Private vs. Common Random bits in
Communication Complexity

I[lan Newman *

November 8, 1995

Abstract

We investigate the relative power of the common random string
model vs. the private random string model in communication com-
plexity. We show that the two model are essentially equal.
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Communication complexity is a model of computation where two parties,
each with an input, want to mutually compute a Boolean function that is
defined on pairs of inputs. Formally, let f: X x Y +— {0,1} be a Boolean
function. The communication problem for f is the following two-player game.
Player A gets x € X and player B gets y € Y. Their goal is to compute
f(z,y). They have unlimited computational power and a full description of
f, but they don’t know each other’s input. They determine the output value
by exchanging messages. Let n, the length of the input, be log(| X||Y]).

A protocol for computing f is a pair of algorithms (one for each player)
according to which the players send binary messages. A protocol proceeds in
rounds. In every round the protocol specifies which player’s turn it is to send
a message. Each player in his turn sends a bit message that may depend on
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her input and the previous messages she has received. A correct protocol for
f should terminate for every input pair (x,y) € X x Y, when both players
know f(x,y) and that the protocol has terminated.

The communication complexity of a protocol P is the number of bits
exchanged for the worst case input pair. The communication complexity of
a Boolean function f: X x Y +— {0, 1}, is that of the best possible protocol
for f.

The model was introduced by Yao, [13], and has been studied thoroughly,
as has its probabilistic counterpart defined hereafter. For a survey and exact
definitions see [2], [6]. The communication complexity model has gained in-
creased attention recently due to the generalization of Karchmer and Wigder-
son, [8], which demonstrates its relation to formula complexity. See also [9].

We focus our attention on probabilistic protocols. In this setting, the
algorithms of the players may be probabilistic; i.e, they may depend on tosses
of random coins and may err. The complexity of a probabilistic protocol
P on input (z,y) , denoted by Cp(x,y), is the expected number of bits
exchanged. The complexity of a protocol P is C'(P) = maw(,,)Cp(x,y). We
refer here to [2], [6] and [10] for definitions and discussion on the probabilistic
communication complexity model.

Two models of access to the random bits are considered in the litera-
ture. The PRIVATE, in which each player tosses his private coin, and the
COMMON;, in which both players share a common random bit string. The
PRIVATE model is clearly weaker than the COMMON (since the players

may need to communicate their random bits). However, it is more realistic.
Our main objective is to compare the relative power of the two models.

Note that not only the cost but also the output of a probabilistic protocol
P on input (z,y), denoted by P(x,y), becomes a random variable. For
0<e<1/2 let

Pem(fy={P e COMMON |V(x,y) € XXY Prob(P(x,y) # f(z,y)) <€}

Prri(f) ={P € PRIVATE |V(z,y) € X xY Prob(P(z,y) # f(z,y)) < ¢}

In words, P (f) and PP"(f) are the sets of all probabilistic protocols, of
the two types, that have error probability of at most ¢. Define

Cem(f) = min{C(P): PePI™(f)}y, CF(f) = min{C(P): P € P (f)}
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That is, C&™(f), (CP"(f)) is the best complexity that a COMMON, (PRI-
VATE) protocol can achieve if its error probability is bounded by e.

Since PF"(f) C P (f) we have C™(f) < CP"'(f). Our main observa-
tion is that the relative power of the two models is nearly the same. This is
due to the fact that the model is non-uniform. A similar phenomenon was
first observed by Adleman [1] for the model of Boolean circuits.

Theorem 1.1 Let 0 <e<1/2 and 0 <6 <1 then
Ti com n
Clilys)(f) = O(CE™(f) + log 5)

Proof It is enough to show that there is a protocol P* € Pfff(g)ﬁ(f) that
uses O(log %) random bits. P* can be directly made to work with private
random bits. Player A tosses the necessary random bits, communicates them
to B at a cost of O(log %) and then they follow P*.

The existence of P* is asserted by proposition 1.1. O

Proposition 1.1 Let P € P"(f), 0<e<1/2 then forany0 <6 <1
there is a protocol P* € P(Cffé)e(f) such that C(P*) = O(C(P)) and P* uses
only O(log %) random bits.

Proof Let ¢ = C(P). P may be thought of as a probability distribution on
a finite collection of deterministic protocols P = {P,}'Z!, each P; defined by
some fixed random string. Furthermore, since there is no cost for random
bits in this model, we may assume that the probability distribution over { P, }
is uniform (by allowing identical copies of protocols in this collection). (We
avoid here questions of irrational values of probability , which are handled in
standard ways in many other discussions on the general theory of probabilistic
algorithms).

Claim 1.1 There is a collection of | = maX((Eg)Q, ﬁn—tlﬁ) protocols { P, ,.., P, } =
P1 with the properties:

Vi) € X XY THPEP: Play) # [yl <046 (1)

V(:z:,y) e X xY %Zpeplcp(l',y) = O(C) (2)



n (nt+1)?
(e6)?”

original collection P = {P,}'=Z!, by picking [ times a random protocol out
of P, independently and with equal probability. We will show that L has
properties (1) and (2) with non zero probability. For a fixed (z,y) € X x Y
let A(z,y)=4{P, € L| Pi(z,y) # f(x,y)} Note that by the assumption on P,

Prob(P, € A(x,y)) < e for every input (x,y). By a Chernofflike inequality

([11], [4])
Prob(|A(z,y)| > (1 +8)el) < exp(—28*¢*1) < exp(—2n)

Proof Pick a collection L of [ = max( ) protocols out of the

Thus, (forn >2)
Prob(3(x,y), |A(x,y)| > (14 6)el) < 2"exp(—2n) < 0.25 (3)

Observe that this corresponds to the probability that L does not have prop-
erty (1). We need a similar statement for property (2), for which we use
Hoeftding inequality

Lemma 1.1 Hoeffding(1963), [{], [5] Let Y1,...,Y; be independent random
variables with values in the interval [0, z]. Let p = E(%Z;jﬁ) Then

1 B
Prob(jZéjlyi > dy) < (d_dﬂ(%)z—du)l/z
z—dp

For d € [1,z/u] this simplifies to

1 =1 )l
Prob(s355Y: > dp) < (——)""°

Let our L be L = {P/,..,P/}. For a fixed (z,y) € X x Y let Yi(x,y) =
Cp:(z,y). Observe that Yi(x,y),...,Yi(z,y) meet the assumption of the
lemma with z = n + 1 (since n is an upper bound on the complexity of
any protocol for f). Note that £(Cp/(x,y)) = Cp(z,y) we have,

1

_ 1.
p= E(jEﬁ;QCP;(xvy)) = 72§;§E(Cp;(x,y)) = Cp(z,y) <c

We may assume ¢ < n/3 (otherwise, we are immediately done). We get (for
d=3)

62 lc 62

V(z,y) € X x¥ Prob(%ﬁiiicp;w,y) > 3e) < ()™ < () <37
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Thus |
Prob(3(x,y), 72;211013]/(:1;,3;)23@ < 2731 < (.25 (4)

Therefore, there is some choice of L for which both properties (1) and (2)
hold. This completes the proof of the claim. O

We let P* be the probabilistic protocol that picks at random, with uniform
distribution, a protocol from the set L. It is guaranteed by claim 1.1 that
P~ has error bound of (1 +¢)e and it uses only log! = O(logn + log(1/(€b)))
random bits. This completes the proof of proposition 1.1 0.

Corollary 1.1 Let n=* < e<1/2—n"° for some constant c¢. Then

CI(f) = O(C™ () + logn)

Proof: Pick § so that e(1 +6) < 1/2 —n~¢ and § > n™*° (clearly such ¢

exists). By theorem 1.1, for any P € P%™ there is a protocol P, € 735(1+5)
with C'(P) = O(C(P)+ logn). The error of Py can be reduced (back) to e,
keeping the same order of magnitude of complexity, by standard amplification
methods. (We repeat P; a constant number of times with independent coin
flips and take the majority of the outputs). 0.

An important class of protocols are P57 (f), and Pg”(f). Those are
protocols that always answer correctly (Las Vegas). We have

Theorem 1.2

CE(f) = O(C5™ (f) +logn)

Proof: As in the proof of theorem 1.1, except that property (1) holds with
probability 1 for every L. So it suffices to pick [ = (n + 1)?/c in order to
guarantee property (2). O.

Remarks:

1. An important generalization of this classical communication problem is
the Karchmer-Wigderson game [8]. Namely, let ¢ : {0,1}" — {0,1} be
a Boolean function, let X = ¢7'(1) and Y = ¢=%(0). Define the relation
R, C X xY x{l,..,n} by (z,y,7) € R, iff ; # y;, where x;, (y;) is
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the i—th bit of « (y). The communication problem for R, is as follows.
One player get input * € X and the other gets y € Y. Their task is to
agree on an ¢ such that (x,y,¢) € R,. The importance of this game
is its relation to the formula size of ¢ [8]. Probabilistic protocols are
defined in a manner similar to the classical case. Our result carries on
to this framework too, by the same proof.

In the proofs of theorem 1.1 and theorem 1.2 we only used the inherent
power of the nonuniformity of the model, and the fact that the com-
plexity was naturally bounded by n+1. For any nonuniform model with
a similar property, our proof asserts that one can use a small amount
of randomness, (i.e, the decision tree model, non uniform routing etc.).
Indeed the same idea was used in [1], [7].

It is well known that for every pair of constants 0 < e, €' if P € P (f)
with C'(P) = ¢, there exists a P’ € PY"(f) whose complexity is O(c)
for every (x,y) and all coin tosses. Using this, theorem 1.1 can be
proved just by asserting property (1) (property (2) will hold with prob-
ability 1). However, this does not work for non-constant error.

Our result was recently used in the work of Canetti, and Goldreich, in
a study on communication-randomness tradeoffs [3].
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