
Information Systems 26 (2001) 279–293

Efficient time-series subsequence matching using duality
in constructing windows$

Yang-Sae Moon*, Kyu-Young Whang, Woong-Kee Loh

Department of Computer Science and Advanced Information Technology Research Center (AITrc),

Korea Advanced Institute of Science and Technology (KAIST), Taejon 305-701, South Korea

Abstract

In this paper, we propose a new subsequence matching method, Dual Match. Dual Match exploits duality in

constructing windows and significantly improves performance. Dual Match divides data sequences into disjoint
windows and the query sequence into sliding windows, and thus, is a dual approach of the one by Faloutsos et al.
(Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle, Washington, 1994, pp.

419–429.) (FRM in short), which divides data sequences into sliding windows and the query sequence into disjoint
windows. FRM causes a lot of false alarms (i.e., candidates that do not qualify) by storing minimum bounding
rectangles rather than individual points representing windows to save storage space for the index. Dual Match solves

this problem by directly storing points without incurring excessive storage overhead. Experimental results show that, in
most cases, Dual Match provides large improvement both in false alarms and performance over FRM given the same
amount of storage space. In particular, for low selectivities (less than 10@4), Dual Match significantly improves
performance up to 430-fold. On the other hand, for high selectivities (more than 10@2), it shows a very minor

degradation (less than 29%). For selectivities in between (10@4–10@2), Dual Match shows performance slightly better
than that of FRM. Overall, these results indicate that our approach provides a new paradigm in subsequence matching
that improves performance significantly in large database applications.r 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Duality; Data mining; Subsequence matching; Time-series data; Similarity search

1. Introduction

A time-series is a sequence of real numbers,
representing values at specific time points. Typical
examples of time-series data include stock

prices, exchange rates, and weather data. The
time-series data stored in a database are called data
sequences. Finding data sequences similar
to the given query sequence from the database
is called similar sequence matching [1,7]. Owing
to faster computing speed and larger storage
devices, there has been a number of efforts to
utilize the large amount of time-series data, and
accordingly, similar sequence matching has become
an important research topic in data mining [1,6–9].

Various similarity models have been studied in
similar sequence matching [1,2,10]. In this paper,

$Recommended by Maurizio Lenzerini. This work was

supported by the Korea Science and Engineering Foundation

(KOSEF) through the Advanced Information Technology

Research Center (AITrc).

*Corresponding author. Tel.: +82-42-869-5562; fax: +82-

42-869-3510.

E-mail address: ysmoon@mzoart.kaist.ac.kr (Y.-S. Moon).

0306-4379/01/$ - see front matter r 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 3 0 6 - 4 3 7 9 (0 1) 0 0 0 2 1 - 7

we use the similarity model based on the Euclidean
distance [1,5,7,11]. In this model, we say that
two sequences X ¼ fX ½1�;y;X ½n�g and Y ¼
fY ½1�;y;Y ½n�g of the same length n are

similar if the Euclidean distance DðX ;YÞ
ð¼

ffiPn
i¼1 ðX ½i�@Y ½i�Þ2

q
Þ is less than or equal to

the user specified tolerance e [1]. More specifically,
we define that two sequences X and Y are in e-
match if DðX ;YÞ is less than or equal to e.

Similar sequence matching can be classified into
two categories [7]:

* Whole matching: Given N data sequences
S1;S2;y;SN , a query sequence Q, and the
tolerance e, we find those data sequences that
are in e-match with Q. Here, the data and query
sequences must have the same length.

* Subsequence matching: Given N data sequences
S1;S2;y;SN of varying lengths, a query
sequence Q, and the tolerance e, we find all
the sequences Si, one or more subsequences of
which are in e-match with Q, and the offsets in
Si of those subsequences.

Thus, subsequence matching is a generalization of
whole matching [5–7,10]. In this paper, we focus
on subsequence matching.

Faloutsos et al. [7] have proposed a novel
solution for subsequence matching on query
sequences of varying lengths (we simply call this
solution FRM by taking authors’ initials). In
FRM, they use a sliding window of size o starting
from every possible offset in the data sequence.
Then, they divide a query sequence into disjoint
windows of size o and retrieve similar subse-
quences by using those disjoint windows. They
transform each sliding window to a point in a
lower dimensional space (we call it lower-dimen-
sional transformation) to avoid the high dimen-
sionality problem [4,12] in multidimensional
indexes. Since too many points are generated to
be stored individually in an index, they construct
minimum bounding rectangles (MBRs) that contain
multiple points, and then, store those MBRs into
a multidimensional index, R* -tree [3]. For sub-
sequence matching, they first identify, using the
index, those MBRs containing information to
identify the subsequences, called candidates,

that are potentially in e-match with the query
sequence. They subsequently refine the result by
accessing the database and selecting only those
subsequences that are in e-match with the query
sequence.

FRM entails many false alarms (i.e., candidates
that do not qualify) by storing only MBRs rather
than individual points, and accordingly, degrades
performance. In this paper, we propose a new
subsequence matching method, Dual Match (Dua-
lity-based subsequence Matching), that reduces
false alarms and improves performance signifi-
cantly. We use the dual approach of FRM in
constructing windows (we simply call it duality);
i.e., we divide data sequences into disjoint win-
dows and a query sequence into sliding windows.
By dividing the data sequences into disjoint
windows rather than sliding windows, Dual Match
reduces the number of points to store drastically,
to 1=o of that of FRM, and thus, is able to store
individual points instead of MBRs in the index.
For subsequence matching, it first transforms the
sliding windows of the query sequence into points,
constructs range queries using these individual
points and the user-specified tolerance e, and then
searches the index to get the candidates. By storing
and searching individual points directly in the
index, Dual Match reduces false alarms.

The rest of this paper is organized as follows.
Section 2 describes related work. Section 3
explains the motivation of this research. Section
4 proposes Dual Match. Section 5 presents the
results of performance evaluation. Section 6
concludes the paper.

2. Related work

We summarize in Table 1 the notation to be
used throughout the paper. The symbols in Table 1
are self-explanatory and do not need further
elaboration.

2.1. Whole matching

Agrawal et al. [1] have introduced a solution for
whole matching. The outline of the method is as
follows. First, each data sequence of length n is

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293280

transformed to an f ðpnÞ-dimensional point by
using DFT (discrete fourier transform), and this
point is indexed using the R* -tree [3]. Next, a
query sequence is similarly transformed to an f -
dimensional point, and a range query constructed
using the point and the tolerance e. Then, a
candidate set is constructed by searching the R* -
tree. Lastly, for each candidate sequence obtained,
the actual data sequence is accessed from the disk;
the distance from the query sequence computed;
and the candidate is discarded if it is a false alarm.
This last step, which eliminates false alarms, is
called the post-processing step [1].

The function used for dimensionality reduction
is called the feature extraction function [7]. We
have the following Lemma 1 for feature extraction
functions.

Lemma 1 (Faloutsos et al. [7]). To guarantee no
false dismissals for range queries; the feature
extraction function Fð Þ must satisfy the following
equation:

DðFðSÞ;FðQÞÞpDðS;QÞ: ð1Þ

All orthonormal transforms including DFT,
DCT (discrete cosine transform), and most of the
Wavelet transforms satisfy Lemma 1 [1]. Recently,
Chan and Fu [5] have proposed a similar sequence
matching method by using Haar Wavelet trans-
form (we simply call it Wavelet).

2.2. Subsequence matching

Faloutsos et al. [7] have proposed the subse-
quence matching method (FRM) as a general-
ization of the whole matching method by Agrawal

et al. [1]. We explain FRM for two algorithms: the
index building and the subsequence matching
algorithms.

In the index building algorithm, FRM divides
data sequences into sliding windows. FRM,
however, generates almost Total Len f -dimen-
sional points corresponding to sliding windows
for data sequences, and thus, needs f times
more storage than is required by original data
sequences. Moreover, the search performance may
become even poorer than that of sequential
scanning [7]. To solve this problem, FRM does
not store individual points directly into the R* -
tree, but stores only MBRs that contain hundreds
or thousands of such points. To construct
MBRs, FRM uses heuristics in an attempt to
minimize the number of disk accesses for the
index. It first transforms a data sequence S into
a trail consisting of LenðSÞ@oþ 1 f -dimensional
points. Next, it defines the marginal cost of a
point using the estimated value (we call it the
estimated tolerance e0) of 0.251 as the tolerance e,
and divides a trail into sub-trails using the cost
[7]. FRM subsequently constructs an MBR
for each sub-trail and stores it into the R* -
tree.

In the subsequence matching algorithm, FRM
uses the following two Lemmas:

Lemma 2 (Faloutsos et al. [7]). If two sequences S
and Q of the same length are divided into p windows
si and qi ð1pippÞ; respectively; then the following

Table 1

Summary of notation

Symbols Definitions

LenðSÞ Length of sequence S

Total_Len Sum of lengths of all data sequences

S½k� The kth entry of sequence S (1pkpLenðSÞ)
S½i : j� Subsequence of S, including entries from the ith one to the jth

(if i > j, then it means a null sequence of length 0)

S½i : k�S½kþ 1 : j� S½i : j� divided into two subsequences S½i : k� and S½kþ 1 : j�
si The ith disjoint window of sequence S ð¼ S½ði@1Þ*oþ 1 : i*o�Þ

1FRM has used 0.25 for e0, the estimated tolerance to be

given by the user, in the normalized domain space [0,1) of each

axis.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293 281

equation holds:

DðS;QÞpe)
_p

i¼1

Dðsi; qiÞpe=
ffiffiffi
p

p
: ð2Þ

Lemma 3 (Faloutsos et al. [7]). If S½i : j� and Q½i : j�
are the subsequences of sequences S and Q,
respectively; then the following equation holds:

DðS;QÞpe) DðS½i : j�;Q½i : j�Þpe: ð3Þ

According to Lemmas 2 and 3, FRM divides the
query sequence Q into pð¼ ILenðQÞ=omÞ disjoint
windows, transforms each window to an f -dimen-
sional point, makes a range query using the point
and the tolerance e=

ffiffiffi
p

p
, and constructs a candi-

date set by searching the R* -tree. Lastly, it
performs the post-processing step to eliminate
false alarms.

Since Lemmas 2 and 3 are used for long query
sequences, there is the tendency that longer
windows decrease false alarms, and we call this
effect the window size effect. For example, let the
window size of the method A be twice as large as
that of the method B. Then, by Lemmas 2 or 3, a
candidate subsequence of the method A must also
be a candidate of the method B. However, the
inverse does not hold. Thus, to reduce false
alarms, we need to use as large windows as
possible. In Section 4.5, we will explain this point
in more detail when calculating the maximum
window size that can be used for the proposed
Dual Match.

3. Motivation of the research

In this section, we explain the motivation of our
approach. In similar sequence matching, the more
false alarms occur, the more disk accesses and
CPU operations for computing the LenðQÞ-dimen-
sional distance are incurred in the post-processing
step. Thus, false alarms are the main cause of
performance degradation.

We note that storing only MBRs instead of
individual points is one of the main reasons
for false alarms in FRM. We explain this
point using Fig. 1. In Fig. 1, Pi ð1pip14Þ repre-

sents a point in the 2-dimensional space (f ¼ 2)
to which a sliding window for a data sequence
is transformed. The 14 Pis are contained in an
MBR. Q1 and Q2 represent the points for disjoint
windows of a query sequence. In Fig. 1, since Q1

and Q2 are in e=
ffiffiffi
p

p
-match with the MBR, every Pi

will be in the candidate set. In fact, however, no Pi

is in e=
ffiffiffi
p

p
-match with Q1, and no Pi except P8

and P9 is with Q2. Thus, we have many false
alarms. We can reduce this kind of false alarms
by storing every individual point of the MBR in
the index. For example, in Fig. 1, if every Pi

were stored in the index, there would be no
candidate for Q1, but only two candidates P8

and P9 for Q2. We define this effect the point-
filtering effect. As we have explained in Section 2,
however, if every individual point were stored
in the index, then too much storage would be
needed, and the performance would degrade.
Accordingly, in FRM, it is difficult to reduce the
false alarms that are caused by lack of the point-
filtering effect. In Section 4, we introduce a
subsequence matching method, Dual Match, that
reduces this type of false alarms fully utilizing the
point-filtering effect.

4. Dual Match: duality-based subsequence

matching

4.1. The concept

Dual Match divides data sequences into disjoint
windows and the query sequence into sliding
windows. This way, we are able to store and
search individual points directly in the index
without much storage overhead and improve disk
and CPU performance.

We first define some terminology. Given a
sequence S, a subsequence S½i2 : j2� includes
a subsequence S½i1 : j1� if i1Xi2 and j1pj2. When
S is divided into fixed disjoint windows, we define
the included windows for S½i : j� as those disjoint
windows included in S½i : j�. A subsequence of a
specific length may have a different number of
included windows depending on its position in
S. For example, in Fig. 2, the subsequence S½i1 : j1�
has one included window, but S½i2 : j2� of the

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293282

same length l has two. We define the minimum
number of included windows for a subsequence of
length l as the minimum one over all subsequen-
ces of the same length regardless of their positions
in S. We can obtain this minimum using Lemma 4.

Lemma 4. If the sequence S is divided into disjoint
windows of size o; the minimum number of included
windows p for subsequences of length l is given by
the following formula:

p ¼ Iðl þ 1Þ=om@1: ð4Þ

Proof. The minimum number of included win-
dows for subsequences of length l is derived
by neglecting the first o@1 entries of the
subsequences (the worst case, which minimizes
the number of included windows) and taking
the integral part of ðl@oþ 1Þ=o for the remain-
ing l@ðoþ 1Þ entries. Thus, we obtain p as
follows:

p ¼Iðl@oþ 1Þ=om ¼ Iððl þ 1Þ@oÞ=om

¼Iðl þ 1Þ=om@1: &

According to Lemma 4, a subsequence of length
LenðQÞ includes at least ILenðQÞ þ 1=om@1
disjoint windows. We now derive Theorem 1, on
which the validity of Dual Match is based.

Theorem 1. Suppose the data sequence S is divided
into disjoint windows of sizeo; and the query sequence
Q into sliding windows of the same size o. If the
subsequence S½i : j� of length LenðQÞ is in e-match
with Q; then at least one included window of S½i : j�
at a certain offset from S½i� is in e=

ffiffiffi
p

p
-match with

the sliding window of Q at the same offset from Q½1�.
Here; p is the minimum number of included windows
for subsequences of length LenðQÞ given by Eq. ð4Þ.

Proof. In Fig. 3, suppose the subsequence S½i : j� is
in e-match with the query sequence Q. S½i : j� must
include at least p disjoint windows s1;y; sp, and
also (possibly null) subsequences sh (at the head)
and st (at the tail). Thus, S½i : j� can be represented
as shs1?spst. Similarly, Q can be represented as
qhq1?qpqt, where LenðqhÞ ¼ LenðshÞ and LenðqtÞ
¼LenðstÞ. Then, we obtain Eq. (5) by using
Lemmas 2 and 3.

DðS½i : j�;QÞpe)Dðs1?sp; q1?qpÞpe

ðby Lemma 3Þ

)
_p

k¼1

Dðsk; qkÞpe=
ffiffiffi
p

p

ðby Lemma 2Þ: ð5Þ

Hence, if S½i : j� and Q are in e-match, at least one
of p included windows of S½i : j� (say sk) must be in
e=

ffiffiffi
p

p
-match with a window qk of Q. &

Fig. 1. False alarms caused by storing only MBRs.

Fig. 2. Different numbers of included windows for two subsequences of the same length.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293 283

At query time, since we use sliding windows and
place them at every possible offset in the query
sequence Q, the window qk in Theorem 1 must be
one of those sliding windows. According to
Theorem 1, if we construct the candidate set with
those subsequences that have an included window
in e=

ffiffiffi
p

p
-match with a sliding window of Q, i.e.,

that satisfy the necessary condition of Eq. (5), then
we will not encounter any false dismissal.

4.2. Index building algorithm

In the index building algorithm, we first divide
each data sequence into disjoint windows and
transform each disjoint window to an f -dimen-
sional point. We then construct a record consisting
of the transformed point, the data sequence
identifier, and the start offset of the disjoint
window in S. We subsequently insert the record
into the index using the transformed point as the
key. We omit the detailed description of the
algorithm since it is straightforward.

Dual Match has an important advantage: it is
able to store the individual points, which have
been transformed from disjoint windows, directly
in the index without much storage overhead. It
generates approximately Total Len=o points by
dividing data sequences into disjoint windows, and
thus, the storage for the index is about f =o of that
for the original data sequences. This is only
approximately 1=o of the storage that FRM
would take if it stored (approximately Total Len)
individual points directly in the index. In practice,
since f is less than 10, and o greater than 100 [5,7],
the storage for the index in Dual Match is less than
10% (f =o ¼ 10=100) of that for the original data
sequences; the number of points stored in the

index is less than 1% (1=o ¼ 1=100) of the sum of
the lengths of all data sequences.

Dual Match has an additional advantage: it can
use point access methods (PAMs) as the index.
Multidimensional index methods can be categor-
ized into PAMs that store points and spatial access
methods (SAMs) that store spatial objects [13].
Since Dual Match stores points, it can use a PAM
as the index with a flexibility of using various
multidimensional indexes of differing characteristics.

4.3. Basic subsequence matching algorithm

In the basic subsequence matching algorithm,
we first calculate the minimum number of included
windows p ¼ IðLenðQÞ þ 1Þ=om@1 for the sub-
sequence of length LenðQÞ using Lemma 4, and
divide the query sequence into LenðQÞ@oþ 1
sliding windows. We then transform each sliding
window to an f -dimensional point and construct a
range query using this point and e=

ffiffiffi
p

p
. Next, we

evaluate the range query, using the index, retriev-
ing the qualifying points into the candidate set.
Lastly, we perform the post-processing step, i.e.,
for each record in the candidate set, we first read
the candidate subsequence from the database, and
then, remove false alarms keeping only those
subsequences in e-match with the query sequence.
We also omit the detailed description of the
algorithm since it is straightforward.

The basic algorithm is very effective in reducing
false alarms by using individual points rather than
MBRs, i.e., by exploiting the point-filtering effect.
However, it has a problem of evaluating many
(LenðQÞ@oþ 1) range queriesFone for each
sliding window. This could cause performance

Fig. 3. A subsequence S½i : j� in e-match with the query sequence Q.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293284

degradation. We present the enhanced subse-
quence matching algorithm to correct this problem.

4.4. Enhanced subsequence matching algorithm

Rather than constructing a query for each point,
the enhanced subsequence matching algorithm
constructs a query for an MBR that contains
multiple points. This approach is similar to that of
FRM, in which MBRs are constructed using
multiple points for a data sequence. It is different
in that it keeps the points in the MBR while FRM
does not, and in that it uses MBRs for the query
while FRM does for the data sequences. Since the
search result for a sliding window of the query
sequence may be similar to those for adjacent
sliding windows, we use MBRs that contain
multiple points for adjacent windows. Using
MBRs to search the index tends to increase the
size of the candidate set. Nevertheless, we can get
the same candidate set as that of the basic
algorithmFdespite the use of MBRsFby filtering
false alarms in the index before accessing data
sequences in the database. We do filtering by
computing the f -dimensional distance between
each point in the MBR and each point in the
search result and by including in the candidate set
only those points that are in e=

ffiffiffi
p

p
-match. We

define this filtering as index-level filtering. Index-
level filtering is possible because we maintain all
the points in an MBR. Fig. 4 shows Enhanced
Dual Match algorithm. Algorithm Enhanced Dual
Match consists of three steps: initialization, index
searching, and post-processing.

In the initialization step, we calculate the
minimum number of included windows p, divide
the query sequence into sliding windows, trans-
form each sliding window to an f -dimensional
point, and then construct MBRs that contain
multiple points. We may use various techniques
for constructing MBRs. Examples are (1) the
heuristics used in FRM discussed in Section 2, (2)
using a fixed number of points in an MBR, and (3)
using only one MBR containing all the points. In
Section 5, we will discuss this point in more detail.

In the index searching step, we construct the
candidate set. We first make a range query using
each MBR and the tolerance e=

ffiffiffi
p

p
. Then, we

retrieve the qualifying points by searching the
index and construct the candidate set by using
index-level filtering.

In the post-processing step, for each record in
the candidate set, we first read the candidate
subsequence sub-S from the database in Step 3.1.
If the sliding window is the ith
(1pipLenðQÞ@oþ 1) one, then we calculate
the start offset of sub-S in the data sequence S as
‘dw-offset @i þ 1’. Here, dw-offset is the start
offset in S of the disjoint window (point) in the
candidate set. In Step 3.2, we remove false alarms
keeping only those subsequences in e-match with
the query sequence. For each such subsequence
sub-S, we output the identifier of the data sequence
S containing sub-S and the offset of sub-S in S.

4.5. Maximum window size vs. minimum query
length

We explain the relationship between the max-
imum window size and the minimum length of a
query sequence in Lemma 5 and discuss its
implication.

Lemma 5. If the minimum length of the query
sequence is given by Qmin; then the maximum
window size allowed in Dual Match is
IðQmin þ 1Þ=2m.

Proof. By Theorem 1, the minimum number of
included windows for subsequences of length Qmin

must be equal to or greater than one. Thus, we
obtain the relationship between the minimum
length of a query sequence and the window size
as follows:

p ¼ IðQmin þ 1Þ=om@1X1

3 ðQmin þ 1Þ=oX2 3 QminX2o@1:

Since o is an integer, the maximum window size is
IðQmin þ 1Þ=2m. &

Given the same minimum length of the query
sequence, the maximum window size of Dual
Match is about half that of FRM because the
former is IðQmin þ 1Þ=2m and the latter is Qmin [7].
As we have explained in Section 3, a smaller
window causes more false alarms by the window

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293 285

size effect. Hence, the smaller maximum window
size adds some tendency that Dual Match gen-
erates more false alarms than FRM. Nevertheless,
Dual Match compensates for this effect by
significantly reducing false alarms exploiting the
point-filtering effect.

5. Performance evaluation

5.1. Experimental data and environment

To prove the effectiveness of Dual Match, we
have performed extensive experiments using three
types of data sets. A data set consists of a long
data sequence and has the same effect as the one
consisting of multiple data sequences. The first
data set, a real stock data set2 used in FRM [7],
consists of 329112 entries. We call this data set

STOCK-DATA. The second data set, also used in
FRM, contains random walk data consisting of
five million entries. The data are generated
synthetically: the first entry is set to 1:5, and
subsequent entries are obtained by adding a
random value in the range (@0:001; 0:001) to
the previous one. We call this data set WALK-
DATA. The last data set contains pseudo periodic
synthetic time-series data3 consisting of one
million entries. We call this data set PERIODIC-
DATA. In PERIODIC-DATA, similar subse-
quences appear repeatedly with a long period.
Changes among adjacent entries are small in
STOCK-DATA and WALK-DATA; those in
PERIODIC-DATA are relatively large.

All the experiments are conducted on a SUN
Ultra 60 workstation with 512 Mbytes of

Fig. 4. The enhanced subsequence matching algorithm Enhanced Dual Match.

2This data set can be obtained from ftp:==ftp.santafe.
edu=pub=Time-Series=data=.

3This data set is one of those that are currently under

construction with support from the National Science Founda-

tion and can be obtained from http:==kdd.ics.uci.
edu=databases=synthetic=synthetic.html.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293286

main memory. To avoid the buffering effect of the
UNIX file system and to guarantee actual disk
I=Os, we use raw disks for data and index
files. The page size for data and indexes is set to
4096 bytes. As the multidimensional index, we
use R* -tree [3] for both FRM [7] and Dual
Match. As the feature extraction function, we
use the DFT and Wavelet transformations. We set
the minimum length of the query sequence to
be 512. Thus, the window size of FRM becomes
512, and that of Dual Match 256. We use 6
features,4 as has been done in FRM. We use 512,
768, and 1024 as the lengths of query sequences.
They are uniformly distributed over various
selectivities.

In FRM, the average number of points con-
tained in an MBR varies depending on the
estimated tolerance e0 used in the heuristics. This
number, in turn, affects the number of false alarms
and the size of the index. In the experiments, we
make the index sizes and the storage requirements
approximately the sameFthe difference is less

than 10%Ffor fair comparison of the two
methods. This is done by controlling e0 to make
the number of points in an MBR for FRM and the
number of entries in the disjoint window (window
size) for Dual Match approximately the same and,
in turn, to make the number of MBRs stored in
FRM and the number of transformed points
stored in Dual Match approximately the same.
We further classify those experiments into two
categories: (1) those using Wavelet (Case A) and

(2) those using DFT (Case B). In addition, we also
perform experiments for the case where the
estimated tolerance e0 is 0.25, the same value used
in the original experiments done in FRM [7] (Case
C).

For the experimental results, we measure the
relative number of candidates, the relative number
of page accesses,5 and the relative wall clock time
of the two methods on a dedicated machine. We
generate query sequences from the data sequences
by taking subsequences of length LenðQÞ starting
from random offsets [7]. To avoid effects of noise,
we experiment with 10 different query sequences of
the same length and use the average as the result.
We define the selectivity of a query as in Eq. (6).
We perform experiments for selectivities in the
range 10@6–10@1 as has been done in FRM [7].
For STOCK-DATA, however, the minimum
selectivity tested is approximately 3:0� 10@6 since
we have less than 329,112 subsequences. We
obtain the desired selectivity by controlling the
tolerance e for each query.

5.2. Experimental results

First, to find the optimal number of range
queries used in the enhanced subsequence match-
ing algorithm, we have performed experiments to
measure the index searching (including index-level
filtering) time by using STOCK-DATA. Figs. 5(a)
and (b) show the index searching time for the
query sequences of lengths 512 and 1024, respec-
tively. As shown in the figures, in the cases where
the numbers of range queries are greater than 16,
performance degrades compared with the other
cases. On the other hand, in the cases where the
numbers are less than 16, there is only minor
difference in performance. That is, if the numbers
are greater than 16, the index searching time
increases due to multiple range queries. On the
other hand, if they are less than 16, the results are

SelectivityðQÞ ¼
the number of subsequences that are in e-match with the query sequence Q

the number of all possible subsequences of length LenðQÞ in the database
: ð6Þ

4With DFT, we have used the real part of the fourth complex

number instead of the imaginary part of the first one, which is 0.

Every coefficient at the end is the complex conjugate of a

coefficient at the beginning and is as strong as its counterpart

due to the symmetry property of DFT for real-valued sequences

[14]. Explaining in more detail, the ith (2pipo) complex

number is the complex conjugate of the (o@i þ 2)th one.

Thus, we extract features by multiplying the second B fourth

complex numbers by
ffiffiffi
2

p
when we use DFT as a feature

extraction function. This reflects the same effect as Rafiei and

Mendelzon’s approach [14], which multiplies
ffiffiffi
2

p
rather than 2

to construct the region of a range query.

5The number of page accesses ¼ the number of data page

accesses þ the number of index page accesses.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293 287

similar due to the balance between the effect of the
size of the MBR and that of the number of range
queries. In this paper, to simplify the problem, we
use only one MBR.

Now, we present the experimental results of
Dual Match and FRM. We first explain in detail
the results for Case A and then briefly mention
those for Cases B and C.

(1) STOCK-DATA: Fig. 6 shows the experi-
mental results using Wavelet for STOCK-DATA.
Fig. 6(a) shows the relative number of candidates,
Fig. 6(b) the relative number of page accesses, and
Fig. 7(c) the relative wall clock time. In the figure,
when the selectivity is less than 10@3, Dual Match
significantly reduces the number of candidates to
as little as 1=225 of that for FRM, reduces the
number of page accesses by up to 4.49 times, and
improves performance up to 10.1-fold. When the
selectivity is in the range 10@3–10@2, Dual Match
shows performance slightly better than FRM in all
three measures. On the other hand, when the
selectivity is greater than 10@2, Dual Match
increases the number of candidates by up to 1.18
times, increases the number of page accesses by up
to 1.23 times, and degrades performance by up to
1.21 times that of FRM. The increased number of
candidates and performance degradation for high-
er selectivities are due to the window size effect; at
the same time, the point-filtering effect is less
eminent because the relative number of false
alarms to the total number of candidates becomes
smaller in higher selectivities.

In Fig. 6, the relative number of candidates is
much higher than the relative number of page

accesses and the relative wall clock time. The
reason for this discrepancy is that adjacent
subsequences are similar, and thus, can be accessed
together being stored in the same data page. That
is, if the subsequence S½i : j� of the sequence S is
similar to the query sequence Q, then many
adjacent subsequences of S½i : j�, including
S½i@1 : j@1� and S½i þ 1 : j þ 1�, may very well
be stored in the same data page. Compared to
Dual Match, FRM accesses more (non-qualifying)
adjacent subsequences included in the candidate set
since many of them are represented together by one
MBR in the index. Nevertheless, since those
adjacent ones tend to be accessed together from
the same data page, the relative number of I=O’sF
accordingly, the relative wall clock timeFis
smaller than the relative number of candidates.

Fig. 7(a) shows the relative number of index
page accesses of the two methods, and Fig. 7(b)
the relative number of data page accesses. As we
see in Fig. 7, most of the enhancement in disk page
accesses of Dual Match is due to improvement of
data page accesses. Index page access performance
in Dual Match is slightly better than in FRM. All
the other experiments show the similar tendency as
in Fig. 7.

(2) WALK-DATA: Fig. 8 shows the results
using Wavelet for WALK-DATA. They show
the same tendency as in Fig. 6. In particular, when
the selectivity is less than 10@4, Dual Match
reduces the number of candidates to as little as
1=178 of that for FRM, reduces the number of
page accesses by up to 5.18 times, and improves
performance up to 14.4-fold. When the selectivity

Fig. 5. The index searching time for varying numbers of range queries.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293288

is greater than 10@2, however, Dual Match
increases the number of candidates by up to 1.27
times (21% in terms of relative number of
candidates), increases the number of page accesses
by up to 1.27 times (21% in terms of relative
number of page accesses), and slightly degrades
the performance by up to 1.27 times (21% in terms
of relative wall clock time) that of FRM.

(3) PERIODIC-DATA: Fig. 9 shows the results
using Wavelet for PERIODIC-DATA. Here, we
have much larger improvement. When the selec-
tivity is less than 10@4, Dual Match drastically
reduces the number of candidates to as little as
1=8800 of that for FRM, reduces the number of
page accesses by up to 26.9 times, and improves
the performance up to 430-fold. PERIODIC-

Fig. 6. Performance comparison of Dual Match and FRM using Wavelet for STOCK-DATA.

Fig. 7. Comparison of index and data page accesses of Dual Match and FRM using Wavelet for STOCK-DATA.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293 289

Fig. 8. Performance comparison of Dual Match and FRM using Wavelet for WALK-DATA.

Fig. 9. Performance comparison of Dual Match and FRM using Wavelet for PERIODIC-DATA.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293290

DATA has the characteristic that the changes
among adjacent entries are relatively large. Ac-
cordingly, adjacent windows in PERIODIC-
DATA tend to have distances among them larger
than in STOCK-DATA or WALK-DATA. Thus,
in FRM that stores MBRs of multiple adjacent
windows, many windows far apart from one
another can be included in the same MBR. Since
these windows are included in the candidate set
together, many false alarms are generated.
In contrast, Dual Match does not cause this
problem by storing individual points rather than
MBRs. For this reason, PERIODIC-DATA show
larger relative number of candidates, relative
number of page accesses, and relative wall
clock time than STOCK-DATA or WALK-
DATA do. This is also the reason why those
measures for STOCK-DATA are somewhat larger
than those for WALK-DATA:6 the average
change between adjacent entries in WALK-DATA
is 70:0005, but that in STOCK-DATA is
70:0008.

The experimental results for Cases B and C are
similar to those for Case A. Table 2 summarizes
the results for the three cases. In all three cases,
Dual Match outperforms FRM significantly in
lower selectivities with slight degradation in higher
selectivities.

In summary, Dual Match drastically improves
the performance over FRM due to the point-

filtering effect for lower selectivities, but show
slight degradation (less than 29%) for higher
selectivities due to the window size effect. For
very large databases, which is typical in data
mining, lower selectivities will be much more
important than higher ones. Thus, Dual Match
will be an effective tool for large database
applications.

6. Conclusions

In this paper, we have proposed Dual Match, a
new subsequence matching method based on
duality in constructing windows. We have shown
that Dual Match reduces false alarms and
improves performance drastically compared with
the previous method by Faloutsos et al. [7] (FRM
in short). Dual Match divides data sequences into
disjoint windows and the query sequence into
sliding windows, and thus, is a dual approach of
FRM, which divides data sequences into sliding
windows and the query sequence into disjoint
windows.

We have noted that one of the major reasons for
false alarms is lack of the point-filtering effect in
FRM. FRM stores in the index only MBRs
instead of individual points to avoid excessive
storage overhead, which would be f times as much
as the size of the database itself. Here, each point
corresponds to a sliding window of data sequences.

Table 2

Experimental results of Dual Match and FRM for different lower-dimensional transformations and the estimated tolerances e0

(FRM=Dual Match, 10@6p selectivity p10@1)

Experimental methods STOCK-DATA WALK-DATA PERIODIC-DATA

Case A Wavelet # Of candidates 0.846–225 0.789–178 0.904–8800

(# of points E # Of page accesses 0.816–4.49 0.787–5.18 0.896–26.9

of MBRs) Wall clock time 0.826–10.1 0.788–14.4 0.828–430

Case B DFT # Of candidates 0.859–379 0.798–320 0.886–3710

(# of points E # Of page accesses 0.824–5.11 0.793–6.98 0.892–9.93

of MBRs) Wall clock time 0.964–6.84 0.748–14.5 0.771–41.8

Case C Wavelet # Of candidates 1.02–876 0.748–39.0 0.868–8790

(e0 ¼ 0:25) # Of page accesses 0.885–8.12 0.714–2.76 1.24–20.3

Wall clock time 0.965–33.5 0.788–3.99 0.860–255

6See the case where selectivity ¼ 10@5, for example.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293 291

Storing only MBRs, FRM cannot exploit the
point-filtering effect. In contrast, Dual Match can
store every individual point in the index without
much storage overhead because the number of
points to be stored in the index is only about 1=o
as many as that of FRM. Here, each point
corresponds to a disjoint window of data se-
quences. By storing individual points, Dual Match
reduces false alarms drastically exploiting the
point-filtering effect.

We have proven the validity of Dual Match in
Theorem 1, which guarantees that Dual Match
perform subsequence matching without false dis-
missals. We also have derived the maximum
allowable window size of Dual Match in Lemma
5. Given the same minimum length of the query
sequence, the maximum window size of Dual
Match is about half that of FRM. Since the
smaller maximum window size causes more false
alarms due to the window size effect, Dual Match
shows performance slightly worse than that of
FRM in higher selectivities.

We have performed extensive experiments
using various types of data sets, feature extra-
ction functions, and the estimated tolerances e0

(used in FRM). In most cases, Dual Match
drastically reduces the number of candidates
and improved performance. In particular, for
lower selectivities (less than 10@4), Dual Match
reduces the number of candidates to as little as
1=8800 of that for FRM, reduces the number of
page accesses by up to 26.9 times, and improves
performance up to 430-fold. For selectivities
in between (10@4–10@2), Dual Match shows
performance slightly better than that of FRM.
On the other hand, for higher selectivities (more
than 10@2), it shows a very minor degradation
(less than 29%) by all three measures. This
degradation is mainly due to the window size
effect. In general, in large databases, users will
require low selectivities to find only small number
of similar subsequences. Thus, Dual Match will
be an effective tool for large database applications.
Overall, these results indicate that our approach
provides a new paradigm in subsequence matching
that improves performance significantly in
many variations and applications based on the
FRM approach.

Acknowledgements

We would like to thank Byoung-Yong Moon for
helping in revising an earlier English version of
this paper.

References

[1] R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity

search in sequence databases, Proceedings of the fourth

International Conference on Foundations of Data Orga-

nization and Algorithms, Chicago, Illinois, 1993,

pp. 69–84.

[2] R. Agrawal, K.-I. Lin, H. S. Sawhney, K. Shim, Fast

similarity search in the presence of noise, scaling, and

translation in time-series databases, Proceedings of the

21st International Conference on Very Large Data Bases,

Zurich, Switzerland, 1995, pp. 490–501.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The

r�-tree: an efficient and robust access method for points

and rectangles, Proceedings of the ACM SIGMOD

International Conference on Management of Data, Atlan-

tic City, New Jersey, 1990, pp. 322–331.

[4] S. Berchtold, C. Bohm, H.-P. Kriegel, The pyramid-

technique: towards breaking the curse of dimensionality,

Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, Seattle, Washington,

1998, pp. 142–153.

[5] K.-P. Chan, A.W.-C. Fu, Efficient time series matching by

wavelets, Proceedings of the 15th IEEE International

Conference on Data Engineering, Sydney, Australia, 1999,

pp. 126–133.

[6] K.W. Chu, M.H. Wong, Fast time-series searching with

scaling and shifting, Proceedings of the 15th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, Philadelphia, Pennsylvania, 1999,

pp. 237–248.

[7] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast

subsequence matching in time-series databases, Proceed-

ings of the ACM SIGMOD International Conference on

Management of Data, Seattle, Washington, 1994,

pp. 419–429.

[8] H.V. Jagadish, A.O. Mendelzon, T. Milo, Similarity-based

queries, Proceedings of the 14th ACM SIGACT-SIG-

MOD-SIGART Symposium on Principles of Database

Systems, San Jose, California, 1995, pp. 36–45.

[9] D. Rafiei, On similarity-based queries for time series

data, Proceedings of the IEEE 15th International Con-

ference on Data Engineering, Sydney, Australia, 1999,

pp. 410–417.

[10] B.-K. Yi, H.V. Jagadish, C. Faloutsos, Efficient retrieval of

similar time sequences under time warping, Proceedings of

the 14th IEEE International Conference on Data En-

gineering, Orlando, Florida, 1998, pp. 201–208.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293292

[11] D. Rafiei, A. Mendelzon, Similarity-based queries for time

series data, Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, Tucson,

Arizona, 1997, pp. 13–25.

[12] R. Weber, H.-J. Schek, S. Blott, A quantitative

analysis and performance study for similarity-search

methods in high-dimensional spaces, Proceedings of

the 24th International Conference on Very Large

Data Bases, New York City, New York, 1998, pp.

194–205.

[13] V. Gaede, O. Guenther, Multidimensional access methods,

ACM Computing Surv. (1998) 30(2) 170–231.

[14] D. Rafiei, A. Mendelzon, Efficient retrieval of similarity

time sequences using dft, Proceedings of International

Conference on Foundations of Data Organization, Kobe,

Japan, 1998, pp. 249–257.

Y.-S. Moon et al. / Information Systems 26 (2001) 279–293 293

