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Abstract

A spatial logic is a modal logic of which the models are the math-
ematical models of space. Successively considering the mathematical
models of space that are the incidence geometry and the projective
geometry, we will successively establish the language, the semanti-
cal basis, the axiomatical presentation, the proof of the decidability
and the proof of the completeness of INC', the modal multilogic of
incidence geometry, and PRQO, the modal multilogic of projective ge-
ometry.

1 Introduction

Our perception of space is less direct than our perception of time which
is not the result of thought but the outcome of consciousness. Nev-
ertheless, we should acknowledge that space more vigorously asserts
its truth to our senses than time : we can see the objects that occupy
space whereas we cannot know similarly the ways of the events that
fill time [12].

Well then, why, since the works of Dummett and Lemmon [8], Hin-
tikka [14] and Prior [22] on the logic of the Diodorean modalities, has
temporal logic become the industry of today (specification and verifi-
cation of programs and systems [1], applications in natural language,
concurrent computation, planning and databases [11], logics and se-
mantics of programming [18], etcetera) whereas spatial logic is still in
its infancy 7 Because, in actual fact, there are but a few modal logics
which are for space what temporal logics are for time. And even are



they presented without a common line of action, with the result that
we cannot consider working out a general theory of spatial logic.

The relevance of the modal logics designed by Balbiani, Farifias
del Cerro, Tinchev and Vakarelov [4], Bennett [5] and Jeansoulin and
Mathieu [17] for spatial reasoning is debatable. On the one hand, it is
just that Balbiani, Farifias del Cerro, Tinchev and Vakarelov regard
the arrow frame a la Vakarelov [25] as a mathematical model of space :
their choice leads to a too abstract modal logic of space. On the other
hand, it is just that Bennett considers a topological interpretation
of the intuitionistic propositional calculus and that Jeansoulin and
Mathieu look upon S4 as the modal logic of inclusion : there is nothing
original about their propositions.

By the way, what is the measure by which we can judge whether
or not a modal logic is a spatial logic ? For several years, a tempo-
ral logic is a modal logic of which the models are the mathematical
models of time [10]. By analogy with temporal logic, in agreement
with Lemon [19], we will say that a spatial logic is a modal logic of
which the models are the mathematical models of space. A mathemat-
ical model of space is a relational structure consisting of one or more
sets of geometrical beings (lines, points, etcetera) together with one
or more basic relations between these geometrical beings (incidence
between lines and points, parallelism between lines, orthogonality be-
tween lines, etcetera). The simplest mathematical model of space
is the frame of incidence that is a relational structure of the form
F = (L, Po,in) where Li is a nonempty set of geometrical beings of
type line, Po is a nonempty set of geometrical beings of type point
and in is a binary relation of incidence between points and lines such
that two distinct points are together incident with exactly one line.

Traditionnally, the semantical basis of modal logic is a relational
structure consisting of one set of possible worlds together with one
relation between these possible worlds [15]. The possible applications
of modal logic (reasoning about knowledge [9], reasoning about pro-
grams [13], reasoning about objects [21], etcetera) have given promi-
nence to relational structures consisting of one set of possible worlds
together with several relations between these possible worlds. It is only
lately that, in the context of dynamic arrow logic, van Benthem [6],
Marx [20] and de Rijke [24] have resolved to consider relational struc-
tures consisting of several sets of possible worlds together with several
relations between these possible worlds.



The frame of incidence is a relational structure consisting of two
sets of geometrical beings together with one relation between these
geometrical beings. Backing up our reflection with the achievements
of van Benthem, Marx and de Rijke and successively considering the
mathematical models of space that are the incidence geometry and
the projective geometry (that is an incidence geometry in which two
distinct lines are together incident with exactly one point), we will suc-
cessively establish the language, the semantical basis, the axiomatical
presentation, the proof of the decidability and the proof of the com-
pleteness of INC', the modal multilogic of incidence geometry, and
PRO, the modal multilogic of projective geometry. The proof of the
decidability of the modal multilogic of incidence geometry and the
proof of the decidability of the modal multilogic of projective geome-
try use the techniques of the filtration introduced by Segerberg [15].
The proof of the completeness of the modal multilogic of incidence
geometry and the proof of the completeness of the modal multilogic of
projective geometry use the techniques of the frame of subordination
introduced by Cresswell [15] and developed by Balbiani [2] [3] and
Humberstone [16].

2 Language

The linguistic basis of the modal multilogic of geometry is the propo-
sitional calculus. Let LIN be a nonempty set of atomic formulas of
type line and POI be a nonempty set of atomic formulas of type
point. The set FORLIN of the complex formulas of type line and
the set FORPOI of the complex formulas of type point are defined
by induction in the following way :

e LIN C FORLIN.

e POI C FORPOI.

e Forevery o, € FORLIN, oV 3 € FORLIN.
e Forevery A, B € FORPOI, AV B ¢ FORPOI.
e For every o € FORLIN, ~a € FORLIN.

e For every A € FORPOI, -A € FORPOI.

e Lor every A € FORPOI, [on]A € FORLIN.

e Lor every o € FORLIN, [in]a € FORPOI.



For every A € FORPOI, let (on)A = —[on]-A. For every a €
FORLIN, let (in)a = —=[in]-a.

The frame of incidence is a relational structure consisting of two
sets of geometrical beings together with one relation between these
geometrical beings. Consequently, it is only natural that the decision
should have been reached to consider a language made up of two sets
of formulas together with the modal operators [on] and [in] permitting
to go from one set to another in the following way :

e Forevery A € FORPOI, the complex formula [on]A of type line
signifies “in every point incident with the current line, it is the
case that A”.

e Forevery « € FORLIN, the complex formula [in]a of type point
signifies “in every line incident with the current point, it is the
case that o”.

Consequently :
e Lor every A € FORPOI, the complex formula (on)A signifies

“in some point incident with the current line, it is the case that
A7

e Loreverya € FORLIN, the complex formula (in)« signifies “in
some line incident with the current point, it is the case that «”.

e Lorevery o € FORLIN, the complex formula [on][in]a signifies
“in every line incident with any point incident with the current
line, it is the case that o”.

e Lorevery A € FORPOI, the complex formula [in][on] A signifies
“in every point incident with any line incident with the current
point, it is the case that A”.

The modalities of type line to line and the modalities of type point
to point are defined by induction in the following way :

e The empty modality is a modality of type line to line.
e The empty modality is a modality of type point to point.

e For every modality A of type line to line, [on][in]) is a modality
of type line to line.

e For every modality A of type point to point, [in][on]) is a modal-
ity of type point to point.



3 Semantical study

This section presents the semantical study of the modal multilogic of
geometry.

3.1 Basic frame

A basic frame is a relational structure of the form F = (L1, Po, on,in)
where Lt is a nonempty set of geometrical beings of type line, Po is
a nonempty set of geometrical beings of type point, on is a binary
relation of incidence on Li and Po and in is a binary relation of
incidence on Po and Lt such that :

e For every @ € Li, on(z) # () (every line is incident with at least
one point).

e For every X € Po, in(X) # 0 (every point is incident with at
least one line).

e Lor every ¢ € Li and for every X € Po, if X € on(z) then
x € in(X) (if a line is incident with a point then the point is
incident with the line).

e Lor every X € Po and for every @ € Li, if 2 € in(X) then
X € on(z) (if a point is incident with a line then the line is
incident with the point).

F is normal when :
e Lorevery X,Y € Po and for every z,y € Li, if {z,y} Cin(X)N
in(Y) then X =Y or z =y (if two points are incident with two

lines then either the two points are equal or the two lines are
equal).

Direct calculations would lead to the conclusion that :

Proposition 1 If F is normal then :

o Foreveryx,y € Li and for every X, Y € Po, if {X,Y} C on(z)N
on(y) then =y or X =Y (if two lines are incident with two
points then either the two lines are equal or the two points are
equal).

F is connected when :



e Forevery XY € Po, there exists k > 0 and there exists Xg,..., X; €
Po such that :

- Xp=X.
— For every [ € {1,....k}, in(X;_1) Nin(X;) # 0.
- Xy =Y.

The reader may easily verify that :

Proposition 2 If F is connected then :

o Foreveryx,y € L, there exists k > 0 and there exists xg, ..., x) €
Li such that :

— g =2.
— For everyl € {1,...,k}, on(z;—1) Non(a;) # 0.
-z =Y.

F is a frame of incidence when :

e Forevery X,Y € Po, in(X)Nin(Y) # 0 (two points are together
incident with at least one line).

F is a projective frame when :

e For every z,y € Li, on(z) Non(y) # 0 (two lines are together
incident with at least one point).

e For every X,Y € Po, in(X)Nin(Y) # 0.
It is easy to verify that :

Proposition 3 If F is a frame of incidence then F is connected.
Proposition 4 If F is a projective frame then F is connected.

Moreover :

Proposition 5 If F is a normal frame of incidence then, for every
XY € Po, if X # Y then Card(in(X)Nin(Y)) = 1 (two distinct
points are together incident with exactly one line).

Proposition 6 If F is a normal projective frame then, for every
x,y € Li, if v # y then Card(on(z) Non(y)) = 1 (two distinct lines
are together incident with exactly one point). Moreover, for every

X,Y € Po, if X #Y then Card(in(X)Nin(Y)) = 1.



3.2 Valuation

Let F = (Li, Po,on,in) be a basic frame. A valuation on F is a
structure of the form (R, V) where R is a mapping of LIN to P(L)
and V' is a mapping of POI to P(Po). The mapping R of FORLIN
to P(Li) and the mapping V of FORPOI to P(Po) are defined by

induction in the following way :

e For every m € LIN, R(x) = R(r).
e Tor every p € POI, V(p) =V (p).
e For every a,3 € FORLIN, R(aV 8) = R(a) U R(f).

e For every A,B € FORPOI, V(AV B) = V(A)UV(B).
e For every a € FORLIN, R(-a) = Li\ R(a).

e For every A € FORPOI, V(=A) = Po\ V(A).

e For every A € FORPOI, R([on]A) = {z : on(x)
e For every a € FORLIN, V([in]a) = {X : in(X)

V(A)
R(a)}

— —

<
<

Our definition yields the following result :

Proposition 7 For every A € FORPOI, §(<0n>A~) ={z : on(z)N
V(A) # 0}. Moreover, for every a € FORLIN, V((in)a) = {X :
in(X)N R(a) # 0}.

Moreover :

Proposition 8 If F is a frame of incidence then, for every A €
FORPOI, if V(A) = Po then V ([in][on]A) = Po else V ([in][on]A) =
0.

Proof If V([in][on]A) # 0 then there exists X € Po such that
in(X) C R([on]A). Consequently, for every z € Li, if z € in(X)
then on(z) C V(A). Since F is a frame of incidence, then, for every
Y € Po, there is # € Li such that 2 € in(X) and Y € on(z). Conse-
quently, for every Y € Po, Y € ‘7(14) Consequently, ‘7(14) = Po and
V ([in][on]A) = Po.

_|

Proposition 9 IfF is a projective frame then, for everya € FORLIN,
if R(a) = Li then R([on][in]a) = Li else R([on][in]a) = 0. Moreover,
for every A € FORPOI, if V(A) = Po then V([in]lon]A) = Po else

V([in][on]A) = 0.



Proof If R([on][in]a) # 0 then there exists @ € Li such that on(z) C
V([in]ar). Consequently, for every X € Po,if X € on(x) then in(X) C

R(a). Since F is a projective frame, then, for every y € Li, there is
X € Po such that X € on(z) and y € in(X). Consequently, for every
y € Li, y € R(a). Consequently, R(«) = Li and R([on][in]a) = Li.

_|

3.3 Basic model

Let F = (Lt, Po,on,in) be a basic frame and (R, V) be a valuation
on F. The structure M = (Li, Po,on,in, R, V) is called basic model
on F defined from (R, V). Let ...:

e ... K be the class of all basic models and K™ be the class of all
countable, normal and connected basic models.

o ... INC be the class of all models of incidence and INC™ be the
class of all countable and normal models of incidence.

e ... PRO be the class of all projective models and PRO* be the
class of all countable and normal projective models.

Let ...:

o ... K° be the class of all connected basic models and KJ? be the
class of all finite and connected basic models.

e ... INCY be the class of all finite models of incidence.
e ... PRO; be the class of all finite projective models.
The relation of satisfiability in M of a formula is defined in the fol-
lowing way :
e For every v € Li and for every @ € FORLIN, x Eum o iff
r € R(a).
e For every X € Po and for every A € FORPOI, X Eum A iff
X e V(A).
The relation of validity in M of a formula is defined in the following
way :
e For every o« € FORLIN, =p a iff, for every @ € Li,  Eum .
e Forevery A € FORPOI, Ep Aiff, forevery X € Po, X Eapm A.

Let K be a class of models. The relation of validity in K of a formula
is defined in the following way :



e For every @« € FORLIN, = «a iff, for every M € K, Euq .
e For every A € FORPOI, |=x A iff, for every M € K, = A.

Theorem 1 Let M = (Li, Po,on,in, R, V) be a basic model. For
every x € Li and for every a« € FORLIN, v Em «a iff ¢ Eme o
(M being the connected submodel of M containing ). Moreover, for
every X € Po and for every A € FORPRO, X Em A iff X Epx A
(MX being the connected submodel of M containing X ).

Proof By induction on the complexity of @ and on the complexity of
A.

_|

Consequently :

Theorem 2 For every o« € FORLIN, if Exo a then Exg o. More-
over, for every A € FORPOI, if Exo A then =i A.

Proof If [ o then there exists M = (Li, Po,on,in, R, V) € K such
that Ea a. Consequently, there exists @ € Li such that o fFEa a.
According to the theorem 1, z == o (M7 being the connected sub-
model of M containing z). Consequently, == a. Direct calculations
would lead to the conclusion that M?* € K°. Consequently, Ex. a.
_|

3.4 Filtration

A filter is a structure of the form (A,Il) where A is a subset of
FORLIN and Il is a subset of FORPOI such that :

e Forevery a,3€ FORLIN,if av 3 € A then o € A and 3 € A.

e For every A, B € FORPOI, if Av B € Il then A € II and
B ell

e For every o € FORLIN, if ma € A then o € A.
o For every A € FORPOI, if =A € Il then A € II.
e Lor every A € FORPOI, if [on]A € A then A € 1.
e Lor every o € FORLIN , if [in]a € Il then o € A.
Let (A, I1) be a filter and M = (L¢, Po,on, in, R, V) be a basic model.

Let =5 be the relation of equivalence on Lt defined in the following
way :



o Lor every z,y € Li, v =5 y iff, for every @ € A, 2 € E(oe) iff
y € R(a).
and =1 be the relation of equivalence on Po defined in the following
way :
e Forevery X,Y € Po, X = Y iff, for every A € II, X € ‘7(14)
iff Y e V(A).
Let Li' = Li|=, and Po' = Poiz . Let on' be a binary relation on L’
and Po’ such that :
e Lor every ¢ € Li and for every X € Po, if X € on(z) then
=n (X) € on/(=4 (2)).

e Lorevery x € Li and for every X € Po, if =1 (X) € on/(=4 (2))
then, for every A € FORPOI, if [on]A € A and v € R([on]A)
then X € V(A4).

and in’ be a binary relation on Po’ and Li’ such that :

e Lor every X € Po and for every @ € Li, if 2 € in(X) then
=a (2) € in'(=n (X)).

e Lor every X € Po and for every @ € Li, if =5 () € in'(=n (X))
then, for every a € FORLIN, if [in]a € IT and X € V([in]a)
then 2 € R(a).

Let R’ be a mapping of LIN to P(Li’) such that :

e Forevery 7 € LIN,if 7 € A then R'(7) = {=x (z) : 2 € R(7)}.
and V'’ be a mapping of POI to P(Po’) such that :

e Forevery p € POI,if p € T then V'(p) = {=n (X): X € V(p)}.
The structure M’ = (Li’, Po',on’,in', R', V") is called filtration of M
through (A, II).

Proposition 10 For every a € FORLIN, if o € A then ﬁ(a) =
{=a (2) © @ € R(a)}. Moreover, for every A € FORPOI, if A €1l
then V'(A) = {=n (X) : X € V(A)}.

Proof By induction on the complexity of @ and on the complexity of

A.
_|
Consequently :
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Theorem 3 For every « € FORLIN, if ):K? o then Ego a. More-
over, for every A € FORPOI, if ):K;g A then Ego A.

Proof If [£xo « then there exists M = (Li, Po,on,in, R, V) € K°
such that g a. Consequently, there exists « € Lisuch that « Eum .
Consequently, ¢ R(«). Let (A, Il) be a finite filter such that o € A
and M' = (Li', Pd',;on’,in', R", V') be the filtration of M through
(A, I1) defined in the following way :
e For every z € Li and for every X € Po, =r1 (X) € on/(=x (2))
iff there exists y € L7 and there exists Y € Po such that x =,
y, X =n Y and Y € on(y).
e For every X € Po and for every o € Li, =5 (¢) € in/(=n (X))
iff there exists Y € Po and there exists y € Lt such that X =q
Y,z =p yand y€in(Y).
Direct calculations would lead to the conclusion that M’ € K3. Ac-
cording to the proposition 10, =5 (z) ¢ ﬁ(a). Consequently, =4
($) IféM’ (o8 IféM’ o and I;é](? .
_|

Moreover :

Theorem 4 Let L € {INC,PRO}. For every « € FORLIN, if
Fc, o then =g o Moreover, for every A € FORPOI, if g, A
then . A.

Proof If =, « then there exists M = (L, Po,on,in, R, V) € L such
that Fa @ Consequently, there exists @ € Li such that x [y o
Consequently, ¢ R(«). Let (A, Il) be a finite filter such that o € A
and M' = (Li', Pd',;on’,in', R", V') be the filtration of M through
(A, I1) defined in the following way :
e For every z € Li and for every X € Po, =1 (X) € on/(=4 (2))
iff there exists y € L7 and there exists Y € Po such that x =,
y, X =n Y and Y € on(y).
e For every X € Po and for every z € Li, =p (z) € in/(=n (X))
iff there exists Y € Po and there exists y € Lt such that X =q
Y,z =p yand y€in(Y).
Direct calculations would lead to the conclusion that M’ € L;. Ac-
cording to the proposition 10, =5 (2) € R'(a). Consequently, =

(2) FEmr o, FEpr acand Jg, a.
_|
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4 Axiomatical study

This section presents the axiomatical study of the modal multilogic of
geometry.

4.1 Axiomatical presentation of K

Together with the classical tautologies, all the instances of the follow-
ing schemata :

e [on](A — B) — ([on]A — [on]B).
e [in](a — B) = ([in]Ja — [in]F).
and all the instances of the following schemata :
o [on]A — (on)A.
o [in]la — (in)a.
e o — [on](in)a.
e A — [in](on)A.

are axioms of K. Together with the classical rules of inference, all the
instances of the following schemata :

e If Ais a theorem then [on]A is a theorem.
e If ais a theorem then [in]a is a theorem.

are rules of inference of K.

4.2 Axiomatical presentation of INC

Together with the axioms and the rules of inference of K, all the
instances of the following schema :

e [in]Ja — A(in)a, for every modality A of type point to point.

are axioms of INC', the modal multilogic of incidence geometry.

4.3 Axiomatical presentation of PRO

Together with the axioms and the rules of inference of K, all the
instances of the following schemata :

e [on]A — Alon)A, for every modality A of type line to line.

12



e [in]Ja — A(in)a, for every modality A of type point to point.

are axioms of PRO, the modal multilogic of projective geometry.

4.4 Soundness

Theorem 5 Let L € {K,INC, PRO}. For every « € FORLIN, if
« is a theorem of L then |=, o. Moreover, for every A € FORPOI,
if A is a theorem of L then =, A.

Proof By induction on the length of the proof of e and on the length
of the proof of A.
_|

5 Completeness

This section presents the proof of the completeness of K with respect
to the class of all connected basic models, the proof of the completeness
of INC' with respect to the class of all models of incidence and the
proof of the completeness of PRO with respect to the class of all
projective models. These proofs use the techniques of the canonical
model.

5.1 Canonical model

Let £ € {K,INC,PRO}. The canonical model of L is the structure
of the form M, = (Lig, Pog,ong,ing, Re, Vi) where Lig is the set of
the maximal and L-consistent subsets of FORLIN, Pog is the set of
the maximal and L-consistent subsets of FORPOI, ony is the binary
relation on Ltz and Poy defined in the following way :

e Lor every @ € Lig, ong(z) = {X : for every A € FORPOI, if
[on]A € x then A € X}.

e is the binary relation on Pog and Lig defined in the following
way :

e Lor every X € Pog, ing(X) = {a : for every &« € FORLIN , if
[in]Ja € X then a € }.

R/ is the mapping of LIN to P(Li.) defined in the following way :
o Forevery m € LIN, Re(w) ={z: 7 € z}.

13



and Vg is the mapping of POI to P(Po) defined in the following
way :

e Lorevery pe POI, Vi(p)={X : pe X}.
The reader may easily verify that :

Proposition 11 The relational structure of the form (Lig, Pog,ong,ing)
is a basic frame.

Moreover :

Proposition 12 For every « € FORLIN, EZ(@) ={z : a € a}.
Moreover, for every A € FORPOI, Vp(A)={X : A€ X}.

Proof By induction on the complexity of @ and on the complexity of
A.
_|

5.2 Connected submodel
Direct calculations would lead to the conclusion that :

Theorem 6 Fuvery connected submodel of Mg is a basic model.

Theorem 7 Fvery connected submodel of Mnc is a model of inci-
dence.

Proof Let M$yo = (L1, Po,on,in, R, V) be a connected submodel of
Minc. Forevery X, Y € Po, let g = {a: [inJa € X}U{F: [in]F €
Y}. If 2¢ is not I NC-consistent then there exists o € FORLIN and
there exists 3 € FORLIN such that [in]Ja € X, [in]8 € Y and {o, 3}
is not INC-consistent. Since My is connected, then there exists
k > 0 and there exists Xg,..., Xy € Po such that :

° XOIX
e Forevery [ € {1,...,k}, in(X;_1) Nin(X;) # 0.
o X =Y.

Since [in]a € X, then A(in)a € X, for every modality A of type point
to point. Consequently, (in)a € Y — a contradiction. Consequently,
zg is I NC-consistent and there exists € Li such that 2 € in(X) and
z ein(Y).

_|
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Theorem 8 Fuvery connected submodel of M pro is a projective model.

Proof Let M%p, = (L7, Po,on,in, R, V) be a connected submodel of
Mpro. Forevery z,y € Li,let Xo={A: [on]A € 2} U{B : [on]B €
y}. If Xg is not PRO-consistent then there exists A € FORPOI and
there exists B € FORPOI such that [on]A € z, [on]B € y and {A, B}
is not PRO-consistent. Since M%p, is connected, then there exists
k > 0 and there exists zq, ...,z € Lt such that :

® Tog=1=.

e Forevery [ € {1,...,k}, on(a;_1) Non(a;) # 0.

® T =Y.
Since [on]A € z, then A(on)A € z, for every modality A of type line
to line. Consequently, (on)A € y — a contradiction. Consequently,
Xo is PRO-consistent and there exists X € Po such that X € on(z)

and X € on(y).
_|

5.3 Completeness

Consequently :

Theorem 9 For every « € FORLIN, if Exo « then « is a theorem
of K. Moreover, for every A € FORPOI, if Exo A then A is a
theorem of K.

Proof If « is not a theorem of K then there exists x € Lig such that
a € x. According to the proposition 12, z ¢ E;(a) Consequently,
T FEmy . According to the theorem 1, v fEaz. o (M being the
connected submodel of My containing ). Consequently, %M% o.
Consequently, Exo a.

_|

Consequently :

Theorem 10 For everya € FORLIN, « is a theorem of K iff Ex «
iff Exe a iff ):K? «. Moreover, for every A € FORPOI, A is a

theorem of K iff Ex A iff Exo A iff ):K? A.

Moreover :
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Theorem 11 Let L € {INC, PRO}. For every a« € FORLIN, if
Er « then « is a theorem of L. Moreover, for every A € FORPOI,
if Ec A then A is a theorem of L.

Proof If « is not a theorem of £ then there exists € Li such that
o &€ x. According to the proposition 12, z ¢ EZ(&). Consequently,
v fEm, o According to the theorem 1,  FEme o (MF being the
connected submodel of M/ containing x). Consequently, %M% « and

r a.
_|
Consequently :

Theorem 12 Let L € {INC,PRO}. For every a« € FORLIN, «
is a theorem of L iff Er « iff Ec, «. Moreover, for every A €
FORPOI, A is a theorem of L iff Fr A iff Fr, A.

5.4 The finite model property

Consequently :

Theorem 13 Let L € {K,INC, PRO}. L has the finite model prop-
erty.

Proof According to the theorems 10 and 12, £ is sound and complete
with respect to a class of finite models. Consequently, £ has the finite

model property.
_|
Consequently :

Theorem 14 Let L € {K,INC, PRO}. L is decidable.

Proof L is finitely axiomatizable and, according to the theorem 13, £
has the finite model property. Consequently, there exists an effective
procedure for deciding whether a formula is a theorem of £ or not.

_|

6 Subordination

This section presents the techniques of the frame of subordination.
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6.1 The frame of subordination

The frame of subordination of the modal multilogic of geometry is the
structure of the form F, = (Li,, Po,,on,,in,) where Li, and Po,
are the sets defined by induction in the following way :

o 07, € Lt,.

e Op, € Po,.

e bor every X € Po, and for every n > 1, Xn € Li,.
e bor every x € Li, and for every n > 1, an € Po,.

on, is the binary relation on Li, and Po, defined in the following
way :
e on,(0r;) ={0p, U {0rin : n > 1}.
e Lor every X € Po, and for every n > 1, on,(Xn) = {X} U
{Xnn':n' >1}.
and n, is the binary relation on Po, and Li, defined in the following
way :
° ing(OPo) = {OLi} U {Opon tn 2> 1}.
e For every x € Li, and for every n > 1, in,(an) = {a} U{znn’ :
n' > 1}.
Our definition yields the following result :

Theorem 15 F, is a countable, normal and connected basic frame.

6.2 The function of maximality
Let £L € {K,INC,PRO} and F = (Lt, Po,on,in) be a basic frame.

An L-function of maximality on F is a structure of the form (S, W)
where S is a mapping of Li to the set of the maximal and L-consistent
subsets of FORLIN and W is a mapping of Po to the set of the
maximal and L-consistent subsets of FORPOI such that :

e Lor every € Li and for every A € FORPOI, [on]A € S(z) iff,
for every X € on(z), A € W(X).

e Lor every X € Po and for every a« € FORLIN, [inla € W(X)
iff, for every z € in(X), a € S(z).
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The mapping Rg of LIN to P(Li) and the mapping Vi of POI to
P(Po) are defined in the following way :

o Forevery m € LIN, Rg(m) ={z: m € S(z)}.
e Lorevery pe POI, Viw(p) ={X : pe W(X)}.

Proposition 13 For every « € FORLIN, Rs(a) ={z : a € 5(z)}.
Moreover, for every A € FORPOI, Viy(A) ={X : Ae W(X)}.

Proof By induction on the complexity of @ and on the complexity of
A.
_|

6.3 The lemma of subordination

Theorem 16 Let L € {K,INC, PRO}. For every o« € FORLIN, if
« 1s not a theorem of L then there exists an L-function of mazimality
(So,W,) on F, such that o ¢ S;(0r;). Moreover, for every A €
FORPOI, if A is not a theorem of L then there exists an L-function
of mazimality (S,, Ws) on F, such that A ¢ W, (0p,).

Proof If « is not a theorem of £ then the mapping S, of Li, to
the set of the maximal and L-consistent subsets of FORLIN and the
mapping W, of Po, to the set of the maximal and L-consistent subsets
of FORPOI are defined by induction in the following way :

e Let 5,(0z;) be a maximal and L-consistent subset of FORLIN
not containing {a}.

e Let W,(0p,) be a maximal and L-consistent subset of FORPOI
containing {A : [on]A € S,(0r:)}.

e For every X € Po,, let ay, ag, ... be a list of the set {«a :
(inya € W, (X)}. Forevery n > 1, let S,(Xn) be a maximal and
L-consistent subset of FORLIN containing {a,,} U{3 : [in]F €
W, (X)}.

e For every © € Li,, let Ay, Ay, ... be a list of the set {A :
(on)A € S,;(x)}. For every n > 1, let W,(2n) be a maximal
and L-consistent subset of FORPOI containing {A,} U {B :
[on]B € S,(x)}.

Direct calculations would lead to the conclusion that (S5,,W,) is an
L-function of maximality on F,.

_|
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7 Normal completeness

This section presents the proof of the completeness of K with respect
to the class of all countable, normal and connected basic models, the
proof of the completeness of I NC' with respect to the class of all count-
able and normal models of incidence and the proof of the complete-
ness of PRO with respect to the class of all countable and normal
projective models. These proofs use the techniques of the frame of
subordination.

7.1 Normal completeness of I\

Theorem 17 For everya € FORLIN, if =g+ o then « is a theorem
of K. Moreover, for every A € FORPOI, if Ex+ A then A is a
theorem of K.

Proof If « is not a theorem of K then, according to the theorem 16,
there exists a K-function of maximality (S,, W,) on F, such that a ¢
Se(0r;). Let Mg, w, = (Liy, Poy,0n,,tn,, Rs, ,Viy,) be the basic
model on F, defined from (S,, W,). According to the proposition 13,
0r; € RSO’ (O‘)v 0r; I#MSU,WU a, |7£/\/lsc,wcr a and I#K* a.

_|

Consequently :

Theorem 18 For every « € FORLIN, « is a theorem of K iff Ex+
«. Moreover, for every A € FORPOI, A is a theorem of K iff Ex+ A.

7.2 Normal completeness of INC

Theorem 19 For every o € FORLIN, if Ernox « then « is a the-
orem of INC'. Moreover, for every A € FORPOI, if =inc+ A then
A is a theorem of INC'.

Proof If « is not a theorem of INC' then, according to the theo-
rem 16, there exists an I NC-function of maximality (S,, W,) on F,
such that o ¢ S;(0r;). According to the annex A, F, can be grad-
ually extended into a countable and normal frame of incidence F° =
(Li°, Po®, 0on°,in°) on which there is an I NC-function of maximality
(5°, W?°) extending (S5, Wo). Let MZo o = (Li°% Po°, 0on°,in°, Rse, Viye)
be the basic model on F° defined from (S°, W°). According to the
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proposition 13, 07; ¢ 1?;(&)7 0ri e

50, Wo
%INC* .
_|
Consequently :

a, %ME‘O,WO a and

Theorem 20 For every o« € FORLIN, « is a theorem of INC iff
Eivos «. Moreover, for every A € FORPOI, A is a theorem of

INC iff =ryes A.

7.3 Normal completeness of PRO

Theorem 21 For every o € FORLIN, if E=prox « then « is a
theorem of PRO. Moreover, for every A € FORPOI, if =pro~ A
then A is a theorem of PRO.

Proof If avis not a theorem of PRO then, according to the theorem 16,
there exists a PRO-function of maximality (S,, W,) on F, such that
a & S;(0r;). According to the annex B, F, can be gradually extended
into a countable and normal projective frame F° = (Li°, Po°, on®, in°)
on which there is a PRO-function of maximality (5°, W°) extending
(Sos W), Let MZo yro = (Li°, P0o°, 0n°,in°, Rgo, Vive) be the basic
model on F° defined from (S°, W¢). According to the proposition 13,
0r; ¢ Rso(a), Op; %MOSO,WO «, %MOSO,WO « and Epprox a.

_|

Consequently :

Theorem 22 For every o« € FORLIN, « is a theorem of PRO iff
Epro* «. Moreover, for every A € FORPOI, A is a theorem of
PRO iff Epro~ A.

8 The extended modal multilogic of
geometry

Now, the question is whether the method explained above can be
applied as well to other mathematical models of space. Relating to this
question, one should in the first place examine closely the potential
of a complete axiomatization of the modal multilogic of orthogonal
geometry and the potential of a complete axiomatization of the modal
multilogic of affine geometry.
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8.1 Language

The linguistic basis of the extended modal multilogic of geometry is
the modal multilogic of geometry enriched with the modal operator O
such that :

e For every o € FORLIN, Ua € FORLIN.
For every o € FORLIN, let G = =0-a.

e For every a € FORLIN, the complex formula O« of type line
signifies “in every line orthogonal, parallel with the current line,
it is the case that «”.

The modalities of type line to line and the modalities of type point
to point are defined by induction in the following way :

e For every k > 0, O is a modality of type line to line.
e The empty modality is a modality of type point to point.

e For every modality A of type line to line and for every k£ > 0,
[on][in]O* ) is a modality of type line to line.

e For every modality A of type point to point and for every k > 0,
[in]O%[on]A is a modality of type point to point.

8.2 Semantical study

An extended frame is a relational structure of the form F = (L, Po, on, in, <
) where < is a binary relation on Li such that :

e (Li, Po,on,in) is a basic frame.

e For every © € Li, < (z) # 0 (every line is orthogonal, parallel
with at least one line).

e Lor every z,y € Li, if y € (z) then @ €x (y) (if a first line
is orthogonal, parallel with a second line then the second line is
orthogonal, parallel with the first line).

F is normal when :
e (Li, Po,on,in) is normal.

e For every & € Lv, for every X € Po and for every y,z € L1,
if {y,z} C< (2) Nin(X) then y = 2 (if a line and a point are
orthogonal, parallel and incident with two lines then the two
lines are equal).
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F is connected when :

e Forevery XY € Po, there exists k > 0 and there exists Xg,..., X; €
Po such that :

- Xp=X.
— For every [ € {1,...,k}, there exists m > 0 such that
in(X—)N <™ (in(X)) # 0.
- Xy =Y.
It is easy to verify that :

Proposition 14 If F is connected then :

o For every x € Li and for every X € Po, there exists k > 0 and
there exists xg,...,x € Lt such that :

— g =2.
— For every | € {1,...,k}, there exists m > 0 such that
on(z;_1) Non(x" (7)) # 0.
— T € m(X)
F is an orthogonal frame :

e For every @ € Li and for every X € Po, < (z) Nin(X) # 0 (a
line and a point are together orthogonal, parallel and incident
with at least one line).

e For every X, Y € Po, in(X)Nin(Y) # 0.

e Forevery x,y € Li, i (2)N < (y) # Qiff 2 = y or on(z)Non(y) =
0.

e Lorevery z,y,z,t € Li,if y €x (2), z €x (y) and ¢ € (z) then
texa (x).

F is an affine frame when :
e For every a € Li and for every X € Po, < (2) Nin(X) # 0.
e For every X, Y € Po, in(X)Nin(Y) # 0.

e Forevery x,y € Li, i (2)N < (y) # Qiff 2 = y or on(z)Non(y) =
0.

e Lor every z,y,z € Li, if y €xx (z) and z €x (y) then z € ().
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8.3 Axiomatical study
Together with the axioms and the rules of inference of K, all the
instances of the following schema :
e O(a— f) = (Oa — Of).
and all the instances of the following schemata :
o Do — o
o a— Ola.
are axioms of F and all the instances of the following schema :
e If v is a theorem then O« is a theorem.

are rules of inference of F.
Together with the axioms and the rules of inference of F, all the
instances of the following schemata :
e Oa — A[on](in)a, for every modality A of type line to line.
e [in]Ja — A(in)a, for every modality A of type point to point.
e OOaA [on][in]f — AaV ), for every modality A of type line to
line.
e o — OO0
are axioms of ORT, the modal multilogic of orthogonal geometry.
Together with the axioms and the rules of inference of F, all the
instances of the following schemata :
e Oa — A[on](in)a, for every modality A of type line to line.
e [in]Ja — A(in)a, for every modality A of type point to point.
e OOaA [on][in]f — AaV ), for every modality A of type line to
line.
e Do — O0Oq.
are axioms of AFF, the modal multilogic of affine geometry.
It appears that the method presented above can be applied to the

proof of the completeness of ORT and the proof of the completeness
of AFF as well :

Theorem 23 For every o« € FORLIN, « is a theorem of ORT iff
« is valid in the class of all countable and normal orthogonal models.
Moreover, for every A € FORPOI, A is a theorem of ORT iff A is

valid in the class of all countable and normal orthogonal models.
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Theorem 24 For every « € FORLIN, « is a theorem of AFF iff
is valid in the class of all countable and normal affine models. More-
over, for every A € FORPOI, A is a theorem of AFF iff A is valid

in the class of all countable and normal affine models.

9 Conclusion

We have described the frame of incidence as the simplest mathemat-
ical model of space : a nonempty set of geometrical beings of type
line, a nonempty set of geometrical beings of type point and a binary
relation of incidence between points and lines such that two distinct
points are together incident with exactly one line. The projective
frame is a frame of incidence in which two distinct lines are together
incident with exactly one point. The significance for the geometer of
a relational structure such as those ones lies in the fact that there is a
very strong connection between projective geometry and the algebraic
theory of fields [7].

There is every indication that the proof of the completeness of the
modal multilogic of incidence geometry and the proof of the complete-
ness of the modal multilogic of projective geometry are not easy to do.
The very important condition of normality (if two points are incident
with two lines then either the two points are equal or the two lines
are equal) that we have placed on the frame of incidence and on the
projective frame does not correspond to any schema of the language of
the modal multilogic of geometry. That is the reason why the proof of
the completeness of the modal multilogic of incidence geometry and
the proof of the completeness of the modal multilogic of projective
geometry use the techniques of the frame of subordination.

We are thinking of studying the following issues :

e The modal multilogic of geometry extended with the modal op-
erator of inequality [23] so that, for every « € FORLIN, [#]a €
FORLIN and, for every A € FORPOI, [#]A € FORPOI.

e The modal multilogic of projective geometry with the property
of Desargues.

e The modal multilogic of orthogonal geometry with the property
of the orthocenter.
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e The modal multilogic of affine geometry with the property of
Desargues.

The reader is kindly invited to examine the possibilities of a complete
axiomatization of these modal multilogics. Are these modal multilog-
ics finitely axiomatizable by a structural derivation system 7 There is
no time to be lost to find a place for space in the modal logic family.

Addendum

During the final step of the preparation of this paper, it has come
to the knowledge of the author that Venema [26] had independently
achieved some of the above-mentioned results.
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Annex A

Let F = (Li, Po,on,in) be a countable, normal and connected basic
frame and (S, W) be an I NC-function of maximality on F. For every
X,Y € Po, if in(X)Nin(Y) = 0 then the completion of F at X and
at Y is the structure of the form F' = (Li', Po',on’, in') where :

Li' = LiU Li,.
Po = PoU Po,.
ORTLZ' = on.

on’(OLi) = 0N, (OLi) U {X, Y}

MLi\ (0L} = O
in'(X) = in(X)U{0g}.
in'(Y) = in(Y)U{0;}.

-, .
Mpo\{xyy T U
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° inipoo = in,.
Direct calculations would lead to the conclusion that F’is a countable,
normal and connected basic frame. Let g = {a: [in]Ja € W(X)}U{s:
[in]f € W(Y)}. If zg is not INC-consistent then there exists o €
FORLIN and there exists 3 € FORLIN such that [in]Ja € W(X),
[in]f € W(Y) and {«, 8} is not I NC-consistent. Since F is connected,
then there exists k£ > 0 and there exists Xg, ..., Xy € Po such that :

[ ] Xo = X.

e Forevery [ € {1,...,k}, in(X;_1) Nin(X;) # 0.

o X =Y.
Since [in]a € W(X), then A(in)a € W(X), for every modality A of
type point to point. Consequently, (in)a € W(Y) — a contradiction.
Consequently, xg is I NC-consistent. The mapping S’ of Li’ to the
set of the maximal and I NC-consistent subsets of FORLIN and the
mapping W’ of Po’ to the set of the maximal and I NC-consistent
subsets of FORPOI are defined in the following way :

° |/Li =5,

° W|/]30 - W

e Let 5'(0r;) be a maximal and I NC-consistent subset of FORLIN

containing zg.

/ —
* Sitinfor) = O
[ ] W|/]DOO— - Wg-
Direct calculations would lead to the conclusion that (S’, W’) is an

INC-function of maximality on F'. Let (F(0),.S(0), W (0)), (F(1),5(1), W (1)),

... be the sequence defined by induction in the following way :

e F(0)=F.
e 5(0)=S5.
o W(0)=W.

e Lor every k > 0, let F(k) be a countable, normal and connected
basic frame and (S (k), W (k)) be an I NC-function of maximality
on F(k). Let X, Y € Po(k) be such that in(k)(X)Nin(k)(Y) =
(. According to the previous line of reasoning, F(k)’ is a count-
able, normal and connected basic frame and (S(k)’, W (k)’) is an
INC-function of maximality on F(k)’. Let :
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- Fk+1)=F(k).
- S(k+1)=S(k).
- W(k+1)=W(k).
Let F° = (Li°, Po°, 0n°,in°) be the structure defined in the following
way :
o Li°={Li(k): k>0}.
o Po° =J{Po(k): k>0}.
e on® is the binary relation on Li° and Po° defined in the following
way :
— For every k > 0 and for every z € Li(k), on®(z) = on(k)(z).
e in°is the binary relation on Po° and L:° defined in the following
way :
— For every £ > 0 and for every X € Po(k), in°(X) =
U{in(l)(X) : 1 > k}.
Direct calculations would lead to the conclusion that F° is a countable
and normal frame of incidence. The mapping 5° of Li° to the set of the
maximal and I NC-consistent subsets of FORLIN and the mapping

We of Po° to the set of the maximal and I NC-consistent subsets of
FORPOI are defined in the following way :

e For every k > 0 and for every z € Li(k), S°(z) = S(k)(z).
e For every k > 0 and for every X € Po(k), W°(X) =W (k)(X).

Direct calculations would lead to the conclusion that (S°, W?°) is an
INC-function of maximality on F°.

Annex B

Let F = (Li, Po,on,in) be a countable, normal and connected basic
frame and (5, W) be a PRO-function of maximality on F. For every
x,y € Li, if on(z) Non(y) = @ then the completion of F at = and at
y is the structure of the form F"” = (Li", Po”, on” in") where :

o Li"=1LiULi,.
e Po"”" = PoU Po,.
e on”(z) = on(z) U{0p,}.
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e on”(y) = on(y) U{0p,}.

. onﬁ:i\{x’y} = on.

° onﬁmr = on,.

. inﬁjo = in.

e in"(0p,) = in,(0p,) U{z,y}.

o inﬁjoc\{opo} = in,.
Direct calculations would lead to the conclusion that " is a countable,
normal and connected basic frame. Let Xo = {A: [on]A € S(2)}U{B:
[on]B € S(y)}. If Xg is not PRO-consistent then there exists A €
FORPOI and there exists B € FORPOI such that [on]A € S(z),
[on]B € S(y)and {A, B} is not PRO-consistent. Since F is connected,
then there exists k£ > 0 and there exists xg,...,xr € Li such that :

® o=,
e Forevery [ € {1,...,k}, on(a;_1) Non(a;) # 0.
® T =Y.

Since [on]A € S(z), then A(on)A € S(z), for every modality A of
type line to line. Consequently, (on)A € S(y) — a contradiction.
Consequently, Xg is PRO-consistent. The mapping S” of Li” to the
set of the maximal and PRO-consistent subsets of FORLIN and the
mapping W' of Po” to the set of the maximal and PRO-consistent
subsets of FORPOI are defined in the following way :

° S(}A =85.
[ ] W|/]/30 = W
° Slljlio =5,.

e Let W”(0p,) be a maximal and PRO-consistent subset of FORPOI

containing Xj.

® Wiboo\(0ps) =

Direct calculations would lead to the conclusion that (S”,W") is a

W,.

PRO-function of maximality on F”. Let (F(0), S(0), W (0)), (F(1),S(1),W (1)),

... be the sequence defined by induction in the following way :
e F(0)=F.
e 5(0)=2=5.
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W) =Ww.

For every k > 0, let (2 X k) be a countable, normal and con-
nected basic frame and (S(2 x k), W(2 X k)) be a PRO-function
of maximality on F(2 X k). Let z,y € Li(2 X k) be such that
on(2 x k)(xz)Non(2 X k)(y) = 0. According to the previous line
of reasoning, F(2 x k)" is a countable, normal and connected

basic frame and (S(2 x k)", W(2 x k)") is a PRO-function of
maximality on F(2 x k)”. Let :

- F2xk+1)=F(2xk)".

- S2xk4+1)=52xk)".

- WE2xk+1)=W(2xk)".
For every k > 0, let F(2 x k + 1) be a countable, normal and
connected basic frame and (S(2xk+1), W(2xk+1)) be a PRO-
function of maximality on F(2 X k4 1). Let X,Y € Po(2 x
k 4+ 1) be such that in(2 x k+ 1)(X)Nnin(2 x k+ 1)(Y) =
(. According to the line of reasoning of the previous annex,
F(2x k+ 1) is a countable, normal and connected basic frame

and (S(2xk+1)", W(2xk+1)") is a PRO-function of maximality
on F(2x k+1). Let :

- F2xk+2)=F2xk+1).

- S2xk+2)=S2xk+1).

- W2xk+2)=W(2xk+1).

Let F° = (Li°, Po°, 0n°,in°) be the structure defined in the following

way :

Lie =U{Li(k) : k> 0}.
Po® = J{Po(k) : k> 0}.
on® is the binary relation on L:° and Po° defined in the following
way :
— Forevery k > 0and forevery z € Li(k), on®(x) = U{on(l)(z) :
[ > k}.
1n® is the binary relation on Po° and Li° defined in the following
way :
— For every £ > 0 and for every X € Po(k), in°(X) =
U{in(l)(X) : 1 > k}.
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Direct calculations would lead to the conclusion that F° is a countable
and normal projective frame. The mapping S° of Lz° to the set of the
maximal and PRO-consistent subsets of FORLIN and the mapping
W of Po° to the set of the maximal and PRO-consistent subsets of
FORPOI are defined in the following way :

e For every k > 0 and for every z € Li(k), S°(z) = S(k)(z).

e For every k > 0 and for every X € Po(k), W°(X) =W (k)(X).
Direct calculations would lead to the conclusion that (S°, W?°) is a
PRO-function of maximality on F°.
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