least subset of V such that:{ dom(dec(E)) � P ;{ if dom(Q1) � P and Q1 norm(<a;~�>;V;f)���������������������!Q2, then dom(Q2) � P ;� U = ActMufin (P );� T is the restriction of ���! to Mu�n (P )�ActMufin(P ) �Mu�n (P );� M0 = dec(E);� L : T �! APLev such that:{ L(Q1; norm(<a; �>; V; f); Q2) = �1;{ L(Q1; norm(<a; �>; V; f); Q2) = 0;{ L(Q1; norm(<a;1l;w>; V; f); Q2) = l;� W : T �! (f�g [ RI Mufin(P )+ ) such that:{ W (Q1; norm(<a; �>; V; f); Q2) = �;{ W (Q1; norm(<a; �>; V; f); Q2) = �0 if norm(<a; �>; V; f) = <a; �0>;{ W (Q1; norm(<a;1l;w>; V; f); Q2) = w0 if norm(<a;1l;w>; V; f) = <a;1l;w0>.36
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Figure 9: Integrated net semantics of QSM=M=2=3=4Example 7.13 Let us consider a QS M=M=2=3=4 with arrival rate � and service rate �. Once the actiontype \a customer leaves the service center" is denoted by l, its resource oriented representation is thefollowing:� QSM=M=2=3=4 �= Customers4kfa;lg(QueuekfdgServers2):{ Customers4 �= Ck;Ck;Ck;C:� C �= <a; �>:<l; �>:C;{ Queue �= <a; �>:<d; �>:Queue;{ Servers2 �= Sk;S:� S �= <d;11;1>:<s; �>:<l;11;1>:S.Its integrated net semantics Nloc[[QSM=M=2=3=4]] is the GSPN in Fig. 9, where the following shorthandshave been used:� p1 = (((Ck;id)k;id)k;id)kfa;lgid ;p2 = (((idk;C)k;id)k;id)kfa;lgid ;p3 = ((idk;C)k;id)kfa;lgid ;p4 = (idk;C)kfa;lgid ;p5 = (((<l; �>:Ck;id)k;id )k;id )kfa;lgid ;p6 = (((idk;<l; �>:C)k;id )k;id )kfa;lgid ;p7 = ((idk;<l; �>:C)k;id)kfa;lgid ;p8 = (idk;<l; �>:C)kfa;lgid ; 37



� p9 = idkfa;lg(Queuekfdgid);p10 = idkfa;lg(<d; �>:Queuekfdgid);� p11 = idkfa;lg(idkfdg(Sk;id));p12 = idkfa;lg(idkfdg(idk;S));p13 = idkfa;lg(idkfdg(<s; �>:<l;11;1>:Sk;id ));p14 = idkfa;lg(idkfdg(idk;<s; �>:<l;11;1>:S));p15 = idkfa;lg(idkfdg(<l;11;1>:Sk;id ));p16 = idkfa;lg(idkfdg(idk;<l;11;1>:S)).Now we show two properties of the integrated net semantics, which can be demonstrated with a proofsimilar to that provided in [Old91].Theorem 7.14 Let E 2 G.(i) Nloc[[E]] is safe, i.e. every marking reachable from the initial one is a set.(ii) Nloc[[E]] is �nite if each subterm of E of the form E0=L;E0[']; E1 kS E2 is without constants.It is interesting to identify a class of terms in G such that for each term E in this class it turns out thatNloc[[E]] is a GSPN. As we can expect, the above class is given by E and this will be proved later.7.3 Retrievability PrinciplesIn this section we assess the soundness of the integrated net semantics with respect to the integrated inter-leaving semantics. To this aim, we adapt the proposal in [Old91] to our stochastically timed framework byresorting to the following two principles:� Functional retrievability principle: the functional semantics of each term should be retrievable fromits integrated net semantics. Such a principle can be formalized by requiring that, for each term,its functional semantics is isomorphic or bisimilar to the functional semantics of its integrated netsemantics.� Performance retrievability principle: the performance semantics of each term should be retrievablefrom its integrated net semantics. Such a principle can be formalized by requiring that, for each term,its Markovian semantics is p-isomorphic or p-bisimilar to the Markovian semantics of its integratednet semantics.These two principles guarantee that each term and its integrated net semantics describe the same systemboth from the functional and the performance point of view.Theorem 7.15 Let E 2 G. Then RG[[Nloc[[E]]]] is isomorphic to I[[E]].Proof The proof is divided into three parts.(1st part) Suppose that priority levels are taken into account neither in EMPA nor in PGSPNs. Moreaccurately, assume that the active transitions of PGSPNs are not divided into di�erent priority levels, andconsider I 0[[E]] instead of I[[E]], i.e. consider the LTS (whose set of states is denoted by "0E) representingthe integrated interleaving semantics of E if function Select were not applied. Then we can demonstrate, byfollowing the proof developed in [Old91] Thm. 3:7:18, thatRG[[Nloc[[E]]]] is bisimilar to I 0[[E]] through relationB = f(F;Q) 2"0E � R(dec(E)) j Q swf ^ dec(F ) = upd (Q)gwhere:� The de�nition of strongly well formed (swf) marking is the following:{ fj 0 jg and fj<a; ~�>:E jg are swf.{ If Q is swf, then so are Q=L and Q[']. 38



{ If Q1 � Q3 is swf, dom(Q1) \ dom(Q3) = ;, either Q3 = ; or not all components in Q3 contain\+" as their topmost operator, and Q2 is complete, then (Q1+Q2)�Q3 and (Q2+Q1)�Q3 areswf.{ If Q1 and Q2 are swf, then so is Q1 kS id [ id kS Q2.This property is satis�ed by complete elements of Mu�n(V) and is invariant for transition �ring.� The de�nition of the update operation (upd) on swf markings is the following:{ If Q is complete, then upd (Q) = Q.{ If Q � Q0=L is incomplete, then upd (Q) = upd (Q0)=L.{ If Q � Q0['] is incomplete, then upd (Q) = upd (Q0)['].{ If Q � (Q1+Q2)�Q3 or Q � (Q2+Q1)�Q3 is incomplete, and Q2 is complete, then upd (Q) =upd (Q1 �Q3).{ If Q � Q1 kS id [ id kS Q2 is incomplete, then upd (Q) = upd (Q1) kS id [ id kS upd (Q2).For each swf marking Q, it turns out that upd (Q) is complete.(2nd part) Now we want to prove, under the same assumption made at the beginning of the previouspart, that bisimulation B is actually an isomorphism between RG[[Nloc[[E]]]] and I 0[[E]].First, we have to prove that B is a function. Given F 2"0E, since F is reachable from E and B is abisimulation, there must exist Q 2 R(dec(E)) such that (F;Q) 2 B, i.e. dec(F ) = upd (Q). It remains toprove the uniqueness of such a swf reachable marking Q. Suppose that there exist Q1; Q2 2 R(dec(E)) swfand di�erent from each other such that upd (Q1) = upd (Q2) = dec(F ). This can stem only from the fact thatthere exists at least a pair composed of a subterm G of a place V1 in Q1 and a subterm G+G0 of a place V2 inQ2 that reside in the same position of the syntactical structure of V1 and V2 (if such a pair did not exist, Q1and Q2 could not be di�erent from each other). The existence of this pair contradicts the reachability of Q1.In fact, we recall that the decomposition function dec distributes all the alternative composition operatorsbetween all the appropriate places and when one of these places is part of a marking involved in a transition�ring, either it remains unchanged or it gives rise to a new place where the alternative composition operatordisappears and only the alternative involved remains after it has been transformed (see the rules for thealternative composition operator).Second, we have to prove that B is injective. This is trivial, because if there exist F1; F2 2" 0E andQ 2 R(dec(E)) such that dec(F1) = upd(Q) = dec(F2), then necessarily F1 = F2 as dec is injective.Third, we have to prove that B is surjective. This is true because given Q 2 R(dec(E)), since Q isreachable from dec(E) and B is a bisimulation, there must exist F 2"0E such that (F;Q) 2 B.Finally, we have to prove that B satis�es the isomorphism clauses. This follows immediately from thefact that B is a bijection ful�lling the bisimilarity clauses.(3rd part) Now let us take into account the priority levels. Since the priority mechanism for EMPAactions is exactly the same as the priority mechanism for PGSPN transitions, from the previous step itfollows that RG[[Nloc[[E]]]] is isomorphic to I[[E]].Corollary 7.16 Let E 2 G. Then F [[Nloc[[E]]]] is isomorphic to F [[E]].Corollary 7.17 Let E 2 E . Then M[[Nloc[[E]]]] is p-isomorphic to M[[E]].From retrievability, the following result immediately follows.Theorem 7.18 Let E 2 G. Then Nloc[[E]] is a GSPN if and only if E 2 E .Proof (=)) Suppose that Nloc[[E]] is a GSPN, i.e. suppose that Nloc[[E]] has no passive transitions. ThenRG[[Nloc[[E]]]] has no passive transitions hence, by virtue of Thm. 7.15, I[[E]] has no passive transitions. ThusE 2 E .((=) Suppose that E 2 E , i.e. suppose that I[[E]] has no passive transitions. We prove that Nloc[[E]] isa GSPN by proceeding by induction on the syntactical structure of E:39



� If E � 0 then Nloc[[E]] is obviously a GSPN.� Let E � <a; ~�>:E0. From E 2 E it follows that ~� 6= � and E0 2 E , so by the induction hypothesis wehave that Nloc [[E0]] is a GSPN hence Nloc[[E]] is a GSPN too.� Let E � E0=L. From E 2 E it follows that E0 2 E , so by the induction hypothesis we have thatNloc[[E0]] is a GSPN hence Nloc[[E]] is a GSPN too.� Let E � E0[']. From E 2 E it follows that E0 2 E , so by the induction hypothesis we have thatNloc[[E0]] is a GSPN hence Nloc[[E]] is a GSPN too.� Let E � E1 +E2. From E 2 E it follows that E1 2 E and E2 2 E , so by the induction hypothesis wehave that Nloc [[E1]] and Nloc[[E2]] are two GSPNs hence Nloc[[E]] is a GSPN too.� Let E � E1 kS E2. There are two cases:{ If E1 2 E ^ E2 2 E then, by the induction hypothesis, we have that Nloc[[E1]] and Nloc[[E2]] aretwo GSPNs hence Nloc[[E]] is a GSPN too.{ If E1 =2 E _ E2 =2 E then E1 or E2 can execute some passive actions which, due to the fact thatE 2 E , have types in S and either do not synchronize at all or synchronize with active actions ofthe same type present in the other subterm. By the rules for the parallel composition operator,the passive transitions present in Nloc[[E1]] or in Nloc[[E2]] cannot be present in Nloc [[E]]; henceNloc[[E]] is a GSPN.7.4 Concurrency PrincipleIn this section we assess the completeness of the integrated net semantics by resorting to the concurrencyprinciple [Old91], which requires that the intended concurrency of each term should be represented by itsintegrated net semantics. The introduction of this principle is due to the fact that retrievability deals onlywith individual transitions so it does not reject net semantics exhibiting too little concurrency.To formalize the concurrency principle, we adapt to our stochastically timed framework some standardoperators on nets generally accepted as representing the intended concurrency of terms. In other words, fol-lowing a standard practice (see, e.g., [Old91]), we develop an integrated denotational net semantics for EMPAand then we investigate whether the integrated net semantics admits the same concurrent computations asthe denotational one.The operators on safe PGSPNs with no inhibitor arcs are presented below: the de�nitions of the setof labels, the priority function and the weight function for the resulting net of each operator are omittedbecause they are similar to those reported in Def. 7.12.� 0 = (fpg; U; ;; fj p jg; ;; ;);� <a; ~�>:(P;U; T;M0; L;W ) = (P 0; U; T 0;M 00; L0;W 0) where:{ P 0 = P [ fpg; p =2 P ;{ T 0 = T [ f(fj p jg; normd(<a; ~�>; p);M0)g;{ M 00 = fj p jg;� (P;U; T;M0; L0;W )=L = (P;U; T 0;M0; L00;W 0) where:{ T 0 = f(M1; normd(<a; ~�>; p);M2) 2 T j a =2 Lg [f(M1; normd(<�; ~�>; p);M2) j 9a 2 L: (M1; normd(<a; ~�>; p);M2) 2 Tg;� (P;U; T;M0; L;W )['] = (P;U; T 0;M0; L0;W 0) where:{ T 0 = f(M1; norm(<'(a); ~�>; p);M2) j (M1; norm(<a; ~�>; p);M2) 2 Tg;40



� (P1; U; T1;M01; L1;W1) + (P2; U; T2;M02; L2;W2) = (P;U; T;M0; L;W ) where:{ P = (dom(M01) � dom(M02)) [ P1 [ P2; P1 \ P2 = ;;{ T = f((M1 
M02)�M 01; normd(<a; ~�>; p);M2) jM1 �M01 ^dom(M1) \ dom(M 01) = ; ^(M1 �M 01; normd(<a; ~�>; p);M2) 2 T1g [f((M01 
M1)�M 01; normd(<a; ~�>; p);M2) jM1 �M02 ^dom(M1) \ dom(M 01) = ; ^(M1 �M 01; normd(<a; ~�>; p);M2) 2 T2g;{ M0 =M01 
M02;� (P1; U; T1;M01; L1;W1) kS(P2; U; T2;M02; L2;W2) = (P;U; T;M0; L;W ) where:{ P = P1 [ P2; P1 \ P2 = ;;{ T = f(M1; normd(<a; ~�>; p);M2) 2 T1 [ T2 j a =2 Sg [f(M1 �M 01; normd(<a;max(~�; ~�)>; p);M2 �M 02) j a 2 S ^min(~�; ~�) = � ^(M1; normd(<a; ~�>; p0);M2) 2 T1 ^(M 01; normd(<a; ~�>; p00);M 02) 2 T2 ^((~� = ~� = � ^ p = p0) _(~� 2 RI + [ Inf ^ p = p0) _(~� 2 RI + [ Inf ^ p = p00))g;{ M0 =M01 �M02,where function normd : (Act � P ) �! ActMufin(P ) is de�ned bynormd(<a; ~�>; p) = <a; Split(~�; 1=jf(M1; normd(<a; ~�>; p);M2) 2 T jM1 �Mcurrgj)>The e�ect of these net operators should be easy to understand, except for the alternative composition one.It combines the standard alternative composition operator with the idea of root unwinding which ensuresthat there are no cycles left at initiallymarked places; it then uses the Cartesian product to introduce choicesbetween all the pairs of initial transitions of the two nets to which it is applied. Root unwinding allows thecorrect interplay of alternative composition and recursion to be implemented.Example 7.19 Consider terms A �= <a; �>:AB �= <b; �>:BThe integrated denotational net semantics of A is a net with one place pA and one transitionfj pA jg normd(<a;�>;pA)���������������������!fj pA jgThe integrated denotational net semantics of B is a net with one place pB and one transitionfj pB jg normd(<b;�>;pB)���������������������!fj pB jgConsider now term E � A +BIf we used the Cartesian product construction without root unwinding, then the integrated denotational netsemantics of E would be a net with one place (pA; pB) and two transitionsfj (pA; pB) jg normd(<a;�>;pA)���������������������! fj (pA; pB) jgfj (pA; pB) jg normd(<b;�>;pB)���������������������! fj (pA; pB) jgThis net is not the right integrated denotational net semantics of E since E can perform either in�nitelymany actions <a; �> or in�nitely many actions <b; �>, whereas the net above allows the two di�erentactions to be arbitrarily interleaved. 41



Function normd plays the same role as function norm. The main di�erence between them is that functionnormd does not consider passive contributions. This is due to the fact that the integrated denotational netsemantics generates a new place whenever 0 or a pre�x operator is encountered. As a consequence, it is notpossible that two or more transitions constructed by the alternative composition operator with the samepreset, have the same postset. This is re
ected by the de�nition of the normalizing factor: it is simply theinverse of the number of enabled transitions having the same basic actions and the same basic place as thetransition at hand.Example 7.20 Consider term E of Ex. 7.9 and let E1 � V1, E2 � V2, E3 � V3. The integrated denotationalnet semantics of E1 is a net with two places p1;1, p1;2 and one transitionfj p1;1 jg normd(<a;�>;p1;1)���������������������!fj p1;2 jgThe integrated denotational net semantics of E2 is a net with three places (p2;1; p2;2), p2;3, p2;4 and twotransitions fj (p2;1; p2;2) jg normd(<a;�>;p2;1)���������������������! fj p2;3 jgfj (p2;1; p2;2) jg normd(<a;�>;p2;2)���������������������! fj p2;4 jgThe integrated denotational net semantics of E3 is a net with two places p3;1, p3;2 and one transitionfj p3;1 jg normd(<a;�>;p3;1)���������������������!fj p3;2 jgFinally, the integrated denotational net semantics of E is a net having the same places as the previous netsand three transitions fj p1;1; (p2;1; p2;2) jg normd(<a;�>;p1;1)���������������������! fj p1;2; p2;3 jgfj p1;1; (p2;1; p2;2) jg normd(<a;�>;p1;1)���������������������! fj p1;2; p2;4 jgfj p1;1; p3;1 jg normd(<a;�>;p1;1)���������������������! fj p1;2; p3;2 jgIn the initial marking all the transitions above are enabled, and their normalizing factor is 1=3 as expected.This example motivates the fact that passive contributions are unnecessary.Using the notion of place based bisimilarity (pl-bisimilarity) on safe nets of [Old91] Def. 2:3:8 suitably mod-i�ed in order to take into account aggregated rates, and following a demonstration similar to that of [Old91]Thm. 3:8:3, we can now prove that for each n-ary operator op we have that Nloc[[opEMPA(E1; : : : ; En)]] ispl-bisimilar to opPGSPN (Nloc [[E1]]; : : : ;Nloc[[En]]). By virtue of [Old91] Thm. 2:3:10, this means that the twonets have the same causal semantics, i.e. they have the same concurrent computations.Theorem 7.21 It turns out that:(i) For every E 2 G and <a; ~�> 2 Act , Nloc[[<a; ~�>:E]] is pl-bisimilar to <a; ~�>:Nloc[[E]].(ii) For every E 2 G and L � AType � f�g, Nloc[[E=L]] is pl-bisimilar to Nloc [[E]]=L.(iii) For every E 2 G and ' 2 ARFun , Nloc[[E[']]] is pl-bisimilar to Nloc[[E]]['].(iv) For every E1; E2 2 G, Nloc[[E1 +E2]] is pl-bisimilar to Nloc[[E1]] +Nloc[[E2]].(v) For every E1; E2 2 G and S � AType � f�g, Nloc[[E1 kS E2]] is pl-bisimilar to Nloc[[E1]] kSNloc[[E2]].8 The Alternating Bit ProtocolIn this section we illustrate the application of the integrated approach of Fig. 1 to the alternating bit protocol.The protocol is modeled by means of an EMPA term and then analyzed by studying the semantic modelsassociated with the term. The reason why we have chosen the alternating bit protocol as a case study toillustrate the integrated approach is that such a protocol has become a standard example in the literature(see, e.g., [Mil89, CPS93, Mol82, NY85, HMR94, ABCSV94]), so it can be used to compare the EMPA modelwith other models. 42



8.1 Informal Speci�cationThe alternating bit protocol [BSW69] is a data link level communication protocol that establishes a meanswhereby two stations, one acting as a sender and the other acting as a receiver, connected by a full duplexcommunication channel that may lose messages, can cope with message loss. The name of the protocol stemsfrom the fact that each message is augmented with an additional bit: since consecutive messages that arenot lost are tagged with additional bits that are pairwise complementary, it is easy to distinguish betweenan original message and its possible duplicates. Initially, if the sender obtains a message from the upperlevel, it augments the message with an additional bit set to 0, sends the tagged message to the receiver,and starts a timer: if an acknowledgement tagged with 0 is received before the timeout expires, then thesubsequent message obtained from the upper level will be sent with an additional bit set to 1, otherwise thecurrent tagged message is sent again. On the other side, the receiver waits for a message tagged with 0: ifit receives such a tagged message for the �rst time, then it passes the message to the upper level, sends anacknowledgement tagged with 0 to the sender, and waits for a message tagged with 1, whereas if it receives aduplicate tagged message (due to message loss, acknowledgement loss, or propagation taking an arbitrarilylong time), then it sends an acknowledgement tagged with the same additional bit to the sender.8.2 Formal Description with EMPASince it is helpful to take advantage from compositionality, we �gure out how to deal with three interactingentities: Sender ;Receiver;Channel . The interaction between Sender and Channel is described by actiontypes tmi, i 2 f0; 1g, standing for \transmit message tagged with i", and da i, i 2 f0; 1g, standing for\deliver acknowledgement tagged with i". The interaction between Receiver and Channel is described byaction types dm i, i 2 f0; 1g, standing for \deliver message tagged with i", and tai, i 2 f0; 1g, standing for\transmit acknowledgement tagged with i". The scenario can be modeled as follows:ABP �= Sender0 kS Channel kR Receiver0S = ftm0; tm1; da0; da1gR = fdm0; dm1; ta0; ta1gThanks to compositionality, we can now focus our attention on the single entities separately. Channelis composed of two independent half duplex lines Linem and Linea. The local activities of Channel are de-scribed by action types pm i, i 2 f0; 1g, standing for \propagate message tagged with i", and pai, i 2 f0; 1g,standing for \propagate acknowledgement tagged with i". Additionally, there are other two activities localto Channel that are described by action type � and represent the fact that a message or an acknowledge-ment is lost or not. As far as the timing of the actions in which Channel is involved is concerned, weassume that the length of a message and the length of an acknowledgement are exponentially distributed, sothat message/acknowledgement transmission, propagation, and delivery times are exponentially distributed.However, the three phases given by message/acknowledgement transmission, propagation and delivery aretemporally overlapped, i.e. they constitute a pipeline. As a consequence, in order to correctly determine thetime taken by a message/acknowledgement to reach Receiver/Sender , we model actions related to transmis-sion and delivery as immediate and we associate the actual timing (i.e., the duration of the slowest stageof the pipeline) with actions related to propagation. We thus assume that the message propagation timeis exponentially distributed with rate �, the acknowledgement propagation time is exponentially distributedwith rate 
, and the loss probability is p 2 RI ]0;1[. Channel can be modeled as follows:Channel �= Linem k; LineaLinem �= <tm0; �>:<pm0; �>:(<�;11;1�p>:<dm0;11;1>:Linem + <�;11;p>:Linem) +<tm1; �>:<pm1; �>:(<�;11;1�p>:<dm1;11;1>:Linem + <�;11;p>:Linem)Linea �= <ta0; �>:<pa0; 
>:(<�;11;1�p>:<da0;11;1>:Linea + <�;11;p>:Linea) +<ta1; �>:<pa1; 
>:(<�;11;1�p>:<da1;11;1>:Linea + <�;11;p>:Linea)Observe that the probabilistic choice between the reception and the loss of a message/acknowledgement hasbeen easily represented by means of the weights associated with the two immediate actions <�;11;1�p>and <�;11;p>.The local activities of Sender are described by action types gm standing for \generate message" and tostanding for \timeout". We assume that the message generation time is exponentially distributed with rate43



� and that the timeout period is exponentially distributed with rate �. Of course, this is not realistic, butEMPA does not enable us to express deterministic durations, and a Markovian analysis would not be possi-ble otherwise. A good approximation would consist of describing the deterministic duration of the timeoutperiod by means of a sequence of exponentially timed actions with the same rate (thereby implementingan Erlang distribution, which is a special case of the hypoexponential distribution of Sect. 5.1) as donein [HMR94], but the underlying semantic model would be much bigger than the one in Fig. 10. Sender canbe modeled as follows:Sender0 �= <gm; �>:<tm0;11;1>:Sender 00Sender 00 �= <da0; �>:Sender1 + <da1; �>:Sender 00 + <to; �>:Sender 000Sender 000 �= <tm0;11;1>:Sender 00 + <da0; �>:Sender1 + <da1; �>:Sender 000 ;Sender1 �= <gm; �>:<tm1;11;1>:Sender 01Sender 01 �= <da1; �>:Sender0 + <da0; �>:Sender 01 + <to; �>:Sender 001Sender 001 �= <tm1;11;1>:Sender 01 + <da1; �>:Sender0 + <da0; �>:Sender 001An important observation (similar to the one reported in [CPS93] for a CCS model of the same protocol)concerns terms Sender 000 and Sender 001 . Since they model the situation after a timeout expiration, they shouldcomprise the retransmission action only in order to be consistent with the de�nition of the protocol. Theproblem is that a deadlock may occur whenever, after a sequence of premature timeouts (i.e. timeouts expiredalthough nothing is lost), the sender is waiting to be able to retransmit the message, the receiver is waitingto be able to retransmit the corresponding acknowledgement, the message line is waiting to be able to delivera previous copy of the message, and the acknowledgement line is waiting to be able to deliver a previouscopy of the acknowledgement. To destroy deadlock, Sender 000 and Sender 001 are allowed to receive possibleacknowledgements, thereby avoiding unnecessary retransmissions.The only local activity of Receiver is described by action type cm standing for \consume message" whichis taken to be immediate in that it is irrelevant from the performance viewpoint. Receiver can be modeledas follows:Receiver0 �= <dm0; �>:<cm;11;1>:<ta0;11;1>:Receiver1 +<dm1; �>:<ta1;11;1>:Receiver0Receiver1 �= <dm1; �>:<cm;11;1>:<ta1;11;1>:Receiver0 +<dm0; �>:<ta0;11;1>:Receiver18.3 Comparison with Other Formal DescriptionsAt the beginning of this section we said that we have chosen the alternating bit protocol in order to compareits EMPA model with others expressed with di�erent formalisms. For example, it turns out that in [Mil89,CPS93] performance aspects are completely neglected because a classical process algebra is used, whilein [Mol82] a stochastically timed Petri net model is adopted but the unrealistic assumption that the timeoutexpires only if a loss actually occurs is made. In [HMR94] a stochastically timed process algebraic descriptionis given, where the deterministic duration of the timeout period has been better approximated by means of anErlang distribution. However, this description does not accurately take into account the division into threetemporally overlapped phases (like in [NY85, ABCSV94]), and represents the probabilistic choice betweenthe reception and the loss of a message/acknowledgement by giving a context dependent meaning to the rateof the actions.8.4 Functional AnalysisThe integrated interleaving semantics of ABP is presented in Fig. 10. The LTS I[[ABP]] has 302 states(76 tangible, 226 vanishing) and 464 transitions (284 observable, 180 invisible; 140 exponentially timed, 324immediate). Due to the symmetry of the protocol, only half of the state space has been drawn (dashedtransitions depict the link with the remaining states). Whenever neither losses nor premature timeoutsoccur, the states visited by the protocol are 1, 3, 5, 9, 15, 21, 25, 45, 51, 55 and the corresponding symmetricones, i.e. 2, 4, 6, 10, 16, 22, 26, 46, 52, 56. Following the proposed approach, we can use the LTS F [[ABP ]](obtained from I[[ABP ]] by dropping action rates) to detect some functional properties. For example, wesee that each state has at least one incoming transition and one outgoing transition: this means that the44
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protocol is deadlock free. If Sender 000 and Sender 001 had not been carefully designed (as explained in Sect. 8.2),then we would have obtained eight deadlock states: 113, 197, 213, 301 and the corresponding symmetricones. As another example, by resorting to equivalence checking we have proved that, whenever all the actiontypes occurring in ABP are hidden except for gm and cm, then ABP behaves as a bu�er with capacity onethat can engage in a sequence of alternating actions with the two observable types.8.5 Performance AnalysisThe Markovian semantics of ABP is presented in Fig. 11. The p-LTSM[[ABP ]], which has 76 states and 204transitions, has been obtained from I[[ABP]] by applying the algorithm in Sect. 4.3. Since M[[ABP]] is �niteand strongly connected, it represents a HCTMC for which the steady state probability distribution functionexists. Following the proposed approach, we can exploit such a HCTMC for assessing some performanceindices. For example, the throughput of the protocol is given by the number � of messages per second thatarrive at the Sender multiplied by the probability that the Sender can accept a new message to send: thisprobability is given by the sum of the steady state probabilities of the states having an outgoing transitionlabeled with �. In the table below we report the value of the actual throughput for di�erent values of theo�ered load �. We assume that the protocol uses two 9600 baud lines and that the (mean) length of thepackets is 1024 bits, so that the propagation rate is � = 
 = 9:375 packets per second: we �nally assumethat the timeout period is 1 second (� = 1) and that the loss probability is p = 0:05.load (msg=sec) throughput (msg=sec) load (msg=sec) throughput (msg=sec)5 1:106630 30 1:58823010 1:356460 35 1:60720015 1:464435 40 1:62176020 1:524200 45 1:63309525 1:562150 50 1:6424008.6 The Equivalent Net DescriptionThe integrated net semantics of ABP is presented in Fig. 12. The GSPN Nloc[[ABP]] comprises 28 places and36 transitions. Since the integrated net semantics for EMPA meets the retrievability principles, ABP andNloc[[ABP ]] model exactly the same protocol in two di�erent ways: the algebraic description is compositionaland more readable, the net description is more concrete and provides a means to detect dependencies,con
icts, and synchronizations among activities which cannot be discovered in an interleaving model likeI[[ABP]]. Also notice that Nloc[[ABP ]] is considerably more compact than I[[ABP]]: this fact may turn outto be helpful in order to carry out a more e�cient assessment of system properties.9 ConclusionIn this paper we have proposed an integrated approach for modeling and analyzing functional and perfor-mance properties of concurrent systems. In order to implement the integrated approach in the exponentialcase, we have developed a new stochastically timed process algebra called EMPA.Related work: The idea underlying the integrated approach comes from [Old91], where complementaryviews of concurrent systems, each one describing the systems at a di�erent level of abstraction, are broughttogether in one uniform framework by establishing the appropriate semantic links. This realizes the stepwisedevelopment of complex systems through various levels of abstraction, which is good practice in softwareand hardware design. We have then extended the proposal of [Old91] by considering an orthogonal form ofintegration that relates functional and performance aspects of concurrent systems.48



The development of EMPA, instead, has been in
uenced by the stochastically timed process algebrasMTIPP [GHR93b] and PEPA [Hil96], and by the formalism of GSPNs [ABC84, ABCC87]. While designingEMPA, emphasis has been placed on expressiveness.In EMPA, action durations are mainly given by means of exponentially distributed random variableslike in MTIPP and PEPA, but it is also possible to express immediate actions each of which is assigned apriority level and a weight like GSPN transitions. Immediate actions permit to model activities associatedwith logical events (see, e.g., the delivery of a customer to the server in Sect. 5:2) as well as activities that areirrelevant from the performance viewpoint (see, e.g., message consumption in Sect. 8), thereby providing amechanism for performance abstraction in the same way as action type � provides a mechanism for functionalabstraction: they also supply the designer with a good degree of 
exibility (see, e.g., the description of thepipeline in Sect. 8). Furthermore, immediate actions allow to model concurrent systems whose activities mayhave di�erent priorities (see, e.g., the QS in Sect. 5:5) and can be used to describe explicitly probabilisticchoices avoiding the need of a new operator (see, e.g., message and acknowledgement loss in Sect. 8). Finally,the interplay of exponentially timed and immediate actions makes it possible, though not atomically, thedescription of activities whose durations follow a phase type distribution (see Sect. 5:1). It is worth notingthat, e.g., hyperexponential distributions cannot be represented without weighted immediate actions, sincethere is no term in which only exponentially timed actions occur such that its Markovian semantics is p-isomorphic to the HCTMC reported in Fig. 7(c). Actually, like weighted immediate transitions in GSPNs,weighted immediate actions are essential in order to model HCTMCs where more than one state can beinitial.EMPA is also endowed with passive actions somewhat di�erent from those of MTIPP and PEPA. Passiveactions play a prominent role in EMPA because they allow for nondeterministic choices, and are essentialin the synchronization discipline on action rates since it requires that at most one active action is involved.MTIPP and PEPA allow for more general kinds of synchronization [Hil94], but we think that our disciplineleads to a more intuitive treatment of the interaction among processes, and in [BG98] we have shown thatit is not so restrictive.As recognized in [BG98], the resulting expressive power of EMPA is considerable: basically, it can beviewed as the union of a classical process algebra, a prioritized process algebra, a probabilistic processalgebra, and an exponentially timed process algebra. On the other hand, this has required a great care inthe de�nition of the integrated interleaving semantics (re
ected by the use of functions Melt , Select , andNorm and the related computation of all the potential moves of a term at once), in the de�nition of theMarkovian semantics (because of the possible coexistence of exponentially timed and immediate transitions),and in the de�nition of the integrated net semantics (witnessed by the handling of marking dependent rates).Finally, the notion of integrated equivalence �EMB has been set up by assembling complementary pro-posals [LS91, HR94, Hil96, Buc94, Tof94, Mil89] in an elegant and compact way, and it has turned out tobe the coarsest congruence contained in �FP for a large class of terms, thereby allowing for compositionalreasoning and highlighting the necessity (beside the convenience) of de�ning a notion of equivalence directlyon the integrated semantic model.Tool support: As the various semantics for EMPA can be fully mechanized, we are currently designinga software tool called TwoTowers [BCSS98] which implements the integrated approach of Fig. 1 in theexponential case. The tool is composed of a graphical user interface written in Tcl/Tk [Ous94], a tool driver,an integrated kernel, a functional kernel and a Markovian kernel. The tool driver, which is written in C [KR88]and uses Lex [Les75] and YACC [Joh75], includes routines for parsing EMPA speci�cations and performinglexical, syntactic, and static semantic (closure, guardedness, �niteness) checks on the speci�cations. Theintegrated kernel, which is implemented in C, currently contains only the routines to generate the integratedinterleaving semantic model of EMPA speci�cations according to the rules of Table 1: this kernel will beextended by implementing a �EMB checking algorithm. The functional kernel, which is written in C, is basedon a version of CWB-NC [CS96] that was retargeted for EMPA using PAC-NC [CMS95]. The Markoviankernel, which is written in C, is in turn based on MarCA [Ste94].The current version of TwoTowers has been used to study the alternating bit protocol in Sect. 8. In thefuture, we plan to add a net kernel which compiles EMPA terms to the corresponding integrated net modelsand analyzes such nets by means of GreatSPN [Chi91].49



Future research: Finally we outline several open problems left for future research, some of which havealready been addressed since the �rst version of this paper was prepared, while others are currently beingstudied.1. The Markovian semantics for EMPA is de�ned in the case of coexistence of exponentially timed andimmediate transitions by means of an algorithm that manipulates the LTS produced by the integratedinterleaving semantics. It would be useful in this case to �nd a compositional de�nition for the Marko-vian semantics by considering the syntactical structure of the term itself, in order not to be forced toscan the whole state space. Also, to tackle state space explosion, e�cient aggregation and solutiontechniques for the MCs underlying terms must be found, possibly exploiting compositionality of termsthemselves. Some work in this direction has been done in [Buc94, RS94, HM95, Ser95, HH95, MS96].Additionally, for the time being the Markovian semantics is de�ned only for performance closed terms.However it could be extended to all the terms, provided that passive transitions are treated as para-metric active transitions. As a consequence, we would obtain parametric MCs suitable for sensitivityanalysis of performance.2. The integrated equivalence �EMB is strong, which means that it does not abstract from internalimmediate actions, i.e. those actions which are not observable and take no time. From the state spacereduction standpoint, it would be pro�table to de�ne an integrated equivalence which does abstractfrom those actions, as it has already been done for some extensions of MTIPP [Ret95, HRW95, HR96].A somewhat di�erent kind of weak integrated equivalence based on insensitivity results has been insteaddeveloped for PEPA [Hil96].Moreover, it would be useful to introduce a notion of preorder for EMPA which sorts systems accordingto their performance.3. The integrated net semantics for EMPA is developed according to the location oriented approach, i.e.the syntactical structure of terms is encoded within places. From the applicative viewpoint, its majordrawback is that the resulting nets are safe, hence huge. In [BBG95] this problem has been solved byresorting to the label oriented approach: terms are decomposed into places that ignore the syntacticalstructure of terms themselves, notably the presence of parallel composition operators, so that e.g. term<a; ~�>:0k;<a; ~�>:0 needs only one place <a; ~�>:0 marked with two tokens instead of two places<a; ~�>:0k; id and id k;<a; ~�>:0. Another optimization concerns choices: alternative compositionsare translated by linear constructions instead of Cartesian product constructions. Given a term E, itsintegrated label oriented net semantics Nlab[[E]] is in general smaller than Nloc[[E]], and sometimes even�nite instead of in�nite. For instance, while Nloc[[QSM=M=2=3=4]] in Fig. 9 has 16 places, 16 transitions,and 60 arcs, Nlab[[QSM=M=2=3=4]] in [BBG95] has only 7 places, 4 transitions, and 14 arcs. The priceto pay is that inhibitor arcs come into play, except for terms in which all the choices are guarded. Adi�erent approach for obtaining smaller net representations is proposed in [Rib95], where an integrateddenotational net semantics based on colored stochastically timed Petri nets is outlined.4. A commonly used method to specify steady state performance measures for Markovian models is basedon rewards [How71]. The basic idea is that a number describing a reward (or weight) is attached toevery state of the Markovian model, and the performance index is de�ned as the weighted sum of thesteady state probabilities of the states of the Markovian model. In order to specify rewards withouthaving to manually scan the whole state space underlying a term of a stochastically timed processalgebra, in [Cla96] a method has been proposed which requires expressing a reward structure by meansof a logical formula and an arithmetical expression, such that every state satisfying the formula isassigned the reward given by the arithmetical expression. In [Ber97b] we have proposed an alternativemethod based on the idea of specifying rewards directly in the algebraic model of systems by suitablyextending the structure of actions, so that there is no need to resort to a logical formalism and analgebraic treatment of terms which preserves performance measures by means of an extension of �EMBis possible. Besides, it is worth noting that the speci�cation of rewards in the algebraic terms preventstheir Markovian models from being ordinarily lumped too much.5. EMPA cannot be used to deal with those systems where data play a fundamental role. To achievethis, in [Ber97a] we have enriched EMPA with value passing features, and the proposal of [HL95]50



relying on symbolic LTSs and symbolic bisimulations has been adapted to our framework by providingsuitable semantic rules based on lookahead in order to bene�t as much as possible from the inherentparametricity of value passing. As an example, the symbolic LTS underlying an EMPA value passingdescription of the alternating bit protocol has only half as many states as the LTS in Fig. 10.We also point out that with EMPA it is not possible to model mobility features. Such a topic has beenaddressed in [Pri95].6. In [BBCC92] it has been shown that GSPNs can be used to assess both the correctness and theperformance of concurrent algorithms, provided that translation rules are given in order to derive aGSPN model from the code of the algorithm. Of course, the same idea can be applied to EMPA. Inparticular, the translation rules may be set up by following the guideline in [Mil89], where an imperativeconcurrent programming language is de�ned and its semantics is given by translation into CCS.7. The integrated approach of Fig. 1 allows for the simulative analysis of concurrent systems by meansof GSPNs, which is quite helpful whenever the state space is huge or even in�nite. In [Ber96] it hasbeen argued that this can be done directly with EMPA since its integrated interleaving semantics hasbeen de�ned in an operational way, thereby making it possible to build the state space on a by needbasis (a routine for the simulative analysis of EMPA terms is going to be introduced in TwoTowers).Former algebraic approaches to discrete event simulation can be found in [HS95, KBLL96].8. How can the integrated approach of Fig. 1 be scaled to general distributions? Although the combineduse of exponentially timed and immediate actions allows us to model or approximate many frequentlyoccurring distributions, from the modeling point of view it is advantageous to be able to directly expressany distribution, hence this question needs to be answered. Probably, this is the most challenging openproblem because we can no longer exploit the memoryless property of exponential distributions, whichallowed us to obtain MCs as performance models and to smoothly de�ne the integrated semantics inthe interleaving style. Several proposals have been elaborated throughout these years, which can befound in [GHR93a, HS95, ABCSV94, BKLL95, Her96, Pri96]. Our proposal [BBG97], in particular,retains the interleaving approach by adding suitable information to LTSs, and relies on generalizedsemi Markov processes as performance models since these can be always analyzed via simulation andsometimes by solving the corresponding HCTMCs whenever insensitivity conditions are met whichallow for the substitution of exponential distributions for general distributions with the same mean.The purpose is to be able to integrate deterministic and probabilistic durations since they both oftenoccur in the description of systems, and to manage the simultaneous termination of actions whoseduration is expressed by noncontinuous distributions. A comparison among the di�erent proposals canbe found in [BBG97]. AcknowledgementsWe thank Rance Cleaveland, Alessandro Fabbri, Roberto Segala, and Rick Sheldon for the valuable discussions, andRoberto Segala for his careful proofreading of an earlier version of this paper. Furthermore, we are especially gratefulto Nadia Busi for her suggestions about the presentation of the integrated interleaving semantics and Mario Bravettifor his remarks about rate normalization in the integrated net semantics. We �nally thank the anonymous refereesfor their helpful suggestions. This research has been partially funded by MURST, CNR, and ESPRIT BRA 8130LOMAPS.References[ABBCCC89] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, A. Cumani, \The E�ect of ExecutionPolicies on the Semantics and Analysis of Stochastic Petri Nets", in IEEE Trans. on Software Engineer-ing 15:832-846, 1989[ABC84] M. Ajmone Marsan, G. Balbo, G. Conte, \A Class of Generalized Stochastic Petri Nets for the PerformanceEvaluation of Multiprocessor Systems", in ACM Trans. on Computer Systems 2:143-172, 1984[ABCC87] M. Ajmone Marsan, G. Balbo, G. Chiola, G. Conte, \Generalized Stochastic Petri Nets Revisited: RandomSwitches and Priorities", in Proc. of the 2nd Int. Workshop on Petri Nets and Performance Models (PNPM'87), IEEE-CS Press, Madison (WI), 1987 51
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