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Abstract

In this paper, we present a novel multi-modal histogram thresholding method in which no a priori knowledge about the number of clusters
to be extracted is needed. The proposed method combines regularization and statistical approaches. By converting the approaching histogram
thresholding problem to the mixture Gaussian density modeling problem, threshold values can be estimated precisely according to the
parameters belonging to each contiguous cluster. Computational complexity has been greatly reduced since our method does not employ
conventional iterative parameter refinement. Instead, an optimal parameter estimation interval was defined before the estimation procedure.
This predefined optimal estimation interval reduces time consumption while other histogram decomposition based methods search all feature
space to locate an estimation interval for each candidate cluster. Experimental results with both simulated data and real images demonstrate
the robustness of our method. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Essentially, image thresholding [1-3] is a pixel classifi-
cation problem. Its basic objective is to classify the pixels of
a given image into two classes: those pertaining to objects
and those pertaining to background. While one class
includes pixels with gray values that are below or equal to
a certain threshold value, the other class includes those with
gray values above the threshold value. Thresholding is a
popular tool for image segmentation. It is widely used in
halftone reproduction, automatic target recognition, design
of visual navigation system for autonomous land vehicle,
industrial application of computer vision, biomedical image
analysis, and content-based image retrieval system.

In general, threshold selection techniques can be broadly
divided into two categories: global and local thresholding. A
global thresholding technique [4] is the technique that
thresholds the entire image with a single threshold value,
whereas a local thresholding technique [5,6] is the one that
partitions a given image into sub-images and determines a
threshold value for each of these sub-images. Global thresh-
olding techniques may be point-dependent or region-depen-
dent. A thresholding method is point-dependent if the
thresholding value is determined solely from the pixels’
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gray tone as represented by gray-level histogram and is
independent of the gray tone of the neighborhood of a
pixel. On the other hand, a thresholding method is called
region-dependent if the threshold value is determined from
the local property within the neighborhood of a pixel.

The threshold selection techniques can be divided into
two groups, which are bilevel and multi-level. Bilevel
thresholding is used if an image has only one object
which is distinct from the background. The gray-level histo-
gram of these images will always be a bimodal distribution
located apparently far from each other. Hence, one threshold
value is sufficient to segment images into object and back-
ground. On the other hand, the gray-level histogram of an
image is composed of several distributions if the image has
a number of objects distinct from the background. Multi-
level thresholding techniques [7—11] have to be used to
segment multi-modal images into sub-images with those
representing unaffiliated objects in these images. The
major difficulty for multi-thresholding techniques is that
the number of objects is always unknown. Nevertheless,
threshold values selection will be a crucial problem if
objects in images are intermixed with each other.

In this paper, we propose a novel method to thresholding
multi-modal gray-level images. This proposed automatic
multi-thresholding method is a global and point-dependent
approach. In our method, gray-level histogram is smoothed
first in order to obtain existing local-minimum points as our
initial thresholding points. The smoothed gray-level
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Fig. 1. Three distinctively distributed histograms. They must have two
threshold values, T1 and T2, which separate this histogram into three
non-overlapping distributions.

histogram is identical to mixture Gaussian distribution that
has been formulated and proved by Zhuang et al. [12]. The
only assumption in Zhuang’s method is that the gray-level
histogram of a certain image is constructed by several Gaus-
sian distributions. That is, each object in an image will be a
Gaussian-like distribution in this gray-level histogram with
different mean, variance and probability values. Therefore,
the histogram decomposition problems can be considered as
fundamental issues relating to computer vision [17]. We use
statistical approach and some heuristic parameters to
decompose this histogram into non-overlapping distribu-
tions without a priori knowledge about the number of
objects. We must emphasize that our method does not
employ conventional parameter estimation procedure by
iterative parameter refinement. Instead, by estimating the
initial non-exact mean and variance values as cues for deter-
mining the initial threshold value, the skewness of certain
interval in this candidate distribution is calculated to quickly
locate the deterministic optimal estimation interval. After
optimally estimating the mean and variance values of each
distribution in the histogram, a maximum-likelihood based
decision criterion is applied to determine the optimal thresh-
old values among distributions. Finally, images are segmen-
ted into several non-overlapping sub-images with respect to
the specified threshold values.

The rest of this paper is organized as follows: in
Section 2, we state the basic representation of multi-
modal gray-level histogram. Some multi-thresholding
techniques are also described in this section. We will
introduce a Gaussian mixture densities decomposition
method in this section, which is the basis of our histo-
gram decomposition algorithm. A concrete algorithm of
automatic multi-modal gray-level histogram thresholding
is presented in Section 3. In Section 4, experiments
conducted on both simulated data and real images are
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Fig. 2. An overview of automatic multiple threshold selection algorithm.

demonstrated. Comparisons are also made with some
approaches in literatures. Finally, conclusions and
discussions are summarized in Section 5.

2. Multi-modal gray-level histogram analysis

Let I be a p X g gray-scale fingerprint image with G gray
levels and gray(x,y) be the gray value of pixel I(x,y) with
x=1,...,pand y = 1,...,q. Then, the gray-level histogram
H of image [ is of the form H = {H(j)|j € [1,G]}. H(1) to
H(G) represent the histogram probabilities of the observed
gray values from 1 to G, and H(g) = #{gray[/(x,y)] = g,
g=1..,Gx=1,...,pand y = 1,...,q}. Generally, there
will exist a number of ‘mountains’ in the histogram if it is a
multi-modal distribution. Each distribution in the histogram
will map to an object in the image. Fig. 1 shows an example
of three distinctive distributions in a gray-level histogram.
For any gray-level histogram with z distributions, the multi-
thresholding techniques are to automatically determine
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Fig. 3. An example which shows a Gaussian masking window with seven
bins. Each bin in this window is calculated by b; = 0.5(1 — cos(mk/p)).

n — 1 threshold values that are used to separate this
multi-modal histogram into n non-overlapping distribu-
tions.

Many automatic multi-thresholding techniques have been
proposed for various applications with different approaches.
Pal and Bhattacharyya [13] proposed a regularization
approach with both continuous and discrete formulations
for multi-modal histogram analysis. In their approach,
gray-level histogram is smoothed first. Then, the peaks
and valleys of the histogram can be extracted by a prede-
fined score function. Carlotto [14] also solved the multi-
thresholding problems by regularization approach. The
method obtains a multi-scale description of the histo-
gram by convoluting it with the second derivation of
the Gaussian filter with gradually increasing width.
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These two regularization methods obtain a set of local
maximums and local minimums, always peaks and
valleys, as their cues to select the best possible thresh-
olds by some predefined post-processing criteria. Statis-
tical approaches are the most widely used methods for
determining multiple threshold values. Based on the
understanding of the information extracted from the
histogram distributions, a set of threshold values can
be determined according to the parameters of each
distinctively distributed cluster in the histogram. Many
statistical approaches concerned with the problem of
determining the parameters of mixture distributions. In
other words, multi-modal histogram can be decomposed
into several non-overlapping distributions with respect
to the estimated parameters, which come from the histo-
gram itself. Render and Walker [15] have provided an
overview of various methods developed for the para-
meter estimation of mixture densities. The generalized
minimum volume ellipsoid (GMVE) clustering algo-
rithm [16], which identifies the least volume region
containing in the data space, is also introduced in the
field of computer vision. The MF-Estimator [12] is
another mixture density decomposition algorithm,
which is similar to the GMVE method. Both GMVE
and MF-Estimator estimate the parameters of distribu-
tions by modeling the histogram with normal distribu-
tions. The Kolmogorov—Smirnov test of fit is employed
for the comparison between the shape of extracted
distribution and that of an ideal cluster generated by a
Gaussian density. The best-fit cluster, which passed
Kolmogorov—Smirnov test, is then removed from the
feature space and a new iteration of cluster extraction
starts. The main drawbacks of these mixture decompo-
sition algorithms are their high computational complex-
ity due to the iterative parameter refinement until

45
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Fig. 4. (a) Original histogram distribution; and (b) smoother histogram after convoluting with a Gaussian masking window.
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Fig. 5. Optimal interval for parameter estimation. For each cluster in the histogram distribution, the searching window w with fixed length r slides from the
leftmost point toward the right end of the cluster. The interval with minimum absolute skewness value will become the optimal interval w”.

convergence. Moreover, the randomly selected initial
estimates probably will converge to incorrect values if
the initial estimates are not close enough to the desired
solution for the iterative systems.

From the literatures described earlier, we know that there
exist some major difficulties, which make multi-threshold-
ing an uneasy problem.

(A) The number of distinctive distributions, which repre-
sent objects in an image, is always unknown and is given
by supervision in some approaches.

(B) High computational complexity in determining
threshold values due to iterative parameter refinement
for each candidate cluster.

(C) The correctness of thresholding results still cannot be
measured by any criterion because the histogram is
randomly distributed.

In order to overcome these problems, we propose an
exceptional statistical approach. In our method, no iterative
parameter refinement is necessary because our method finds
the optimal estimation interval of each candidate cluster first
instead of random searching of estimation region. Thus, our
method can reduce computational complexity comparing to
the other histogram decomposition based methods.

For natural scene with large samples, we assume that the
observation comes from a mixture of n + 1 Gaussian distri-

butions, name f, having respective means and variances
(my, 0'12), ey (M1, a’,ﬂ 1) with respective proportions
Pq,...,P, ;. Therefore, the mixture distributions reflected
in the histogram will be in the form of

n+1

f=>

P _1<k—m,-)2
= V270 P72 o;

Our objective is to find the parameters, i.e. means,
variances, and proportions, to satisfy the minimization

min(|f — H|)

Then, by using these parameters, the optimal multi-thresh-
old values can be determined to make suitable segmenta-
tion.

An overview of our automatic multiple threshold selec-
tion algorithm is presented in Fig. 2. First, smooth the histo-
gram by convoluting it with a Gaussian filter. This
procedure prevents the detection of a lot of fake local mini-
mums and maximums. Then, we extract genuine local mini-
mums as our initial threshold values for further parameter
estimation. For each cluster, an optimal interval for deter-
ministic parameter estimation is determined beforehand by
calculating a measurement factor called skewness. For any
cluster in the histogram, there exists only one estimation
interval nearing the cluster center with the smallest absolute
skewness value. By using this optimal estimation interval,
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Fig. 6. Two distinctively distributed histogram.
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Table 1 Table 2

Parameters Generated data B-Spline  MF-Estimator Our method Generated data B-Spline MF-Estimator Our method

Mean 1 150 148.28 148.80 149.26 Mean 1 90 87.02 87.88 89.59

Variance 1 225 180.58 190.43 199.69 Variance 1 400 304.65 324.12 368.00

Probability 1 0.4 0.3793 0.3870 0.3935 Probability 1 0.3 0.2784 0.2858 0.2999

Mean 2 200 199.33 199.64 200.05 Mean 2 145 143.74 144.70 144.90

Variance 2 100 108.37 101.83 99.19 Variance 2 100 108.99 104.71 76.83

Probability 2 0.6 0.6207 0.6130 0.6065 Probability 2 0.3 0.3208 0.3190 0.2982

Threshold - 174 176 178 Mean 3 188 187.77 188.39 188.08
Variance 3 100 97.44 92.04 102.48
Probability 3 0.4 0.4063 0.3952 0.4019
Threshold - 119,165 122, 168 127, 166

we can predict the parameters representing clusters, i.e.

means, variances and probabilities, without iterative para- where

meter refinement. After determining these parameters, a 1 »

rnaxnpum-hkehhood based decision criterion is employed H() = P Z by Hi + 1)

to optimally determine a set of threshold values. P

3. Multi-modal histogram decomposition algorithm

In order to decompose a gray-level histogram into several
non-overlapping distributions, we have to find the local
minimums first and then perform further parameters estima-
tion tasks. However, the histogram distribution, which was
acquired from real world scene, is always anomalously
distributed. Hence, a histogram smoothing process is neces-
sary before performing the decomposition process. In our
method, we use a Gaussian kernel to smooth the histogram.

Let W, be a Gaussian masking window with 2p + 1 bins
and by, k=1,2,...2p + 1(p = 0,5, = 0,> b, = 1) be the
elements of W,.

The new gray-level histogram is calculated as the convo-
lution of H and W,.

H=HQW,

where ‘®’ denotes the convolution operation. Thus,
H = {H()|j € [1,G]} forms the smoothed histogram,

2000 T T

u=-—p

for i=p+1 to G—p. Fig. 3 is an example which
shows a Gaussian masking window with seven bins.
For 2p + 1 bins masking window, each bin can be
calculated by

b, = 0.5(1 — cos(mkl/p))

Fig. 4 shows the histograms before and after convolut-
ing with a Gaussian masking window of 21 bins (p =
10).

After the smoothed histogram H has been obtained, the
peaks and valleys in the histogram can be determined by the
following rule: for any gray value i, i € [1,G], H(@) is a
peak if H(i)> H(i—1) and H(@) = HG+ 1). On the
other hand, A(i) is a valley if H@G) < H@G— 1) and HG) =
HG+ 1).

Suppose there exists n distinct Gaussian clusters C;, i =
1,...,n, H must have n peaks, denoted by R(1), ..., R(n), and
n — 1 valleys, denoted as V(1),...,V(n — 1). Then, the
interval of C; in the smoothed histogram H will be [V( —
1), V(@) — 1], with V(0)=1 and V(n) = G + 1. We will
define an optimal estimation interval within each cluster
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Fig. 7. Three distinctively distributed histogram.
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Table 3

Generated data B-Spline MF-Estimator Our method
Mean 1 75 68.2811  71.8638 73.5629
Variance 1 400 235.8946 288.1821 315.7168
Probability 1 0.2 0.1632 0.1884 0.2005
Mean 2 128 130.2739  127.8450 127.8056
Variance 2 225 301.5959 181.5720 156.0945

Probability 2 0.5 0.6381 0.5340 0.5068

Mean 3 170 180.0706 173.7722 172.6219
Variance 3 324 143.2174 205.1889 218.9188
Probability 3 0.3 0.1987 0.2776 0.2927
Threshold - 92,164 99, 153 102, 151

to estimate the parameters that can represent the distribution
of the clusters.

For a certain Gaussian cluster C;, i = 1,...,n, the range
has been defined previously by [V(i — 1), V(i) — 1]. The
conventional confidential interval of cluster mean n can
be predicted by sample mean 7; and sample standard devia-
tion &; with student-# distribution and confidence coefficient
a for s samples.

Ty =ty = i = 171y F 11— )t
i ~ la-an) NG i Tl
This confidential interval 7 can be a sample interval to

estimate the initial mean and variance of cluster C;.

Unfortunately, the conditions of mixtures are always
unknown. For the distributions which are too close to be
separated, the aliasing problem will occur while utilizing
this confidential interval i as the initial guess. Nevertheless,
the sample mean 77; and the sample variance & ; are obtained
from the range of C; without any limitations. It will probably
lead to a biased initial guess and will lose some genuine
cluster members. Thus, the interval of estimation should
be selected carefully for precise estimation.

For any univariate distribution f{x) as introduced in the
statistical theory, the central moments are defined as w, =
E{(x =m)"} = [Z (x = m)"f(x)dx.

If the random variable x is a discrete type with unknown
mean value, u, can be rewritten by its sample mean, 7, as
My = i pilx; — m), with m = >, p;x; where p; is the occur-
rence probability of x;.

The skewness, B, involves the second and third order

central moments and can be defined as 8; = M3/\/,LT§. Skew-
ness is a symmetric measurement of distributions. 8; > 0
means that the distributions are left-biased, and 8, <0
means that the distributions are right-biased. For univariate
normal distributions N(m, o), since f(—x) = f(x), the odd-
order central moments will all be zeros. That is, u; =
E{(x — n‘1)3 } = 0. Thus, B, will be zero if this distribution
is a normal distribution.

For mixture Gaussian distributions with clusters C;,
i=1,...,n, the overall skewness for the range of each
cluster is meaningless because the neighborhood clusters
at the margins of both sides contaminate each Gaussian
cluster. However, the skewness is also close to zero at a
certain interval which is near the center of each cluster.
Therefore, this special interval should be determined
first to obtain optimal initial estimation of the cluster
centers and then perform other further estimations and
decisions.

For the purpose of choosing the optimal interval, the
length should be determined first. It can be easily proved
that the length of this interval has no effect to the mean value
estimation if this length is sufficiently large. For random
variable y = g(x), the mean value is given by E{g(x)} =
f°foo g(x)f (x)dx. Suppose that f(x) is negligible outside an
interval (m — &,m + &) and g(x) = g(m) for this specified
interval if x is concentrated near its mean m. In this case, the
mean of g(x) becomes

m+ &

E{g)} =glm)|  fx)dx = g(m)
By Tchebycheff inequality, for any &> 0 we have P{|x —
ml = e} = (0’2/82).

This means the probability that x is outside an arbitrary
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Fig. 8. Three non-distinctively distributed histogram.
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interval (m — &,m + &) is negligible if the ratio o/¢ is suffi-
ciently small.

For each cluster C; in Gaussian mixture, we select the
interval for initial cluster’s mean value estimation by length
r; = (1/2)(V(@@) — V(i — 1) — 1). This length, r;, possesses
the properties of r; > o; and r; oc ;. The length of interval
satisfies Tchebycheff inequality and can be used as the
length of optimal parameter estimation interval.

Now, let us define a searching window w with length r; to
search the location of optimal estimation interval of cluster
C;. The searching window w which starts by placing the
leftmost point at V(i — 1) slides toward the end of cluster
V(i) — 1 by moving one bin at a time. The searching process
stops if the rightmost point reaches the end of cluster V(i) —
1. There will be V(@) — V(i —1)—1—r; searching
windows. Meanwhile, the skewness (3, is calculated for
each searching window wi, j=12,., V@) - Vi—-1) -
1 — r;, denoted by B;(w;). For our problem, the skewness
of each searching window can be calculated as

D iH(i)

- iij
m, = << >
i Z H()
iEWf
D G — i)' H(i)
taw) = — and Bwy = )

Therefore, the optimal interval w* for estimating the mean
and variance of each cluster is determined by the interval
which has minimum absolute skewness value. That is

w' = min 1B (w))|

The optimal estimation interval w; of cluster C; will be
located at [a;, b;). Fig. 5 is an example which shows the
position of searching windows w and the location of optimal
estimation interval w” for one distribution.

Then the initial mean, variance and proportion of this
cluster can be optimally determined by

b;
> kH(k)
~ _ k=a;
mi - hi s
> H(k)
k=a;
b; b;
D (k= my)*H(k) > H(k)
6} = = and P, = —k:ga’

H(u)
1

u=

b;
D Hk
k=a;

For the ith observation H(i), it is more likely generated by

cluster C; if

P, 1 (i — 1y )2
(.4 - =
\/ZTfa'k P 2 é\-k

_ P 1(i—m\
L —expq— =
Tt A

forl=j=n1=k=n,andj # k.

If there are n clusters, we will obtain » — 1 threshold
values T;, i = 1,2,...,n — 1.

Therefore, the ith threshold 7; can be determined as
follows:

T; = max{k : H(k) is generated by the ith Gaussian cluster}

Finally, for each cluster C;, i = 1,2, ..., n, the range becomes
[T(G — 1), T@) — 1] with T(0) = 1 and T(n) = g. The mean,
variance and proportion of the cluster can then be deter-
mined by the following equations:
D iH()
_i€G

=

D = m)*H()

> H()

2 i€C; i€C;
H() £ .
i; ;mo
=

4. Experimental results

To verify the validity of the proposed histogram decom-
position algorithm, several experiments were conducted on
both artificial randomly generated data and real image data.
It must be emphasized that no a priori knowledge about the
number of clusters is assumed in our algorithm. As will be
seen, the algorithm can automatically find a cluster in the
feature space if there indeed exists one.

4.1. Experiments with simulated data

In this sub-section, we demonstrate the performance of
the proposed histogram decomposition algorithm by using
randomly generated data sets. We will present some experi-
mental results with pure Gaussian mixture distributions as
our simulated gray-level histogram. As will be seen, the
proposed histogram decomposition algorithm can find
those parameters, i.e. my, oy, Py,...,m;, 0;, P;, no matter
whether these Gaussian distributions are distinct or not.
Then, use these parameters to determine the threshold
values without a priori knowledge about the cluster number.

In our experiments, the point numbers of each cluster is
its probability times 100,000 points. For example, a cluster
with probability 0.5 has 50,000 points. The parameter esti-
mation results are compared with two well-known methods,
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Fig. 9. (a) Original image of the earth; (b) gray-level histogram of the

image; and (c) smoothed histogram. The threshold values are 78, 129 and
168. (d) The land; (e) the sea; (f) clouds; and (g) typhoon.

the MF-Estimator and B-Spline methods. Since most of the
clusters are considered to be overlapped, the estimated prob-
ability of each cluster will be an important indication about
the correctness for the threshold value. It means that the
thresholding processes have found the optimal threshold
values if the estimated probability of each cluster is close
to the designed probability.

As shown in Table 1, two clusters were artificially gener-
ated with unequal probabilities in the feature space by the
designed means and variances. The distribution of these
points is shown in Fig. 6. This is a distinctively distributed
case. The parameter estimation results after applying the
histogram decomposition algorithm are tabulated in Table
1. The estimated means and variances generated by our
method differ slightly comparing to the designed data due
to the randomness of the random data generation. The esti-
mated probability of each cluster is almost the same as the
designed value. This means that the histogram decomposi-
tion algorithm has found the best threshold values for this
case. On the other hand, the parameters that are estimated by
either MF-Estimator or B-Spline methods are not as precise
as our method.

As seen in Fig. 7 and Table 2 that the randomly generated
simulated data are three distinctively distributed clusters
and only two of these three clusters have equal probability.
The thresholding result and the estimated parameter values
are tabulated in Table 2.

Table 3 shows the designed parameters of three non-
distinctively distributed clusters with unequal probabilities.
Shown in Fig. 8 is the histogram of the distributions. The
estimated parameters are almost perfectly correct with this
obscure distribution and the estimation and segmentation
results are superior to the other two methods. In this case,
the small estimated parameter difference will result in large
cluster probability inaccuracy because clusters 2 and 3 are
highly overlapped. As summarized in Table 3, our method
can always estimate those parameters precisely and find the
best threshold values no matter these distributions are
distinctively distributed or not.

In the experiments of simulated data, B-Spline method
finds local maximum and local minimum points within the
histogram distribution. However, local minimumes, i.e. the
threshold values generated by B-Spline method, can only
represent the turning over points between two contiguous
distributions. From the result of estimated parameters, local
minimums cannot be used as the threshold values because
the probability of each candidate distribution is far from the
generated data sets especially for non-distinctively distrib-
uted case.

For another maximum likelihood estimation based
method—the MF-Estimator, the parameter estimation
results are also not as accurate as our method. The major
disadvantage of MF-Estimator is mainly due to its randomly
selected initial estimation point. With this unpredictable
initial guess, the interval for further estimation tasks is
uncontrollable, even this estimation interval can pass the



J.-H. Chang et al. / Image and Vision Computing 20 (2002) 203-216 211
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Fig. 9. (continued)

normality test, i.e. the Kolmogorov—Smirnov test [17]. This
property makes the estimation results of MF-Estimator can
only be close to the genuine data but not exact.

4.2. Experiments with real image data

In this sub-section, we present some experimental results
with real image data. Each image was taken and quantized
into 256 gray levels. Gray level 1 represents the darkest and
gray level 256 represents the brightest pixels. It must be
emphasized that the employed images are not especially
well suited for multi-thresholding. The gray-level histo-
grams of these image, which are acquired from the real
world scene, are used to conduct the experiments to verify
that the gray-level histogram comply with the mixture Gaus-
sian distribution, i.e. our assumption, and can be thresholded

by using the proposed method. There are three images that
we used in our experiments. They are the earth, blood cells
and cameraman as shown in Figs. 9—11, respectively. In
each figure, (a) is the original image and (b) is the gray-
level histogram of the image. Each histogram of the image is
smoothed by convoluting it with a 21 bins Gaussian mask-
ing window (p = 10) as shown in (c). For multi-threshold-
ing, the smoothed gray-level histogram has been
decomposed into a few non-overlapping clusters character-
ized by their cluster centers m;, variances o} and probability
P;. Then, the optimal threshold values are determined after
applying the statistical decision rules as described in Section
4.1. The rest of the images in each figure shows the unaffi-
liated images generated after thresholding. The result is just
like a global segmentation of the image. Let the original
image be I and the histogram decomposition algorithm
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Fig. 10. (a) Original image of blood; (b) gray-level histogram of the image; and (c) smoothed histogram with threshold values. The threshold values are 128
and 184. (d) The blood cells; (e) blood-plasma; and (f) the cell membrane.
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(d)

69

(e)

Fig. 10. (continued)

has found n clusters. They will have n non-overlapping sub-
images, namely /; i = 1, ..., n, which are separated by n — 1
threshold values. We can reconstruct the original image by
interlapping all sub-images. That is, I = >, I;. Note that
the number of thresholds used, i.e. the number of clusters, is
not known a priori since different histograms require differ-
ent decompositions. It must be emphasized that the
employed images are not especially well suited for multi-
thresholding.

5. Conclusions

In this paper, we present a multi-modal histogram thresh-
olding method based on the combination of regularization
and statistical approaches. The multi-modal histogram is

decomposed into several non-overlapping distributions by
modeling it with a mixture Gaussian density. Our method
employs a predefined optimal estimation interval to predict
the parameters of each cluster in order to reduce the high
computational complexity of conventional iterative para-
meter refinement procedure. Although the histogram is
highly contaminated by the contiguous distributions, experi-
ments with simulated data demonstrate that our method can
always find the best threshold values and the parameters of
predefined distributions, i.e. means, variances and probabil-
ities, of each cluster in the histogram comparing to other
methods. Experiments with real images reveal the robust-
ness of the proposed method because the histograms of real
world scene generally do not come from genuine Gaussian
mixture densities as our assumption. We believe that our
method can also be applied to other applications while the
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Fig. 11. (a) Original image of the cameraman; (b) gray-level histogram of the image; and (c) the smoothed histogram. Threshold values are 49, 80, 140 and
177. ((d)—(h)) Sub-images of these five clusters.
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Fig. 11. (continued)
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estimation of parameters is necessary. There exists one issue
that needs to be discussed in this paper. That is, the factor
for smoothing a histogram is heuristically determined which
will probably result in different results if the factor changes.
Actually, our method chooses the particular factor that can
conform to almost all gray-level images and then can gener-
ate the best results. Our further research will focus on theo-
retical analysis and automatically determine different
smoothing factors for distinct images.
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