
Voronoi Diagrams of Moving Points�Gerhard AlbersyComputer Science DepartmentUniversity of W�urzburgGermany Joseph S.B. MitchellzApplied MathematicsSUNY Stony Brook, USALeonidas J. GuibasxComputer Science DepartmentStanford University, USA Thomas Roos{Computer Science DepartmentFederal Institute of TechnologyZurich, SwitzerlandAbstractConsider a set of n points in d-dimensional Euclidean space, d � 2, each of which iscontinuously moving along a given individual trajectory. At each instant in time, the pointsde�ne a Voronoi diagram. As the points move, the Voronoi diagram changes continuously,but at certain critical instants in time, topological events occur that cause a change in theVoronoi diagram. In this paper, we present a method of maintaining the Voronoi diagramover time, while showing that the number of topological events has an upper bound ofO(nd�s(n)), where �s(n) is the maximum length of a (n; s)-Davenport-Schinzel sequence[AgShSh 89, DaSc 65] and s is a constant depending on the motions of the point sites. Ourresults are a linear-factor improvement over the naive O(nd+2) upper bound on the numberof topological events.In addition, we show that if only k points are moving (while leaving the other n � kpoints �xed), there is an upper bound of O(knd�1�s(n) + (n� k)d�s(k)) on the number oftopological events.We give a numerically stable algorithm for the update of the topological structure ofthe Voronoi diagram, using only O(logn) time per event (which is worst-case optimal perevent).Keywords: combinatorial complexity, dynamic computational geometry, Delaunay trian-gulation, Davenport-Schinzel theory, geometric data structure, moving objects, proximity,Voronoi diagram�Preliminary versions of this paper appeared at the 17th Workshop on Graph-Theoretic Concepts in ComputerScience WG'91 [GuMiRo 91] and at the 3rd Scandinavian Workshop on Algorithm Theory SWAT'92 [AlRo 92].yWork on this paper was partially supported by the Deutsche Forschungsgemeinschaft (DFG) under contractNo 88/10-1. Address: Lehrstuhl f�ur Informatik 1, Universit�at W�urzburg, Am Hubland, D-97074 W�urzburg,GermanyzPartially supported by a grant from Hughes Research Laboratories, Malibu, CA, and by NSF GrantECSE-8857642. Address: Applied Mathematics, SUNY, Stony Brook, NY 11794-3600, USA; Email:jsbm@ams.sunysb.eduxThe author acknowledges the partial support by NSF grant CCR-9215219. Address: Robotics Laboratory,Computer Science Department, Cedar Hall, Room B16, Stanford University, Stanford, CA 94305, USA; Email:guibas@cs.stanford.edu{The author acknowledges the partial support of this work by the ESPRIT basic research project No. 6881(AMUSING) of the European Community. Part of this work was carried out while the author was at theUniversity of W�urzburg. Address: Theoretische Informatik, ETH Zentrum, CH-8092 Z�urich, Switzerland; Email:roos@inf.ethz.ch 1



1 IntroductionVoronoi diagrams are a fundamental tool expressing the proximity of geometric objects. So,it is not surprising that they appear in many variations in computational geometry as well asother related scienti�c areas (see [Au 90] for a survey on this topic).A problem of recent interest has been that of allowing the set of objects S to vary continu-ously over time. This \dynamic" version has been studied in the case of points in the Euclideanplane by [AoImImTo 90, ImSuIm 89, Ro 90]. Most recently, [Al 91, Ro 91] generalized theseideas with respect to the dimension (d = 3) and the order of the Voronoi diagram.In this paper, we consider the following problem: We are given a set S of n points ind-dimensional Euclidean space, d � 2, each of which is continuously moving along a giventrajectory. At each instant in time, the points de�ne a Voronoi diagram. As the points move,the Voronoi diagram changes continuously, but at certain critical instants in time, topologicalevents occur that cause a change in the dual graph, the Delaunay diagram. Our goal is tocharacterize the elementary topological events in order to maintain the Voronoi diagram overtime in some useful data structure.The main result is to prove a new O(nd �s(n)) upper bound on the number of topologicalevents, where �s(n) denotes the maximum length of a (n; s)-Davenport-Schinzel sequence ands is a constant depending on the motions of the point sites. In the special case of points movingalong polynomial curves of degree q (so-called polynomial q-motions), we get s = (d+ 2) q. Aswe will see, our results are a linear-factor improvement over the naive O(nd+2) upper bound.In the case that only k of the n points of S are moving (while the remaining n � k stay�xed), our bound on the number of events becomes O(k nd�1 �s(n) + (n � k)d �s(k)), which isapproximately O(nd) for �xed k. In addition to that, very recently [Ro 93a] proved that thereis a tighter bound of O(kd+1(n� k)dd=2e + kd �s(k)) in the case of k 2 O(pn). This should becontrasted with the best known lower worst-case bound of �(k (n� k)dd=2e). Thus, the majoropen problem in this area is to close the gap between the upper and lower worst-case bounds,i.e. to give tight worst-case bounds.Finally, there are recent results by [HuKeKl 92, To 88] for dynamic Voronoi diagrams ofrigidly moving sets of points. For g groups of n points each, they could prove an upper boundof O(g2n2�s(g)) events.We also present a numerically stable algorithm for the update over time of the topologicalstructure of the Voronoi diagram, using only O(logn) time for each topological change. It isknown [Ro 91, Ro 93b] that this update time is worst-case optimal (even in the planar case).2 PreliminariesThis section brie
y summarizes the elementary de�nitions and properties of d-dimensionalEuclidean Voronoi diagrams, d � 2, of point sets. As usual, we let d(:; :) denote Euclideandistance. At the beginning, we are given a �nite setS := fP1; : : : ; Pngof n � d + 2 sites in d-dimensional Euclidean space IEd, d � 2. (As usual, the dimension dis assumed to be a constant.) The perpendicular bisector of Pi and Pj is de�ned to be thehyperplane Bij := fx 2 IRd j d(x; Pi) = d(x; Pj)g:The (convex) Voronoi polygon/polyhedron of Pi is given byv(Pi) := fx 2 IRd j 8j 6=i d(x; Pi) � d(x; Pj)g:2



The vertices of the Voronoi polyhedrons are called Voronoi points and the bisector portions onthe boundary are called Voronoi edges/k-faces (according to their a�ne dimension k). Finallythe Voronoi diagram of S is de�ned byVD(S) := fv(Pi) jPi 2 Sg:The embedding of the Voronoi diagram into d-dimensional real space provides a graph that wecall the geometrical structure of the underlying Voronoi diagram.Now we turn our attention to the dual graph of the Voronoi diagram, the so-called Delaunaytriangulation/graph DT (S). If S is in general position | i.e. no d + 2 points of S lie on acommon hypersphere and no d + 1 points of S lie on a common hyperplane | every Voronoi(d� i)-face in VD(S) corresponds to an i-face in DT (S), for i = 0; : : : ; d.In the following, we use a one-point-compacti�cation to simplify our discussion. We augmentset S by adding the \point at in�nity" 1, yielding a new set of sitesS 0 := S [ f1g:The extended Delaunay graph is then given byDT (S 0) = DT (S) [ f(Pi;1) jPi 2 S \ @CH(S)g:So, in addition to the Delaunay graph DT (S), every point on the boundary of the convex hull@CH(S) is connected to 1. We call the underlying graph of the extended Delaunay graphDT (S 0) the topological structure of the Voronoi diagram. In contrast with DT (S), DT (S 0) hasthe nice property that there are exactly d+ 1 (d+ 1)-tuples adjacent to each (d+ 1)-tuple inDT (S 0). This will signi�cantly simplify the description of the algorithm presented below.Next, we adopt two functions1 from [GuSt 85] providing a nice classi�cation of the (d+ 1)-tuples of the extended Delaunay graph DT (S 0). In particular, let v(P0; : : : ; Pd) denote thecenter of the hyperball C(P0; : : : ; Pd) of d+ 1 sites P0; : : : ; Pd 2 S, we have:fP0; : : : ; Pdg 2 DT (S 0) () v(P0; : : : ; Pd) is a Voronoi point in VD(S):() C(P0; : : : ; Pd) contains no point of S in its interior:() 8P 02SnfP0;:::Pdg OUTSIDE(P0; : : : ; Pd; P 0) :=sign �VOL(P0; : : : ; Pd) � INS(P0; : : : ; Pd; P 0)� = 1:Naturally, an analogous statement can be given for the extended (d+1)-tuples. If fP0; : : : ; Pdgand fP0; : : : ; Pd�1;1g are adjacent (d + 1)-tuples in DT (S 0) with VOL(P0; : : : ; Pd) > 0, wehave:fP0; : : : ; Pd�1;1g 2 DT (S 0) () P0; : : : ; Pd�1 are the vertices of a (d� 1)-face onthe boundary of the convex hull @CH(S):() 8P 02SnfP0;:::Pd�1g OUTSIDE(P0; : : : ; Pd�1;1; P 0) :=sign �VOL(P0; : : : ; Pd�1; P 0)� = 1:The proof of these statements is straightforward. In the following, these classi�cations willbe very useful characterizing the elementary topological events of two- and higher dimensionaldynamic Voronoi diagrams.1These functions VOL and INS (mnemonic for "volume" and "insphere") are de�ned as follows:VOL(P0; : : : ; Pd) := ������� 1 P01 : : : P0d... ... ...1 Pd1 : : : Pdd ������� ; INS(P0; : : : ; Pd+1) := �������� 1 P01 : : : P0d P 201 + � � �+ P 20d... ... ... ...1 Pd1 : : : Pdd P 2d1 + � � �+ P 2dd1 Pd+11 : : : Pd+1d P 2d+11 + � � �+ P 2d+1d ��������3



3 Voronoi Diagrams of Moving PointsThe contents of this section is to describe the changes in the topological structure of a setof continuously moving points in d-dimensional Euclidean space IEd, d � 2. For that, we aregiven a �nite set of n � d + 2 continuous trajectory curves in d-dimensional Euclidean spaceIEd, S := S(t) := fP1(t); : : : ; Pn(t)g. Thereby the points are allowed to appear or disappearaccording to a speci�c life cycle. We make the following assumptions about the trajectories:First, we assume that the points move without collisions, or in other words:8i6=j 8t2IR Pi(t) 6= Pj(t):In addition, we demand the existence of an instant t0 2 IR when S(t0) is in general position;this is necessary to obtain a de�nite topological structure at the starting position t0.Now, consider the situation at a moment t 2 IR when all points in S(t) are in generalposition. On the one hand, by investigating the continuity of a suitable product of determinants,it is easy to see that a su�ciently small continuous motion of the points does not change the factthat the points are in general position. On the other hand, the topological structure DT (S 0)is completely determined by the active Voronoi points which currently appear in V D(S) andby the d-tuples of sites forming the boundary of the convex hull @CH(S). Therefore, thetopological structure can only change in the following two di�erent situations:Case (1) The appearance (disappearance) of an inactive (active) Voronoi point.Case (2) The appearance (disappearance) of a point on the boundary of the convex hull.However, in both cases the loss of general position of the points S(t) is necessary for changingthe topological structure DT (S 0(t)). This proves that the topological structure DT (S 0) islocally stable as long as the points are in general position.In order to address the question of su�cient conditions, we proceed with an investiga-tion of the elementary changes of the topological structure of a Voronoi diagram. In thetwo-dimensional case, it is well-known (see, e.g., [Ro 90]) that such elementary changes canbe described as \swaps" of adjacent triangles in DT (S 0) (cf. Figure 1). However, in higherdimensions these transitions turn out to be more complex.pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp pp pp p pp p p p p p p p p p p p p p p p p p p p pp pp pppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp ppp pp pp pp pp p pp ppp ppp ppppppppppppppppppppppppppppppppppqPlqPi qPj qPk qPlqPi qPj q Pk-�Figure 1: A reversible swap, i.e. a (2,2)-transition of neighboring Delaunay triangles in IR2.In our �rst case above, an inactive Voronoi point v(P0; : : : ; Pd) becomes activated, if thelast point Pd+1 2 S leaves the variable circumsphere C(P0; : : : ; Pd). As well, an active Voronoipoint v(P0; : : : ; Pd) becomes inactivated, if a point Pd+1 2 S enters this variable circumsphere.Additionally, we assume at that instant t0 (when d + 2 points lie on a common hypersphere)4



that no further point of S lies on the boundary of the circumsphere C(P0; : : : ; Pd). If we select" > 0 su�ciently small, the entrance of the point Pd+1 can be described as follows:OUTSIDE(P0; : : : ; Pd; Pd+1)(t0 � ") = 1;OUTSIDE(P0; : : : ; Pd; Pd+1)(t0 + ") = �1;8P 02SnfP0;:::;Pd+1g 8t2[t0�";t0+"] OUTSIDE(P0; : : : ; Pd; P 0)(t) = 1:In fact, this corresponds to a real zero-crossing of the function OUTSIDE(P0; : : : ; Pd+1) becausethe point Pd+1 changes on what side of the sphere C(P0; : : : ; Pd) it lies at the instant t0.How can we describe the resulting change of the topological structure? For that, we investi-gate the active (d+1)-tuples of DT (S 0(t0�")) at an instant t0�", with " > 0 su�ciently small.At �rst, it is apparent that the local topological structure in the neighborhood of v(P0; : : : ; Pd)is completely determined by the points Sd := fP0; : : : ; Pd+1g. Thus, we only have to considerall d+ 2 subsets of points of Sd of size d+ 1. These subsets can be generated, for example, byeliminating the i-th element for i = 0; : : : ; d+ 1, respectively. So, let�i := 8><>: (P1; : : : ; Pd+1) i = 0;(P0; : : : ; Pi�1; Pi+1; : : : ; Pd+1) i� 1 � i � d;(P0; : : : ; Pd) i = d+ 1;denote the sequence which has been obtained after eliminating the i-th element. Using thefact, that the determinants considered are alternating forms (i.e. transposing two rows in anydeterminant changes its sign), we'll prove now that there exists a complete, disjoint partitionof the �i's into two subsets A and B, with 2 � jAj; jBj � d, such that:(�) 8><>: 8�i2A OUTSIDE(�i; Pi)(t0 � ") = 1 and OUTSIDE(�i; Pi)(t0 + ") = �1;8�i2B OUTSIDE(�i; Pi)(t0 � ") = �1 and OUTSIDE(�i; Pi)(t0 + ") = 1;8P 0 =2�i[Pi 8t2[t0�";t0+"] OUTSIDE(�i; P 0)(t) = 1:These equations are obviously equivalent (due to the classi�cation above) to the followingso-called (i; j)-transition2 of the local topological structure:f�i 2 DT (S 0(t0 � ")) j �i 2 Ag  ! f�i 2 DT (S 0(t0 + ")) j �i 2 Bg.Next, we proceed by constructing the announced sets A and B:A := f�i j sign [VOL(P0; : : : ; Pd)] = �sign [VOL(P0; : : : ; Pi�1; Pd+1; Pi+1; : : : ; Pd)]g;B := f�i j sign [VOL(P0; : : : ; Pd)] = sign [VOL(P0; : : : ; Pi�1; Pd+1; Pi+1; : : : ; Pd)]g:In other words, set A and set B include all �i's where Pi and Pd+1 lie on di�erent sides or onthe same side of the hyperplane spanned by the sites P0; : : : ; Pi�1; Pi+1; : : : ; Pd, respectively.Thereby, we assume that the sites of �i do not change their orientation at the instant t0. Now,if we use the fact that the sequence (�i; Pi) can be obtained from the sequence (P0; : : : ; Pd+1)by d� i+ 1 transpositions, we have for any �i 2 A:OUTSIDE(�i; Pi)= sign [VOL(�i)] � sign [INS(�i; Pi)]= (�1)d�i sign [VOL(P0; : : : ; Pi�1; Pd+1; Pi+1; : : : ; Pd)] � (�1)d�i+1 sign [INS(P0; : : : ; Pd+1)]= (�1)d�i+1 sign [VOL(P0; : : : ; Pi�1; Pi; Pi+1; : : : ; Pd)] � (�1)d�i+1 sign [INS(P0; : : : ; Pd+1)]= OUTSIDE(P0; : : : ; Pd+1):2Thereby, i and j denote the cardinality of set A and B, respectively.5



����� � AAAAQQQQQQ ��������@@@@@@@@ �������������������������Pi PjPkPl Pm
����� � AAAAQQQQQQ ��������� � � � � �@@@@@@@@ �������������������������Pi PjPkPl Pm-�(Pi;Pj ;Pk;Pl)(Pj;Pk ;Pl ;Pm) (Pi;Pj;Pk ;Pm)(Pi;Pj ;Pl;Pm)(Pi;Pk;Pl;Pm)Figure 2: A reversible (2,3)-transition with the active Delaunay (d+ 1)-tuples in IR3.Analogously, we obtain for any �i 2 B: OUTSIDE(�i; Pi) = �OUTSIDE(P0; : : : ; Pd+1). Withthat, the desired equations (�) hold immediately. Notice that there always exists such a hy-perplane spanned by the sites P0; : : : ; Pi�1; Pi+1; : : : ; Pd separating Pi and Pd+1, which provesjAj � 2. The proof of jBj � 2 is also straightforward. A three-dimensional example of a (2,3)-transition is depicted in Figure 2 (from [Al 91]). The transition described is also equivalentto a fusion of the corresponding Voronoi points, which come together and disappear at theinstant t0, and the creation of new (dual) Voronoi points { according to the transition ruleabove.Considering our second case, the appearance or disappearance of a point P 0 2 S on theboundary of the convex hull @CH(S) is equivalent to the activation or deactivation of theextended Delaunay edge (P 0;1).At �rst, (P 0;1) becomes activated, if P 0 enters the boundary of the convex hull on a(d � 1)-face formed by the sites (P0; : : : ; Pd�1). According to the classi�cation above, thecircumsphere C(P0; : : : ; Pd�1; P 0) contains no points in its interior already shortly before P 0enters the boundary of the convex hull. If we assume at the instant of coplanarity, that noother point of S lies on the hyperplane H formed by these points and if we regard the interiorof the in�nite sphere through the points P0; : : : ; Pd�1 and 1 as the open halfspace that isbounded by the hyperplane H and lies outside the convex hull CH(S), then we can apply theresults of our �rst case.3 The deactivation of the edge (P 0;1) can be dealt with analogously.To summarize our results, we present the following theorem.Theorem 1 Elementary changes in the topological structure DT (S 0) of the Voronoi diagramV D(S) are characterized by (i; j)-transitions of adjacent (d + 1)-tuples in DT (S 0), except indegenerate cases. Thereby, the indices obey the conditions i+ j = d+ 2 and 2 � i; j � d.According to this, we have solved the question concerning su�cient conditions. Roughlyspeaking, topological events are characterized by non-degenerate loss of local general position,3If we replace Pm by 1, the activation of the extended dual edge (Pi;1) can be regarded as a left-to-righttransition in Figure 2. 6



i.e. the loss of general position of adjacent (d+ 1)-tuples in the topological structure. Notice,that the same topological events are generated by several pairs of (d+ 1)-tuples representingthe same sites. In this connection, the original advantage of the one-point compacti�cationbecomes apparent. It allows us the convenience of treating both cases similarly: as simpletransitions in the extended dual graph DT (S 0).Up to now, we have been ignoring a technicality caused by degeneracies: it may be thatmore than d+ 2 points in S(t) are lying on a common hypersphere at the same instant or thatmore than d+ 1 points in S(t) are coplanar at the same instant. In both cases, we recalculatethe local topological structure of the interior of the convex polygon described by the points ata moment t + ". However, it is necessary to select " > 0 in such a way, that the moment ofrecalculation precedes the next topological event.4 New Upper BoundsIn this section, we present a new upper bound on the number of topological events. As we haveseen in the previous section, topological events are characterized by loss of general position.So, it is quite natural to assume that there exist at most s 2 O(1) zeros of the functionsINS(: : :) and VOL(: : :) which are computable in constant time each. Indeed, this additionalassumption can be regarded as a certain kind of non-periodicity condition, which is achieved,for example, in the case of polynomial curves of bounded degree. This assumption impliesthat each subset of S 0 of size d+ 2 generates at most a constant number of topological eventsand gives a s �n+1d+2� 2 O(nd+2) upper bound on the number of topological events. By aDavenport-Schinzel argument, we improve this naive upper bound by (roughly) a linear factor.First of all, we have a short look at the construction in the two-dimensional case. The basicobservation is that every topological event is related to one quadrilateral, i.e. to one pair ofadjacent triangles, leaving the four bounding Delaunay edges of this quadrilateral unchanged.With that, we are able to determine the total number of topological events by adding forevery imaginable Delaunay edge (Pi; Pj) the number of adjacent topological events that do notdestroy this edge. This provides an O(�s(n)) upper bound on the number of changes for eachpair of points and results in an O(n2�s(n)) upper bound in total [GuMiRo 91].A similar construction can be done in higher dimensions [AlRo 92]. It is clear that themaximum number of extended topological events is bounded by s � nd+1� 2 O(nd+1) , sincethis is the maximum number of instants at which d + 1 points of S can become coplanar.Therefore we only have to deal with such topological events when d + 2 points of S lie ona common hypersphere. The basic observation is that every topological event belongs to alocal transition of altogether d + 2 Delaunay (d + 1)-tuples leaving the bounding Delaunay(d�1)-faces unchanged. Thus, we are able to determine the total number of topological eventsby adding for every imaginable Delaunay (d � 1)-face (P0; : : : ; Pd�1) the number of adjacenttopological events that do not destroy this (d� 1)-face.With this intention, we consider an arbitrary d-tuple (P0; : : : ; Pd�1) of di�erent points andthe line B0;:::;d�1(t; �) which is given by the formulation below:B0;:::;d�1(t; �) := m0;:::;d�1(t) + � n0;:::;d�1(t) where � 2 IR;m0;:::;d�1(t) := 1d d�1Xi=0 Pi(t) and n0;:::;d�1(t) ? H0;:::;d�1(t):In other words,m0;:::;d�1(t) denotes the center of gravity of the d sites and n0;:::;d�1(t) a normalvector to the a�ne hyperplane H0;:::;d�1(t) spanned by the d points. In addition, let h>0;:::;d�1(t)and h<0;:::;d�1(t) denote the two open halfspaces bounded by H0;:::;d�1(t).7
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h>ij(t)r�x1(t)r�x2(t)r�x3(t)rPx1(t) rPx2(t) rPx3(t)ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp pppppppppppppppppp ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pp ppppppppppppppppppppppppFigure 3: Characterizing the upper triangle fPi; Pj; Pkg in IR2.Now, whenever the Delaunay (d�1)-face (P0; : : : ; Pd�1) exists, there are exactly two (d+1)-tuples fP0; : : : ; Pd�1; P 0g and fP0; : : : ; Pd�1; P 00g 2 DT (S 0) adjacent to this Delaunay face withP 0 2 S 0> := �h>0;:::;d�1 \ S� [ f1g and P 00 2 S 0< := �h<0;:::;d�1 \ S� [ f1g:If we look at the �-values �x(t) of the circumcenters of the circumspheres C(P0; : : : ; Pd�1; Px)on the bisector B0;:::;d�1(t; �), the upper (d+1)-tuple is obviously characterized by the minimumvalue: �min(t) := minPx 2 S 0> �x(t):This can be seen by imaging a point (circumcenter) starting from m0;:::;d�1(t) and movingalong the line B0;:::;d�1(t; �) until a �rst point Px 2 S 0> is captured by the variable circumspheretouching the sites P0; : : : ; Pd�1. Naturally, an analogous construction can be done for the lower(d+ 1)-tuple. (Figure 3 displays the construction in the planar case.)Now, if we investigate those moments when the upper (d+1)-tuple changes4 we can restrictourselves to those intervals in which h>0;:::;d�1 \ S 6= ;. Next, we look closer at the functions�x(t) and their pairwise points of intersection:Case (1) �x(t) = �y(t) < 1Both circumspheres C(P0; : : : ; Pd�1; Px) and C(P0; : : : ; Pd�1; Py) are iden-tical, which implies that all d+ 2 points lie on a common hypersphere. Byour non-periodicity assumption, this can happen only s times.Case (2) �x(t) = �y(t) = 1These moments have no in
uence on the complexity of the minimum func-tion �k(t), since we have restricted ourselves to intervals where �k(t) < 1.4Notice, that P 0 can only be replaced by another point of S0>, because the Delaunay (d�1)-face (P0; : : : ; Pd�1)is not destroyed during the topological event. 8



Finally, we can summarize both cases with the statement that two di�erent functions �x(t)and �y(t) have at most s relevant intersections. Thus, the theory of Davenport-Schinzel se-quences implies that the minimum function �k(t) has worst-case complexity O(�s(n)), where�s(n) is the maximum length of a Davenport-Schinzel sequence of length n and order s. Sum-ming over all �nd� tuples of points (P0; : : : ; Pd�1), we obtain the following theorem.Theorem 2 Given a �nite set S(t) of n continuous trajectories in d-dimensional space IRd, themaximum number of topological events over time is O(nd �s(n)). If only k � n points of S aremoving (while the remaining n� k stay �xed), this upper bound goes down to O(minfkd+1(n�k)d d2 e + kd�s(k); knd�1�s(n) + (n � k)d�s(k)g).To prove the second part of this theorem we consider the O(k nd�1) moving and O((n� k)d)�xed d-tuples separately. The crucial fact is that each �xed d-tuple generates only O(�s(k))instead of O(�s(n)) topological events. To see that, let fP1; : : : ; Pdg be a �xed d-tuple. Now ifwe investigate the �x-functions de�ned above, any �xed point Px 2 Sf n fP1; : : : ; Pdg leads toa constant �x function. From this it follows that�k(t) := minPx 2 S 0 n fP1; : : : ; Pdg �x(t)= min( minPx 2 Sm �x(t) ; �min) ;where �min is the minimum function of the constant functions �x with Px 2 Sf n fP1; : : : ; Pdg.This proves that the function �k(t) has at most O(�s(k + 1)) pieces. On the other hand, eachof the remaining �nd� � �n�kd � 2 O(k nd�1) moving d-tuples (P1; : : : ; Pd) generates at mostO(�s(n)) topological events { as we have seen above. Combining these results with the veryrecent upper bound by [Ro 93a], we obtain the desired bound.In contrast to that, the known lower worst-case bound is given by the following classof examples (compare [HaDe 59, Kl 80, Se 82]). Imagine n � k points �xed such that thecorresponding Voronoi diagram has complexity O((n � k)dd=2e) (which is the worst that canhappen) and such that the circumspheres of the Delaunay (d+ 1)-tuples can be stabbed by acommon line.After that, we make the k remaining points, one after the other, pass along this line. Usingthe classi�cation of the Delaunay (d + 1)-tuples above, all O((n � k)dd=2e) Delaunay tuplesare destroyed during this movement. If we leave su�cient time between these movements, thetopological sub-structure of the static points is destroyed only by the currently crossing point.Therefore every moving point generates 
((n� k)dd=2e) topological events.5 Dynamic ScenesThe topological structure of a Voronoi diagram under continuous motions of the points in Scan be maintained by the following algorithm:9



Algorithm : Preprocessing :1. Compute the topological structure DT (S 0(t0)) of thestarting position.2. For every existing pair of (d+ 1)-tuples in DT (S 0(t0))calculate the potential topological events.3. For the set of the potential topological events createan event queue (priority queue).Iteration :1. Determine the next topological event and decidewhether it is an (i; j)-transition or a recalculation.2. Process the topological event and update the event queue.We look closer at the individual steps of the algorithm and their time and storage requirements.In the �rst preprocessing step, we compute the initial Delaunay triangulation DT (S(t0)) andaugment it with extended dual edges, obtaining DT (S 0(t0)) in O(nd d2 e) time and and space(e.g., using the optimal algorithm by [Se 90]). In the second preprocessing step, we continuewith a 
ow of the (d � 1)-faces in DT (S 0(t0)) computing the potential topological events. Ifm denotes the number of (d+ 1)-tuples which appear in the initial topological structure, thisstep can be done in O(m) time. In the third preprocessing step, we build up the event queuefor the set of potential topological events. The topological events are stored in a priority queueaccording to their temporal appearance, with the corresponding (d+1)-tuples stored with eachevent. This step and therefore the entire preprocessing step requires O(nd d2 e + m logm) timeand O(nd d2 e) space.To determine the next topological event, we simply pop the event queue in time O(logn).Assuming that the degree of degeneracy remains constant, then one can decide in constant timeif the event is an (i; j)-transition or a (local) recalculation. Now, each topological event destroysonly a constant number of adjacent (d+1)-tuples while creating also a constant number of newones. Thus, in order to update the event queue, all we have to do is to delete the destroyedpairs of (d + 1)-tuples and their corresponding topological events in the event queue and toinsert the new ones. Thus, we spend time O(logn) per event (which [Ro 91] shows is worst-caseoptimal5 even under linear motions of the points in the plane). In summary, we have:Theorem 3 Given a �nite set S(t) of n continuous trajectories in d-dimensional Euclideanspace IRd, d � 2. After preprocessing requiring O(nd d2 e + m logm) time and O(nd d2 e) space, wecan maintain the topological structure in worst-case optimal O(logn) time per event. Thereby,m denotes the initial complexity of the Voronoi diagram at the starting position.6 Concluding Remarks and Open ProblemsWe have presented an algorithm for maintaining Voronoi diagrams of moving points over time.The major open question remaining is to prove that the presented bounds on the number ofevents are tight.5There is a parallel variant of this algorithm using only O(1) time per event [Ro 94].10



The algorithm presented here has been implemented in the planar case (d = 2) on a SUNworkstation, using special methods for numerically stable evaluation of the functions involved[SuIr 89]. Extensive tests suggest that the number of topological events grows with �(npn)in the average case under linear motions chosen at random [Ro 93b]. We also expect in higherdimensions that the average number of topological events is signi�cantly smaller than thederived worst-case bounds.Dynamic Voronoi diagrams can be used for planning the motion of a disk in a dynamic sceneof continuously moving points (see [RoNo 91]). Additionally, there are many related geometricstructures and problems in computational geometry which can be solved very e�ciently if theVoronoi diagram is known in advance (for a survey see, e.g., [Au 90, Ro 91]).A typical application of higher dimensional dynamic Voronoi diagrams which arises in thearea of spatial path planning (such as air-tra�c control) is the maintenance of the closest pairor the all-nearest-neighbors over time. It is also quite interesting to apply the pattern matchingmethods by [AoImImTo 90, ImSuIm 89] to higher dimensions.AcknowledgementThe authors wish to thank Peter Widmayer for carefully reading the manuscript.Table of SymbolsS set of pointsS0 S [ f1gn number of pointsd dimensionIEd d-dimensional Euclidean spacePi single pointBij bisector of Pi and Pjv(Pi) Voronoi polyhedron of PiV D(S) Voronoi diagram of S
DT (S) Delaunay graph of SDT (S0) extended Delaunay graph of SC(: : :) circumspherev(: : :) circumcenter (Voronoi point)V OL(: : :) volume determinantINS(: : :) insphere determinantOUTSIDE(: : :) sign of the oriented INS(: : :) det.�s(n) maximum length of a(n; s)-Davenport Schinzel sequenceReferences[AgShSh 89] A. Aggarwal, M. Sharir and P.W. Shor,Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences,Journal of Combinatorial Theory, Series A, Vol. 52, 1989, pp 228 { 274[Al 91] G. Albers,Three-Dimensional Dynamic Voronoi Diagrams (in German), Diploma thesis, Univer-sity of W�urzburg, July 1991 11
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