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To appear in the International Journal of Human-Computer StudiesSituating Natural Language Understandingwithin Experience-Based DesignJustin PetersonKavi MaheshAshok GoelCollege of ComputingGeorgia Institute of TechnologyAbstractBuilding useful systems with an ability to understand \real" natural language input has longbeen an elusive goal for Arti�cial Intelligence. Well-known problems such as ambiguity, indi-rectness, and incompleteness of natural language inputs have thwarted e�orts to build naturallanguage interfaces to intelligent systems. In this article, we report on our work on a model ofunderstanding natural language design speci�cations of physical devices such as simple electri-cal circuits. Our system, called KA, solves the classical problems of ambiguity, incompleteness,and indirectness by exploiting the knowledge and problem-solving processes in the situation ofdesigning simple physical devices. In addition, KA acquires its knowledge structures (apartfrom a basic ontology of devices) from the results of its problem-solving processes. Thus, KAcan be bootstrapped to understand design speci�cations and user feedback about new devicesusing the knowledge structures it acquired from similar devices designed previously.In this paper, we report on three investigations in the KA project. Our �rst investigationdemonstrates that KA can resolve ambiguities in design speci�cations as well as infer unar-ticulated requirements using the ontology, the knowledge structures, and the problem-solvingprocesses provided by its design situation. The second investigation shows that KA's problem-solving capabilities help ascertain the relevance of indirect design speci�cations, and identifyunspeci�ed relations between detailed requirements. The third investigation demonstrates theextensibility of KA's theory of natural language understanding by showing that KA can in-terpret user feedback as well as design requirements. Our results demonstrate that situatinglanguage understanding in problem solving, like device design in KA, provides e�ective solutionsto unresolved problems in natural language processing.
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1 INTRODUCTION AND OVERVIEW 11 Introduction and OverviewIt has long been recognized that language understanding requires abilities far beyond what purelinguistic knowledge permits (Charniak and McDermott (1985); Grishman (1986); Kintsch (1974);Rich and Knight (1991); Winston (1992)). In the past, two approaches have been pursued to endownatural language understanding systems with such abilities as inference and problem solving. Oneapproach has been to endow systems with a variety of domain and world knowledge as well as arange of inference, explanation, and reasoning capabilities (e.g., BORIS Lehnert, Dyer, Johnson,Yang, and Harley (1983)). All of the system's capabilities, in this approach, are solely employedin the service of \Understanding" natural language. Unfortunately, this approach to languageunderstanding has not been particularly successful since the linguistic methods typically used for\Understanding" do not work well with the various types of non-linguistic knowledge that arerequired to understand language. Moreover, the specialized types of knowledge that these systemsrequire for understanding a natural language text (Lehnert et al. (1983)) are not readily available,nor has it been demonstrated that they can be acquired by established methods. As a result, thisapproach has only resulted in prototype language understanding systems that show little promiseof scalability or bootstrapping.Another approach has been to make some other cognitive task (such as robot planning or expertdecision making) the main task and add a natural language \Front-End" to the system. Thefront-end works in service of the rest of the system and has limited abilities to translate naturallanguage inputs into a conceptual representation that is comprehensible to the rest of the system(e.g., Simon and Hayes (1979); Hendrix, Sacerdoti, Sagalowicz and Slocum (1978)). Such naturallanguage front-ends are unable to solve many linguistic problems because they neither possess therequisite non-linguistic knowledge nor get any useful feedback from the other task. The linguisticproblems remain hidden in the intermediate representation and are not resolved satisfactorily bythe rest of the system with its non-linguistic methods and knowledge.Our work on natural language understanding takes a third approach, a more modular one,in which language understanding and problem solving interact by communicating the results oftheir decision-making with each other. Language understanding uses the results of problem solvingoperations to resolve linguistic problems such as ambiguities. Problem solving in turn uses thedecisions made by language understanding to direct the course of its own problem decompositionand problem solving process. A major di�erence between this approach to language understandingand previous approaches is that the language understander need not possess either the knowledgeor the reasoning abilities to solve problems in reasoning. Nor does problem solving need to knowhow to solve linguistic problems left unsolved by a natural language front-end. All that the twoneed is to solve their own problems partially, be able to communicate their decisions and resultswith each other, and cooperate in an integrated architecture to arrive at a negotiated solution tothe overall problem.In this approach to building natural language understanding systems, we are not simply addingadditional types of knowledge to a linguistic processor in the hope of making language understandinga feasible task. Nor are we passing on linguistic problems to a non-linguistic reasoning system inthe hope that the reasoning system will somehow solve the problems in the natural languageinput. Instead, we are \Situating" natural language understanding in another task to make itmore achievable|to exploit the knowledge and the reasoning processes running in the situation ofanother task to solve classical problems in natural language processing.We have chosen to investigate the \situatedness" of natural language understanding within thedesign of simple physical devices such as electrical circuits. Design, like natural language under-standing, is an oft-studied problem in AI, and many types of knowledge structures and reasoning



1 INTRODUCTION AND OVERVIEW 2methods have been developed for automating design, both in our own research and that of manyothers. More importantly, the knowledge of physical devices and their design that we are proposingto use in language understanding has been shown to be obtainable from prior problem solving expe-riences (Goel (1989, 1991a, 1991b)). Thus, the choice of physical device design for situating naturallanguage understanding has a real promise of scalability and bootstrapping if the knowledge thatcan be acquired in the problem solving process can be used to solve classical problems in naturallanguage such as ambiguity.Taking this approach, we have built a natural language understanding system called KA for(i) understanding device speci�cations written in natural language (English) in the context ofdesigning new devices and (ii) understanding user feedback in natural language in the contextof device redesign. KA embodies an integrated model-based and case-based approach to designproblem solving that we have been developing for many years now (Goel (1989, 1992); Goel andChandrasekaran (1989, 1992)). KA uses the same approach to address well-known problems ofnatural language understanding such as resolving ambiguity, interpreting indirect statements, andinferring unspeci�ed information. We have conducted several investigations to demonstrate thatKA's design situation provides viable solutions to the problems of ambiguity, indirectness, andomission.In this article, we describe three investigations in solving natural language understanding prob-lems with KA. Our �rst investigation demonstrates that KA's models of physical devices and itsreasoning for their design helps resolve ambiguities in design speci�cations as well as infer unar-ticulated requirements. Brie
y, our approach was to construct an initial, tentative interpretationof the design speci�cation using KA's language processing capabilities, locate a similar design inKA's case memory using model-based retrieval, and then use the retrieved design to countermanderroneous decisions made in the resolution of ambiguities. These retrieved designs were also usedto augment the interpretation of requirements with those that were not articulated in the naturallanguage speci�cation. Our results in this �rst investigation indicate that, among other bene�ts,models of physical devices and the ability to reason about the function of devices aid ambiguityresolution in two speci�c ways. First, the ontology of physical devices employed in KA groundsthe semantic representations of language processing, ensuring that decisions about the consistencyof interpretations are made in accordance with the ontology of device design. Second, by allowingprevious problem-solving experiences to be factored into linguistic decision-making, interpretationsthat are most compatible with past experience are produced.The second investigation demonstrates that KA's problem-solving capabilities help ascertainthe relevance of indirect design speci�cations, and identify unspeci�ed relations between detailedrequirements. Our approach to these problems relied extensively on KA's memory of design cases,case-speci�c models of devices, and model-based methods for design adaptation. Our results in-dicate that a memory of design cases and device models as well as the ability to adapt thesedescriptions in accordance with a deep understanding of the structure, function, and behavior ofdevices provides considerable leverage when dealing with indirect and ill-speci�ed English descrip-tions of design problems. Using device descriptions in memory as baseline interpretations andthe information extracted from the text as constraints on interpretation, model-based adaptationproves to be an e�ective means of producing both an interpretation of the text and a successfuldesign solution. This result along with those of the �rst investigation demonstrates that situatingnatural language understanding in design problem solving provides tractable solutions to problemsin understanding natural language speci�cations of design problems.The third investigation demonstrates that KA's approach to situated natural language under-standing can be extended to other, related situations. Natural language texts are used to achievea variety of communication goals at di�erent stages in the design process. For example, at later



2 THE DESIGN SITUATION 3stages in the design, customers use English texts to communicate feedback to designers which thedesigners must understand in order to redesign the device. In the third and most recent investiga-tion, we chose a problem in the design of a reaction wheel assembly for the Hubble space telescopeand examined KA's ability to understand user feedback. We demonstrated that KA was in factable to understand such user feedback and use the information it could extract from the feedbackto redesign the reaction wheel assembly. This cost e�ective redesign was made possible by KA'srepertoire of plans for incremental redesign to correct the malfunction and its ability to preciselyidentify the part of the design that is to blame for the malfunction. This investigation demonstratedthat some of the same kinds of knowledge and methods that are used in understanding initial designrequirements also enable the integrated system to understand natural language feedback from thecustomer for iterative redesign to meet customer requirements.The organization of rest of this article is as follows. First, we provide a brief description of thedesign situation, the ontology of physical devices, and the problem solving methods used in KA'smodel of designing physical devices. Next, we show how classical problems in natural languageunderstanding get rede�ned when the understanding is situated in the design task. The sectionafter this describes the solution to these problems in terms of the architecture of the KA system,detailing the di�erent components that make up KA. Following this description, we present the threeinvestigations that substantiate our claim that situated understanding provides viable solutions toproblems in natural language understanding. This presentation will include sample texts usedin our work, an analysis of their di�culties, and a demonstration of KA's capabilities. Then, wedescribe the strengths and limitations of our work and compare it to that of other research projects.We conclude by articulating the contributions of our research. Throughout the paper, we focus onlanguage processing. The reader may refer to our earlier papers that describe memory and problemsolving in greater detail.2 The Design SituationThe task in which we are situating natural language understanding is the design of simple physicaldevices such as electrical circuits and computer networks (Peterson, Mahesh, Goel, and Eiselt(1994)). Our work evolves from previous work on the Kritik project which used past design casesand associated device models for creating new device designs (Goel (1989)). Such prior experiencesin design are stored in KA's memory in the form of cases and case-speci�c models (Goel (1989,1991a, 1991b, 1992)). The memory uses a representation called the SBF language (Chandrasekaran,Goel and Iwasaki (1993); Goel (1989, 1992); Sembugamoorthy and Chandrasekaran (1986)) basedon a component-substance ontology of the domain of physical devices (Bylander (1991); Bylanderand Chandrasekaran (1985); Goel (1989)). In the SBF language, a device is represented in terms ofits desired function, its internal structure (components and connections between them), and internalbehaviors of its components. These behaviors are articulated in terms of the various substances1contained in the components, the states of the substances, and the 
ow of substances betweencomponents.Given a functional speci�cation of a device to be designed, previous designs of functionallysimilar devices are retrieved from the cases and models in memory. The models in the previouscases are adapted to the present problem using model-based methods (Goel (1991a, 1991b)). KA'sdesign capabilities however extend far beyond mere case-based adaptation of prior designs. It candiagnose faulty designs, identify the components at error, and redesign the device by applying1The term substance as used here not only includes material substances such as air and water, but also abstractsubstances and forms of energy such as heat, electricity, information, force, and so on (Bylander (1991)).



3 SITUATING NATURAL LANGUAGE UNDERSTANDING 4various design repair plans that it knows about, such as component replacement and componentcascading (Goel (1991a, 1991b); Stroulia and Goel (1992); Stroulia, Shankar, Goel and Penberthy(1992)). Interestingly, it can also acquire new experiences and store away the new cases and modelsin its memory by learning appropriate indices to the cases and models (Bhatta and Goel (1992,1993); Goel (1991a, 1991b)).2.1 The SBF LanguageSince our investigations will be using examples described in the SBF language, we make a briefdigression in this section to describe the salient terms in the language. Models of physical devicesare represented in terms of their structure, behavior, and function (SBF). These models are basedon a component-substance ontology. In this ontology, the structure of a device is constituted of itscomponents and substances. Substances have locations in reference to the various components ofthe device. They also have behavioral properties, such as voltage of electricity, and correspondingparameters, such as 1.5 volts, 3 volts, and so on. This ontology gives rise to a SBF language.Structure: The structure of a design is expressed in terms of its constituent components andsubstances and the interactions between them. Figure 1(a) shows the structure of a 1.5-voltelectric circuit (EC1.5) schematically.Function: A function is represented as a schema that speci�es the behavioral state the functiontakes as input, and the behavioral state it gives as output. Figure 1(b) shows the function \ProduceLight" of EC1.5. Both the input state and the output state are represented as substance schemas.The input state speci�es that electricity at location Battery in the topography of the device(Figure 1(a)) has the property voltage and the corresponding parameter 1.5 volts. The outputstate speci�es the property intensity and the corresponding parameter 6 lumens of a di�erentsubstance, light, at location Bulb. A third aspect of a functional speci�cation is the stimuluswhich initiates the behaviors of the device. For example, the force on the switch is the stimulus tothe electrical circuit in Figure 1. In addition, the slot by-behavior acts as an index into the causalbehavior that achieves the function of producing light.Behavior: The internal causal behaviors of a device are viewed as sequences of state transitionsbetween behavioral states. The annotations on the state transitions express the causal, structural,and functional context in which the transformation of state variables, such as substance location,properties, and parameters, occur. Figure 1(c) shows the causal behavior that explains how elec-tricity in Battery is transformed into light in Bulb. State2 is the preceding state of transition2�3and state3 is its succeeding state. State1 describes the state of electricity at location Battery andstate2 at location Bulb. State3 however describes the state of light at location Bulb. The annota-tion USING-FUNCTION in transition2�3 indicates that the transition occurs due to the primitivefunction \create light" of Bulb.3 Situating Natural Language UnderstandingWe now return to the task of natural language understanding and show how situating it in thedesign situation rede�nes classical problems such as ambiguity, indirectness, and incompleteness.We also show how the design situation suggests workable solutions to these linguistic problems. Realworld tasks such as designing physical devices from written requirements speci�cations providea context which refocuses many of the linguistic problems that have been central to the �eld,
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3 SITUATING NATURAL LANGUAGE UNDERSTANDING 6allowing us to consider novel solutions to time-worn yet unresolved problems. It also allows us toconsider problems particular to texts that are currently hampering e�orts to develop robust textunderstanding systems.In taking this situated approach to language understanding, we have found that linguistic prob-lems and the problems of large texts that are inherent to written design requirements actually be-come problems which require reasoning about the design of the device. Requirements speci�cationsare notoriously confusing and incomplete, providing poor articulations of the design requirements.In the KA project, we have encountered the following problems in requirements speci�cations:� Ambiguity. The natural language surface form has multiple mappings into a conceptualrepresentation of the device.� Incompleteness. The natural language surface form fails to articulate a design requirement.� Indirectness. The natural language surface form indirectly refers to a design requirement.� Underspeci�cation. The natural language surface form does not indicate certain relation-ships between design requirements.Because research in natural language understanding has so decidedly separated the problems oflinguistic analysis and sentence understanding from the other problems that must be resolved inthe meaningful interpretation of texts, the linguistic solutions that have been proposed in mosttext understanding systems have been severely limited. For quite some time, the conventionalwisdom has been that problems in natural language understanding are best addressed by constraint-based methods that employ a knowledge of natural language's distributional structure and rules ofcombination (Chomsky (1957)). In KA, we take a di�erent approach where the design situationprovides the knowledge and results of applying its reasoning methods that are then used to solvethe above problems in language understanding. Below, we take each of these problems individually,identifying the conditions under which they occur and elaborating on their consequences.In general, the mapping of language form to design requirements is ambiguous. For example,words as seemingly clear as \input" have multiple mappings into a SBF representation of function.The \input" to a device may refer to either an external stimulus (e.g., a force on a switch thatinitiates some causal behavior) or some entity that is transformed by the device (e.g., a substancelike electricity consumed by an electrical device such as a light bulb). Because such ambiguities cropup often, requirement speci�cations written in natural language frequently specify several devices,rather than a single, unambiguous device. Leaving these ambiguities unresolved or failing to resolvethem correctly cause a system to waste its resources pursuing a number of fruitless design e�orts.In general, requirement speci�cations written in natural language are also incomplete. Forexample, although electrical devices require a source of power, design problems can fail to mentionhow this power is to be derived. The device could use batteries, plug into an electrical outlet, orresort to some other electrical power source. It is critical that the system infer the appropriatedesign requirement because each of these designs would entail di�erent structures and would beoperable under di�ering conditions.In general, requirements speci�cations state the design requirements indirectly. They referto aspects of the device that are only distantly related to its principal features. For example,speci�cations for computing devices often identify principal components, specify the inputs andoutputs of these components, and delineate their connectivity, but fail to de�ne the big picture,viz., the general functions of the device. The writers of such requirements speci�cations can usuallypoint out speci�c statements about the inputs and the outputs of the components, for example,that indicate the general functions of the device, but in no way are these requirements indicated in



4 THE KA ARCHITECTURE 7the natural language surface form. The system must be able to use the indirect statements givento infer the design requirements because, failing to do so, it would be unable to pursue a designsolution.In general, natural language speci�cations are underspeci�ed. They identify detailed devicerequirements without articulating how these requirements relate to one another. For example, al-though baud rate, size of an information packet, and frequency of transmission have a well-de�nedrelationship to one another in a computer network, requirements speci�cations for computing de-vices rarely, if ever, mention this relationship. A super�cial analysis of the natural language surfaceform would produce three separate requirements (one for the baud rate, one for information packetsize, and one for the frequency of transmission), entailing an extremely ine�cient problem decom-position. If the system is to pursue designs e�ciently, it must combine these disparate requirementsinto a coherent speci�cation of the design.In order to map requirement speci�cations to useful functional descriptions in the SBF language,KA must e�ectively resolve ambiguity, �ll in missing details, identify the relevance of indirectstatements, and combine related information. To do so e�ciently, KA uses memory, comprehension,and problem solving processes in addition to purely language processes. In this way, the designsituation in KA provides a robust context in which e�ective comprehension of natural languagebecomes feasible.4 The KA ArchitectureKA is a case/model-based text interpretation and design problem solving system which acceptsa requirements speci�cation written in English and produces a design expressed as a structure-behavior-function (SBF) model, which meets the design requirements. The functional architecturefor KA is illustrated in Figure 2. It consists of several knowledge sources containing syntactic,conceptual, and episodic knowledge and employs memory, comprehension, and problem solvingprocesses in addition to a language process.4.1 Knowledge Sources in KAThe component processes in KA use di�erent knowledge sources to bring about the capabilities tothe system. The knowledge sources are,� The Lexicon contains knowledge of the words in the language. It provides such informationabout words as their grammatical category, other linguistic markers such as number andperson, and their conceptual meaning.� Syntactic knowledge is knowledge of the grammar of the natural language. This is used bythe language process to break up the input sentences into grammatical units such as phrasesand clauses.� Conceptual knowledge in KA is the knowledge of substances, components, their properties,states, and functions. Conceptual knowledge is essentially the content of the domain ofphysical devices and is expressed in the SBF ontology.� Case/Model Memory is the episodic memory of past design cases and case-speci�c structure-behavior-function (SBF) device models. Like conceptual knowledge, this knowledge too isrepresented in the SBF ontology and indexed by items in the ontology such as functions andproperties of substances and components.
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4 THE KA ARCHITECTURE 94.2 Processes in KABelow, we describe in detail each of the processes in KA that utilize the knowledge sources toaccomplish the task of KA.4.2.1 LanguageIf the KA system is to e�ectively comprehend natural language texts, it must be able to resolvethe di�erent types of ambiguities (e.g., lexical and structural ambiguities), that arise in writtentexts. The language process in KA uses an early-commitment processing strategy with robusterror-recovery to resolve word sense ambiguities (Eiselt (1987, 1989)). This mechanism has proveditself to be quite e�ective. Its early-commitment strategy provides the system with the abilityof pursuing a tentative interpretation of the discourse. This allows the system to discover theentailments of this line of interpretation, bringing other processes on-line early in the course oflanguage understanding. In situations where the early decision is incorrect, the error-recoverymechanisms may use feedback from the comprehension (or problem solving) process to reactivatea previously retained alternative interpretation. The output of the language processor serves bothas a set of cues for the memory process and as a tentative interpretation for the comprehensionprocess.The language process consists of two components, a parser which produces syntactic struc-tures and a semantic network that produces conceptual interpretations. Consistent with the early-commitment processing strategy, the semantic network resolves word-sense ambiguities by consid-ering processing choices in parallel, selecting the alternative that is consistent with the currentcontext, and deactivating but retaining the unchosen alternatives for as long as space and time re-sources permit. If some later context proves the initial decision to be incorrect, retained alternativesare reactivated without reaccessing the lexicon or reprocessing the text (Eiselt (1989)).4.2.2 MemoryThe memory process retrieves and stores design knowledge from an episodic memory that con-tains both design cases and case-speci�c device models. Design cases specify a design problemencountered by KA in the past and its corresponding solution. A case-speci�c SBF model of aknown device speci�es the causal behaviors that explain how the structure of the device producesthe device functions. In order to ensure e�ective retrieval, the cases are indexed by the functionalspeci�cation of the stored design and the SBF models are indexed by the cases.4.2.3 ComprehensionThe comprehension process provides feedback to the language process based on the retrieved casesand associated SBF models. It also generates new SBF device models by retrieving and adaptingpreviously encountered design cases and their SBF models. Based on information provided by thelanguage process, the retrieved design and its model are adapted using generic design repair plans.The comprehension process selects these modi�cation plans by using the di�erences between thefunctions of the new device and the functions of the retrieved design as an index.4.2.4 Problem SolvingThe problem-solving process performs function-to-structure design tasks. It accepts a functionalspeci�cation of the desired design as input and produces a structural speci�cation that realizes the



5 INVESTIGATION 1 10speci�ed function as output. Both the speci�cation of function and the speci�cation of structureare articulated in terms of the SBF language.The problem-solving process begins its task by soliciting the memory process for a case thatmost closely matches the functional speci�cation of the desired design. The memory process returnsan SBF model which problem-solving uses to adapt the design's structure so as to meet the givenfunctional speci�cation. Model-based diagnosis is used to identify the modi�cations needed to theretrieved design and repair plans are used to perform these modi�cations to the design's struc-ture. Once the structural modi�cations are completed, this new design is veri�ed by a qualitativesimulation of its SBF model and produced as a solution to the design problem.It may be noted from Figure 2 that the language process is neither a front-end to the problem-solving or comprehension processes, nor does it perform the entire understanding task by itself.What we have in KA is a highly interactive architecture in which language, memory, problem solv-ing, and comprehension processes, each with its own sources of knowledge and its own capabilities,cooperate with each other, feeding back one's results and decisions to others, in order to arrive at aniterative solution to the overall problem of designing physical devices given their natural languagespeci�cations.5 Investigation 1In our �rst investigation, we examined whether KA's design situation and ability to reason aboutthe design of physical devices could help resolve ambiguities in design speci�cations as well as inferunarticulated requirements. In this investigation, we sought to take advantage of the SBF ontologyand KA's memory of past design cases and associated case-speci�c SBF models. Our results werevery positive. They indicated the following bene�ts:� Grounding the language process' conceptual knowledge in the SBF representation guaranteesthat decisions about the consistency of conceptual interpretations are made on the basis oftheir consistency as designs represented in the SBF ontology.� Providing feedback to the language process in the form of past design cases, represented in theSBF language, ensures that the conceptual interpretations are compatible with past designexperience and allows unarticulated design requirements to be inferred from previous designproblems.In this section, we discuss how each of these bene�ts was accrued in the implementation ofKA. First, we present a sample text that is both ambiguous and incomplete along with its desiredmapping into the SBF representation. Then, we demonstrate how KA performs the mapping fromthe natural language description to the functional speci�cation of the desired design.5.1 The TaskFigure 3 shows a sample input speci�cation and Figure 4 shows its corresponding mapping, an SBFdescription of the desired design.This simple example illustrates two general problems of natural language understanding thatKA must solve. First, the requirement speci�cation in Figure 3 is ambiguous. It states that the\input" to the device is a \small force on the switch," but in this domain, \input" can refer to one oftwo things, either an external stimulus (i.e., a force on a switch that initiates some causal behavior)or some entity that is transformed by the device (e.g., a substance like electricity consumed by an
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Consider a flashlight circuit.  The function of the circuit is to produce light.
The input is a small force on the switch.  The output is light of eighteen 
lumens intensity and blue color.

Figure 3: Text 1 - Sample Requirements Speci�cation

FUNCTIONAL SPECIFICATION

STIMULUS: SUBSTANCE: force

            LOCATION:  switch

INPUT: SUBSTANCE:  electricity

        LOCATION: battery

OUTPUT: SUBSTANCE: light

             INTENSITYL: 18 lumens

            COLOR: blue

 

Figure 4: The Output for Text 1 - SBF Functional Speci�cationelectrical device). To produce the correct interpretation in Figure 4, KA must determine that inthis instance \input" refers to an external stimulus by successfully resolving this lexical ambiguity.Second, the requirement speci�cation in Figure 3 is incomplete. There is no mention of howthe device is to be powered. The description could be specifying a design which uses batteries orone which plugs into an outlet. In order to produce the functional speci�cation in Figure 4, KAmust infer that the design should use batteries. KA must e�ectively resolve the ambiguity and �llin the missing requirement in order to perform the mapping from the requirements speci�cationsin Figure 3 to the functional description in Figure 4.5.2 The ProcessBrie
y, KA achieves this mapping by performing the following actions iteratively. First, it reads atext word by word and sentence by sentence, building a syntactic and conceptual interpretation ofthe text. Structural and lexical ambiguities encountered along the way are resolved by combininginformation from lexical, syntactic, and conceptual knowledge. The result of this language processis a representation of the meaning of the text in the ontology of the domain captured by the SBFlanguage. For the text in Figure 3, for example, the interpretation is a representation of a tentativefunctional speci�cation of the device.Second, the functional speci�cation is sent to the memory process and the comprehension pro-cess. The memory process searches the case memory and retrieves a set of cases which at leastpartially match the tentative functional speci�cation. These retrieved cases are sent to the compre-hension process. The comprehension process uses the di�erences between the tentative speci�cationof the new device and the speci�cation of the retrieved cases (if any) to provide feedback to thelanguage process. This feedback is in terms of the di�erences between the two speci�cations.Third, this feedback is sent to the language process. The language process combines the feed-



5 INVESTIGATION 1 12back with its current tentative interpretation, �lling in missing details. The parts of the currentinterpretation that are inconsistent with the feedback are re-examined and other alternatives areconsidered. It is in this way that the recovery from erroneous decisions in the resolution of ambi-guities can be made. The language process communicates the results of its decision-making in theform of a new functional speci�cation.Once this text interpretation is consistent with the design experience, a complete interpretationis produced and sent to the problem solver. Below, we discuss these steps in further detail.5.2.1 Producing a Tentative InterpretationThe language process begins by performing a syntactic parse of a sentence in the input. Parsingresolves any ambiguities in the word's syntactic categories and the sentence's syntactic structure.Once this parse has been completed, the concepts denoted by the content words2 found in thelexicon are sent to semantic network. Choosing the syntactic categories of words, the parser, ine�ect, selects the word meanings that will be considered by conceptual processing. Only thoseconcepts that are consistent with the syntactic categories chosen are sent to the semantic network.After receiving all of the concepts denoted by the content words in the sentence, the semanticnetwork begins by activating a semantic node for each concept. Since lexically-ambiguous wordssuch as \input" denote multiple concepts, multiple nodes are activated by the appearance of wordssuch as \input" in the sentence.The semantic network identi�es relevant conceptual relations between these active concepts(nodes) by marker passing, a standard method of inference used in semantic networks (Charniak(1981); Hendler (1986); Norvig (1989)). Marker passing identi�es complex conceptual relations(paths) in the semantic network that connect active concepts (nodes), producing them as infer-ences. Marker passing is achieved by (1) initializing a marker for each active node, (2) sendingcopies of the marker to all of the nodes that maintain semantic links with the active node, and(3) continuing semantic link traversal until a maximum path length is reached. Semantic linkscorrespond to primitive conceptual relations between concepts (e.g., part-whole relations, instancerelations, property relations) and are the basic elements from which complex conceptual relationsare formed. Inferences are produced when \marked" sequences of primitive conceptual relations(paths) that connect active nodes are identi�ed. For example, in the network in Figure 5, an in-ference is generated for the \marked" sequence (Circuit, instance, Device, part, Function, part,Input, subject, Be, object, Force) which connects the active nodes Circuit and Force.After a set of inferences (paths) has been proposed by marker passing, the semantic networkbegins resolving ambiguities in the interpretation. Ambiguities are marked by the words thatevoke them. For example, \input" speci�es that any interpretation may include either the conceptinput or the concept stimulus but cannot include both. In other words, either the node inputor the node stimulus can appear in the paths that make up the �nal interpretation, but bothcannot. These ambiguities are resolved by consistency-checking.3 Consistency-checking is done inaccordance with the SBF ontology. The semantic network identi�es inferences that are deemedinconsistent by its SBF representation, resolves the inconsistency in favor of the inference that hasthe most in common with the current interpretation, and places the other on the retained list.Retained inferences can be recalled if the situation warrants it.2Words are partitioned into two classes: Function words and Content words. Function words (e.g., Prepositions,Articles, Conjunctions, etc.) are also called closed class words because the addition of new words to the class is rare.Content words (e.g., Nouns, Verbs, etc.) are also called open class words because the addition of new words occursfrequently.3See Wilks (1973) for a discussion of how semantic consistency-checking may be used to resolve ambiguity.
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Function
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subject
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part
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Instance

active

retained

ambiguityFigure 5: Resolving Ambiguity in the semantic networkTo illustrate how this works, consider the network in Figure 5. In this network, there are twoinferences that relate the active concepts Circuit and Force. Each contains a concept denotedby \input". The path (Circuit, instance, Device, part, Function, part, Input, subject, Be, object,Force) contains the concept Input, and the path (Circuit, instance, Device, part, Function, part,Stimulus, subject, Be, object, Force) contains Stimulus. As de�ned by the SBF ontology andrepresentation, a force cannot be both the input and stimulus to the circuit, so these inferencesare deemed inconsistent. The semantic network recognizes this by noting that the paths relate thesame two active nodes. This simple method of inconsistency recognition is made possible by thefact that the network is speci�ed in such way that it conforms to the SBF ontology. The networkresolves this ambiguity in favor of the input inference because a number of inferences proposed bythe network involve the concept of input but only a few include stimulus. The language processhas a set of such heuristics for resolving semantic ambiguities by selecting between paths in thesemantic network (Eiselt (1989)). Finally, input is kept in the current interpretation, and theinference containing stimulus is retained as noted by Figure 5.Once consistency-checking has been completed and the ambiguities resolved, the inferencesarticulate a tentative functional speci�cation which is consistent where consistency is de�ned bythe principles of the SBF representation and ontology.5.2.2 Model-based Retrieval and ComprehensionThe tentative functional speci�cation produced by the language process is sent to both the memoryand comprehension processes. The memory process searches the case/model memory for a casethat most closely matches the given speci�cation. Given the tentative speci�cation discussed inthis example, the memory process �nds a case that describes a device producing light with colorblue and intensity 8 lumens. This is a partial match of the desired device since the speci�cationsdi�er only in the intensity of light produced. This case is sent to the Comprehension process.The comprehension process compares the tentative speci�cation and the retrieved speci�cationand notes the di�erence in light intensity. In an attempt to explain what about the behavior of thedevice causes this di�erence in intensity, the comprehension process performs a diagnosis on theretrieved case to determine the factors which contribute to the intensity of the output. In doing



5 INVESTIGATION 1 14this diagnosis, the comprehension process uses the causal model of device, that is, the behaviorsthat are included the SBF description of this device.During the diagnosis, the comprehension process notes the inconsistency between the inputdescribed in the retrieved case, \Electricity", and the input described in the functional speci�cationproduced by the language process, \force on a switch". It suggests to the language process that itis more likely that the \input is electricity". It also feeds back the suggested functional requirementthat \electricity is provided by a battery".5.2.3 Recovery from ErrorThe language process accepts feedback from the comprehension process and attempts to incorporateit into its interpretation. For example, in the case of the suggestion that the \input is electricity",it activates the concept electricity and the path of conceptual relations that connect electricityto input. This is illustrated in Figure 6. Once the feedback has been activated, the semanticnetwork checks the consistency of the new interpretation and resolves any con
icting inferences.Function
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retainedFigure 6: Recovering from Error in the semantic networkConsider how this works given the network in Figure 6. The semantic network identi�es aninconsistency between the \input is force" inference denoted by the path that travels from Circuitthrough Input to Force and the \input is electricity" inference denoted by the path from Circuitthrough Input to Electricity. Under the SBF representation, devices may have only one input.Both this inconsistency and the inconsistency between the retained inference \stimulus is force" andthe \input is force" inference serve to make the \input is force" inference unlikely. To recover fromthis erroneous inference, the semantic network places the \input is force" inference on the retainedlist, recalls the \stimulus is force" inference, and keeps the \input is electricity" active, successfullyresolving the lexically ambiguous word \input". In a similar way, the inference \electricity isprovided by a battery" is also incorporated into the current interpretation.



6 INVESTIGATION 2 15Finally, the language process sends the new functional speci�cation to the comprehension pro-cess which completes its diagnosis and produces a design that satis�es the new functional descriptionof the device.6 Investigation 2In the second investigation, we examined whether KA's design situation and problem solving meth-ods could help infer the relevance of indirect statements as well as identify relationships betweendesign details underspeci�ed in the natural language surface form. In this investigation, we soughtto take advantage of (1) KA's memory of case-speci�c SBF models, (2) KA's model-based adap-tation capability, and (3) KA's model-based diagnosis capability in extracting both a functionaland a structural speci�cation from a requirements speci�cation. Our results indicate the followingbene�ts:� Using case-speci�c SBF models as the starting point for the interpretation of a requirementsspeci�cation enables the language process to identify the relevance of statements that, on thesurface, appear to be irrelevant to the design requirements.� Model-based adaptation prevents missing \the big picture" by fashioning a functional speci-�cation from a disparate set of requirements that do not directly make statements about thefunction of the device to be designed.� Using KA's SBF models and diagnosis capability ensures that critical relationships betweendesign details that are left unarticulated in the written requirements are identi�ed and thatthese relations impact the structural speci�cation extracted from the text.6.1 The TaskIn the current investigation, we focused on extracting the critical features from ill-speci�ed textssuch as that in Figure 7.4 Its corresponding SBF description appears in Figure 8.
The system shall consist of two computer elements interfaced to each 
other over an XXXX link.  Computer A shall send a K byte request packet 
to Computer B every M seconds.  In response to the request packet 
Computer B shall send a L byte response packet back to Computer A.  
Packet encoding is N bit ASCII.

Figure 7: Text 2 - Sample Requirements Speci�cationTo successfully understand the passage in Figure 7 as a design speci�cation, one must be able todetermine the function of the device being described, its inputs, and its outputs. However, none ofthese characteristics are explicitly described in the text. The text describes the device (referred toas \the system") in terms of its components (e.g., \computer A", \computer B"), their connectivity(i.e., \Computer A shall send ... to Computer B") and types of information they transmit (e.g.,\request packet"). Nothing is stated about the function of \the system". Its inputs and outputsare not even referred to. To achieve the mapping from the English description in Figure 7 to the4Speci�c design details have been masked to protect proprietary information of our sponsor, Northern Telecom,who supplied this example as a test case.
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FUNCTIONAL SPECIFICATION

INPUT: SUBSTANCE: request-message

        SIZE: K byte

OUTPUT: SUBSTANCE:  response-message

              SIZE: L byte

STRUCTURE

 COMPONENT: computer A

 COMPONENT: computer B

 COMPONENT: link

 BAUD-RATE: Z

 

Figure 8: The Output for Text 2 - SBF Functional Speci�cationfunctional speci�cation in Figure 8, KA must be able to generate functional requirements fromalternate information sources, using the information provided in the text (e.g., K byte requestpacket, L byte response packet) as constraints on the generation.Before KA can use this information to constrain generation, however, it must determine itsrelevance to the function of the device. In the text, it is unclear what a \request packet" and a\response packet" have to do with the function of the device. On the face of it, they appear to haveno relevance to the device's inputs and outputs, being simply relegated to its internal workings.An understanding of \requests" and \responses" reveals, however, that these information packetsare the inputs and outputs of the device as indicated in Figure 8. If KA is to make use of suchindirect statements about functional requirements, it must use its speci�c, episodic knowledge aboutcomputing networks to infer that a request message passed from one computer to another is theinput to the system, and the message sent in response is the output.Although the text devotes signi�cant attention to design details such as the frequency of trans-mission \every M seconds", the size of the request packet \K byte", and the size of the responsepacket \L byte", it leaves the relationship between these details unspeci�ed. Identifying the re-lationships between these design details is critical to producing a successful design. Using thefrequency of transmission in combination with the size of the information packets, KA can infer theappropriate baud rate for the link between the system's two computers. Without this baud ratespeci�cation, KA may select a link that is too slow, producing an unusable design, or it may selecta link that is much faster than needed producing an expensive and possibly unbuildable design. Ifa competent interpretation of this text and a successful design solution are to be produced, thesedesign details must be combined into a coherent speci�cation of the \XXXX" link's baud rate.6.2 The ProcessTo produce the speci�cation in Figure 8 from the text in Figure 7, KA must generate a functionalspeci�cation that is constrained by the information provided in the text. To make use of thethis information, KA must infer the relevance of indirect statements, and combine detailed designrequirements into coherent speci�cations.



6 INVESTIGATION 2 17Brie
y, KA performs the mapping from the text in Figure 7 to the functional speci�cation inFigure 8 in the following manner. First, using its memory of past design cases and case-speci�cSBF models, KA employs a complete SBF model as a baseline from which the relevance of indirectstatements about the function of the device can be inferred. The memory process extracts a relevantmodel from its case/model memory using the bits and pieces of a tentative interpretation producedby the language process and sends it to the comprehension process. This model is fed back tothe language process. Using this model as baseline, the language process employs its inferencegeneration capability (i.e., marker passing) to identify the relations between the feedback and theconcepts speci�ed by the text. Once the language process has �nished its inference generation,it produces a tentative functional speci�cation of the design which is sent to the comprehensionprocess.Second, KA performs model-based adaptation on the SBF model, generating a new case-speci�cSBF model that is consistent with the information provided in the tentative functional speci�cation.The comprehension process identi�es distinctions between the tentative functional speci�cation andthe SBF model. Then, it uses these distinctions to modify the SBF model. During adaptation,the comprehension process modi�es only those aspects of the stored model that con
ict with thetentative speci�cation. This leaves a signi�cant number of design details una�ected. In e�ect,design details are transferred from the stored SBF model to the new device model.Third, during adaptation, KA identi�es those distinctions that require changes to the newdevice's structure and adapts the tentative design speci�cation accordingly. The comprehensionprocess notes di�erences between the stored device model and the tentative functional speci�cationsuch as a di�erence in output and input that may require changes in the structure of the new device.To accommodate these changes, it selects generic modi�cation plans that modify device structure.Model-based diagnosis is performed on the stored device model, and the necessary modi�cations tothe device structure are determined. Using the products of model-based diagnosis and the selectedgeneric modi�cation plans, the comprehension process adapts the tentative design speci�cationsuch that it includes a structural description that is consistent with the functional speci�cation.Once this process of adaptation is completed, the new design is sent to the problem-solvingprocess for veri�cation and possibly further design. Then this new case is stored in KA's memoryof case-speci�c models for later reuse. Below, we discuss each of these steps in detail.6.2.1 Inferring the Relevance of Indirect StatementsThe memory process begins by sending a relevant SBF model to the comprehension process whichfeeds it back to the semantic network in the language process. The semantic network activates themodel's corresponding concepts and conceptual relations. For example, in the subsection of thesemantic network displayed in Figure 9, the concepts Old-Device, Y Byte, Response message,and Response and the primitive conceptual relations that relate these concepts (e.g., parameter,instance, part) are activated by feedback from the Comprehension process.Much like the previous example, the input is then parsed and the content words of each sentenceare passed to the semantic network which initiates marker passing at each word's correspondingconcept. Using the feedback as a bridge, the semantic network identi�es conceptual relationsbetween the concepts activated by the text and constructs a new set of inferences. The newinferences relate concepts speci�ed in the text to the functional speci�cation of the new device.Finally, a tentative functional speci�cation of the new device is produced from these new inferencesand sent to the comprehension process.To see how the feedback acts as a bridge between the concepts activated by the text, considerthe subsection of the semantic network displayed in Figure 9. In this semantic network, the concept
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parameterFigure 9: Identifying the Relevance of response and L ByteL Byte is activated by the appearance of \L byte" in the input text in Figure 7, Response isactivated by the appearance of \response", and New-Device is activated by the appearance of\system". Using only these active concepts, the semantic network would be unable to identifycritical conceptual relations such as that between L byte and the Output of the New Devicebecause the active concepts L byte and New Device are only distantly related to each other.Basing its decision on the length of the path between the two concepts, the semantic network woulddeem it unlikely that the text intends to relate these concepts without further evidence.However, when the semantic network begins with feedback-activated concepts such as Re-sponse message, conceptual relations such as that between L byte and New Device as wellas that between Response and New Device can be identi�ed. The concepts activated by thetext are more closely related to the concepts activated by feedback than they are to each other,so the semantic network can identify conceptual relations between the text-activated concepts andfeedback-activated concepts (as indicated by the active paths in Figure 9). This produces inferencesthat serve to relate the text-activated concepts, inferences that identify the relevance of conceptssuch as response and L byte to the function of the new device .6.2.2 Generating a New Functional Speci�cationGiven a tentative and underspeci�ed functional speci�cation produced by the language process, thecomprehension process compares the SBF model and this underspeci�ed functional speci�cationto determine the distinctions between the two device descriptions. It notes distinctions that areextremely signi�cant such as the distinction between the size of the response package (L bytes versusJ bytes) and those that are less signi�cant such as the di�erence in the names of the components(A versus C).Once all of these distinctions have been collected, the comprehension process begins adapting



7 INVESTIGATION 3 19the stored SBF model. It modi�es the component names such that they are consistent with thenew functional speci�cation, changes the sizes of the response package and request package, etc. Indoing so, it transfers a large amount of the SBF model of the known device to the SBF model of thenew device. For example, it transfers the types of the components in the old device to componentsof the new device. The result is that all of the design details are �lled in, and a signi�cant numberof assumptions are made. The comprehension process assumes that the new device has the samebehavioral descriptions as the stored device and the same structural description.6.2.3 Identifying Relationships between Design DetailsDuring the adaptation of the stored SBF model, the assumption that the structural speci�cationsof the new and stored designs are equivalent is examined. The comprehension process considerseach of the di�erences it has identi�ed between the new speci�cation and the stored speci�cation,looking for those di�erences that may require modi�cations to the device structure. Di�erencesthat are particularly relevant are di�erences in device inputs and outputs. For example, in thisexample, the distinction between the size of the new design's output and the stored design's output(i.e., L bytes versus J bytes) imposes new constraints on the structure of the new design. Thecomprehension process collects these di�erence and orders them with respect to their priority.Examining them in order of their priority, the comprehension process retrieves generic modi�-cation plans that rectify the di�erences between the new design speci�cation and the stored designspeci�cation by adapting the stored SBF model. Generic modi�cation plans are selected by thetype of di�erences they reduce. In achieving their ends, generic modi�cation plans manipulate,delete, and augment device structure. They include component replacement, substance substitu-tion, parametric modi�cation, component deletion and component insertion and cascading.After the comprehension process has received the generic modi�cation plans from the memoryprocess, it begins to diagnose the new model's failure, in this particular example, its failure toproduce the desired output. It is during diagnosis that the comprehension process recognizes therelationship between the design details every M seconds and L byte response packet. The com-prehension process correctly assumes that since the new design speci�cation identi�es an outputwhich di�ers from the stored speci�cation, the new design's current structural speci�cation willfail to produce its speci�ed output. The design produces the output of the stored design becausethe comprehension process has assumed that they have equivalent structural speci�cations. Whileinvestigating the causes of the new design's failure, the comprehension process identi�es the re-lationship between the frequency of transmission (i.e., every M seconds), the size of the responsepacket (i.e., L bytes) and the baud rate of the link component. Using the qualitative relations spec-i�ed in the stored SBF model, it notes that baud rate of the link component limits the amount ofinformation that can be transferred at a particular frequency. It concludes the baud rate of the cur-rent link component is too low and that increasing the baud rate of this component would providefor the size of the response packet in the new design and the desired frequency of transmission.Given the diagnosis and the generic modi�cation plans, the comprehension process \repairs"the structural speci�cation of the new design, using component replacement. It replaces the linkcomponent in the stored SBF model with a link component that has a higher baud rate. Thismodi�cation appears in the speci�cation of structure in Figure 8.7 Investigation 3Natural language texts are used to achieve a variety of communication goals at di�erent stagesin the design process. For example, at later stages in the design, customers use English texts to



7 INVESTIGATION 3 20communicate feedback to designers. Understanding these texts is essential for redesigning a productto meet customer needs. In keeping with our goal of \situating" natural language within design,our third and most recent investigation examined whether KA could interpret design feedback aswell as design requirements.We chose a problem in the design of a reaction wheel assembly for the Hubble space telescopeand examined KA's ability to understand user feedback. We demonstrated that KA was in factable to understand such user feedback and use the information it could extract from the feedbackto redesign the reaction wheel assembly. This cost e�ective redesign was made possible by1. KA's repertoire of plans for incremental redesign to correct the malfunction, and2. KA's ability to precisely identify the part of the design that is to blame for the malfunction.This investigation demonstrated that KA's theory of situated natural language understanding thatwas e�ective in understanding initial design requirements also serves to accomplish interaction withthe customer and iterative redesign to meet customer requirements. This successful demonstrationshows the extensibility of KA's theory of situated understanding.7.1 The TaskIn this investigation, we focused on interpreting and acting upon user feedback. The task is toredesign a malfunctioning component given feedback written in English text. This overall taskdecomposes into language interpretation and redesign. Given a description of an undesired outputof the device and a model of the device's structure, function, and behavior, the redesign task isto modify the structure of the device so that it does not produce the undesired output. So as tosuccessfully interpret a passage as a redesign problem, the system must be able to identify therelevant device and produce a description of the undesired output. A description of the undesiredoutput includes identifying the device component that produces this output and a description ofthe output in terms of the relevant substance properties.Let us consider the speci�c problem we examined in this third investigation: redesigning theReaction Wheel Assembly (RWA) aboard the Hubble Space Telescope (Keller, Manago, Nayak andRua (1988)). The Hubble Space Telescope contains four RWA's; a small portion of one is shown inFigure 10. The desired function of the RWA is to make the telescope point at a chosen area of theuniverse. The structure of the RWA consists of a rapidly spinning rotor mounted on a shaft. Thefunctioning of the RWA is based on the law of conservation of angular momentum. The directionof the telescope is changed via a signal from Earth sent to the motor which changes the amountof power supplied to the motor. This causes a change in the motor's angular momentum which inturn a�ects the angular momentum and angular velocity of the shaft. Due to the conservation ofangular momentum, the angular momentum of the telescope as a whole changes in the oppositedirection. When the telescope nears its desired orientation, a change in the angular momentum ofthe telescope in the opposite direction reduces the telescope's angular velocity to zero. The vectorsums of the angular momentum imparted by the four RWA's enable a rotation of the telescopeabout any axis.A common problem in the operation of devices like the RWA arises due to friction in thebearing assemblies. The load on the bearings due to the rapid spin of the rotor causes deformationof the bearing balls which results in increased frictional forces in the bearing assembly. This causesgeneration of heat in the bearing assembly. The increased temperature in the bearing assembly isan extremely undesirable behavior.
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Figure 10: The Reaction Wheel Assembly

The ball bearings in the RWA generate an excessive amount of heat.

Figure 11: Text 3 - Sample Requirements Speci�cationIn our third investigation, we examined this redesign problem taking the the text in Figure 11as the typical type of feedback that a user would provide. To produce the appropriate redesignspeci�cation given the sentence in Figure 11, KA must identify that1. The relevant device is the RWA.2. The components producing the undesired output are the ball bearings.3. The undesired output is heat whose magnitude is too high.7.2 The ProcessKA performs the mapping from the user feedback in Figure 11 to the speci�cation of the undesiredbehavior. It reads the sentence word by word and builds a syntactic and conceptual interpretationof the sentence. The result of this language process is a representation of the meaning of the textin terms of the SBF language.Next, diagnosis determines the component parameter that is responsible for the undesired be-havior and the parameter modi�cation desired. In the RWA example, the diagnosis accepts asinput a speci�cation of excessive heat at the bearing assembly and returns as output the compo-nent parameter, the size of the ball bearings, and the parameter modi�cation desired, an increasein the size of the the ball bearings.Third, The repair task replaces the component with a component that has the desired parametervalue. In the RWA example, this task replaces the old ball bearings with new larger ball bearings,thereby redesigning the RWA to eliminate the problem of excessive heat in the bearings which wasnoted by the user in the feedback.



8 DISCUSSION 228 DiscussionThe current implementation of KA is able to extract both functional and structural speci�cationsfrom design requirements or from user feedback written in English. To do so e�ectively, it overcomesmany of the di�cult problems that face any natural language understanding system. It can resolvesemantic and syntactic ambiguities, correctly infer unarticulated statements, identify the relevanceof indirect statements, determine the unspeci�ed topic/theme of a passage from its constituentstatements, and combine disparate statements into coherent interpretations.We have tested the KA system with examples of design speci�cations and user feedback inseveral di�erent domains including electrical circuits, computer networks, and mechanical dynamicsystems. Many of the texts used in these tests, such as the one in Investigation Two came fromreal-life examples from the industry. We have investigated similar domains in our ongoing workon design (Bhatta and Goel (1992, 1993); Goel (1991a, 1991b)) where we have demonstrated thatour design system can acquire knowledge about new devices in the form of cases and models asa result of design problem solving. Since KA has been shown to provide solutions to problems(such as ambiguity) in understanding design speci�cations of new (yet related) devices by usingsuch previously acquired design knowledge, its methods for language understanding in the designsituation show a strong promise of bootstrapping and scalability.Apart from providing a new approach to attacking the natural language understanding problem,the task that KA addresses is also a problem of high practical relevance. There is a great need tobuild automated systems that can take design speci�cations for both physical hardware and software\devices" and represent them in formal ontologies that are comprehensible to the designers nomatter whether they are human design teams or automated design systems or computerized designaids. KA is a demonstration that it is possible to build such systems. In addition, KA's abilityto infer unarticulated requirements from its cases and models makes it a useful model of makingsure that the \common" design knowledge that is supposed to be shared between customers anddesigners in each domain is included in the design process, thereby reducing the need for expensiveredesign and customer dissatisfaction at later stages.8.1 A Critique of KAHowever, our work also raises certain issues addressing which is part of ongoing work in the KAproject. These issues are representative of the open problems that exist in the �eld of naturallanguage understanding and, more generally, arti�cial intelligence. They involve limitations in boththe input that KA can accept and the outputs that it can produce. The system's representationsalso have some limitations. In addition, restrictions on interaction limit the extent to which systemcomponents can avail themselves of the system's resources. In hopes of clearly elucidating thecapabilities of our work as well as its limitations, in this section, we discuss each of these problemsand their impact. We close with a short summary of recent work within our research group thathas sought to remedy these problems and outline our research plans for addressing them in thefuture.8.1.1 InputWhile KA is able to master many of natural language's lexical and structural ambiguities andascertain aspects of meaning that are left unarticulated in texts, certain classes of natural languagediscourse remain beyond its reach. KA's method of resolving ambiguity relies on a text thatis internally consistent. Single interpretations are produced when their alternatives are found



8 DISCUSSION 23to be inconsistent with a combination of linguistic evidence and the evidence provided by KA'smemory of case-speci�c models. It is certainly possible, however, for the text to be internallyinconsistent. Design speci�cations may describe a con
icting set of requirements that prevent aconsistent interpretation. In this case, KA should communicate these inconsistencies to the user,and possibly pursue an interpretation that re
ects a consistent subset of the text's content. Sucha capability is beyond the current scope of our work.8.1.2 OutputAlthough KA is able to produce both functional and structural design speci�cations given designspeci�cations written in natural language, there are some types of design information that it isunable to deal with. Examples include design requirements that are not related to the function ofthe device such as costs, packaging, and aesthetics requirements which are typically part of designspeci�cations that customers provide.8.1.3 RepresentationThe semantic network representation used in the language process gives it the ability to preciselyarticulate the SBF representation and ontology in a such a way that inconsistencies in the interpre-tations can be easily recognized. However, this precision has its associated cost. The representationa�ords little generativity. All of the concepts and the relations that hold between them must beexplicitly articulated. We would like KA to be able to extract automatically some of this knowledgein the semantic network from the cases and models it acquires through its design problem-solvingexperiences.8.1.4 InteractionThe KA architecture ensures that productive interaction occurs between the system components.The memory process lends its ability to select the appropriate case-speci�c device models to thelanguage process, comprehension, and problem solving process; the language process provides cuesthat assist the comprehension process; both the comprehension and problem-solving process sharemany of the same methods. However, the architecture does still maintain a few well-demarcatedboundaries that decrease the e�ectiveness of the system. For example, communication betweensyntactic parsing and semantic inference is overly restricted. We would like semantic inferencesto have a greater e�ect on syntactic decision making, and increase the in
uence syntactic decisionmaking has on semantic inferences.8.2 Recent WorkIn recent work in natural language processing, we have sought to rectify some of the problemsabove. Members of our research group have developed a model of sentence understanding thatuses semantic inferences to avoid and recover from errors in syntactic parsing (Eiselt, Mahesh andHolbrook (1993); Mahesh (1994); Mahesh and Eiselt (1994)). Others have developed a model ofsentence understanding that uses syntactic evidence to infer semantic interpretations (Peterson andBillman (1994)).



9 RELATED WORK 249 Related WorkOur work is related to �ve di�erent bodies of research in natural language understanding: situatednatural understanding, integrated representations for natural language understanding and problemsolving, Conceptual Information Processing, the understanding of natural language descriptions ofphysical devices, and the modularity of \Mind". Below, we describe the relationship between thiswork and our own.9.1 Situated Natural Language UnderstandingOur research was inspired in part by Winograd's SHRDLU system (Winograd (1973)), which wasone of the �rst successful systems to situate language understanding in problem solving. SHRDLUformed plans for actions in a simulated blocks world based on its interpretation of external com-mands expressed in English. It explored certain interactions between language understanding andplanning, and demonstrated the methodological usefulness of exploiting the constraints imposedby planning on language understanding, and vice versa. Of course, SHRDLU also su�ered from anumber of well-known problems. For example, it assumed a closed world, it represented knowledgeprocedurally, it lacked the capability of abstract reasoning, and it also lacked su�cient control overprocessing.Since the construction of the SHRDLU system in the late sixties, research in Arti�cial Intelli-gence has led to a large collection of new results in the areas of representation of knowledge andcontrol of reasoning. For example, languages for descriptively and explicitly representing modelsof a physical situation, and methods for revising stored models to meet the speci�cations of newsituations, are of relatively recent origin. We believe that the needed technologies are now ripe foronce again investigating situated language processing in the context of problem solving. Speci�-cally, our research seeks to explore and exploit the use of the design situation for natural languageunderstanding.9.2 Integrated Representations for Natural Language Understanding and Prob-lem SolvingSeveral attempts have been made to integrate natural language and problem solving using a com-mon representation for both language comprehension and reasoning (Beck and Fishwick (1989);Charniak (1981); Rieger (1976); Simon and Hayes (1979); Wilensky (1983)). Our work continuesin this direction by applying functional models and reasoning to the understanding process. Thesame ontology is used for understanding natural language and reasoning about devices. It is note-worthy, however, that in the past, common representations for language understanding and problemsolving have generally implied a uni�ed process for the two tasks. That is, the same process overthe same representations is used for both language understanding and problem solving tasks. Ourwork di�ers in that while we use a common ontology, the processes for language understandingand problem solving are not identical nor even equivalent. While the language understanding andproblem solving tasks in KA support each other and share some subtasks and subprocesses (e.g.,memory retrieval), they are distinct in the subtasks they set up and the processes they use.The goals of Grishman's PROTEUS system (Ksiezyk and Grishman (1989)), which comprehendsfailure reports, are not unlike our own goals. PROTEUS, however, did not implement diagnosis andrepair. More importantly, language understanding in PROTEUS is driven merely by the templatesthey wish to �ll. We are developing a more general theory of language and applying it to extractthe information we need for the design process.



9 RELATED WORK 259.3 Conceptual Information ProcessingMany language understanding theories have used high-level knowledge structures to guide theunderstanding process. Schank and Abelson (1977), for example, described the use of stored scripts.The script theory represented knowledge about stories as well as story interpretations in terms oftemporally-orderered sets of events. It was employed in a story understanding system called SAM(for Script-Applier Mechanism, Cullingford (1978)). SAM identi�ed the temporal relation betweentwo events by assuming that the linear sequence of sentences in a story corresponded to the temporalordering of events. SAM's ability to apply scripts and produce interpretations depended criticallyupon this seemingly simple assumption. In KA, we make no such assumption about temporalcorrespondences between the discourse and the knowledge structures.In her work, Lehnert proposed an object representation called \Object Primitives" which assistin making inferences about objects described in natural language texts (Lehnert (1978)). Althoughthere is merit in this object-centered representation, in our work, we have found causal relationsbetween substances and components as well as the casual behaviors of devices to be much moree�ective aids in resolving problems in natural language understanding.Other work in conceptual information processing has proposed theories of language understand-ing with an even stronger reliance on speci�c knowledge structures (Dejong (1983); Lebowitz (1980);Ram (1989); Wilensky (1978)). While these systems have demonstrated deep understanding abil-ities in small domains, they have not shown how each of the many types of knowledge structuresthey need for language understanding (Lehnert (1978); Martin (1990)) can be acquired without be-ing hand-coded. As a result, this class of systems for language understanding shows little promisefor bootstrapping or scalability.9.4 Understanding Natural Language Descriptions of Physical SystemsWhile we believe that our approach to language understanding in the design situation is quitenovel, it is not the �rst time that researchers have tied text understanding to models of physicalsystems. Lebowitz's RESEARCHER (Lebowitz (1983)), for example, read natural language textsin the form of patent abstracts, speci�cally disk drive patents, and updated its long-term mem-ory with generalizations made from these texts. What RESEARCHER stored in its memory wasa generalized representation of a disk drive, consisting of a topographic model of the disk drivewhich speci�ed its components and the topographic relationships among them. RESEARCHER'sknowledge representation scheme was oriented toward objects and their topographic relationships,which was a departure from most natural language understanding systems of that time which hadtypically focused on actors, events, and causal relationships. RESEARCHER then used this knowl-edge to aid in the top-down understanding of additional patent texts. However, RESEARCHER'semphasis on components and topographic relationships left it unable to build causal models ofthe mechanisms described. In other words, RESEARCHER e�ectively knew how a disk drive wasconstructed, but it did not know how it worked.Dyer, Hodges, and Flowers (1987) and Hodges (1993) describe EDCA, a conceptual analyzerwhich serves as a natural language front-end for EDISON, a naive design problem solver. EDCAuses knowledge of the function of physical devices to produce an episodic description of a device'sbehavior as described by an input text. This episodic description can then be used to generate a newdevice model to be integrated into long-term memory. The result is a much more comprehensiveunderstanding of the device's functionality than was possible with RESEARCHER, but EDCA'sanalysis of the device description is not fully integrated with the processes for generating newdevice models and incorporating them into memory. EDCA, in other words, is but a front end to



10 CONCLUSIONS 26EDISON.As Selfridge (1989) notes, separating the process of analyzing the input from generating andincorporating the new model is misguided | the process of understanding a device descriptionis the process of building and incorporating a causal model of that device. This is the approachthat we have followed in our work, and this approach led us to the KA system which, we believe,corrects the shortcomings of both RESEARCHER and EDCA.9.5 Modularity of MindAs well as providing a viable model for solving problems in natural language understanding, ourwork also addresses a contentious issue in cognitive science, viz., the modularity of \mind". Al-though it seems clear that language understanding requires cognitive abilities far beyond whatpure linguistic knowledge permits, it is unclear in what manner, if any, linguistic and non-linguisticprocesses interact. Advocates for the modularity of \mind" have argued for a very limited formof interaction (Fodor (1983); Jackendo� (1987)). Others have contended that the interaction isso open-ended as to make any boundaries between linguistic processing and the other cognitiveprocesses insigni�cant (Marslen-Wilson and Tyler (1989)). We propose a modular processing ar-chitecture that contains separate language understanding and problem solving components. Thesecomponents interact in at least two signi�cant ways. They share common knowledge, and theycommunicate the results of their reasoning to each other.What lessons regarding the modularity of `mind', even tentative ones, can be drawn from ourwork on KA? KA certainly is modular, but the nature of the modularity depends on the level atwhich it is analyzed. Modularity in KA can be viewed at the levels of task, process and knowledge,and representation. At the task level, `language processing' and `problem solving' are distinctmodules, characterized by the types of information they take as input and give as output. Atthe next level, some of the processes are task-speci�c but others are shared. Language processingand problem-solving, for example, are both informed by the same memory processes which retrieveepisodic and conceptual information. Similarly, some of the knowledge is task-speci�c and some ofit is shared. Only the language processes use lexical and syntactic knowledge, and only the problem-solving processes use knowledge of the the repair plans used for redesigning devices. On the otherhand, both the language and problem solving processes employ functional and causal knowledge ofdevices. Finally, at the level of representation, the language and problem-solving processes sharethe same SBF ontology for representing conceptual knowledge. Thus, from the viewpoint of KA,the issue of modularity is much more complex than either the orthodox `modularists', such as Fodorand Jackendo�, or the `non-modularists', such as Marlen-Wilson and Tyler, suggest.10 ConclusionsAt one level of abstraction, our work on KA leads to the following conclusions regarding the use ofthe design situation for natural language understanding:� Ontologies and knowledge structures available in the design situation (and in intelligent designsystems) can be used to resolve ambiguities in natural language inputs to the design system.� Unarticulated design requirements can be inferred from past design problems described incase-speci�c SBF models.� The relevance of indirect statements to design requirements can be inferred by using case-speci�c SBF models as the starting point for the interpretation of a requirements speci�cation.
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