
Number-Theoretic Constructions of Efficient
Pseudo-Random Functions

MONI NAOR

Weizmann Institute of Science, Rehovot, Israel

AND

OMER REINGOLD

Weizmann Institute of Science, Rehovot, Israel

Abstract. We describe efficient constructions for various cryptographic primitives in private-key as
well as public-key cryptography. Our main results are two new constructions of pseudo-random
functions. We prove the pseudo-randomness of one construction under the assumption that factoring
(Blum integers) is hard while the other construction is pseudo-random if the decisional version
of the Diffie–Hellman assumption holds. Computing the value of our functions at any given point
involves two subset products. This is much more efficient than previous proposals. Furthermore,
these functions have the advantage of being in TC0 (the class of functions computable by constant
depth circuits consisting of a polynomial number of threshold gates). This fact has several interesting
applications. The simple algebraic structure of the functions implies additional features such as a
zero-knowledge proof for statements of the form “y = fs(x)” and “y �= fs(x)” given a commitment
to a key s of a pseudo-random function fs .

Categories and Subject Descriptors: E.3 [Data Encryption]; F.1.3 [Computation by Abstract
Devices]: Complexity Measures and Classes; F.2 [Analysis of Algorithms and Problem Com-
plexity]; G.3 [Probability and Statistics]; G.4 [Mathematical Software]

General Terms: Algorithms, Security, Theory

Additional Key Words and Phrases: Pseudo-random functions, factoring, decision Diffie–Hellman,
constant-depth threshold circuits, natural proofs, learning theory

A preliminary version of this article appeared as “Number-theoretic constructions of efficient pseudo-
random functions,” In Proceedings of the 38th IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, Calif., 1977, pp. 458–467.
The research of M. Naor was supported by grant no. 356/94 from the Israel Science Foundation,
administered by the Israeli Academy of Sciences.
Some of the research of O. Reingold was performed while he was at AT&T Labs–Research, Florham
Park, New Jersey.
The research of O. Reingold was supported by a Clore Scholars award.
Authors’ current address: Department of Computer Science and Applied Math, Weizmann Institute
of Science, Rehovot 76100, Israel, e-mail: {naor;omer.reingold}@wisdom.weizmann.ac.il.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0004-5411/04/0300-0231 $5.00

Journal of the ACM, Vol. 51, No. 2, March 2004, pp. 231–262.

232 M. NAOR AND O. REINGOLD

1. Introduction

This article studies the efficient construction of several fundamental cryptographic
primitives. Our main result are two related constructions of pseudo-random func-
tions based on number-theoretic assumptions. The first construction gives pseudo-
random functions iff the decisional version of the Diffie–Hellman assumption
(DDH-Assumption) holds. The second construction is at least as secure as the
assumption that factoring the so called Blum-integers is hard.1 Having efficient
pseudo-random functions based on factoring is very desirable since this is one of
the most established concrete intractability assumption used in cryptography. The
construction based on the DDH-Assumption is also attractive since these pseudo-
random functions are even more efficient (in that they have a larger output size)
and since the construction is linear preserving (see Remark 4.1). We consider the
study of the DDH-Assumption (which was recently used in quite a few interesting
applications) to be one of the contributions of this article.

1.1. PROPERTIES OF OUR PSEUDO-RANDOM FUNCTIONS. Pseudo-random func-
tions were introduced by Goldreich et al. [1986] and have innumerable applica-
tions (e.g., Bellare and Goldwasser [1990], Blum et al. [1994], Chor et al. [1994],
Goldreich [1987], Goldreich and Ostrovsky [1996], Goldreich et al. [1985], Luby
and Rackoff [1988], and Naor and Reingold [1999a]). A distribution of functions is
pseudo random if: (1) It is easy to sample functions according to the distribution and
to compute their value, (2) It is hard to tell apart a function sampled in accordance
with this distribution from a uniformly distributed function given access to the
function as a black-box. The properties of our new pseudo-random functions are:

Efficiency. Computing the value of the function at a given point is comparable
with two modular exponentiations and is more efficient by an �(n) factor than
any previous proposal (that is proven to be as secure as some standard intractability
assumption). This is essential for the efficiency of the many applications of pseudo-
random functions.

Depth. Given appropriate preprocessing of the key, the value of the functions
at any given point can be computed in TC0, compared with TC1 previously (in Naor
and Reingold [1999b]). Therefore, this construction:

(1) achieves reduced latency for computing the functions in parallel and in hardware
implementations.

(2) has applications to computational complexity (i.e., Natural Proofs [Razborov
and Rudich 1997]) and to computational learning-theory [Kearns and Valiant
1994].

Simplicity. The simple algebraic structure of the functions implies additional
desirable features. To demonstrate this, we showed in Naor and Reingold [1997] a
simple zero-knowledge proof for the value of the function and other protocols. We
suggest the task of designing additional protocols and improving the current ones
as a line for further research.

1 In fact, we prove the security of the second construction based on a generalized version of the com-
putational DH-Assumption (GDH-Assumption). However, breaking the GDH-Assumption modulo, a
composite would imply an efficient algorithm for factorization (see Biham et al. [1997] and Shmuely
[1985]).

Constructions of Efficient Pseudo-Random Functions 233

More on the motivation of such a construction and on pseudo-random functions
in general can be found in Section 2.2.

1.2. THE DDH-ASSUMPTION. As mentioned above, we base our constructions
on two number-theoretic assumptions: Factoring and the DDH-Assumption. While
the assumption that factoring is hard is a well-established cryptographic assump-
tion that needs little introduction the DDH-Assumption is relatively new. In the
following few paragraphs, we briefly describe the DDH-Assumption, its different
applications and the current knowledge on its security. In addition, we briefly de-
scribe the contribution of this article to the study of this assumption. A more detailed
description appears in Section 3.1.

The DH-Assumption was introduced in the context of the Diffie and Hellman
[1976] key-exchange protocol (among quite a few of the fundamental ideas and
concepts of public-key cryptography). Any method for exchanging even a single
bit, using this protocol, relies on the computational version of the DH-Assumption
(CDH-Assumption). By assuming its (stronger) decisional version one can ex-
change many bits. For concreteness, we consider the DDH-Assumption in a sub-
group of Z∗

P (the multiplicative group modulo P) of order Q, where P and Q are
large primes and Q divides P − 1. For such P and Q the DDH-Assumption is:

There is no efficient algorithm that, given 〈P, Q, g, ga, gb〉, distin-
guishes between ga·b and gc with non-negligible advantage, where g
is a uniformly chosen element of order Q in Z∗

P , and a, b and c are
uniformly chosen from Z Q (naturally all exponentiations are in Z∗

P).

Note that this assumption does not hold when g is a generator of Z∗
P .

It turns out that the DDH-Assumption was assumed in quite a few previous
works (both explicitly and implicitly). All these applications rely on the average-
case assumption described above. In Section 3.3, we show that for any given P and
Q the DDH-assumption can be reduced to its worst-case version:

There is no efficient algorithm that, given 〈P, Q, g, ga, gb, gc〉, decides
with overwhelming success probability whether or not c = a · b for
every a, b and c in Z Q and every element, g, of order Q in Z∗

P .

The randomized reduction we describe is based on the random-self-reducibility
of the DDH-Problem that was previously used by Stadler [1996]. This reduction
may strengthen our confidence in the DDH-Assumption and in the security of its
many applications. Additional evidence to the validity of the DDH-Assumption lies
in the fact that it endured the extensive research of the related CDH-Assumption. To
some extent, the DDH-Assumption is also supported by the results on the strength of
the CDH-Assumption in several groups [Boneh and Venkatesan 1996; Maurer and
Wolf 1999; McCurley 1988; Shmuely 1985] (even though there exist groups where
the DDH-Assumption does not hold whereas the CDH-Assumption still seems valid
[Joux and Nguyen 2001]), and by additional results [Boneh and Venkatesan 1996;
Canetti et al. 1997; Shoup 1997]. For instance, Shoup [1997] showed that the DDH-
Problem is hard for any “generic” algorithm. However, a main conclusion of this
article is that the DDH-Assumption deserves more attention since it implies the
security of many attractive cryptographic constructions.

The most obvious application of the DDH-Assumption is to the Diffie–Hellman
key-exchange protocol and to the related public-key cryptosystem [El Gamal 1985].

234 M. NAOR AND O. REINGOLD

In the El Gamal cryptosystem, given the public key ga , the encryption of a message
m is 〈gb, ga·b ·m〉. In Section 3, we show how to adjust this cryptosystem in order to
obtain a probabilistic encryption-scheme whose semantic security (see Goldwasser
and Micali [1984]) is equivalent to the DDH-Assumption.2 The price of encrypting
many bits using the El Gamal cryptosystem is a single (or two) exponentiation. This
is comparable with the Blum–Goldwasser cryptosystem [Blum and Goldwasser
1984]. Other applications that previously appeared are Bellare and Micali [1990],
Brands [1993], Canetti [1997], Franklin and Haber [1996], Steiner et al. [1996],
and Stadler [1996], and recently Cramer and Shoup [1998] (we describe these
applications in Section 3.1, see also the excellent survey of Boneh [1998]).

To previous applications, one can add a pseudo-random generator [Blum and
Micali 1984; Yao 1982] that practically doubles the input length and a pseudo-
random synthesizer (see definition in Naor and Reingold [1999b]) whose output
length is similar to its arguments length. Essentially, the generator is defined by
G P,g,ga (b) = 〈gb, ga·b〉 and the synthesizer by SP,g(a, b) = ga·b. Both these con-
structions are overshadowed by our new construction of a very efficient family of
pseudo-random functions. The pseudo-random function is defined by n + 1 values,
〈a0, a1, . . . , an〉, chosen uniformly in Z Q . The value of the function on an n-bit
input x = x1x2 · · · xn is essentially

fP,g,a0,a1···an (x)
def= (

ga0
)∏

xi =1 ai
.

For some applications, we still need to hash this value as described in Section 4.1.
Note that, after appropriate preprocessing, the computation required consists of two
subset products. This can be done in TC0 (see Section 4.2). The simple structure of
the functions gives several attractive properties as was shown in Naor and Reingold
[1997] (see further details in Section 2.2).

1.3. THE GDH-ASSUMPTION AND FACTORING. In Section 5, we suggest a re-
lated construction of pseudo-random functions that is based on the (computational)
GDH-Assumption. This generalization of the DH-Assumption was previously con-
sidered in the context of a key-exchange protocol for a group of parties (see, for
example, Shmuely [1985] and Steiner et al. [1996]). The GDH-Assumption is
implied by the DDH-Assumption (as shown in Steiner et al. [1996] and in this
article) but the assumptions are not known to be equivalent. In addition, the GDH-
Assumption modulo a Blum-integer is not stronger than the assumption that factor-
ing Blum-integers is hard (see Biham et al. [1997] and Shmuely [1985]). This im-
plies an attractive construction of pseudo-random functions that are at least as secure
as Factoring:

Let N be distributed over Blum-integers (N = P · Q, where P and Q are
primes and P = Q = 3 mod 4) and assume that (under this distribution) it is
hard to factor N . Let g be a uniformly distributed quadratic residue in Z∗

N , let

a = 〈a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1〉 be a uniformly distributed sequence of 2n
elements in [N]

def= {1, 2, . . . , N } and let r be a uniformly distributed bit string of

2 The semantic security of the original cryptosystem is equivalent to the DDH-Assumption only when
the message space is restricted to the subgroup generated by g.

Constructions of Efficient Pseudo-Random Functions 235

the same length as N . Then the Binary function, fN ,g,
a,r , is pseudo-random. Here
the value of fN ,g,
a,r on any n-bit input, x = x1x2 · · · xn , is defined by:

fN ,g,
a,r (x)
def=

(
g

∏n
i=1 ai,xi

)
� r

(� denotes the inner product mod 2).
This construction was recently improved by Naor et al. [2000]. The work in

Naor et al. [2000] provides a method of expanding the one bit output of fN ,g,
a,r
to polynomially many bits while paying only a small overhead in the complexity
of the evaluation (i.e., one modular multiplication for each additional output bit).
In particular, this implies a length-preserving pseudo-random function that is at
least as secure as Factoring whose evaluation requires only a constant number of
modular multiplications per output bit.

1.4. PREVIOUS WORK. In addition to introducing pseudo-random functions,
Goldreich et al. [1986] provided a construction of such functions (GGM-
Construction) based on pseudo-random generators. Naor and Reingold [1999b]
recently showed a parallel construction based on a new primitive called a pseudo-
random synthesizer. Under concrete intractability assumptions like “factoring is
hard” this construction gives pseudo-random functions in TC1. Our work is moti-
vated by Naor and Reingold [1999b] both in the task of reducing the depth of the
pseudo-random functions and in the construction itself (see Section 5.2). Parallel
constructions of other cryptographic primitives were provided by Impagliazzo and
Naor [1996] based on the hardness of subset sum and factoring, and by Blum et al.
[1994] based on hard-to-learn problems.

The construction of this article is not only more parallelizable than the concrete
constructions based on Goldreich et al. [1986] and Naor and Reingold [1999b], but
it is also much more efficient. Though this construction seems very different than
the constructions of Goldreich et al. [1986] and Naor and Reingold [1999b], we
were able to relate the proof of security of this construction to both Goldreich et al.
[1986] and Naor and Reingold [1999b] (see Sections 4.1 and 5).

It turns out that there are a number of researchers who observed that the average-
case DDH-Assumption yields pseudo-random generators with good expansion.
One such construction was proposed by C. Rackoff (unpublished). A different
construction is suggested by Gertner and Malkin [1997]. This construction is
similar to the pseudo-random generator one gets by scaling down our pseudo-
random functions.

1.5. ORGANIZATION. In Section 2, we describe the notation and conventions
used in this article. In Section 2.2, we describe some applications and constructions
of pseudo-random functions and the motivation for our construction. In Section 3,
we further consider the DDH-Assumption and show a simple randomized reduction
between its worst-case and average-case. In Section 4, we describe a construction
of pseudo-random functions based on the DDH-Assumption, prove its security
and consider its complexity. In Section 5, we define the GDH-Assumption and
show a related construction of pseudo-random functions based on this assumption.
In Section 6, we consider some of the possible features of our pseudo-random
functions and suggest directions for further research.

236 M. NAOR AND O. REINGOLD

2. Preliminaries

2.1. NOTATION AND CONVENTIONS

—For any integer N the multiplicative group modulo N is denoted by Z∗
N and the

additive group modulo N is denoted by Z N .
—For any integer k, denote by [k] the set of integers - {1, 2, . . . , k}. For any two

integers k < m, denote by [k..m] the set of integers - {k, k + 1, . . . , m}.
—For any two bit-strings of the same length, x and y, the inner product mod 2 of

x and y is denoted by x � y.

2.2. PSEUDO-RANDOM FUNCTIONS. As mentioned in the introduction, our main
result is a construction of a pseudo-random function that is efficient, has shallow
depth and is simple. We devote this section to motivate such a construction and
to describe previous constructions and applications of pseudo-random functions.
Good references on pseudo-random functions and pseudo-randomness in general
are Goldreich [1995, 1998] and Luby [1996].

The concept of a pseudo-random function-ensemble was introduced by Goldreich
et al. [1986]. Loosely, this is an efficient function-ensemble that cannot be efficiently
distinguished from the uniform function-ensemble by an adversary that has access
to the functions as a black-box (see Definition 2.1). In addition, Goldreich et al.
[1986] provided a construction of pseudo-random functions (GGM-Construction).
This construction uses pseudo-random generators [Blum and Micali 1984; Yao
1982] as building blocks, which in turn can be obtained from any one-way function
(as shown by Hastad et al. [1999]).

A pseudo-random function is a powerful cryptographic primitive that can re-
place functions chosen truly uniformly at random in many applications. Probably,
the most notable applications of pseudo-random functions are in private-key cryp-
tography. They provide parties who share a common key straightforward protocols
for sending secret messages to each other, for identifying themselves and for authen-
ticating messages [Brassard 1988; Goldreich et al. 1985; Luby 1996]. As shown by
Luby and Rackoff [1988], it is possible to efficiently construct pseudo-random per-
mutations (which, in particular, can be used as block-ciphers) from pseudo-random
functions (see also Naor and Reingold [1999a] for an “optimal” construction).
However, pseudo-random functions have many other applications including appli-
cations in public-key cryptography. For example, Bellare and Goldwasser Bellare
and Goldwasser [1990] showed how to use pseudo-random functions and a non-
interactive zero-knowledge proof of their values to construct digital-signatures.
Another interesting example was given by Goldreich [1987] who showed how to
eliminate the state in the Goldwasser-Micali-Rivest signature scheme (the tech-
nique of Goldreich [1987] is very general). For some of the additional applications
of pseudo-random functions, see Blum et al. [1994]; Chor et al. [1994]; Goldreich
[1987]; Goldreich and Ostrovsky [1996].

For quite a while, the GGM-Construction was the only known construction of
pseudo-random functions (that was proven to be as secure as some general or
concrete intractability assumption). Motivated by the inherent sequentiality of the
GGM-Construction, Naor and Reingold [1999b] recently showed a parallel con-
struction based on a new primitive called a pseudo-random synthesizer. In addition,
they showed how to construct pseudo-random synthesizers in parallel from gen-
eral cryptographic-primitives (such as trapdoor permutations) and based on several

Constructions of Efficient Pseudo-Random Functions 237

concrete intractability assumption. Their concrete constructions give NC2 (or ac-
tually TC1) pseudo-random functions. In fact, our work is motivated by Naor and
Reingold [1999b], as described in Section 5.2.

The construction of this article gives pseudo-random functions computable in
TC0 (given appropriate preprocessing). We briefly summarize part of the discussion
that appears in Naor and Reingold [1999b] on the applications of parallel pseudo-
random functions:

—It is likely that pseudo-random functions will be implemented in hardware (as
is the case for DES). In such implementations, having shallow-depth pseudo-
random functions implies reduced latency in computing those functions which,
for some applications (such as the encryption of messages on a network),
is essential.

—As was observed by Valiant [1984], if a concept class contains pseudo-random
functions, then it cannot be learned: There exists a distribution of concepts,
computable in this class, that is hard for every efficient learning algorithms, for
every “nontrivial” distribution on the instances even when membership queries
are allowed. Notice that the unlearnability result implied by the existence of
pseudo-random functions is very strong. Weaker unlearnability results for NC1

and TC0, based on other cryptographic assumptions, were obtained in Angluin
and Kharitonov [1995], Kharitonov [1993], and Kearns and Valiant [1994]. It is
also interesting to compare with the result of Linial et al. [1993], who showed
that AC0 can be learned in time slightly super-polynomial under the uniform
distribution on the examples.

—Another application of pseudo-random functions in complexity was suggested
by Razborov and Rudich [1997]. They showed that if a circuit class contains
pseudo-random functions (that are secure against a subexponential-time adver-
sary), then there are no (what they called) Natural Proofs (which include all previ-
ously known lower bound techniques) for separating this class from P/poly. We
therefore get from our construction that if the GDH-Assumption holds against
a subexponential-time adversary (and in particular if factoring is sufficiently
hard), then there are no Natural Proofs for separating TC0 from P/poly.

We note that one can extract a similar result (assuming the hardness of factor-
ing) from the work of Kharitonov [1993], which is based on the pseudo-random
generator of Blum et al. [1986].

Except of being more parallelizable, our construction has two additional advan-
tages over previous ones:

(1) It is efficient: computing the value of the function at any given point is com-
parable with two exponentiations. This is the first construction that seems effi-
cient enough to be implemented and indeed these functions were implemented
by Langberg [1998]. Given the many applications of pseudo-random func-
tions it is clear that having efficient pseudo-random functions is an impor-
tant goal.

A somewhat surprising fact is that although our construction is much more
efficient than previous ones it is still closely related to the GGM-Construction
and to the construction of Naor and Reingold [1999b]. The connection with
previous constructions is described in Sections 4.1 and 5.2.

238 M. NAOR AND O. REINGOLD

(2) It has a simple algebraic structure. To see our main motivation here, consider the
Bellare–Goldwasser signature scheme. The public key in this scheme contains
a commitment for a key s of a pseudo-random function. The signature for a
message m is composed of a value y and a noninteractive zero-knowledge proof
that y = fs(m). In order for this scheme to be attractive, we must have a simple
non-interactive zero-knowledge proof for claims of the form y = fs(m). In
this and other scenarios we might wish to have additional properties for the
functions such as a simple function-sharing scheme in the sense of De Santis
et al. [1994]. It seems that for such properties to be possible we need a simple
construction of pseudo-random functions.

In Naor and Reingold [1997], we considered some desirable features of
pseudo-random functions. We also presented preliminary results in obtaining
these features for our construction of pseudo-random functions: (1) A rather
simple zero-knowledge proof for claims of the form y = fs(m) and y �=
fs(m). (2) A way to distribute a pseudo-random function among a set of parties
such that only an authorized subset can compute the value of the function at
any given point. (3) A protocol for “oblivious evaluation” of the value of the
function: Assume that a party, A, knows a key s of a pseudo-random function.
Then A and a second party, B, can perform a protocol during which B learns
exactly one value fs(x) of its choice whereas A does not learn a thing (and,
in particular, does not learn x). This protocol was subsequently simplified in
Naor and Pinkas [1999]. We consider the task of improving these protocols and
designing additional ones to be an interesting line for further research.

2.2.1. Definition of Pseudo-Random Functions. For the sake of concreteness,
we include the definition of pseudo-random functions almost as it appears in
Goldreich [1995, 1998]:

Definition 2.1 (Efficiently Computable Pseudo-Random Function Ensemble).
Let {An, Bn}n∈N be a sequence of domains and let F = {Fn}n∈N be a function
ensemble such that the random variable Fn assumes values in the set of An → Bn
functions. Then F is called an efficiently computable pseudo-random function
ensemble if the following conditions hold:

(1) (pseudo-randomness) for every probabilistic polynomial-time oracle machine
M, every constant c > 0, and all but a finite number of n’s

| Pr[MFn (1n) = 1] − Pr[MRn (1n) = 1]| <
1

nc
,

where R = {Rn}n∈N is the corresponding uniform function ensemble (i.e., ∀n,
Rn is uniformly distributed over the set of An → Bn functions).

(2) (efficient computation) There exist probabilistic polynomial time algorithms,
I and V , and a mapping from strings to functions, φ, such that φ(I(1n)) and
Fn are identically distributed and V(i, x) = (φ(i))(x).

Remark 2.1. In this definition, as well as the other definitions of this article,
“efficient adversary” is interpreted as “probabilistic polynomial-time algorithm”
and “negligible” is interpreted as “smaller than 1/poly”. In fact, all the proofs
in this article easily imply more quantitative results. For a discussion on security
preserving reductions, see Luby [1996].

Constructions of Efficient Pseudo-Random Functions 239

3. The Decisional Diffie–Hellman Assumption

As mentioned above, we base our first construction of pseudo-random functions
(described in Section 4) on the DDH-Assumption (the decisional version of the DH-
Assumption). This assumption is relatively new, or more accurately, was explicitly
considered only recently. We therefore devote this section to a discussion of the
DDH-Assumption: we describe and define the assumption, consider some of its
different applications and the current knowledge on its security. Furthermore, we
show in Section 3.3 a randomized reduction of the worst-case DDH-Assumption to
its average case. In Section 5, we describe a related construction of pseudo-random
functions based on a more conservative assumption: the assumption that factoring
Blum-integers is hard (in fact, this construction is based on the GDH-Assumption
that in turn can be reduced to Factoring).

3.1. BACKGROUND. The DH-Assumption was introduced in the context of the
Diffie and Hellman [1976] key-exchange protocol. Informally, a key-exchange pro-
tocol is a way for two parties, A and B, to agree on a common key, KA,B, while
communicating over an insecure (but authenticated) channel. Such a protocol is
secure if any efficient third party, C, with access to the communication between A
and B (but not to their private random strings) cannot tell apart KA,B from a random
value (i.e., KA,B is pseudo-random to C). This guarantees that it is computationally
infeasible for an eavesdropper to gain “any” partial information on KA,B.

Given a large prime P and a generator g of Z∗
P (both publicly known), the Diffie–

Hellman key-exchange protocol goes as follows: A chooses an integer a uniformly
at random in [P −2] and sends ga to B. In return, B chooses an integer b uniformly
at random in [P − 2] and sends gb to A. Both A and B can now compute ga·b and
their common key, KA,B, is defined by ga·b in some publicly known manner. For
this protocol to be secure, we must have, at the minimum, that the CDH-Assump-
tion holds:

Given 〈g, ga, gb〉, it is hard to compute ga·b.

The reason is that if this assumption does not hold, then C (as above) can also
compute KA,B.

One method to produce the key, KA,B, is to apply the Goldreich–Levin [1989]
hard-core function3 to ga·b (an important improvement on the security of such an
application was made by Shoup [1997]). If the CDH-Assumption holds, then this
method indeed gives a pseudo-random key. However, the proof in Goldreich and
Levin [1989] only implies the pseudo-randomness of the key in case its length is
at most logarithmic in the security parameter. A much more ambitious method is
to take ga·b itself as the key. For instance, in the El Gamal cryptosystem, given the
public key ga the encryption of a message m is 〈gb, ga·b · m〉. The security of the
key-exchange protocol now relies on the DDH-Assumption:

Given 〈g, ga, gb, z〉, it is hard to decide whether or not z = ga·b.

However, when g is a generator of Z∗
P , we have that ga and gb do give some

information on ga·b. For example, if either ga or gb is a quadratic residue, then so

3 For example, to get a key of one bit, we can define KA,B to be the inner product mod 2 of ga·b and
a random string r (chosen by one of the parties and sent to the other over the insecure channel).

240 M. NAOR AND O. REINGOLD

is ga·b. A standard solution for this problem is to take g to be a generator of the
subgroup of Z∗

P of order Q, where Q is a large prime divisor of P − 1. In fact, for
most applications, using g of order Q is an advantage since Q may be much smaller
than P (say, 160 bits long) which results in a substantial improvement in efficiency.
The reason that Q may be so small is that all known subexponential algorithms for
computing the discrete log are subexponential in the length of P (as long as P − 1
is not too smooth) even when applied to the subgroup of size Q generated by g (see
McCurley [1990] and Odlyzko [1993] for surveys on algorithms for the discrete
log; the best known algorithm for general groups has time square root of the size
of the largest prime divisor of the group).

3.1.1. How Much Confidence Can We Have in the DDH-Assumption?. It is
clear that the computational DH-Problem is at most as hard as computing the
discrete log (given 〈g, ga〉 find a). Recent works by Maurer and Wolf [1999] and
Boneh and Lipton [1996] show that in several settings these two problems are in
fact equivalent. For example, Maurer and Wolf [1999] showed that given some
information which only depends on P and an efficient algorithm for computing
the DH-Problem in Z∗

P , one can efficiently compute the discrete log in Z∗
P (so in

some non-uniform sense these problems are equivalent). Shoup [1997] showed that
there are no efficient “generic” algorithms for computing the discrete log or the DH-
Problem, where loosely speaking, a generic algorithm is one that does not exploit
any special properties of the encoding of group elements. A bit more formally, a
generic algorithm is one that works for a “black-box” group (where each element
has a random encoding and given the encodings of a and b the algorithm can query
for the encodings of a + b and −a).

Perhaps the best evidence for the validity of the CDH-Assumption is the fact
that it endured extensive research over the last two decades. This research does
not seem to undermine the (stronger) decisional version of the DH-Assumption as
well. In addition, the DDH-Assumption did appear both explicitly and implicitly in
several previous works. However, it seems that, given the many applications of the
DDH-Assumption, a more extensive study of its security is in place. In particular, it
should be noted that there exist groups where the DDH-Assumption does not hold
whereas the CDH-Assumption still seems valid (see e.g., Joux and Nguyen [2001]).

To some extent, the DDH-Assumption is supported by the work of Shoup [1997]
and the work of Boneh and Venkatesan [1996]. Shoup showed that the DDH-
Problem is hard for any generic algorithm (where a generic algorithm is as defined
above). Boneh and Venkatesan showed that computing the k (≈ √

log P) most
significant bits of ga·b (given 〈g, ga, gb〉) is as hard as computing ga·b itself. A
recent result with applications to the DDH-Assumption was shown by Canetti et al.
[1997].

In Section 3.3, we prove an attractive feature of the DDH-Assumption: There is
a quite simple randomized reduction between its worst-case and its average-case
for fixed P and Q. More specifically:

For any primes P and Q (such that Q divides P − 1), the following
statements are equivalent:
—Given 〈P, Q, g, ga, gb〉, it is easy to distinguish with non-negligible

advantage between ga·b and gc, where g is a uniformly chosen element
of order Q in Z∗

P , and a, b and c are uniformly chosen from Z Q.

Constructions of Efficient Pseudo-Random Functions 241

—Given 〈P, Q, g, ga, gb, gc〉, it is easy to decide with overwhelming
success probability whether or not c = a · b, where a, b and c are
any three elements in Z Q and g is any element of order Q in Z∗

P .

This reduction is based on the random-self-reducibility of the DDH-Problem that
was previously used by Stadler [1996]. The reduction may strengthen our confi-
dence in the DDH-Assumption and in the security of its applications.

For most applications of the DDH-Assumption (including ours), there is no
reason to insist on working in a subgroup of Z∗

P (where P is a prime). There-
fore, a natural question is how valid is this assumption for other groups. Spe-
cific groups that were considered in the context of the CDH-Assumption are:
(1) Z∗

N where N is a composite. McCurley [1988] and Shmuely [1985] showed
that for many of those groups breaking the CDH-Assumption is at least as hard
as factoring N , (2) Elliptic-curve groups, for which (in some cases) no subex-
ponential algorithms for the discrete log are currently known. We stress that
the randomized reduction mentioned above relies on the primality of the order
of g.

3.1.2. The Decisional DH-Assumption Is Very Attractive. It turns out that the
DDH-Assumption was assumed in several previous works (both explicitly and
implicitly). In the following, we briefly refer to some of those works and describe
some additional applications. For additional details, see the excellent survey of
Boneh [1998].

The most obvious application of the DDH-Assumption is to the Diffie–Hellman
key-exchange protocol and to the related public-key cryptosystem, namely the
ElGamal cryptosystem—given the public key ga the encryption of a message m is
〈gb, ga·b ·m〉. Assume that the message space is restricted to the subgroup generated
by g. In this case, it is easy to see that the semantic security (see Goldwasser and
Micali [1984]) of the cryptosystem is equivalent to the DDH-Assumption. In the
general case (without the restriction on the message space), we can use the following
related cryptosystem: given the public key 〈ga, h〉 the encryption of a message m
is 〈gb, h(ga·b) ⊕ m〉, where h is a pair-wise independent hash function from n-bit
strings to strings of approximately the length of Q (see Lemma 4.2 for more details
on the role of h). Therefore, given the DDH-Assumption, we get a probabilistic
encryption of many bits for the price of a single (or two) exponentiation. This
is comparable with the Blum–Goldwasser cryptosystem [Blum and Goldwasser
1984].

Other applications that previously appeared are:

—Bellare and Micali [1990] showed an efficient noninteractive oblivious transfer
of many bits that relies on the DDH-Assumption.

—Brands [1993] pointed out that several suggestions for undeniable signatures (as
the one in Chaum and van Antwerpen [1990], where this concept was introduced)
implicitly rely on the DDH-Assumption. If this assumption does not hold then
such schemes are in fact ordinary digital signatures.

—Canetti [1997] gave a simple construction based on the DDH-Assumption for a
new cryptographic primitive called “Oracle Hashing” (later renamed “perfectly
one-way probabilistic hash functions”). Loosely, these are hash functions that
“hide all partial information” on their input.

242 M. NAOR AND O. REINGOLD

—Franklin and Haber [1996] showed a construction of a joint encryption scheme
based on the DDH-Assumption modulo a composite. Using this scheme, they
showed how to obtain an efficient protocol for secure circuit computation.

—Stadler [1996] presents verifiable secret sharing based on the DDH-Assumption.
—Steiner et al. [1996] showed how to extend the Diffie–Hellman protocol to a key-

exchange protocol for a group of parties. They reduced the security of the ex-
tended protocol to the DDH-Assumption (by showing that the DDH-Assumption
implies the decisional GDH-Assumption).

A very attractive application of the DDH-Assumption was recently proposed by
Cramer and Shoup [1998]. They have presented a new public-key cryptosystem that
is secure against adaptive chosen ciphertext attacks. Both encryption and decryption
in this cryptosystem only require a few exponentiations (in addition to universal
one-way hashing).

To all these applications we can add:

—A pseudo-random generator that practically doubles the input length. Essentially,
the generator is defined by G P,Q,g,ga (b) = 〈gb, ga·b〉.4 As mentioned in the
introduction, several unpublished constructions of pseudo-random generators
based on the DDH-Assumption were previously suggested.

—A pseudo-random synthesizer (see definition in Naor and Reingold [1999b]),
whose output length is similar to its arguments length, essentially defined by
SP,Q,g(a, b) = ga·b.

Both these constructions are overshadowed by the construction of pseudo-random
functions introduced in Section 4.1.

3.2. FORMAL DEFINITION. To formalize the DDH-Assumption, we first need to
specify an efficiently samplable distribution for P , Q and g (where g is an element
of order Q in Z∗

P).
Let n be the security parameter. For some function 	 : N → N we want to choose

an n-bit prime P with an 	(n)-bit prime Q that divides P−1. A natural way to do this
is to choose P and Q uniformly at random subject to those constraints. However, it
is possible to consider different distributions. For example, it is not inconceivable
that the assumption holds when for every n we have a single possible choice of P , Q
and g. Another common example is letting P and Q satisfy P = 2 · Q+1 (although
choosing a smaller Q may increase the efficiency of most applications). In order
to keep our results general, we let P , Q and g be generated by some probabilistic
polynomial-time algorithm IG (where IG stands for instance generator). On input 1n

the output of IG is distributed over triplets 〈P, Q, g〉, where P is an n-bit prime, Q a
(large) prime divisor of P−1 and g an element of order Q in Z∗

P . Any instantiation of
IG will imply a different DDH-Assumption and a different construction of pseudo-
random functions. Our proof of pseudo-randomness of the functions based on the
DDH-Assumption is independent of the particular instantiation of IG.

4 In fact, the output of G P,Q,g,ga is a pseudo-random pair of values in the subgroup generated by g.
In order to obtain a pseudo-random value in {0, 1}	, for 	 of approximately twice the length of Q,
one needs to hash the output of the generator (see Lemma 4.2). A similar observation holds for the
constructions of pseudo-random synthesizers and pseudo-random functions.

Constructions of Efficient Pseudo-Random Functions 243

For the various applications of the DDH-Assumption we need its average-case
version. Namely, when a and b are uniformly chosen and c is either a ·b or uniformly
chosen. In Section 3.3, it is shown that a worst-case choice of a, b and c can be
reduced to a uniform choice. Similarly, the assumption is not strengthened if g
(generated by IG) is taken to be a uniformly chosen element of order Q in Z∗

P .

Assumption 3.1 (Decisional Diffie–Hellman). For every probabilistic poly-
nomial-time algorithm A, every constant α > 0 and all but a finite number
of n’s

| Pr[A(P, Q, g, ga, gb, ga·b) = 1] − Pr[A(P, Q, g, ga, gb, gc) = 1]| <
1

nα
,

where the probabilities are taken over the random bits of A, the choice of 〈P, Q, g〉
in accordance with the distribution IG(1n) and the choice of a, b and c uniformly
at random in Z Q .

3.3. A RANDOMIZED REDUCTION. In this section, we use a simple randomized
reduction to show that for every P, Q and g the DDH-Problem is either very hard
on the average or very easy in the worst case. Given the current knowledge of the
DDH-Problem, such a result strengthens our belief in the DDH-Assumption. The
main part of the reduction (Lemma 3.2) was previously used by Stadler [1996].

Definition 3.1. For any 〈P, Q, g〉 such that P is a prime, Q a prime divisor of
P − 1 and g an element of order Q in Z∗

P the function DDHP,Q,g is defined by

DDHP,Q,g(ga, gb, gc) =
{

1 if c = a · b
0 otherwise

for any three elements a, b, c in Z Q .

THEOREM 3.1. LetA be any probabilistic algorithm with running time t = t(n)
and ε = ε(n) any positive function such that 1/ε is efficiently constructible. There
exist a polynomial p = p(n) and a probabilistic algorithm A′ with running time
(t(n) · p(n))/(ε(n))2 such that, for any choice of 〈P, Q, g〉 as in Definition 3.1, if:

| Pr[A(P, Q, g, ga, gb, ga·b) = 1] − Pr[A(P, Q, g, ga, gb, gc) = 1]| > ε(n),

where the probabilities are taken over the random bits of A and the choice of a, b
and c uniformly at random in Z Q, then for any a, b and c in Z Q:

Pr[A′(P, Q, g, ga, gb, gc) �= DDHP,Q,g(ga, gb, gc)] < 2−n,

where the probability is only over the random bits of A′.
In particular, if A is probabilistic polynomial-time and ε(n) ≥ 1/poly(n), then

A′ is also probabilistic polynomial-time.

Blum and Micali [1984] introduced the concept of random-self-reducibility (and
randomized reductions). Informally, a problem is random-self-reducible if solving
the problem on any instance x can be efficiently reduced to solving the problem
on a random instance y (or on a polynomial number of random instances). That is,
for any instance x , a random instance y can be efficiently sampled using a random
string r such that given r and the solution of the problem on y it is easy to compute
the solution of the problem on x . A problem that is random-self-reducible can either

244 M. NAOR AND O. REINGOLD

be efficiently solved for every instance with overwhelming success probability or
it cannot be solved for a random instance with non-negligible success probability.

Our randomized reduction is closely related to other known reductions. Blum and
Micali [1984] showed that for any specific prime P and generator g, the discrete log
problem is random-self-reducible: given 〈P, g, ga〉 for any a it is easy to generate a
random instance 〈P, g, ga+r = ga · gr 〉 (where r is uniform in [P − 1]). Given the
solution for the random instance (i.e., a + r) it is easy to compute the solution for the
original instance (i.e., a). A similar property was shown for the CDH-Problem (e.g.,
Maurer and Wolf [1999]): given 〈P, g, ga, gb〉 for any a and b it is easy to generate
a random instance 〈P, g, ga+r , gb+s〉 (where r and s are uniform in [P −1]). Given
the solution for the random instance (i.e., z = g(a+r)·(b+s)) it is easy to compute the
solution for the original instance (i.e., ga·b = z · (ga)−s · (gb)−r · g−s·r).

However, in order to prove Theorem 3.1, we need a somewhat different reduction.
In particular, we need to use the fact that g is an element of prime order: Theorem 3.1
can only hold when g is a generator of Z∗

P if the DDH-Problem is always easy (in
which case the theorem holds trivially).

LEMMA 3.2. There exists a probabilistic polynomial-time algorithm, R such
that on any input

〈P, Q, g, ga, gb, gc〉,
where P is a prime, Q a prime divisor of P − 1, g an element of order Q in Z∗

P
and a, b, c are three elements in Z Q the output of R is:

〈P, Q, g, ga′
, gb′

, gc′ 〉,
where if c = a · b, then a′ and b′ are uniform in Z Q and c′ = a′ · b′ and if c �= a · b,
then a′, b′ and c′ are all uniform in Z Q.

PROOF. R chooses s1, s2 and r uniformly in Z Q , computes

ga′ = (ga)r · gs1,

gb′ = gb · gs2,

gc′ = (gc)r · (ga)r ·s2 · (gb)s1 · gs1·s2

and outputs

〈P, Q, g, ga′
, gb′

, gc′ 〉.
Let c = a · b + e for e in Z Q , then:

a′ = r · a + s1, b′ = b + s2, c′ = a′b′ + e · r.

If e = 0, we have that a′ and b′ are uniformly distributed in Z Q and c′ = a′ · b′. If
e �= 0, we have that a′, b′ and c′ are all uniformly distributed in Z Q (this is the place
we use the fact that Q is a prime which implies that e · r is uniformly distributed in
Z Q). Therefore, the output of R has the desired distribution.

PROOF OF THEOREM 3.1. Let A be any probabilistic algorithm with running
time t = t(n), let ε = ε(n) be any positive function such that 1/ε is efficiently
constructible and let 〈P, Q, g〉 be as in Definition 3.1. Assume that:

| Pr[A(P, Q, g, ga, gb, ga·b) = 1] − Pr[A(P, Q, g, ga, gb, gc) = 1]| > ε(n),

Constructions of Efficient Pseudo-Random Functions 245

where the probabilities are taken over the random bits of A and the choice of a, b
and c uniformly at random in Z Q .

Let R be the probabilistic polynomial-time algorithm that is guaranteed to exist
by Lemma 3.2. By the definition of R and our assumption, we have that for any
a, b and c �= a · b in Z Q :

|Pr[A(R(P, Q, g, ga, gb, ga·b)) = 1]−Pr[A(R(P, Q, g, ga, gb, gc)) = 1]|> ε(n).

Now the probabilities are only taken over the random bits of A and R. Therefore,
by standard methods of amplification (see e.g., Goldreich [1998] and references
therein) we can define a probabilistic algorithmA′ such that for any a, b and c �= a·b
in Z Q :

Pr[A′(P, Q, g, ga, gb, ga·b) = 1] − Pr[A′(P, Q, g, ga, gb, gc) = 1] > 1 − 2−n.

On any input 〈P, Q, g, ga, gb, gc〉, the output of A′ is essentially a threshold func-
tion of O(n/(ε(n))2) independent values—A(R(P, Q, g, ga, gb, gc)). It is clear
that A′ satisfies the conditions required in Theorem 3.1.

4. Construction of Pseudo-Random Functions

In this section, we describe a construction of pseudo-random functions based on
the DDH-Assumption, prove its security and consider its complexity. A related
construction (based on a weaker assumption) is described in Section 5.

4.1. CONSTRUCTION AND MAIN RESULT

Construction 4.1. We define the function ensemble F = {Fn}n∈N . For every
n, a key of a function in Fn is a tuple, 〈P, Q, g,
a〉, where P is an n-bit prime, Q a
prime divisor of P − 1, g an element of order Q in Z∗

P and
a = 〈a0, a1, . . . , an〉 a
sequence of n+1 elements of Z Q . For any n-bit input, x = x1x2 · · · xn , the function
fP,Q,g,
a is defined by:

fP,Q,g,
a(x)
def= (ga0)

∏
xi =1 ai .

The distribution of functions in Fn is induced by the following distribution on their
keys:
a is uniform in its range and the distribution of 〈P, Q, g〉 is IG(1n).

It is clear that F is efficiently computable (since IG is efficient). The pseudo-
randomness property of F is the following:

THEOREM 4.1. Let F = {Fn}n∈N be as in Construction 4.1. If the DDH-
Assumption (Assumption 3.1) holds, then for every probabilistic polynomial-time
oracle machine M, every constant α > 0, and all but a finite number of n’s

| Pr[M fP,Q,g,
a (P, Q, g) = 1] − Pr[MRP,Q,g (P, Q, g) = 1]| <
1

nα
,

where in the first probability, fP,Q,g,
a is distributed according to Fn, and in the
second probability, the distribution of 〈P, Q, g〉 is IG(1n) and RP,Q,g is uniformly
chosen in the set of functions with domain {0, 1}n and range 〈g〉 (the subgroup of
Z∗

P generated by g).

246 M. NAOR AND O. REINGOLD

Moreover, if there exists a probabilistic oracle machine with running time t = t(n)
that distinguishes fP,Q,g,
a from RP,Q,g (as above) with advantage ε = ε(n). Then
there exists a probabilistic algorithm with running time poly(n) · t(n) that breaks
the DDH-Assumption with advantage ε(n)/n.

Remark 4.1. The “moreover” part of Theorem 4.1 implies that the security
of the functions does not significantly decrease when the number of queries the
distinguisher makes increases. More formally, we have that this reduction is in fact
linear-preserving (see Luby [1996]). This is a strong and quite unique property
(and, in particular, it is very different from the proofs of security for the functions
in Goldreich et al. [1986] and Naor and Reingold [1999b]).

Given Theorem 4.1, we have that F is “almost” an efficiently computable pseudo-
random function ensemble. There is one difference: A function fP,Q,g,
a in Fn has
domain {0, 1}n and range 〈g〉. Therefore, different functions in Fn have different
ranges which deviates from the standard definition of pseudo-random functions
(Definition 2.1). However, for many applications of pseudo-random functions this
deviation does not present a problem (e.g., the applications of pseudo-random
functions to private-key authentication and identification and their applications to
digital signatures [Bellare and Goldwasser 1990]). In addition, it is rather easy to
construct from F pseudo-random functions under Definition 2.1. In order to show
this, we need the following lemma which is a simple corollary of the leftover hash
lemma [Hastad et al. 1999; Impagliazzo and Zuckerman 1989]:

LEMMA 4.2. Let n, 	 and e be three positive integers such that 3e+1 < 	 < n.
Let X ⊆ {0, 1}n be a set of at least 2	−1 elements and x uniformly distributed in X.
Let H be a family of pair-wise independent, {0, 1}n → {0, 1}	−1−3e, hash functions.
Then for all but a 2−e fraction of h ∈ H the uniform distribution over {0, 1}	−1−3e

and h(x) are of statistical distance of at most 2−e.

Lemma 4.2 suggests the following construction:

Construction 4.2. Let 	 = 	(n) be an integer-valued function such that for any
output, 〈P, Q, g〉, of IG(1n) we have that Q is 	(n)-bit long. Let F = {Fn}n∈N be as
in Construction 4.1 and ∀n, let Hn be a family of pair-wise independent, {0, 1}n →
{0, 1}�	(n)/2�, hash functions. We define the function ensemble F̃ = {F̃n}n∈N . For
every n, a key of a function in F̃n is a pair, 〈k, h〉, where k is a key of a function in
Fn and h ∈ Hn . For any n-bit input, x , the function f̃ k,h is defined by:

f̃ k,h(x)
def= h(fk(x)).

The distribution of functions in F̃n is induced by the following distribution on their
keys: h is uniform in Hn and the distribution of k is the same as the distribution of
keys in Fn .

Note that choosing the range of the hash functions to be {0, 1}�	(n)/2� is arbitrary.
One can choose the range to be {0, 1}	(n)−e(n) for any function e(n) such that 2−e(n)

is negligible.

THEOREM 4.3. If the DDH-Assumption (Assumption 3.1) holds, then F̃ =
{F̃n}n∈N (as in Construction 4.2) is an efficiently computable pseudo-random func-
tion ensemble.

Constructions of Efficient Pseudo-Random Functions 247

PROOF. The proof easily follows from Theorem 4.1 and Lemma 4.2. From
Theorem 4.1, a function fP,Q,g,
a selected from Fn is indistinguishable from a
uniform function with domain {0, 1}n and range 〈g〉. The size of 〈g〉 is at least 2	−1.
Therefore, from Lemma 4.2, for all but a negligible fraction of the hash functions
h in Hn , the distribution of h(x) where x is uniform in 〈g〉 is indistinguishable
from the uniform distribution on �	/2�-bit strings. We can therefore conclude that
a distinguisher for F̃ can be used to distinguish F from truly random functions.

Remark 4.2. The proofs of Theorems 4.1 and 4.3 imply that F̃ = {F̃n}n∈N
remains indistinguishable from the uniform function-ensemble even when the
distinguisher has access to 〈P, Q, g〉 and to h (as in the definition of functions
in F̃n).

4.1. PROOF OF SECURITY. There are a few possible approaches to proving
Theorem 4.1. One approach is related to the construction of Naor and Reingold
[1999b] (and in particular to the concept of an n-dimensional synthesizer). Indeed,
the construction of Naor and Reingold [1999b] has motivated the constructions of
this article (the connection is described in Section 5.2). However, the proof we give
here for Theorem 4.1 follows an analogous line to the proof of security for the
GGM-Construction of pseudo-random functions [Goldreich et al. 1986]. This may
seem surprising since the two constructions look very different. Nevertheless, in
some sense, one may view our construction as a careful application (or a general-
ization) of the GGM-Construction. In the following few paragraphs, we describe
the similarities and differences between the two constructions.

Let G be a pseudo-random generator that doubles its input. Define G0 and
G1 such that for any n-bit string x , both G0(x) and G1(x) are n-bit strings and
G(x) = 〈G0(x), G1(x)〉. Under the GGM-Construction, the key of a pseudo-
random function fs : {0, 1}n → {0, 1}n is a uniformly chosen n-bit string s. For
any n-bit input, x = x1x2 · · · xn , the function fs is defined by:

fs(x)
def= Gxn (· · · (Gx2 (Gx1 (s)) · · ·).

The definition of fs can be thought of as a recursive labeling process of a depth-n
binary tree. The key s is the label of the root and it induces a labeling of all the
nodes in the tree. The labels of the 2n leaves correspond to the 2n different outputs
of the function. In contrast, in our construction, no tree appears in the design and
no particular order is attached to the input bits. Nevertheless, we were able to relate
the proof of security of the two constructions.

The DDH-Assumption implies a simple pseudo-random generator that practi-
cally doubles its input: G P,Q,g,ga (b)

def= 〈gb, ga·b〉 (whose output is a pseudo-random
pair of values in the subgroup generated by g) . It is tempting to use this generator
for the GGM-Construction. However, a straightforward application of the GGM-
Construction would give a rather inefficient function. We therefore suggest a slight
change to the definition of the generator:

G̃ P,Q,g,ga (gb) = 〈
G̃0

P,Q,g,ga (gb), G̃1
P,Q,g,ga (gb)

〉 def= 〈gb, ga·b〉.
At a first look this seems absurd: G̃ P,Q,g,ga is not efficiently computable unless
the DH-Problem is easy. Therefore, if G̃ P,Q,g,ga is efficiently computable, then it
is not pseudo-random. However, G̃ P,Q,g,ga has the following property that allows

248 M. NAOR AND O. REINGOLD

us to use a generalization of the GGM-Construction: G̃ P,Q,g,ga (gb) is efficiently
computable if either a or b are known. A more general way to state this is:

(1) G̃ P,Q,g,ga is efficiently computable (on any input), given the random bits that
were used to sample it (in particular, given a).

(2) For any G̃ P,Q,g,ga , it is easy to generate the distribution of its output,
G̃ P,Q,g,ga (gb), on a uniformly chosen input (this fact implies Lemma 4.2).

We now obtain the pseudo-random functions of Construction 4.1 using the GGM-
Construction where at each level of the construction we use a different value, ga ,
for the generator:

fP,Q,g,a0,a1,...,an (x)
def= G̃xn

P,Q,g,gan

(· · · (G̃x2
P,Q,g,ga2

(
G̃x1

P,Q,g,ga1 (ga0)
) · · ·).

We turn to the formal proof of Theorem 4.1. First, we show (in Lemma 4.4)
that a polynomial sample, 〈G̃ P,Q,g,ga (gb1), . . . , G̃ P,Q,g,ga (gbt)〉 is pseudo-random
iff a single sample, G̃ P,Q,g,ga (gb), is pseudo-random. In preliminary versions of
this paper the proof of Lemma 4.4 used a hybrid-argument based on property (2)
above (which is similar to the corresponding argument in Goldreich et al. [1986]).
However, Victor Shoup (personal communication) has pointed out that one can use
the randomized-reduction of the DDH-Problem (see Section 3.3) for an alternative
proof of the lemma. The new proof is both simpler and more security-preserving.
Given a distinguisher for the polynomial-sample we get a distinguisher for the single
sample that achieves the same advantage. Based on this property, the security of
the functions in our proof of Theorem 4.1 does not significantly decrease when the
number of queries the distinguisher makes increases (which is very different from
the proofs of security for the functions in Goldreich et al. [1986] and Naor and
Reingold [1999b]).

Definition 4.1. Let n and t be any pair of positive integers. Define the two
distributions I n,t

R and I n,t
PR as follows:

I n,t
R

def= 〈P, Q, g, ga, gb1, gc1, . . . , gbt , gct 〉
and

I n,t
PR

def= 〈P, Q, g, ga, gb1, ga·b1, . . . , gbt , ga·bt 〉,
where 〈P, Q, g〉 is distributed in accordance with IG(1n) and all the values in
〈a, b1, . . . , bt , c1, . . . , ct〉 are uniform in Z Q .

LEMMA 4.2 (INDISTINGUISHABILITY OF A POLYNOMIAL SAMPLE). If the
DDH-Assumption (Assumption 3.1) holds, then for every probabilistic polynomial-
time algorithm D, every polynomial t(·), every constant α > 0 and all but a finite
number of n’s ∣∣ Pr

[
D

(
I n,t(n)

PR

) = 1
] − Pr

[
D

(
I n,t(n)

R

) = 1
]∣∣ <

1

nα
.

Moreover, if there exists a probabilistic algorithm with running time p = p(n)
that distinguishes I n,t(n)

PR from I n,t(n)
R (as above) with advantage ε = ε(n). Then there

exists a probabilistic algorithm with running time poly(n) · t(n) + p(n) that breaks
the DDH-Assumption with advantage ε(n).

Constructions of Efficient Pseudo-Random Functions 249

PROOF. It is enough to prove the “moreover” part of the lemma as setting
ε(n) = 1

nα it implies the first part of the lemma.
Let ε = ε(n) be any positive real-valued function. Assume that there exists a

probabilistic algorithm D with running time p = p(n) and a polynomial t(·) such
that for infinitely many n’s∣∣ Pr

[
D

(
I n,t(n)

PR

) = 1
] − Pr

[
D

(
I n,t(n)

R

) = 1
]∣∣ > ε(n).

We define a probabilistic algorithm A with running time poly(n) · t(n) + p(n) such
that for infinitely many n’s

| Pr[A(P, Q, g, ga, gb, ga·b) = 1] − Pr[A(P, Q, g, ga, gb, gc) = 1]| > ε(n),

where the probabilities are taken over the random bits of A, the choice of 〈P, Q, g〉
according to the distribution IG(1n) and the choice of a, b and c uniformly at random
in Z Q .

Let the input of A be 〈P, Q, g, ga, gb, gc̃〉, where P is n-bit long and c̃ is either
a · b or uniform in Z Q . Using a randomized reduction similar to that in the proof
of Lemma 3.2, A generates t(n) random pairs gbi , gc̃i such that ∀i, c̃i = a · bi iff
c̃ = a ·b. A now invokes D on these values to distinguish between the two possible
distributions of its own input. More formally, A executes the following algorithm:

(1) Define t = t(n) and sample each one of the values in 〈d1, . . . , dt , e1, . . . , et〉
uniformly at random in Z Q .

(2) Define the sequence I to be

〈P, Q, g, ga, R̃d1,e1 (g
a, gb, gc̃), . . . , R̃dt ,et (g

a, gb, gc̃)〉,
where

∀i, R̃di ,ei (g
a, gb, gc̃)

def= (gb)di · gei , (gc̃)di · (ga)ei .

(3) Output D(I)

Denote by gbi , gc̃i the value R̃di ,ei (g
a, gb, gc̃). By the same arguments used in

the proof of Lemma 3.2, we have that:

—If c̃ = a · b, then b1, . . . , bt are uniform in Z Q (and independent of each other
and of a) and ∀i, c̃i = a · bi .

—If c̃ �= a · b, then b1, . . . , bt , c̃1, . . . , c̃t are all uniform in Z Q (and independent
of each other and of a).

Therefore, by the definitions of A, I n,t
PR and I n,t

R , it easily follows that:

Pr[A(P, Q, g, ga, gb, ga·b) = 1] = Pr
[
D

(
I n,t

PR

) = 1
]

and Pr[A(P, Q, g, ga, gb, gc) = 1] = Pr
[
D

(
I n,t

R

) = 1
]
.

It is now immediate that infinitely many n’s

| Pr[A(P, Q, g, ga, gb, ga·b) = 1] − Pr[A(P, Q, g, ga, gb, gc) = 1]| > ε(n),

where the probabilities are as above.

The proof of Theorem 4.1 given Lemma 4.4 uses an hybrid argument, which
is a proof-technique for showing that two distributions are indistinguishable. See
Goldreich [1995, 1998] for details on hybrid arguments. Loosely, the method for

250 M. NAOR AND O. REINGOLD

showing that D and D′ are indistinguishable is to (1) Define a polynomial-length
sequence of efficient distributions D0, D1, . . . , Dm with D0 = D and Dm = D′.
(2) Show that any two neighboring distributions D j−1 and D j are indistinguishable.
In fact, in the uniform version of this argument (e.g., in the proof of Theorem 4.1)
we usually show that it is hard to distinguish DJ−1 and DJ where J is uniformly
chosen in [m]. Furthermore, in the proof of Theorem 4.1 (as well as in the corre-
sponding proofs in Goldreich et al. [1986] and Naor and Reingold [1999b]), the
n + 1 distributions that are (implicitly) defined are not efficiently samplable. For
example, one of the two extreme distributions is of uniform functions (which is
certainly not efficiently samplable). Nevertheless, a uniform function can be effi-
ciently “simulated” by an algorithm that answers each query at random (under the
restriction of keeping consistency of its answers for repeating queries). Since all
other intermediate function distributions can be “simulated” in the same sense we
can still apply the hybrid argument. We now turn to the formal proof (where the
arguments described above are implicit).

PROOF OF THEOREM 4.1. It is enough to prove the “moreover” part of the theo-
rem as setting ε(n) = 1

nα it implies the first part of the theorem.
Let ε = ε(n) be any positive real-valued function. Assume that there exists a

probabilistic oracle machine M with running time t = t(n) such that for infinitely
many n’s

| Pr[M fP,Q,g,
a (P, Q, g) = 1] − Pr[MRP,Q,g (P, Q, g) = 1]| > ε(n),

where the probabilities are as in Theorem 4.1. We define a probabilistic algorithm
D with running time poly(n) · t(n), such that for infinitely many n’s

∣∣ Pr
[
D

(
I n,t(n)

PR

) = 1
] − Pr

[
D

(
I n,t(n)

R

) = 1
]∣∣ >

1

n
· ε(n).

By Lemma 4.4, this completes the proof of the theorem.
On any input 〈P, Q, g, ga, gb1, gc̃1, gb2, gc̃2, . . . , gbt , gc̃t 〉, where P is n bits long

(and either each c̃i is a · bi or each c̃i is uniform in Z Q), D executes the follow-
ing algorithm:

(1) Sample J uniformly at random in [n].
(2) Sample each one of the values in 〈aJ+1, aJ+2, . . . , an〉 uniformly at random in

Z Q .
(3) Invoke M on input 〈P, Q, g〉 and answer its queries in the following way:

Let the queries asked by M be 〈x1, x2, . . . , xm〉. The i th query xi is an n-
bit string. Denote xi = x̄ i x i

J x i
J+1 · · · xi

n , where x̄ i is a (J − 1)-bit string and
xi

J , xi
J+1, . . . , xi

n are single bits. To answer the i th query define 	 = 	(i) =
min{i ′|x̄ i ′ = x̄ i } and answer the query by{

(gc̃)
∏

xi
k =1,k>J ak if xi

J = 1

(gb)
∏

xi
k =1,k>J ak if xi

J = 0

These answers are well defined since m ≤ t .
(4) Output whatever M outputs.

Constructions of Efficient Pseudo-Random Functions 251

From the definition of D, we have that for fP,Q,g,
a and RP,Q,g as in Theorem 4.1,

Pr
[
D

(
I n,t

PR

) = 1 | J = 1
] = Pr[M fP,Q,g,
a (P, Q, g) = 1],

Pr
[
D

(
I n,t

R

) = 1 | J = n
] = Pr[MRP,Q,g (P, Q, g) = 1]

and for any 0 < j < n

Pr
[
D

(
I n,t

R

) = 1 | J = j
] = Pr

[
D

(
I n,t

PR

) = 1 | J = j + 1
]
.

By the assumption we get that for infinitely many n’s∣∣ Pr
[
D

(
I n,t

PR

) = 1
] − Pr

[
D

(
I n,t

R

) = 1
]∣∣

=
∣∣∣∣1

n
·

n∑
j=1

Pr
[
D

(
I n,t

PR

) = 1 | J = j
] − 1

n
·

n∑
j=1

Pr
[
D

(
I n,t

R

) = 1 | J = j
]∣∣∣∣

= 1

n
· ∣∣ Pr

[
D

(
I n,t

PR

) = 1 | J = 1
] − [

D
(
I n,t

R

) = 1 | J = n
]∣∣

= 1

n
· | Pr[M fP,Q,g,
a (P, Q, g) = 1] − Pr[MRP,Q,g (P, Q, g) = 1]|

>
1

n
· ε(n).

This completes the proof of the theorem.

4.2. EFFICIENCY OF THE CONSTRUCTION. Consider a function fP,Q,g,
a ∈ Fn
(where
a = 〈a0, a1, . . . , an〉) as in Construction 4.1. Computing the value of this
function at any given point, x , involves one multiple product (a product of polyno-
mially many numbers), y = a0 · ∏

xi =1 ai (which can be performed modulo Q),
and one modular exponentiation, gy . This gives a pseudo-random function that is
much more efficient than previous constructions. Furthermore, one can use pre-
processing in order to get improved efficiency. The most obvious preprocessing
is computing the values g2i

(for every positive integer i up to the length of Q).
Now, computing the value of the function requires two multiple products modulo a
prime.5 Additional preprocessing can reduce the work by a factor of O(log n) (see
Brickell et al. [1992]). Actually, to compute the value of the pseudo-random func-
tion of Construction 4.2, we also need one application of a pairwise independent
hash function, but this operation is very cheap compared with a multiple product
or a modular exponentiation.

As described in the Introduction and in Section 2.2, we are also interested in
finding the parallel-time complexity of the pseudo-random functions. In order to
do so, let us first recall the result of Beame et al. [1986], who showed that division
and related operations including multiple product are computable in NC1. Based
on this result, Reif [1987] and Reif and Tate [1992] showed that these operations
are also computable in TC0. The exact depth required for these operations was
considered in Siu et al. [1993] and Siu and Roychowdhury [1994], where it was

5 In the case that Q is much smaller than P , we have that the first multiple product is much cheaper
than the second.

252 M. NAOR AND O. REINGOLD

shown that multiple sum is in TC0
2 , multiplication and division in TC0

3 and multiple
product in TC0

4 (recall that for every integer d the class of functions computable by
depth d circuits consisting of a polynomial number of threshold gates is denoted
by TC0

d).
By the results above, we immediately get that after preprocessing (i.e., computing

the values g2i
), it is possible to evaluate the function fP,Q,g,
a in TC0 (since all the

necessary operations can be performed in TC0):

THEOREM 4.5. Let F = {Fn}n∈N be as in Construction 4.1. Then there exists
a polynomial, p(·), and an integer i such that, for every n ∈ N and every function
fk ∈ Fn, there exists a depth d threshold circuit of size bounded by p(n) that
computes fk .

4.2.1. The Exact Depth of the Functions. As discussed above, Theorem 4.5
can be obtained by a naive application of the results in Siu et al. [1993] and Siu
and Roychowdhury [1994]. In Naor and Reingold [1997], we noted that a more
detailed analysis of the function fP,Q,g,
a implies further optimization in the depth.
We described several methods that enable to evaluate this function in TC0

5 (using
additional preprocessing): First, note that in both multiple products we can assume
any preprocessing of the values in the multiplication (since these values are taken
from the sequence 〈a0, a1, . . . , an〉 or from the set {g2i }). Second, we don’t need
the actual value of the first multiple product, y = ∏

xi =1 ai : Computing values ri

(obtained by the CRT-representation) for which y = ∑
mi ·ri (where the values mi

are known in advance and can be preprocessed) is just as good. Finally, the value P
is also known in advance. Therefore, the depth of the final modular reduction can
be reduced by precomputing the values 2i mod P . Using similar ideas and a much
more careful analysis, Krause and Lucks [2001] managed to further reduce the
depth to four. This is especially interesting as pseudo-random functions cannot be
evaluated in TC0

2 (see Krause and Lucks [2001] for exact statements). This means
that the depth required for evaluating the pseudo-random functions of this article is
almost the smallest possible. A natural question that remains open is whether there
exist pseudo-random functions in TC0

3 .

Remark 4.3. Similar analysis holds for efficiency and depth of the pseudo-
random functions of Construction 5.1.

5. Construction Based on Factoring or the GDH-Assumption

In this section, we show an additional construction of pseudo-random functions—
Construction 5.1—that is very similar to Construction 4.2. The security of Construc-
tion 5.1 is reduced to the GDH-Assumption which is a generalization of the com-
putational DH-Assumption. This construction is interesting for two main reasons:

(1) The GDH-Assumption is implied by the DDH-Assumption but they are not
known to be equivalent. Therefore, Construction 5.1 may still be valid even if
the DDH-Assumption does not hold. In addition, the GDH-Assumption modulo
a so called Blum-integer is not stronger than the assumption that factoring
Blum-integers is hard. This gives an attractive construction of pseudo-random
functions that is at least as secure as Factoring (which was recently improved
in Naor et al. [2000]).

Constructions of Efficient Pseudo-Random Functions 253

(2) Construction 5.1 is based on a somewhat different methodology than Con-
struction 4.2. It may be easier to apply this methodology in order to construct
pseudo-random functions based on additional assumptions (in fact, Construc-
tion 4.2 was obtained as a modification of Construction 5.1).

5.1. THE GDH-ASSUMPTION. The GDH-Assumption was previously consid-
ered in the context of a key-exchange protocol for a group of parties (see, e.g.,
Shmuely [1985] and Steiner et al. [1996]). In this protocol, party i ∈ [n] chooses
a secret value, ai . After executing the protocol, each of these parties can compute
g

∏
i∈[n] ai and this value defines their common key. While executing the protocol, an

eavesdropper may learn values of the form g
∏

i∈I ai for several proper subsets I of
[n]. It is essential to assume that even with this knowledge it is hard to compute
g

∏
i∈[n] ai . The GDH-Assumption is even stronger: Informally, this assumption says

that it is hard to compute g
∏

i∈[n] ai for an algorithm that can query g
∏

i∈I ai for any
proper subset, I of [n] of its choice.

To remain consistent with the DDH-Assumption, we state the GDH-Assumption
(Assumption 5.1) in a subgroup of Z∗

P of order Q (where P and Q are primes).
In fact, the corresponding assumption in any other group implies a corresponding
construction of pseudo-random functions. For example, since breaking the GDH-
Assumption modulo a composite is at least as hard as factoring Biham et al. [1997]
and Shmuely [1985], we obtain in Section 5.4 a construction of pseudo-random
functions which is at least as secure as Factoring. Furthermore, in contrast with the
DDH-Assumption, one can consider the GDH-Assumption in Z∗

P itself (i.e., when
g is a generator of Z∗

P).
In order to formalize the GDH-Assumption, we use the following definition:

Definition 5.1. Let 〈P, Q, g〉 be any possible output of IG(1n) and let ã =
〈ã1, ã2, . . . , ãn〉 be any sequence of n elements of Z Q . Define the function h P,Q,g,ã
with domain {0, 1}n such that for any n-bit input, x = x1x2 · · · xn ,

h P,Q,g,ã(x)
def= g

∏
xi =1 ãi .

Define hr
P,Q,g,ã to be the restriction of h P,Q,g,ã to inputs {0, 1}n \ {1n}.

Assumption 5.1 (Generalized Diffie–Hellman). For every probabilistic poly-
nomial-time oracle machine A, every constant α > 0 and all but a finite number
of n’s

Pr[Ahr
P,Q,g,ã (P, Q, g) = h P,Q,g,ã(1n)] <

1

nα
,

where the probability is taken over the random bits of A, the choice of 〈P, Q, g〉
in accordance with the distribution IG(1n) and the choice of each of the values in
ã = 〈ã1, ã2, . . . , ãn〉 uniformly at random in Z Q .

As a corollary of Theorem 4.1, we have that if the DDH-Assumption holds, then
so does the GDH-Assumption. In fact, we get that the DDH-Assumption implies
the decisional GDH-Assumption (this was also previously shown in Steiner et al.
[1996]):

COROLLARY 5.1. If the DDH-Assumption (Assumption 3.1) holds, then for ev-
ery probabilistic polynomial-time oracle machine A, every constant α > 0 and all

254 M. NAOR AND O. REINGOLD

but a finite number of n’s

∣∣Pr[Ahr
P,Q,g,ã (P, Q, g, h P,Q,g,ã(1n)) = 1] − Pr[Ahr

P,Q,g,ã (P, Q, g, gc) = 1]
∣∣ <

1

nα
,

where the probabilities are taken over the random bits of A, the choice of
〈P, Q, g〉 according to the distribution IG(1n), the choice of each of the values
in ã = 〈ã1, ã2, . . . , ãn〉 uniformly at random in Z Q and the choice of c uniformly
at random in Z Q.

5.2. MOTIVATION TO THE CONSTRUCTION. Construction 5.1 is motivated by
the concept of pseudo-random synthesizers and the construction of pseudo-random
functions using pseudo-random synthesizers as building blocks [Naor and Reingold
1999b]. Informally, a pseudo-random synthesizer, S, is:

An efficiently computable function of two arguments such that given
polynomially-many, uniformly chosen, inputs for each argument, {xi }m

i=1
and {yi }m

i=1, the output of S on all the combinations, (S(xi , y j))m
i, j=1,

cannot be efficiently distinguished from uniform.

A natural generalization is a k-dimensional pseudo-random synthesizer. Informally,
a k-dimensional pseudo-random synthesizer, S, may be defined to be:

An efficiently computable function of k arguments such that given
polynomially-many, uniformly chosen, inputs for each argument,
{{x j

i }m
i=1}k

j=1, the output of S on all the combinations, M = (S(x1
i1
,

x2
i2
, . . . , xk

ik
))m

i1,i2,...,ik=1, cannot be efficiently distinguished from uniform
by an algorithm that can access M at points of its choice.

The construction of Naor and Reingold [1999b] can be viewed as first recursively
applying a 2-dimensional synthesizer to get an n-dimensional synthesizer, S, and
then defining the pseudo-random function, f , by:

f〈a1,0,a1,1,a2,0,a2,1,...,an,0,an,1〉(σ1σ2 · · · σn)
def= S(a1,σ1, a2,σ2, . . . , an,σn).

However, using this construction, the depth of the n-dimensional synthesizer (and
the pseudo-random functions) is larger by a logarithmic factor than the depth of
the 2-dimensional synthesizer. Therefore, a natural problem is to come up with a
direct construction of an n-dimensional synthesizer.

In this section, it is shown that under the GDH-Assumption the function, SP,Q,g,r ,
defined by SP,Q,g,r (a1, a2, . . . , an)

def= (g
∏n

i=1 ai) � r , is an n-dimensional synthe-
sizer. Construction 5.1 is then obtained as described above.

5.3. THE CONSTRUCTION. We turn to the construction of pseudo-random
functions:

Construction 5.1. We define the function ensemble F = {Fn}n∈N . For ev-
ery n, a key of a function in Fn is a tuple, 〈P, Q, g,
a, r〉, where P is an
n-bit prime, Q a prime divisor of P − 1, g an element of order Q in Z∗

P ,

a = 〈a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1〉 a sequence of 2n elements of Z Q and r an

Constructions of Efficient Pseudo-Random Functions 255

n-bit string. For any n-bit input, x = x1x2 · · · xn , the Binary-function, fP,Q,g,
a,r , is
defined by:

fP,Q,g,
a,r (x)
def= (

g
∏n

i=1 ai,xi
) � r,

(where � denotes the inner product mod 2). The distribution of functions in Fn is
induced by the following distribution on their keys:
a and r are uniform in their
range and the distribution of 〈P, Q, g〉 is IG(1n).

THEOREM 5.2. If the GDH-Assumption (Assumption 5.1) holds, then F =
{Fn}n∈N (as in Construction 5.1) is an efficiently computable pseudo-random func-
tion ensemble.

In order to prove Theorem 5.2 we need the following corollary of the Goldreich–
Levin hard-core-bit theorem [Goldreich and Levin 1989] (more precisely, the setting
of this corollary is somewhat different than the one considered in Goldreich and
Levin [1989] but their result still applies):

COROLLARY 5.3. If the GDH-Assumption (Assumption 5.1) holds, then for ev-
ery probabilistic polynomial-time oracle machine A, every constant α > 0 and all
but a finite number of n’s

| Pr[Ahr
P,Q,g,ã (P, Q, g, r, (h P,Q,g,ã(1n)) � r) = 1]

− Pr[Ahr
P,Q,g,ã (P, Q, g, r, σ) = 1]| <

1

nα
,

where the probabilities are taken over the random bits of A, the choice of 〈P, Q, g〉
in accordance with the distribution IG(1n), the choice of each of the values in
ã = 〈ã1, ã2, . . . , ãn〉 uniformly at random in Z Q, the choice of r uniformly at
random in {0, 1}n and the choice of σ uniformly at random in {0, 1}.

PROOF OF THEOREM 5.2. Let F = {Fn}n∈N be as in Construction 5.1. It is clear
that F is efficiently computable. Assume that F is not pseudo-random, then there
exists a probabilistic polynomial-time oracle machine M and a constant α > 0
such that for infinitely many n’s∣∣Pr[M fP,Q,g,
a,r (P, Q, g, r) = 1] − Pr[MRn (P, Q, g, r) = 1]

∣∣ >
1

nα
,

where in the first probability, fP,Q,g,
a,r is distributed according to Fn , and in the
second probability Rn is uniformly distributed over the set of {0, 1}n → {0, 1}
functions, 〈P, Q, g〉 is distributed according to IG(1n) and r is a uniformly chosen
n bit string.

Let t(·) be a polynomial that bounds the running time of M. We define a proba-
bilistic polynomial-time oracle machine A such that for infinitely many n’s

| Pr[Ahr
P,Q,g,ã (P, Q, g, r, (h P,Q,g,ã(1n)) � r) = 1]

− Pr[Ahr
P,Q,g,ã (P, Q, g, r, σ) = 1]| >

1

nα · t(n)
,

where the probabilities are as in Corollary 5.3. By Corollary 5.3, this would con-
tradict the GDH-Assumption and would complete the proof of the theorem.

256 M. NAOR AND O. REINGOLD

Given access to hr
P,Q,g,ã and on input 〈P, Q, g, r, σ̃ 〉 (where we expect σ̃ to

either be uniformly chosen or to be (h P,Q,g,ã(1n)) � r), A executes the follow-
ing algorithm:

(1) Define t = t(n) and sample J uniformly at random in [t].

(2) Sample each one of 〈b1, b2, . . . , bn〉 uniformly at random in Z Q .

(3) Invoke M on input 〈P, Q, g, r〉 and answer its queries in the following way: Let the queries
asked by M be 〈x1, x2, . . . , xm〉 and assume without loss of generality that all those queries
are distinct.
—Answer each one of the first J − 1 queries with a uniformly chosen bit.
—Answer the J th query with σ̃ .
—Let xi be the i th query for i > J and define the n-bit string z = z1z2 · · · zn such that zk is 1 if

the kth bit of xi and the kth bit of x J are equal and 0 otherwise. Since xi �= x J we have that
z �= 1n . Finally, answer the i th query with((

hr
P,Q,g,ã(z)

)∏
zk =0 bk

)
� r.

(4) Output whatever M outputs.

From the definition of A, we have that all its answers to queries xi for i > J are
fP,Q,g,
a,r (xi), where
a = 〈a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1〉 depends on the J th
query x J = x J

1 x J
2 · · · x J

n as follows: For every 1 ≤ k ≤ n, if x J
k = 0, then ak,0 = ãk

and ak,1 = bk , and if x J
k = 1, then ak,1 = ãk and ak,0 = bk . The first J − 1 queries

are answered by A uniformly at random. The only answer that depends on σ̃ is
the J th answer itself. This answer is, of course, uniformly distributed in case σ̃ is
uniform. It is also not hard to verify that the J th answer is fP,Q,g,
a,r (x J) in case
σ̃ = (h P,Q,g,ã(1n)) � r . We can therefore conclude that:

Pr[Ahr
P,Q,g,ã (P, Q, g, r, (h P,Q,g,ã(1n)) � r) = 1 | J = 1]

= Pr[M fP,Q,g,
a,r (P, Q, g, r) = 1],

as well as

Pr[Ahr
P,Q,g,ã (P, Q, g, r, σ) = 1 | J = t(n)]

= Pr[MRn (P, Q, g, r) = 1],

and

Pr[Ahr
P,Q,g,ã (P, Q, g, r, σ) = 1 | J = j]

= Pr[Ahr
P,Q,g,ã (P, Q, g, r, (h P,Q,g,ã(1n)) � r) = 1 | J = j + 1],

where the probabilities are as above. Therefore, by the standard hybrid argument,
we get from the assumption that for infinitely many n’s

| Pr[Ahr
P,Q,g,ã (P, Q, g, r, (h P,Q,g,ã(1n)) � r) = 1]

− Pr[Ahr
P,Q,g,ã (P, Q, g, r, σ) = 1]| >

1

nα · t(n)
.

Remark 5.1. From the proof of Theorem 5.2, we get that F is pseudo-random
even if the distinguisher (denoted by M in the proof) has access to P, Q, g
and r .

Constructions of Efficient Pseudo-Random Functions 257

5.4. PSEUDO-RANDOM FUNCTIONS AT LEAST AS SECURE AS FACTORING. The
proof of Theorem 5.2 does not rely on the specific group for which the GDH-
Assumption is defined. Therefore, the corresponding assumption in any other group
implies a corresponding construction of pseudo-random functions. An especially
interesting example is taking the GDH-Assumption modulo a composite. Since
breaking this assumption is at least as hard as factoring [Biham et al. 1997; Shmuely
1985], we obtain an attractive construction of pseudo-random functions that is at
least as secure as Factoring. As mentioned in the introduction, this construction was
recently improved in Naor et al. [2000]. In this section, we repeat the definition of
the GDH-Assumption and the construction of pseudo-random functions with the
group set to Z∗

N , where N is a Blum-integer. The proof of security is practically the
same as the proof of Theorem 5.2 (and is therefore omitted).

Similarly to the case of the DDH-Assumption, we keep our results general by
letting the composite N be generated by some polynomial-time algorithm FIG
(where FIG stands for factoring-instance-generator). We assume that on input 1n

of FIG its output, N , is distributed over 2n −bit integers, where N = P · Q for two
n − bit primes, P and Q, such that P ≡ Q ≡ 3 mod 4 (such an integer is known
as a Blum-integer).

5.4.1. The GDH-Assumption Modulo a Composite

Definition 5.2. Let N be any possible output of FIG(1n), let g be any quadratic-
residue in Z∗

N and let ã = 〈ã1, ã2, . . . , ãn〉 be any sequence of n elements of
[N]. Define the function hN ,g,ã with domain {0, 1}n such that for any n-bit input,
x = x1x2 · · · xn ,

hN ,g,ã(x)
def= g

∏
xi =1 ãi .

Define hr
N ,g,ã to be the restriction of hN ,g,ã to inputs {0, 1}n \ {1n}.

Assumption 5.2 (Generalized Diffie–Hellman in Z∗
N). For every probabilistic

polynomial-time oracle machine A, for every constant α > 0 and all but a finite
number of n’s

Pr[Ahr
N ,g,ã (N , g) = hN ,g,ã(1n)] <

1

nα
,

where the probability is taken over the random bits of A, the choice of N in
accordance with the distribution FIG(1n), the choice of g uniformly at random
in the set of quadratic-residues in Z∗

N and the choice of each of the values in
ã = 〈ã1, ã2, . . . , ãn〉 uniformly at random in [N].

5.4.2. The Construction and Its Security

Construction 5.2. We define the function ensemble F = {Fn}n∈N . For every n,
a key of a function in Fn is a tuple, 〈N , g,
a, r〉, where N is a 2n-bit Blum-integer, g
is a quadratic-residue in Z∗

N ,
a = 〈a1,0, a1,1, a2,0, a2,1, . . . , an,0, an,1〉 is a sequence
of 2n values in [N] and r is a 2n-bit string. For any n-bit input, x = x1x2 · · · xn ,
the Binary-function, fN ,g,
a,r , is defined by:

fN ,g,
a,r (x)
def= (

g
∏n

i=1 ai,xi
) � r.

The distribution of functions in Fn is induced by the following distribution on their
keys: g,
a and r are uniform in their range and the distribution of N is FIG(1n).

258 M. NAOR AND O. REINGOLD

In the same way Theorem 5.2 is proven, we get that:

THEOREM 5.4. If the GDH-Assumption in Z∗
N (Assumption 5.1) holds, then

F = {Fn}n∈N (as in Construction 5.2) is an efficiently computable pseudo-random
function ensemble.

However, breaking the GDH-Assumption in Z∗
N is at least as hard as factor-

ing N :

THEOREM 5.5 (BIHAM ET AL. 1997; SHMUELY 1985). If the GDH-Assump-
tion in Z∗

N (Assumption 5.1) does not hold, then there exists a probabilistic
polynomial-time oracle machine A and a constant α > 0 such that for infinitely
many n,

Pr[A(P · Q) = 〈P, Q〉] >
1

nα
,

where the distribution of N = P · Q is FIG(1n).
Furthermore, the reduction is linear-preserving (see Luby [1996]): Assume that

there exists a probabilistic algorithm A′ with running-time t(n) that breaks the
GDH-Assumption in Z∗

N with probability ε(n). Then there exists a probabilis-
tic algorithm A with running-time t(n) · poly(n) for factoring with success-prob-
ability ε(n).

We can therefore deduce that:

COROLLARY 5.6 OF THEOREM 5.4 AND THEOREM 5.5. Let F = {Fn}n∈N be as in
Construction 5.2 and assume that F is not an efficiently computable pseudo-random
function ensemble. Then there exists a probabilistic polynomial-time algorithm A
and a constant α > 0 such that for infinitely many n’s:

Pr[A(P · Q) = 〈P, Q〉] >
1

nα
,

where the distribution of N = P · Q is FIG(1n).

6. Additional Features and Further Research

This article shows two, very efficient, constructions of pseudo-random functions.
The first construction is based on the decisional DH-Assumption (Assumption 3.1)
and the second construction is based on a generalization of the computational DH-
Assumption (Assumption 5.1). Therefore, a natural line for further research is the
study of the validity of these assumptions and the relations between these assump-
tions and the standard computational DH-Assumption. Since our constructions can
be based on the corresponding assumptions for other groups (e.g., in elliptic-curve
groups), it is interesting to study the validity of these assumptions as well.

The pseudo-random functions of Constructions 4.2 and 5.1 have a simple alge-
braic structure. We consider this to be an important advantage over all previous
constructions, mainly since several attractive features seem more likely to exist for
a simple construction of pseudo-random functions. In Naor and Reingold [1997]
we presented preliminary results in obtaining such features for our construction of
pseudo-random functions: (1) A rather simple zero-knowledge proof for claims of

Constructions of Efficient Pseudo-Random Functions 259

the form y = fs(m) and y �= fs(m); (2) A way to distribute a pseudo-random func-
tion among a set of parties such that only an authorized subset can compute the value
of the function at any given point; and (3) A protocol for “oblivious evaluation” of
the value of the function: Assume that a party,A, knows a key s of a pseudo-random
function. Then A and a second party, B, can perform a protocol during which B
learns exactly one value fs(x) of its choice whereas A does not learn a thing (and,
in particular, does not learn x). Though there is much room for improving these
designs, they are still a significant improvement over the protocols that are available
for all previous constructions of pseudo-random functions (including commonly
used block-ciphers such as DES) and they serve as a demonstration to the potential
of our construction.

We consider the task of improving the protocols given in Naor and Reingold
[1997] and designing additional ones to be an interesting line for further research.
A particularly interesting example arises by the work of Bellare and Goldwasser
[1990]. They suggest a way to design a digital-signature scheme that is very at-
tractive given efficient pseudo-random functions and an efficient noninteractive
zero-knowledge proof for claims of the form y = fs(m) (when a commitment to
a key s of a pseudo-random function fs is available as part of the public-key).
Another very attractive scheme one may desire is a function-sharing scheme for
pseudo-random functions (in an analogous meaning to function-sharing schemes
for trapdoor one-way permutations as defined in De Santis et al. [1994]). Two
examples for applications of such schemes are efficient metering of web usage
[Naor and Pinkas 1998] and the distribution of KDCs (key-distribution centers)
[Naor et al. 1999].

In Section 5.2, the concept of a k-dimensional pseudo-random synthesizer and the
immediate construction of pseudo-random functions from n-dimensional synthesiz-
ers are described. Assumption 5.1 gives a simple construction of an n-dimensional
synthesizer which indeed translates to a construction of pseudo-random functions
(Construction 5.1). An interesting problem is to construct efficient n-dimensional
synthesizers using other intractability assumptions.

ACKNOWLEDGMENTS. We thank Ran Canetti, Joe Kilian, Kobbi Nissim and Amnon
Ta-Shma for many helpful discussions and comments. Special thanks to Victor
Shoup for suggesting the improved proof of Lemma 4.2 and for bringing Stadler
[1996] to our attention. Finally, we would like to thank the anonymous referees for
many helpful comments.

REFERENCES

ANGLUIN, D., AND KHARITONOV, M. 1995. When won’t membership queries help?, J. Comput. Syst.
Sci. 50, 336–355.

BEAME, P. W., COOK, S. A., AND HOOVER, H. J. 1986. Log depth circuits for division and related
problems. SIAM J. Comput. 15, 994–1003.

BELLARE, M., AND GOLDWASSER, S. 1990. New paradigms for digital signatures and message authentica-
tion based on non-interactive zero knowledge proofs. In Proceedings of Advances in Cryptology–CRYPTO
’89. Lecture Notes in Computer Science, Springer-Verlag, New York, 194–211.

BELLARE, M., AND MICALI, S. 1990. Non-interactive oblivious transfer and applications. In Proceedings
of Advances in Cryptology—CRYPTO ’89. Lecture Notes in Computer Science, Springer-Verlag, New
York, 547–557.

BIHAM, E. BONEH, D., AND REINGOLD, O. 1997. Breaking generalized Diffie–Hellman modulo a com-
posite is no easier than Factoring. Theory of Cryptography Library, Record 97-14 at: http://theory.
lcs.mit.edu/ tcryptol/homepage.html

260 M. NAOR AND O. REINGOLD

BLUM, L. BLUM, M., AND SHUB, M. 1986. A simple secure unpredictable pseudo-random number
generator. SIAM J. Comput. 15, 364–383.

BLUM, M., EVANS, W., GEMMELL, P., KANNAN, S., AND NAOR, M. 1994. Checking the correctness of
memories. Algorithmica, 225–244.

BLUM, M., AND GOLDWASSER, S. 1984. An efficient probabilistic public-key encryption scheme which
hides all partial information. In Proceedings of Advances in Cryptology—CRYPTO ’84. Lecture Notes
in Computer Science, vol. 196. Springer-Verlag, New York, 289–302.

BLUM, M., AND MICALI, S. 1984. How to generate cryptographically strong sequence of pseudo-random
bits. SIAM J. Comput. 13, 850–864.

BONEH, D. 1998. The decision Diffie–Hellman problem. In Proceedings of the 3rd Algorithmic Number
Theory Symposium. Lecture Notes in Computer Science, vol. 1423. Springer-Verlag, New York, 48–
63.

BONEH, D., AND LIPTON, R. 1996. Algorithms for black-box fields and their application to cryptography.
In Proceedings of the Advances in Cryptology—CRYPTO ’96, Lecture Notes in Computer Science,
vol. 1109. Springer-Verlag, New York, 283–297.

BONEH, D., AND VENKATESAN, R. 1996. Hardness of computing most significant bits in secret keys in
Diffie–Hellman and related schemes. In Proceedings of Advances in Cryptology—CRYPTO ’96. Lecture
Notes in Computer Science, vol. 1109. Springer-Verlag, New York, 129–142.

BRANDS, S. 1993. An efficient off-line electronic cash system based on the representation problem. CWI
Tech. Rep., CS-R9323.

BRASSARD, G. 1988. Modern cryptology. Lecture Notes in Computer Science, vol. 325. Springer-Verlag,
New York.

BRICKELL, E. F., GORDON, D. M., MCCURLEY, K. S., AND WILSON, D. B. 1992. Fast exponentiation
with precomputation. In Proceedings of Advances in Cryptology—EUROCRYPT ’92. Lecture Notes in
Computer Science, Springer-Verlag, New York, 200–207.

CANETTI, R. 1997. Towards realizing random oracles: hash functions that hide all partial information. In
Proceedings of Advances in Cryptology—CRYPTO ’97. Lecture Notes in Computer Science. Springer-
Verlag, New York, 455–469.

CANETTI, R., FRIEDLANDER, J., AND SHPARLINSKI, I. 1997. On certain exponential sums and the distri-
bution of Diffie–Hellman triples. Research report, IBM T. J. Watson Research Center, Number RC 20915
(92645), July.

CHAUM, D., AND VAN ANTWERPEN, H. 1990. Undeniable signatures. In Proceedings of Advances in
Cryptology—CRYPTO ’89. Lecture Notes in Computer Science. Springer-Verlag, New York, 212–
216.

CHOR, B., FIAT, A., AND NAOR, M. 1994. Tracing traitors. In Proceedings of Advances in Cryptology—
CRYPTO’ 94. Lecture Notes in Computer Science, vol. 839. Springer-Verlag, 257–270.

CRAMER, R., AND SHOUP, V. 1998. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Proceedings of Advances in Cryptology—CRYPTO ’98. Lecture Notes in
Computer Science, vol. 1462. Springer-Verlag, New York, 13–25.

DE SANTIS, A., DESMEDT, Y., FRANKEL, Y., AND YUNG, M. 1994. How to share a function securely. In
Proceedings of the 26th ACM Symposium on Theory of Computing. ACM, New York, 522–533.

DIFFIE, W., AND HELLMAN, M. 1976. New directions in cryptography. IEEE Trans. Inform. Theory 22,
6, 644–654.

EL GAMAL, T. 1985. A public-key cryptosystem and a signature scheme based on discrete logarithms.
In Proceedings of Advances in Cryptology—CRYPTO ’84. Lecture Notes in Computer Science, vol. 196.
Springer-Verlag, New York, 10–18.

FRANKLIN, M., AND HABER, S. 1996. Joint encryption and message-efficient secure computation. J.
Cryptology 9, 4, 217–232.

GERTNER, Y., AND MALKIN, T. 1997. A PSRG based on the decision Diffie–Hellman assumption,
preprint.

GOLDREICH, O. 1987. Two remarks concerning the Goldwasser–Micali–Rivest signature scheme. In
Proceedings of Advances in Cryptology—CRYPTO’ 86. Lecture Notes in Computer Science, vol. 263.
Springer-Verlag, New York, 104–110.

GOLDREICH, O. 1995. Foundations of Cryptography (fragments of a book). Electronic publica-
tion: http://www.eccc.uni-trier.de/eccc/info/ECCC-Books/eccc-books.html (Elec-
tronic Colloquium on Computational Complexity).

GOLDREICH, O. 1998. Modern cryptography, probabilistic proofs and pseudo-randomness. Algorithms
Combin. 17.

Constructions of Efficient Pseudo-Random Functions 261

GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. 1985. On the cryptographic applications of random
functions. In Proceedings of Advances in Cryptology—CRYPTO ’84. Lecture Notes in Computer Science,
vol. 196. Springer-Verlag, New York, 276–288.

GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. 1986. How to construct random functions. J. ACM
33, 792–807.

GOLDREICH, O., AND LEVIN, L. 1989. A hard-core predicate for all one-way functions. In Proceedings
of the 21st Annual ACM Symposium on Theory of Computing. ACM, New York, 25–32.

GOLDWASSER, S., AND MICALI, S. 1984. Probabilistic encryption. J. Comput. Syst. Sci. 28, 2, 270–299.
GOLDREICH, O., AND OSTROVSKY, R. 1996. Software protection and simulation on oblivious RAMs. J.

ACM 43, 3, 431–473.
HASTAD, J., IMPAGLIAZZO, R., LEVIN, L. A., AND LUBY, M. 1999. Construction of a pseudo-random

generator from any one-way function. SIAM J. Comput. 28, 4, 1364–1396.
IMPAGLIAZZO, R., AND NAOR, M. 1996. Efficient cryptographic schemes provably secure as subset sum.

J. Crypt. 9, 199–216.
IMPAGLIAZZO, R., AND ZUCKERMAN, D. 1989. Recycling random bits. In Proceedings of the 30th IEEE

Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif.,
248–253.

JOUX, A., AND NGUYEN, K. 2001. Separating decision Diffie–Hellman from Diffie–Hellman in crypto-
graphic groups, Cryptology ePrint Archive, Report 2001/003, 2001. http://eprint.iacr.org.

KEARNS, M., AND VALIANT, L. 1994. Cryptographic limitations on learning Boolean formulae and finite
automata. J. ACM 41, 1, 67–95.

KHARITONOV, M. 1993. Cryptographic hardness of distribution-specific learning. In Proceedings of the
25th ACM Symposium on Theory of Computing. 372–381.

KRAUSE, M., AND LUCKS, S. 2001. On the minimal hardware complexity of pseudorandom function
generators. In Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science
419–430.

LANGBERG, M. 1998. An implementation of efficient pseudo-random functions. At: http://www.
wisdom.weizmann.ac.il/~naor/p_r_func/abs/abs.html.

LINIAL, N. MANSOUR, Y., AND NISAN, N. 1993. Constant depth circuits, Fourier transform, and learn-
ability. J. ACM 40, 3, 607–620.

LUBY, M. 1996. Pseudo-randomness and applications. Princeton University Press, Princeton, N.J.
LUBY, M., AND RACKOFF, C. 1988. How to construct pseudorandom permutations and pseudorandom

functions. SIAM J. Comput. 17, 373–386.
MAURER, U., AND WOLF, S. 1999. Towards the equivalence of breaking the Diffie–Hellman protocol

and computing discrete logarithms. SIAM J. Comput. 28, 5, 1689–1721.
MCCURLEY, K. 1988. A key distribution system equivalent to factoring. J. Crypt. 1, 95–105.
MCCURLEY, K. 1990. The discrete logarithm problem. In Cryptography and Computational Number

Theory, Proceedings of the Symposium on Applied Mathematics. AMS Lecture Notes, vol. 42, 49–74.
NAOR, M., AND PINKAS, B. 1998. Secure and efficient metering. In Proceedings of Advances in

Cryptology—EUROCRYPT ’98. Lecture Notes in Computer Science, vol. 1462. Springer-Verlag,
New York.

NAOR, M., AND PINKAS, B. 1999. Oblivious transfer with adaptive queries. In Proceedings of Advances
in Cryptology—CRYPTO ’99. Lecture Notes in Computer Science, vol. 1666, Springer-Verlag, New
York. 573–590.

NAOR, M., PINKAS, B., AND REINGOLD, O. 1999. Distributed pseudo-random functions and KDCs. In
Proceedings of Advances in Cryptology—Eurocrypt ’99. Lecture Notes in Computer Science, vol. 1592.
Springer-Verlag, New York, 327–346.

NAOR, M., AND REINGOLD, O. 1997. Number-theoretic constructions of efficient pseudo-random func-
tions. In Proceedings of the 38th IEEE Symposium on Foundations of Computer Science. IEEE Com-
puter Society Press, Los Alamitos, Calif., 458–467. (Full version athttp://www.wisdom.weizmann.
ac.il/%7Enaor/PAPERS/gdh_abs.html.)

NAOR, M., AND REINGOLD, O. 1999a. On the construction of pseudo-random permutations: Luby–
Rackoff revisited. J. Crypt. 12, 1, 29–66. (Preliminary version: STOC’97.)

NAOR, M., AND REINGOLD, O. 1999b. Synthesizers and their application to the parallel construction of
pseudo-random functions. J. Comput. Syst. Sci. 58, 2, 336–375. (Preliminary version: FOCS’95.)

NAOR, M., REINGOLD, O., AND ROSEN, A. 2000. Pseudo-random functions and factoring. In Proceedings
of the 32nd ACM Symposium on Theory of Computing. ACM, New York.

ODLYZKO, A. M. 1993. Discrete logarithms and smooth polynomials. Contemp. Math.

262 M. NAOR AND O. REINGOLD

RAZBOROV, A., AND RUDICH, S. 1997. Natural proofs. J. Comput. Syst. Sci. 55, 1, 24–35.
REIF, J. 1987. On threshold circuits and polynomial computation. In Proceedings of the 2nd Conference

on Structure in Complexity Theory. 118–123.
REIF, J., AND TATE, S. 1992. On threshold circuits and polynomial computation. SIAM J. Comput. 5,

896–908.
SHMUELY, Z. 1985. Composite Diffie–Hellman public-key generating systems are hard to break, Tech.

Rep. No. 356, Computer Science Dept., Technion, Technion City, Israel.
SHOUP, V. 1997. Lower bounds for discrete logarithms and related problems. In Proceedings of Advances

in Cryptology—EUROCRYPT ’97. Lecture Notes in Computer Science, vol. 1233. Springer-Verlag, New
York, 256–266.

SIU, K.-Y., BRUCK, J., KAILATH, T., AND HOFMEISTER, T. 1993. Depth efficient neural network for
division and related problems. IEEE Trans. Inform. Theory 39, 946–956.

SIU, K.-Y., AND ROYCHOWDHURY, V. P. 1994. On optimal depth threshold circuits for multiplication
and related problems. SIAM J. Disc. Math. 7, 2, 284–292.

STADLER, M. 1996. Publicly verifiable secret sharing. In Proceedings of Advances in Cryptology—
EUROCRYPT ’96, Lecture Notes in Computer Science, vol. 1070. Springer-Verlag, New York, 190–199.

STEINER, M., TSUDIK, G., AND WAIDNER, M. 1996. Diffie–Hellman key distribution extended to group
communication. In Proceedings of the 3rd ACM Conference on Computer and Communications Security.
ACM, New York, 31–37.

VALIANT, L. G. 1984. A theory of the learnable. Commun. ACM 27, 1134–1142.
YAO, A. C. 1982. Theory and applications of trapdoor functions. In Proceedings of the 23rd IEEE

Symposium on Foundations of Computer Science. ACM, New York, 80–91.

RECEIVED NOVEMBER 2000; REVISED APRIL 2003; ACCEPTED SEPTEMBER 2003

Journal of the ACM, Vol. 51, No. 2, March 2004.

