
Private vs. Common Random bits inCommunication ComplexityIlan Newman �November 8, 1995AbstractWe investigate the relative power of the common random stringmodel vs. the private random string model in communication com-plexity. We show that the two model are essentially equal.Keywords: communication complexity, randomness, theory of computa-tion.Communication complexity is a model of computation where two parties,each with an input, want to mutually compute a Boolean function that isde�ned on pairs of inputs. Formally, let f : X � Y 7! f0; 1g be a Booleanfunction. The communication problem for f is the following two-player game.Player A gets x 2 X and player B gets y 2 Y . Their goal is to computef(x; y). They have unlimited computational power and a full description off , but they don't know each other's input. They determine the output valueby exchanging messages. Let n, the length of the input, be log(jXjjY j).A protocol for computing f is a pair of algorithms (one for each player)according to which the players send binary messages. A protocol proceeds inrounds. In every round the protocol speci�es which player's turn it is to senda message. Each player in his turn sends a bit message that may depend on�Comp. Sci. dep. Hebrew University, Jerusalem.1



her input and the previous messages she has received. A correct protocol forf should terminate for every input pair (x; y) 2 X � Y , when both playersknow f(x; y) and that the protocol has terminated.The communication complexity of a protocol P is the number of bitsexchanged for the worst case input pair. The communication complexity ofa Boolean function f : X � Y 7! f0; 1g, is that of the best possible protocolfor f .The model was introduced by Yao, [13], and has been studied thoroughly,as has its probabilistic counterpart de�ned hereafter. For a survey and exactde�nitions see [2], [6]. The communication complexity model has gained in-creased attention recently due to the generalization of Karchmer and Wigder-son, [8], which demonstrates its relation to formula complexity. See also [9].We focus our attention on probabilistic protocols. In this setting, thealgorithms of the players may be probabilistic; i.e, they may depend on tossesof random coins and may err. The complexity of a probabilistic protocolP on input (x; y) , denoted by CP (x; y), is the expected number of bitsexchanged. The complexity of a protocol P is C(P ) = max(x;y)CP (x; y). Werefer here to [2], [6] and [10] for de�nitions and discussion on the probabilisticcommunication complexity model.Two models of access to the random bits are considered in the litera-ture. The PRIVATE, in which each player tosses his private coin, and theCOMMON, in which both players share a common random bit string. ThePRIVATE model is clearly weaker than the COMMON (since the playersmay need to communicate their random bits). However, it is more realistic.Our main objective is to compare the relative power of the two models.Note that not only the cost but also the output of a probabilistic protocolP on input (x; y), denoted by P (x; y), becomes a random variable. For0 � � < 1=2 letPcom� (f) = fP 2 COMMON j 8(x; y) 2 X�Y Prob(P (x; y) 6= f(x; y)) � � gPpri� (f) = fP 2 PRIV ATE j 8(x; y) 2 X�Y Prob(P (x; y) 6= f(x; y)) � � gIn words, Pcom� (f) and Ppri� (f) are the sets of all probabilistic protocols, ofthe two types, that have error probability of at most �. De�neCcom� (f) = minfC(P ) : P 2 Pcom� (f)g; Cpri� (f) = minfC(P ) : P 2 Ppri� (f)g2



That is, Ccom� (f); (Cpri� (f)) is the best complexity that a COMMON, (PRI-VATE) protocol can achieve if its error probability is bounded by �.Since Ppri� (f) � Pcom� (f) we have Ccom� (f) � Cpri� (f). Our main observa-tion is that the relative power of the two models is nearly the same. This isdue to the fact that the model is non-uniform. A similar phenomenon was�rst observed by Adleman [1] for the model of Boolean circuits.Theorem 1.1 Let 0 � � < 1=2 and 0 < � � 1 thenCpri(1+�)�(f) = O(Ccom� (f) + log n�� )Proof It is enough to show that there is a protocol P � 2 Pcom(1+�)�(f) thatuses O(log n�� ) random bits. P � can be directly made to work with privaterandom bits. Player A tosses the necessary random bits, communicates themto B at a cost of O(log n�� ) and then they follow P �.The existence of P � is asserted by proposition 1.1. 2Proposition 1.1 Let P 2 Pcom� (f); 0 � � < 1=2 then for any 0 < � � 1there is a protocol P � 2 Pcom(1+�)�(f) such that C(P �) = O(C(P )) and P � usesonly O(log n�� ) random bits.Proof Let c = C(P ). P may be thought of as a probability distribution ona �nite collection of deterministic protocols P = fPrgr=tr=1, each Pi de�ned bysome �xed random string. Furthermore, since there is no cost for randombits in this model, we may assume that the probability distribution over fPrgis uniform (by allowing identical copies of protocols in this collection). (Weavoid here questions of irrational values of probability , which are handled instandard ways in many other discussions on the general theory of probabilisticalgorithms).Claim 1.1 There is a collection of l = max( n(��)2 ; (n+1)2c ) protocols fPi1 ; ::; Pilg =P1 with the properties:8(x; y) 2 X � Y 1l jfP 2 P1 : P (x; y) 6= f(x; y)gj � (1 + �)� (1)8(x; y) 2 X � Y 1l �P2P1CP (x; y) = O(c) (2)3



Proof Pick a collection L of l = max( n(��)2 ; (n+1)2c ) protocols out of theoriginal collection P = fPrgr=tr=1, by picking l times a random protocol outof P , independently and with equal probability. We will show that L hasproperties (1) and (2) with non zero probability. For a �xed (x; y) 2 X � Ylet A(x; y) = fPi 2 Lj Pi(x; y) 6= f(x; y)g Note that by the assumption on P ,Prob(Pr 2 A(x; y)) � � for every input (x; y). By a Cherno�ike inequality([11], [4])Prob(jA(x; y)j � (1 + �)�l) � exp(�2�2�2l) � exp(�2n)Thus, (for n � 2 )Prob(9(x; y); jA(x; y)j � (1 + �)�l) � 2nexp(�2n) < 0:25 (3)Observe that this corresponds to the probability that L does not have prop-erty (1). We need a similar statement for property (2), for which we useHoe�ding inequalityLemma 1.1 Hoe�ding(1963), [4], [5] Let Y1; :::; Yl be independent randomvariables with values in the interval [0; z]. Let � = E(1l�j=lj=1Yi) ThenProb(1l �j=lj=1Yi � d�) � (d�d�( z � �z � d�)z�d�)l=zFor d 2 [1; z=�] this simpli�es toProb(1l �j=lj=1Yi � d�) � (e(d�1)dd )l�=zLet our L be L = fP 01; ::; P 0lg. For a �xed (x; y) 2 X � Y let Yi(x; y) =CP 0i (x; y). Observe that Y1(x; y); :::; Yl(x; y) meet the assumption of thelemma with z = n + 1 (since n is an upper bound on the complexity ofany protocol for f). Note that E(CP 0i (x; y)) = CP (x; y) we have,� = E(1l �j=lj=1CP 0j (x; y)) = 1l �j=lj=1E(CP 0j (x; y)) = CP (x; y) � cWe may assume c < n=3 (otherwise, we are immediately done). We get (ford = 3 )8(x; y) 2 X � Y Prob(1l �j=lj=1CP 0j (x; y) � 3c) � ( e227) lcn+1 � ( e227)n+1 � 3�n�14



Thus Prob(9(x; y); 1l�j=lj=1CP 0j(x; y) � 3c) � 2n3�n�1 � 0:25 (4)Therefore, there is some choice of L for which both properties (1) and (2)hold. This completes the proof of the claim. 2We let P � be the probabilistic protocol that picks at random, with uniformdistribution, a protocol from the set L. It is guaranteed by claim 1.1 thatP � has error bound of (1 + �)� and it uses only log l = O(log n+ log(1=(��)))random bits. This completes the proof of proposition 1.1 2.Corollary 1.1 Let n�c < � < 1=2 � n�c for some constant c. ThenCpri� (f) = O(Ccom� (f) + log n)Proof: Pick � so that �(1 + �) < 1=2 � n�c and � > n�2c (clearly such �exists). By theorem 1.1, for any P 2 Pcom� there is a protocol P1 2 Ppri�(1+�)with C(P1) = O(C(P ) + log n). The error of P1 can be reduced (back) to �,keeping the same order of magnitude of complexity, by standard ampli�cationmethods. (We repeat P1 a constant number of times with independent coin
ips and take the majority of the outputs). 2.An important class of protocols are Pcom0 (f), and Ppri0 (f). Those areprotocols that always answer correctly (Las Vegas). We haveTheorem 1.2 Cpri0 (f) = O(Ccom0 (f) + log n)Proof: As in the proof of theorem 1.1, except that property (1) holds withprobability 1 for every L. So it su�ces to pick l = (n + 1)2=c in order toguarantee property (2). 2.Remarks:1. An important generalization of this classical communication problem isthe Karchmer-Wigderson game [8]. Namely, let g : f0; 1gn 7! f0; 1g bea Boolean function, letX = g�1(1) and Y = g�1(0). De�ne the relationRg � X � Y � f1; ::; ng by (x; y; i) 2 Rg i� xi 6= yi, where xi; (yi) is5



the i�th bit of x (y). The communication problem for Rg is as follows.One player get input x 2 X and the other gets y 2 Y . Their task is toagree on an i such that (x; y; i) 2 Rg. The importance of this gameis its relation to the formula size of g [8]. Probabilistic protocols arede�ned in a manner similar to the classical case. Our result carries onto this framework too, by the same proof.2. In the proofs of theorem 1.1 and theorem 1.2 we only used the inherentpower of the nonuniformity of the model, and the fact that the com-plexity was naturally bounded by n+1. For any nonuniform model witha similar property, our proof asserts that one can use a small amountof randomness, (i.e, the decision tree model, non uniform routing etc.).Indeed the same idea was used in [1], [7].3. It is well known that for every pair of constants 0 � �; �0 if P 2 Pcom� (f)with C(P ) = c, there exists a P 0 2 Pcom�0 (f) whose complexity is O(c)for every (x; y) and all coin tosses. Using this, theorem 1.1 can beproved just by asserting property (1) (property (2) will hold with prob-ability 1). However, this does not work for non-constant error.4. Our result was recently used in the work of Canetti, and Goldreich, ina study on communication-randomness tradeo�s [3].References[1] L. Adleman, Two theorems om random polynomial time, Proceedings ofthe 19th Annual IEEE Symposium on Foundation of Computer Science,75-83.[2] L. Babai, P. Frankl, J. Simon, Complexity classes in communicationcomplexity theory, Proc. 27th Annual IEEE Symp. on Foundation ofcomputer science, 1986, 337-347[3] R. Canetti, O. Goldreich, Bounds on Tradeo�s between randomness andcommunication complexity, 31th Annual IEEE Symp. on Foundation ofcomputer science, 1990, 767-775.6
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