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Abstract

The security of computation at the level of a specific prograng language
and the security of complex systems at a more abstract |legdiva major areas
of current security research. With the objective to intégrhe two, this article
proposes an adequate translation of a timing-sensitivarisgproperty for simple
multi-threaded programs into a more general security frmonk. Soundnesand
completenesef the translation guarantee that the trace-based speitficaf the
translation of a multi-threaded program is secure if and/ @inthe original pro-
gram is secure. Finally, the translation is extended to @illiged setting, and it
is demonstrated how to derive global security of the ovexgdtem from local se-
curity of each thread. The translation is presented as astepyprocess where the
first step is independent from the concrete programminguagg.

1 Introduction

1.1 Motivation

An important step in the specification of secure informatilow in a complex dis-
tributed system where local parts are written in a particpfagramming language is
to combine two types of security. Namely, the first type is sleeurity of commu-
nication between local computations and the second typeeisecurity of the local
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computations themselves. The former is often defined agigectd an event-based
system (as in the underlying model of [22]) whereas the Hatiktes on the security
specification of the programming language (as in the unadeglynodel of [38] for a
simple imperative multi-threaded language). Embracirmgtio kinds of security into
a single security framework is the motivation of this asgicl

1.2 Background

There is a large body of research on information flow contigliag at specifying,
verifying, and analyzing security. In the traditional abst view, security is often
defined for an abstrattace-basedanodel of computation. In particular, a system can be
represented as a set of its traces and, thus, security ipafpydhat can be true or false
for a given set of traces. In a distributed setting, thessg&an be viewed as sequences
of events like, e.g., communication of local processes irstibuted network.

Many different approaches to this type of general inforomatilow control have
been proposed. Nondeducibility was developed by SutheléB] because the orig-
inal definition of noninterference [15] was based on a systeodel, deterministic
state machines, that is not adequate for modeling nondtistio systems. Motivated
by the observation that nondeducibility is not preservedanrcomposition, McCul-
lough suggested restrictiveness, a composable secudpepy [28]. Subsequently,
numerous other possibilistic information flow properties/é been proposed (e.g.,
[14, 20, 18, 46, 33, 34]). To date, it appears that none oftirdsrmation flow proper-
ties is optimal for all purposes. Rather, it depends on thiéquaar application, which
of the various information flow properties is most approf@iaThe desire to under-
stand the existing information flow properties and theirapebperties better has led to
detailed comparisons and uniform frameworks [31, 12, 49, 22

Another line of research that is becoming increasingly papis information flow
control in a setting of a concrete programming language [G8dor a state-of-the-art
survey). The efforts in this area are focused on determinihgther a given program
written in a particular programming language has secum@métion flow. More con-
crete assumptions are usually made about local compusatiam example, one might
assume that the program runs on a partition of data on higvafp) and low (public)
security data (although a more general lattice of secueitels can be considered).
The program is not trusted (possibly received over the h@gr The program’s low
output is publicly available (e.g., sent over the Interaatvell as, perhaps, timing in-
formation about the program’s execution (e.g., times whemptrogram makes Internet
accesses are observable).

Originating from early work of Denning [10, 11] and Cohen 8], secure infor-
mation flow in programming languages received its recemtcaination in work of
Volpano et al. [45] with the main contribution being sounskeroofs for a Denning-
style security analysis. Many other researchers have tigaded the problem of se-
cure information flow. This work includes Joshi and Leinoduational specification
[21], a single calculus for security, binding-time anasygbrogram slicing and call-
tracking (DCC) by Abadi et al. [1], Heintze and Riecke's Secuambda Calculus
(Slam) [19], Volpano and Smith’s investigations on seguat concurrent programs



[42, 44], and Sabelfeld and Sands’s compositional secapgcifications for sequen-
tial [39] and multi-threaded programs [38].

The security formalization in the studies mentioned is fibeshon the extensional
approach to security, nametpninterferencgl5]. The idea behind noninterference is
that a system is considered secure if high inputs do notferewith low-observable
behavior of the system (low outputs, timing, etc.). It hasobeen claimed that exten-
sional programming-language-based security can be viasedform of noninterfer-
ence (e.g., in [45]), especially since the revival of theigst in language-based secu-
rity. Nevertheless, for the language-based extensiomalrig models that have been
proposed since the mid-nineties a rigorous connection tanerference-like proper-
ties has not so far been established to the best of our kngeletihis article is a step
in this direction.

1.3 Foreground

Our choice for the abstract event-based frameword&KS, the modular assembly
kit for security propertie$22]. Guided byMAKS, we can pick an appropriate secu-
rity property from the assembly kit rather than inventingeawone. This also allows
for combining the security of programs with the security dfier components in a
(potentially distributed) system usingAKS as an interface. This means integrat-
ing programming-language-based security at a higher Evabstraction, opening the
opportunity for plugging the security of subsystems writte a particular program-
ming language to the global security of the system defineddereeral event-based
framework. Finally,MAKS enjoys a number of useful extensions including local ver-
ification conditions [23], intransitive security policiE4], refinement operators [25],
and compositionality results [26], which potentially efesbus to use these verification
techniques, to apply intransitive security policies, andld stepwise developmentin
the setting of secure information flow in multi-threadedgrams (although, besides
compositionality, these issues are outside the scope girésent article).

The focus of this article is on a simple multi-threaded witdleguage (MWL) and
a timing-sensitive security specificatiostiong securityf38]) that implies robust secu-
rity independently of a particular scheduler. We transii&/L programs into state-
event systems, pick an appropriate definition of securitynfthe assembly kit, and
establish a precise correspondence between the seculiy\tf programs and their
translations. Namely, that the translatiors@undin the sense that the translation of
any secure MWL program is secure as a state-event systencoamgletan the sense
that if the translation of an MWL program is secure as a staent system then the
original program is secure.

Benefits of such a rigorous connection between the two typssaurity become
evident when extending MWL programming to a truly distribdisetting. Given a dis-
tributed collection of programs (each equipped with its aowemory) that interact by
message passing, we have a complex global system with theatétsecurity require-
ment beingglobal security The underlying semantic model for a global distributed
computation is event-based. Accordingly, the global seceondition is expressed

INot forgetting McLean’s article [30] from the early ninetiethat used functional specifications as an
intermediate step when proving noninterference for pnogrén a sequential imperative language.



as a security property from the assembly kit. However, shgvauch a property is
greatly facilitated by the rigorous relation establishedhis article. Due to such a
relation, global security can bierivedfrom local securityof all programs in the sys-
tem. In particular, we will show that in the case of distrigditMWL, global security
follows from the local security of each individual thread,abasic part of the overall
system. As a direct consequence, language-based techrige security-type sys-
tems [45, 19, 42, 1, 44, 2, 38, 39, 35] or security verificafit]) applied to individual
threads, can be used to guarantee the global security of/gralbdistributed system.

1.4 Overview

After recalling some preliminaries in Section 2, we intreduhe concept of thread
pools in Section 3. In Section 4, we specialize this genexdeh according to the
syntax and semantics of the MWL programming language. Thiatdpecialization
indeed reflects the semantics of MWL, is ensured by a cotleatf theorems in Sec-
tion 5. The key contribution of our translation is that it peeves the specification of
secure information flow. Section 6 shows that a thread poobissidered to be se-
cure in the MWL programming language if and only if the copasding state-event
system is also considered to be secure in the assembly kiGedtion 7, we enrich
MWL with message-passing primitives and adapt the secgotydition in order to
support distributed programming. The thread pool modexkisreded accordingly and
we show that the security condition for the distributed asten of MWL coincides
with a trace-based security property that is preserved uth@ecomposition of thread
pools. We conclude by a discussion in Section 8.

2 Preliminaries

2.1 System Specifications

The behavior of systems can often be adequately specifietiebget of its possible
execution sequences. We follow this trace-based apprbaghghout this article (with
the exception of parts where we use a concrete programmingiége). Atraceis a
sequence of events that models a possible execution sexjoktie system. Arvent
is an atomic action like, e.g., the sending or receiving ofessage on some channel.
We distinguish between input, internal, and output evefit® underlying intuition is
that input events are controlled by the environment of aesysivhile internal and
output events are controlled by the system. Input and owpents constitute the
interface of a system. The distinction between input anghatuévents is somewhat
fuzzy. When a system is capable of preventing the occurrefioput events, then this
can be interpreted as a signal to the environment. To aviEdihd of communication,
input totality is often assumed, i.e., that a system cannot prevent thereoce of
input events. However, a limitation to input total systempears to be quite restrictive.
Therefore, we refrain from making the assumption of inptality in this article.

For specifying systems, we do not define the set of tracesttirbut rather use
states as an auxiliary concept. This allows us to define tssiple traces inductively



by a transition relation. The system model, we use for spatifin, are state-event
systems [23]. This system model allows for the specificatibnondeterministic sys-

tems where the nondeterminism is reflected by the choicedsatwifferent events that
are enabled. For simplicity, any nondeterminism in theatffef events is ruled out.

Definition 1 Let S be a set of statesly be a set of events, arll C S x E x S

be a transition relation. Astate-event systei®ES is a tuplésS, so, F,I,0,T) where

so € S is the initial state and, O C E, respectively, are the input and output events.
Moreover, it is assumed thdtn O = () holds and that for a given stateand event
there is at most one staté with (s, e, s') € T'.2

Note that the set of internal events, i.E.)\ (I U O), may be nonempty.

Example 1 A random generator that outputs a sequence of random natunabers
and then terminates can be specified by the state-eventrs@&&= (S, s¢, £, I, 0,T).
SES is defined by = {so,s7}, E = OU {term}, I = 0, O = {out(n) | n € N},

T = {(so,0ut(n),so) | n € N} U {(so,term ss)}. Possible traces for this state-event
system include, e.giout(42)) and (out(17).out(42).term).

Letsy,so,s' € S,e € E,andy € E*. Instead of s, ¢, s2) € T we sometimes use the
notations; —r s». For multi-event transitions, we use the notatign= s'. If T

is obvious from the context then we omit the index and wsite—=s s, or s; == s'.
The relation==r is formally defined as follows:

$1 %T s' ifs; =5

$1 ggp s L ifJsg € .51 —>7 $9A 59 =7 8
Asequence € E* of events is draceof a state-event systeBES= (S, s, £, I, 0,T)
if it is accepted in the initial state, i.e., ' € S.so =7 s'. The set of all traces that
are possible foEESs denoted bylrseg We omit the index and simply writér if the
state-event system is obvious from the context. The tBfigs= (F, 1,0, Trggg is
referred to as thevent systerf20] corresponding t&ES A states € S is reachablef
there exists a sequeneec E* such thatsy, == s. Theprojectiona|s: of a sequence
a € E* to the events i’ C FE results froma by deleting all eventaotin E’.

In complex systems, communication between componentsis bip synchroniza-

tion on the occurrence of shared events (usually outputts\aithe one component
that are input events of others). We define the compositiataté-event systems.

Definition 2 Given an index sef and, for eachj € J, a state-event system SES
(87, s}, B, 17,09, T7) such that for allk, ! € J with k # [ holdsE* N E' C (I* N
O") U (I' N O*). We define theompositiorof the state-event systeifis , SES to be

2Note that our system model is possibilistic, i.e., it aletgdrom probabilities of occurrences of particu-
lar events. This is a common assumption that, e.g., has aoinade in [43, 14, 28, 18, 20, 31, 12, 49, 34,
22]. For information flow properties that are based on a podistic system model, we refer to [29, 17].



the state-event syste(f, so, £, 1,0, T) where

S = xjes S’

so = (s0)jes

E=Ujc F

I =Ujes I \ Uje, 0

0= UjeJOj \ UjEJ]j

T = {(s,e,s') € SxExS|Vje J[(e€E A(s|jes;) €T

Ve ¢ BN As|;=s'5)]}

The state of a composed state-event system is a tuple of cenpetates.s|; de-
notes thejth element of a state of a compose®&ES Note that the definition above,
indeed, guarantees that communication between compoisemtsy possible by syn-
chronization on occurrences of shared events, i.e., etleatsre output events of one
component and input events of another component. Such coioation events are
considered to be internal events for the composed system.

The following theorem justifies the definition of the compimsi on state-event
systems by relating it to the usual definition of compositionevent systems (cf.,
e.g., [20, 26]). Essentially, the theorem ensureslf@jty ses = ||;e; ESseg holds.
Theorem 1 For an index set/ and a collection of state-event syste(B&S) <., we
have T, s = {r e E*|Vj e J1|gi € Trgeg }.

2.2 Security Properties

Many security requirements can be expressed as restigctiorthe information flow
within a system. To express confidentiality or integrity lgls restrictions is the key
idea of information flow control.

The assembly kiMAKS that supports the uniform and modular representation of
information flow properties has been previously proposediy of the authors [22].
It simplifies the comparison among the existing securitypprties that are based on
possibilistic information flow as well as a goal-directedstsuction of new ones. In
MAKS, asecurity propertyconsists of a set of views and a security prediéate.

A view [24] specifies restrictions on the permitted flow of inforioatwithin a
system. Formally, a view (in a set of event&) is a triple(V, N, C) whereV, N, C' C
E are sets of events that form a disjoint partitionfof Intuitively, a view describes
the perspective of a (potentially malicious) observer @& $ystem. For a given view
YV = (V,N,C), the setV specifies the events that avisible for the observer (or
an attacker in the observer’s guise). These events can éetlgipbserved when they
occur. Occurrences of all other events (i.e., evenfe (') arenotdirectly observable.

3|f desired, the set of views can be specified by a flow policy adomain assignment using a graphical
notation. This approach has been explained, e.g., in [28jveder, this possibility is not important for the
purposes of the current article.

“1e,VNN=VNC=NNC=0fandVUNUC = E.



Hence, if a trace € Tr occurs then the observer only sees the projectign The set

C specifies the set of events that eoafidentiafor the observer. I.e., the observer must
not be able to learanyinformation about occurrences of eventsin(based on his
observations and other knowledge he might have about thersg¥ All other events
(i.e., events i/ U N) arenotconfidential. Since the set§ V, C must form a disjoint
partition of £/, a view is completely determined by the sétandC. The remaining
events are collected in the s®t These events ameither visible nor confidential for
the observer.

Example 2 AviewV; = (V, N, () does notimpose any restrictions on the information
flow because there are no confidential events. A wew= ((}, N, C) specifies that
nothing can be observed during system execution becausetiuf visible events is
empty. Note that for all possible tracese Tr holds7|y = (). Clearly, V; and Vs
constitute two extreme cases.

A more interesting case is specified by the viegw= (L, H\HI,HI). Assuming a
two-level security policy where each event is either cfas$ias a high- or a low-level
event,V; states that low-level events (L) are visible and high-lénput events (HI)
are confidential. This view captures the original idea of inb@rference, i.e., that high
inputs do not interfere with low-observable behavior of ateyn®

A security predicaté24] specifies under which conditions the requirements darg
view are satisfied for a set of traces.

Definition 3 For aview setVS and asecurity predicat&P, asecurity propertytV SSP)

is satisfied by an event system ES (E, I, 0,Tr) if SP,(Tr) holds for each view
V € VS. A state-event system S&fisfiesa security property if the corresponding
event system ESssatisfies it.

In MAKS, security predicates are composed by conjunction from amaare basic
security predicates (abbreviated B$B. For the purposes of the current article, only
two BSPsare of interestbackwards fict insertion of confidential eventabbreviated
by BS|) andbackwards #ict deletion of confidential evenfabbreviated by8SD) [24].
For a viewV, BSlrequires that the occurrence of an event fr@rdoesnot remove
possiblel -observations. Consider the system after a tréideas occurred. Any/ -
observatiory € V* that is possible at this point must also be possible after C
has occurred. Consequently, if theobservatiorrx results from the sequence €
(VUN)*,i.e.,aly = @, thensome sequenaé € (VUN)* must be enabled aftehas
occurred where' may differ froma only in events fromV. Hencega'|y =@ = a|y
holds. For a given view = (V, N, C), BSh(Tr) is formally defined as follows:

BSh nc(Tr) = Va,8€ E*.Vee C.((BacTrAale = ()
= Ja' € B*.(d|v = aly ANd'|c = () AB.{c).a €Tr))

5As usual in investigations of secure information flow, weuass that the observer has complete knowl-
edge of the system specification. This is a worst-case agmmp

6The view V3 is appropriate for systems that operate on confidential ithatathey receive as input but
do not generate new secrets internally (in the sense of &rgndom-number generator).



For simplicity of reasoning aboBS|, it requires only that a confidential eventan
be inserted at a point that is not followed by any other comtfid¢events ¢|c = ())
and that no other confidential events besidase insertedd’ | = ()).

If BSh,(Tr) does not hold then it might be possible for an adversary teriftbm
someV/ -observatior thatc cannot have occurred. The security guarantee provided by
BSlis: if an adversary observesstarting in some state then he or she cannot deduce
that a confidential everthas notoccurred. Clearly, it can also be important to prevent
an adversary from deducing that a confidential eVestoccurred. This is the purpose
of BSD anotheBSPfrom the assembly kit.

For a view), BSDrequires that the occurrence of an event fréhtoesnot add
possible low-level observations. Considering the systéer a traces.(c) has oc-
curred, any observatiaf that is possible must have been possible also withaut”
in the trace. Consequently, some sequemce (V U N)* must be enabled aftet
wherea’ may differ froma only in events fromV. For a given view = (V, N, C),
BSDy,(Tr) is formally defined as follows:

BSDy n,c(Tr) = Va,fe€ E*.Vce C.((BAc).a € TrAalc = ()
= 3o’ € B*. (d|y =alv Ad'|o = () AB.o’ €Tr))

For otherBSPshesidesBSlandBSDand the representation of various existing infor-
mation flow properties iMAKS, we refer to [22, 24, 26].

3 Generic Thread Pools

For distributed programming, the use of multi-threadedgpaonming languages has
become extremely popular [4]. The use of concurrent thrézatsoperate in the same
address space appears to be the adequate approach foaippéichat are, e.g., based
on the client-server paradigm. For example, this allows tongrogram a file server
that creates, for every incoming request, a new thread thatlles this request and
terminates afterwards. Compared to parallelism at thd Evygrocesses, an important
advantage is that context switching is far less expensivihfeads.

In this article, we assume thtitreadsare sequential programs and multi-threading
occurs at the level of local computation which operates ohaasexl memory. On the
other handprocessesre potentially distributed such that each process hasnts o
memory. The processes communicate by a communication reflvetween local
computations) exchanging messages rather than usingdstna@mory. Each process is
potentially a multi-threaded program.

To model the behavior of multi-threaded processes in stedést systems is tech-
nically somewhat difficult. The main difficulty is that threads communicate with each
other asynchronously via shared memory, while state-esyestéms are based on a syn-
chronous, message-passing-like communication paradi§rSéction 2.1). However,
to specify processes with these formalisms is very natuabbse handshake-based
inter-process communication is synchronous.

In this section, we demonstrate how the behavior of mutidlded processes can
be modeled using state-event systems. The proposed spgaifics highly generic

Similar problems occur when using process algebras like @SFCS.



High-Level Environment

| mem atid executed:
I thread ainfo |

Low-Level Environment

Figure 1: Generic thread pool with interface events anesibjects

because it is not only parametric in the particular programrelso in the programming
language. How to instantiate this specification for the cetgcprogramming language
MWL will be demonstrated in Section 4. The specification Wil extended to a truly
distributed setting in Section 7.

3.1 Trace-Based Formal Specification

In our specification, a multi-threaded process is modeled@slection of threads that
shares a global memory. We refer to such a collection #sesd pool As depicted
in Figure 1, a thread pool has five state objecteem thread atid, ainfo, executed
and can communicate with the environment by four kinds dadrfiace eventssetvar,
outvar, scheduleandyield-events.

Theshared memorgf a thread pool is modeled by the functioem: VAR — VAL
that assigns values (frovAL ) to variables (fromVAR). The functionmemcan be
updated at the interface of a thread pooldeyvarevents. If an everdetvalvar, val)
occurs then variablear is assigned valueal. The outvarevents output the value of
variables to the environment. An evenitvarvar, val) is only enabled ifzar currently
has valueval. For simplicity, we assume thatitvarevents have no other preconditions
and do not affect the state. Moreovegtvarevents are always enabled.

Thesetvar, outvar, schedule andyield-events constitute the interface between a
thread pool and its environment. For the purposes of sgdiiect security violations
must be excluded. Hence, the environment is assumed to laeaseg into a high-
and a low-level environment that must not communicate waitheother directly. The
low-level part of the environment may not inspect high-ahtes, i.e., occurrences of
outvarevents on high variables must not be observable. The leighl-part of the
environment must not be able to alter low-level variables, ioccurrences cfetvar
events on low variables must originate from the low-levet pathe environment only.

Thelocal state of threadis modeled by the functiothread: TID — (THREAD U
{L,T,()}). The functionthreadreturns a local state (frorfHREAD) for a thread
identifier, i.e. threadtid) denotes the local state of the thread with identtitie TID.
The resultsL, T, and() do not denote a proper local state but have a special mean-
ing. If a thread with identifietid has never existed thehreadtid) = L holds (here



and below, L stands for “undefined”). After a thread has spawned chil¢gsses, the
identifier of the parent thread is modified athdeadreturns, respectively; for the old
identifier and the resulting parent thread for the new idamt{which results from the
old identifier by appendin@). Identifiers for child threads are chosen incrementally,
i.e., the identifier of théth child thread is constructed by appendirtg the old identi-
fier of the parent thread. threadtid) = () then a thread with identifidid has existed
but has already terminated.

The remaining state objects are used for controlling theetien of threads. The
value ofatid € TID U {_L} denotes the identifier of the thread that is currently adtive
the thread pool. Iatid = L holds then no thread is active. For simplicity, we assume
that there is at most one active thread at any point of timee §thte objecainfo is
a buffer in which information is collected that shall be seéadhe scheduler. Note
that the scheduler is external to a thread pool. Thedbgruted= BOOL is used for
managing context switching. Thread execution proceeds!msvs.

¢ If no thread is active (indicated gtid = 1) thenscheduleevents are enabled.
After an occurrence ofchedulétid), atid is set totid, and the thread with local
statethreadtid) becomes activeschedulétid) is only enabled if the thread is
alive threadtid) ¢ {L,T,{)}).

¢ Ifthereis an active thread (indicated &id # | Aexecuted-= ff) then this thread
can run. Thread execution is formally modeled by the oceueeof events that
are internal to the thread pool. Since these internal evéepend closely on
the particular instantiation of a generic thread pool, e&ly on the program-
ming language, they are intentionally not modeled at the=gertevel. During
execution, a thread can affect the state obje@smandthread Additionally, in-
formation for the scheduler is storedaimfo. Eventually, the active thread stops
executing (indicated bgxecuted- tt).

¢ After the active thread has stoppeekécuted= tt), the scheduler can be in-
formed about this by gield-event. yield(info) is only enabled ifinfo corre-
sponds to the actual scheduler informatiorfd = ainfg). A yield-event resets
theexecutedlag, atid, andainfo.

For the initial state, we assume that all variables arealiwgd with the valuénitval.

Moreover, we assume that there is exactly one thread, whaslinittid as identifier

andinitthreadas local state. In the initial statatid, ainfo, andexecutedre reset.
Generic thread pools are formalized as state-event sysisrwdlows.

Definition 4 LetVAR, VAL, TID, THREAD, andINFO be types. Les, sq, Epools Ipools
Opool, andT o0 be defined as depicted in Figuré®2.et initval € VAL , inittid € TID,
initthread € THREAD, Ejqoca be a set of events that is disjoint frafipeer, andTiocar C
S x FEiocal X S be a transition relation.

8In Figure 2, the transition relatiofiogl is specified by preconditions and postconditions. E.g.fHer
setvarevents, the precondition is trivially satisfiglre: true), the postcondition demands thmaenfvar) =
val holds after (indicated by primed state objects) the occurrencseatfarvar, val), and the affects-slot
specifies that the values of all other state objects (excgphén{var)) remain unchanged.
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S = {(memthread atid, ainfo, executedl}

mem : VAR — VAL , current local shared memory

thread : TID - THREADU{Ll,T,()} ,currentlocal state of threadg

atid : TIDU{Ll} , id of active thread

ainfo : INFOU{Ll} , actual scheduler information

executed : BOOL , has a step been executed?
50 = (mem,, thread,, atid,,, ainfo, ,executeg,) € S

Vvar: VAR. mem, (var) = initval

thread,, (inittid) = initthread

Vtid : TID.tid # inittid — thread,, (tid) = L
atid;, = 1,ainfo, = 1, executeg = ff

| Epool — Ipool U Opool |
| ool {setvafvar, val), schedulétid) | var: VAR, val: VAL ,tid : TID} ]
| Opool {outvar(var, val), yield(info) | var : VAR, val: VAL ,info: INFO} |
Tpoot C S x Epool X S

setva(var, val) affectsmentvar)
Pre: true
Post meni(var) = val

outvar(var,val) affects —
Pre: mentvar) = val
Post true
schedulégtid) affectsatid
Pre: atid = L Athreadtid) ¢ {L,T,()}
Post atid’ = tid
yield(info) affectsexecutedatid, ainfo
Pre: executed-= tt A ainfo = info
Post executed = ff A atid’ = L Aainfd = L

Figure 2: Definition of fixed components of a generic threadipo

e side conditions | levele) ec€
schedulétid) true low Lrp
yield(info) true low Lrp
setva(var,val) | donvar(var) = low low Lrp
outvar(var,val) | donvar(var) = low low Lrp

setvafvar,val) | domar(var) = high | high Hlrp
outvarvar,val) | domar(var) = high| high | Hyp\Hlrp
€ e € Ejocal high HTP\HlTP

=

=

Figure 3: Security levels for events
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A generic thread podb parametric inVAR, VAL, TID, THREAD, INFO, initval,
initthread, inittid, Fiocal, Tiocat @nd is defined by the following state-event system:

GenPoo[VAR, VAL , TID, THREAD, INFO, initval, initthread inittid, Eiocal, Tiocal)
= (S7 S0, Epool U EIocaI: Ipoola Opoola Tpool U Tlocal)

3.2 Security of Thread Pools

The problem of information flow control in multi-threadedogramming languages
is to prevent information flow from high to low variables. Rbis purpose, a secu-
rity level (low or high) is assigned to each variable by a functidoemy, : var —
{low, high}. This differs from the event-based approach, in which imfation flow
control prevents the occurrence or non-occurrence of cenfidl events from affect-
ing the possibility of observable behaviors. Although bafiproaches share the same
intuitive motivation, i.e., that there should be no infotina flow from high to low, this
technical difference complicates an integration of the &pproaches. However, an in-
tegration is very desirable because it allows for a unifameestigation of information
flow at the level of processes as well as at the level of threads

The key observation, which will allow us to integrate the tamproaches, is that
high-level data can only be introduced into a thread pool byuarences oketvar
events that change the value of high-level variables. Aleoevents can change the
state of the thread pool but cannot increase the confidipntidldata. Thus, we can
express the security requirement by demanding that thermmwes of thessetvar
events must not influence the possibility of low-level obations.

It is natural to extend security level assignments fromalaigs to events. We de-
note a level-assignment function on eventsewel: Eyqo U Eigcal — {low, high}. We
assume that a (malicious) low-level user has complete keayd about the definition
of thread pools (as usual), can observe the occurrenset@fdule andyield-events,
and can observe the occurrencesafvar andsetvarevents that involve only low-
level variables. Consequently, these events are assigmetidw. All other events,
i.e., setvar andoutvarevents on high variables and local events, are assignedl lev
high (as displayed in Figure 3). The vieyp = (L7p, Hrp\Hl7p, Hl7p) expresses
the necessary restrictions on the flow of information withithread pool P where

Lrp = {e € EpoolU Fiocal | levele) = |QW}
Hizp = {e € EpoolU Eiocal | levele) = h!gh} N Ipool
Hrp\Hlrp = {e € EpoolU Eiocal | levele) = high} \ Ipeol

(cf. Figure 2 for the definition ofpoe and Epogl). According toVyp, only low-level
events (setrp) are visible and only high-level inputs (d€typ) are confidential. The
last column of Figure 3 shows the partition of events intsthelasses.

Note that the assumption that the scheduler’s actisolsgdule andyield-events)
are low-observable adequately reflects that the schedudepart of the low-level envi-
ronment. In particular, this model rules out all insecureestulers, i.e., schedulers that
depend on high data. The same assumption stipulates thétbakea has full knowl-
edge of the scheduler. Indeed, even if the attacker mawliyithave no knowledge
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about the scheduler, such knowledge is possible to obtgerarentally by getting
the system to execute code supplied by the attacker. Figallyanother implication of
the assumption is that the attacker is capable of obseriritigd behavior of the pro-
gram through observingcheduleandyield-events. This allows for expressing timing-
sensitive security propertiés.

Definition 5 The security property SecProp for thread pools is defined by:
SecProp= ({Vrp}, BSIABSD

A thread pool satisfieSecPropif BSI and BSD hold for the viewVrp. Note that
BSI(cf. Section 2.2) alone would already be an appropriate ieinof information
flow for this application'® The argument is as follows: if changing the value of high-
level variables does not eliminate the possibility of levél behaviors, then there
is no information flow from high to low because high-leveliadies could have any
value at any given point of time. Technically, the same effssn be achieved by
demanding onhBSD The motivation for requiring botiBSland BSDwill become
clear in Section 7 when we extend our results to a truly disted setting.

In general, choosing a definition of information flow closelgpends on the par-
ticular application under consideration and there appeatsto be a single “right”
definition (as, e.g., also observed in [34]). The assemblypfers a (still growing)
collection of very primitive definitions of information flo(BSP3$ and allows one to
assemble these into more complex definitions (securityipages). This fine-grained
view has proved to be very helpful for determini@gcProp InterestinglySecProgcor-
responds t@eneralized noninterferend@8], a well known security property. These
aspects and also the compositionalitySafcPropwill be investigated in greater detail
in Section 7.7.

4 MWL Thread Pools

In this section, we revisit the simple multi-threaded whdaguage (abbreviated by
MWL) along with the timing-sensitive definition of securiigr MWL from [38]. Fur-
ther, we demonstrate how our generic specification of thpeads from Section 3 can
be instantiated for MWL.

4.1 The Multi-Threaded While-Language MWL

MWL is a shared-variable multi-threaded while-languagéhvadynamic thread cre-
ation. The syntax of MWL commands is given by the grammar guFé 4. As usual,

°It might be more appropriate to considechedule andyield-events as invisible in a setting where the
observational power of the attacker is reduced. Techyidhlis can be done, e.g., by assigning security level
high rather thanlow to these events and restricting confidential events in tee wéxplicitly to high-level
setvarevents rather than all high-level input events. We beliba these assignments need to be imposed
for linking event-system-based security with languagseldainformation flow in, e.g., the line of [40, 41].

101n [27], the BSP BSIA(for backwards sict insertion of amissible confidential eventsas used as
security predicate. In this articl&Slis used instead because the definitio88iis simpler than the one of
BSIA Note that for thread pool&SlandBSlAare equivalent sinceetvarevents are always admissible.
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boolean expression8 range oveBOOL and arithmetic expressiorsxp range over
EXP. LetC,D, E,... range over commands (MWL threadsMD, and letC' de-
note a vector of commands of the for@, ... C),). Vectorsé, ﬁ, E, ... range over
CMD = U,cnCMD™, the set of multi-threaded programs.

MWL programs execute under a shared memory on a single gocésr in a
single process) such that at most one thread can be acting gheen point of time. A
configuration{C, menj (or 46_", men)) is a pair, consisting of a command € CMD
(or a vector of command§’ € CMD) and a memorynem: VAR — VAL. mem
is a finite mapping from variables to values, as in Section e $et of variables
is partitioned into high and low security classes. For sinifyl (but without loss of
generality, because the case of multiple variables is arglmilarly), we will assume
that there is only one variable for each security clasand!, respectively. We will
often write the memory simply as a pdiral,,, val;) with the valuesal, for h andval,
for I. Further, we defindow-equivalenceon memories bymem =; mem if and
only if the values of for mem andmem are the same. The small-step semantics is
given by transitions between configurations. The detemstimpart of the semantics
is defined by the transition rules in Figure 5. Arithmetic @wblean expressions are
executed atomically by transitions.Exp | ™Mval denotes thaExp € EXP evaluates
to val where the memorynemin the index is only important iExp contains variables.
Similarly, B |™Mtt and B |M®M{f denote, respectively, th& € BOOL evaluates to
true or false

The —-transitions are deterministic. The general form of a datsistic transition
is either(C,men) — {((), meni), which means termination with the final memory
men, or (C,men) — (C'D,mem). Here, one step of computation starting with
commandC in a memorymemgives a new main thread’, a vectorD of spawned
threads, and a new memonyeni. The commandork(C D), whereD is required to
be nonempty, dynamically creates a new vedioof threads that, afterwards, run in
parallel with the main thread’. This has the effect of adding the vectbrto the
configuration. The rule Pick in Figure 6 defines the concursemantics of MWL.
Whenever the scheduler picks a thr&gdor execution, then a»-transition takes place
updating the command pool and the shared memory accordan¢stoall) computation
step ofC;. Let »* denote the reflexive and transitive closure-of

While the rule Pick is nondeterministic, it is, in generahportant to explicitly
model the scheduler for addressing flows that result fronedahing policies. Yet, as
we will see later, our security condition for MWL is definedrply on —-transitions.
As has been shown in [38], this condition implies schedirldependent security.
Thus, there is no reason to introduce explicit scheduletiérsemantics for our pur-
poses. Indeed, our main goal here is to relate the semamititsexcurity of MWL to
the corresponding event system in a possibilistic setting.

We can extract a simple model of the timing behavior of militeaded programs
from the small-step semantics. This is done by the assumtitat each—--transition
takes a single unit of time to execute. This approach givésarough approximation
of real timing behavior, but simple extensions are possibteder to make it sensitive
to the timing behavior of particular commands (cf. [2]).
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C = skip | var:= Exp| C1; C, | if B then C else Cs
| while B do C | fork(C' D)

Figure 4: Command syntax

[Skip] (skip, mem — ((), men)

EXp imemn

[Assigr] (var:= Exp men) — ((), menfvar — n])

401 ) mem - 4() men‘lb

[Sea] {Cr; Oy, men) — (Cs, mem)
Seq] (C1, men) — (C! D, mem)
(C1; Ca, men) — ((C}; Cy) D, mem)
) B MMt
t (if B then C else Cy, meny — (C1, men)
[lf ] B imemﬁ
f (if B then C else Cy, meny — (C>, men)
mem
While] . BTt
{while B do C, mem — (C’; while B do C, men)
mem
[Whileg] . By 1
{while B do C,memn) — {(), men)
[ForK (fork(CD), men) — (CD, men)

Figure 5: Small-step deterministic semantics of commands

Pick (C;, men) — (C', mem)

(Cy...Ch),mem) = ((Cy ...Ci_1CCiyq ...Cy), mem)

Figure 6: Concurrent semantics of programs
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4.2 Definition of Security for MWL

Now, we define the security of MWL programs and motivate theiod of this defi-
nition. The central idea oéxtensionakecurity, as opposed intensionalsecurity, is
that confidentiality should not be specified by a speciappse security formalism,
but, rather, should be defined in terms of a standard sensaadia dependency prop-
erty (more precisely, absence of dependence). If diredirant, and timing flows are
considered, then, intuitively, a program has the exterainaninterferenceroperty,

if varying the high input will not change the possible low#¢observations, i.e., low
inputs/outputs and timing. This differs from intensionatsrity which relies on partic-
ular security primitives that are only motivated by intaitirather than a mathematical
justification. Many investigations have successfullydaléd the extensional view in-
cluding [8, 45, 19, 42, 1, 44, 21, 38, 2, 39] for justificatiohsecurity analysis and
verification techniques for different languages. We follthve extensional approach
and focus on extensional security for MWL.

A previous investigation [38] gives an account on choosingadequate defini-
tion of extensional security for multi-threaded prograrighich definition is appro-
priate depends on, for instance, whether a particular sdbed assumed, or a robust
scheduler-independent security is wanted. The central @d¢he bisimulation-based
approach is to define Bw-bisimulationon commands such that the indistinguisha-
bility of the behaviors of two program& and D for the attacker is formalized by
C ~p D, where~p is alow-bisimulation Such an approach is flexible in the choice
of an appropriate low-bisimulation (different low-bisitations are available for dif-
ferent degrees of security). For a given low-bisimulatien, the definition of security
is simply: “C'is secure iffC ~1 C”. Note that such a relatior-, is not necessarily
reflexive. Indeed, the intention is that insecure prograrasat related by, to itself.
For the purpose of this article we adopt steong low-bisimulatiorf38].

Definition 6 Definestrong low-bisimulatior®, to be the union of all symmetric rela-
tions R on MWL command pools (programs) of equal size for which wiamne

vmem, mem,i.((C;,mem) — (C', mem) A mem =, mem) —
(30", men}.(D;, mem) — (D', mem) A menj =, memy A C' R D')

Our definition of security for MWL programs is based on strdag-bisimulation.
The choice of this particular bisimulation results in a défim of security that is
timing-sensitiveand scheduler-independentf two commands might have a differ-
ent timing behavior depending on high data (which would Itesunformation flow
from high to low) then they are not low-bisimilar. Strong ibisilation guarantees
scheduler-independent security which is robust with resgmea wide class of a sched-
ulers (including probabilistic schedulers as shown in J38}lthough these features
impose restriction's on what can be considered low-bisimilar, the choice of sjron

11For example, one restriction is the requirement that two-tsimilar programs must have the same
number of threads. However, if this requirement is lifteetret information might be revealed to the attacker
through certain schedulers (see Section 4.3 in [38]).
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low-bisimulation is adequate (not too restrictive) fog.ethe type-based analysis that
is proposed in [38]. This analysis is sound with respect éosbcurity definition, i.e.,
if a program passes the analysis, then it must be secure. éier aetails on the power
of this type of security definition to capture insecure peogs and examples of se-
cure programming with common algorithms, such as sortirtgssarching, we refer to
[38, 3].

Definition 7 An MWL progrant is secureif and only ifC' =, C.

In order to illustrate Definitions 6 and 7 we give some examplesecure and insecure
information flow which may occur in MWL programs. Recall tiratnemory is a pair
(valy, val) of the valuewal, andval, of the variabled: andl, respectively.

l:= h This is an example of direct flow. To see that this program is insecure ac-
cording to Definition 7, choosenem = (0,0) andmem = (1,0). Since
(I := h,(0,0)) = ({),(0,0)) and{l := h,(1,0)) — ({),(1,1)) holds, the
resulting memories are not low-equivaléft0) #z (1,1). Thus, there cannot
be a relation with the properties necessary for strong l@sirblarity.

if h =1thenl:=1lelsel:=0 This exemplifies arindirect flow through branching
on a high condition. If the computation starts with low-eglént memories
(0,0) and(1,0), then, after one step of the computation (the test of theieond
tion), the memories are still low-equivalent. Howevereatinother computation
step they become different depending on the initial valuk.ofhere cannot be
a relation with the properties necessary for strong lovirhilgrity.

if h = 1then (while h < MaxInt do h := h + 1) else skip From the timing behav-
ior of the program the attacker may deduce secret informatithis is an in-
stance of diming leak. Clearly, the timing behavior of the branches is défer
This is captured by Definition 7. Indeed, in case tten-branch of thef is cho-
sen, there will be no transition in the other branch to malehttansitions of the
while-loop.

if h = 1then (while true do skip) else skip is a variation of the timing leak called a
terminationleak.

All examples above are insecure according to our definitldare is an instance of a
secure program:

if h = 1then h := h + 1 else skip Indeed, the timing behavior is independent of the
value ofh, as well as the low variable A suitable symmetric relation that makes
this program low-bisimilar to itself is, e.g., the relatig(if h = 1 then h :=
h+1 else skip,if h = 1then h := h+1 else skip), (h := h+1, skip), (skip, h :=
h+1),(h:=h+1,h:=h+ 1), (skip, skip), ({}, () }-

4.3 Instantiating Generic Thread Pools

We now instantiate our generic model for thread pools frowtiSe 3 in order to model
the behavior of the multi-threaded programs of MWL. Redhlht, according to Defi-
nition 4, the following parameters must be actualized:
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e types:VAR, VAL, TID, THREAD, INFO,
¢ initial values:initval, initthread, inittid,
¢ internal eventsEqcq; and their behaviorTigcal.

Consistently with the simplification of Section 4.1, the 8aR of variables consists
of only two variablesh andl (having in mind that: is a high-level and a low-level
variable). We do not further specify the setL of values. However, as in the previous
section, we assume that there are sets of arithn&xie and boolearBOOL expres-
sions. As beforeExp |MMval (resp.,B MMt or B |MeM{f ) denote thaExp € EXP
evaluates twal (resp.,B € BOOL evaluates tdrue or falsg. TID is specialized to the
set of sequences of natural numbertd( = N*). The setTHREAD is specialized to
CMD, i.e., the local state of a thread is simply an MWL commangrO is specialized
to VAL x INT whereVAL is the value of the priority variable (which is adapted to be
[ for simplicity) and the/NT part says whether the process has been killed (vallje
continues running (valu@) or has spawned > 0 new processes (valus.

We do not further specifynitval, the initial value of all variables. The identifier
of the (unique) initial thread is zero, i.d@nittid = 0. MWL thread pools shall be
parametric in the initial thread (parameteitthread).

We now introduce two auxiliary functiorfgst andreston commands. The purpose
of first andrestis to decompose sequential compositions. If a comngamginot itself
a sequential composition on the top level, thiest(C') = C andrest{C) = (). If C
can be written in the forn@’; ; C such thatC; is not a sequential compaosition on the
top level, therfirst(C') = C, andrest(C) = Cs.

The setisf*t, of internal events of an MWL thread pool is defined in Figuré&ldte
that for each of these events there is a corresponding ruleeacsmall-step semantics
(cf. Figure 5). E.g., thassignevents correspond to rule Assign and the evitefsand
itefl respectively correspond toglfand If. With the exception of the rules Seqnd
Segq, there are corresponding eventshff;, for each rule in Figure 5. The reason for
this correspondence is that, on the one hand, events maaeicaactions and, on the
other hand, rules of a small-step semantics model atomisitrans between states (or
configurations—in the case of MWL). The atomic actions tkeat accur during the ex-
ecution of an MWL thread pool include, taking up time (caubgdkip), assignments
to variables, branching in the control flow depending on banltestsif or while), or
spawning of threadddrk). Note that, we do not consider the decomposition of se-
guentially composed commands as a separate action. Tleus dte no corresponding
events.

The behavior of internal events is defined by the transitation 72, (cf. Fig-
ure 7). Clearly %% should reflect the semantics of MWL. The pre- and postcoomliti
of each event shall capture the corresponding rule of thél-steg semantics. E.g.,
the precondition ofssigrjvar, val) requires that there is an active threadiq # L)
that has not already executed a commanauted= ff), the current command must
be an assignmenfifst(threadatid)) = var := Exp), and the expressioBxp must
evaluate toval under the current memorgkp [ ™Mval). Note that, when new threads
are spawned, then the generation of thread identifiers isgethin such a way that no
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Ep = {skip assigrivar, val), ite(B, Cy, Cs), itef(B,Cl,Cg)
while(B, ¢1), while(B, 1), fork(C, D) |
var: VAR, val: VAL , B : BOOL, C,Cy,C5 : CMD, D : CWD}

1"IMWL g S X EMWL X S

ocal local

skip affectsthreadatid), executedainfo
Pre: readyA first(threadatid)) = skip
Post thread (atid) = rest(thread atid)) A done
Aainfd = (menfl), terminategthreadatid)))

assigr(var, val) affectsmengvar), threadatid), executedainfo
Pre: readyAn Expl™®Mval A first(thread atid)) = var := Exp

Post meni(var) = val A thread'(atid) = resf(thread atid)) A done
Aainfd = (menfl), terminateséthread atid)))

ite"™(B, C,, Cy) affectsthread atid), executedainfo
Pre: readyA B MMt A first(thread atid)) = if B then C} else Cs
Post thread'(atid) = Cy; rest(thread atid)) A doneA ainfd = (mentl), 0)

ite' (B, Cy,Cy) affectsthreadatid), executedainfo
Pre: readyn B |MeMff A first(thread atid)) = if B then C; else Cs
Post thread'(atid) = C; rest{thread atid)) A doneA ainfd = (menti), 0)

while"(B, C) affectsthread atid), executedainfo
Pre: readyA B MMt A first(thread atid)) = while B do C
Post thread (atid) = Cy;while B do C; restthread atid)) A done
Aainfd = (menfl), 0)

while (B, Cy) affectsthreadatid), executegdainfo
Pre: readyA B |[MeMff A first(thread atid)) = while B do C
Post thread (atid) = restthread atid)) A done
Aainfd = (menfl), terminateséthread atid)))

fork(C, D, ... D,,) affectsthreadatid), threadatid.0) . .. threadatid.n),
executegdainfo
Pre: readyA first(threadatid)) = fork(CD; ... D,,)
Post thread'(atid) = T A thread'(atid.0) = C'; rest(thread atid))
IN/ERET n}.thread'(atid.i) = D;Adone\ainfd = (mentl), n)

where the following abbreviations are used:

ready<= (executed= ff A atid # L)

done<=> (executed = tt)

terminategthread atid)) equals—1 if rest(threadatid)) = () and0 otherwise.

Figure 7: Local event&s, and transition relatioff% of an MWL thread pool
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tid is used for two different threads. This is enforced by the afsé and the hierar-
chical identifier generation in the postcondition foirk. ThatT %% indeed reflects the
semantics of MWL will be proved in Section 5.

The instantiation of generic thread pools for MWL is sumreed as follows.

Definition 8 Let VAL be some type of valueSMD be defined as depicted in Figure 4,
initval € VAL be some valudyi¥y and T, be defined as depicted in Figure 7.

TheMW.L thread poolfor initthread € CMD results from the following instantia-
tion of generic thread pools:

MWLPoolinitthread) = GenPoo({l, h}, VAL ,N*,CMD, VAL x INT,
initval, initthread 0, Ejes, Tioeai)

5 Relating MWL Programs and MWL Thread Pools

The objective of our specification of MWL thread pools was toyide an adequate
model of MWL programs and their behavior. Firstly, any bebaef an MWL thread
pool should comply with the MWL semantics. Secondly, anyawédr that complies
with the MWL semantics should be possible for an MWL threadlp®hat our speci-
fication, indeed, is adequate is ensured by the resultsmezbe the current section.

Recall that the system models that, respectively, und&h¥L programs and
MWL thread pools are somewhat different. The model undegyWMWL programs
is based ortrees of stategto be precise, configurations). It is possible to enricls¢he
trees with events but from the perspective of the underlyiatadigm these events
would be mere decorations. Since the model of computatictei®-based, the nat-
ural communication paradigm is via shared memory. The systodel underlying
MWL thread pools is based asequences of eventk is possible to enrich these se-
quences with states but from the perspective of the unaheyiyiodel these states would
be mere decorations. Since the system model is event-bhgedatural communica-
tion paradigm is via message passing. These differencesbatthe system models
on which MWL programs and MWL thread pools are based someuwgraplicate the
proofs of the following theorems.

5.1 Adequacy of MWL Thread Pools

In order to relate the transition relation of MWL thread potd the operational se-
mantics of MWL programs, it is necessary to construct a tedizs from one syntax
to the other. For this purpose, we define the functiseg which translates a function
thread: TID — (CMD U {L, T,{()}) into a corresponding vector (sequence) of MWL
commands.

Definition 9 The functioncseq: (TID — (CMD U {1, T,()})) — CMD returns a

vector of MWL commands for each function threadlD — (CMD U {L, T, ()}).
cseqis defined bysedqthread = cseq,,(0, thread wherecsegq,,: TID — (TID —
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(CMD U {L,T,()})) = CMD is defined as follows:

cseqtid, thread = () , if threadtid) € {L, ()}
cseqy(tid, thread = threadtid) , if thread'tid) € CMD

cseqy(tid, thread = cseqy,(tid.0, thread .. . csegy,(tid.n, thread,
if thread(tid) = T, n € N is chosen maximal such that thrééid.n) # L

For a thread with identifigid that has already terminated (or has never existesa}y,
returns the empty command sequence. However, if the theestillirunning and has
not spawned any child threads so far thmag,,, returns the command of that thread.
Finally, if the thread has spawned child threads during Xscation then the result
of cseqyx is determined by a recursive applicationastg,,, to the continuing parent
thread (identifietid.0) and to all child threads (identifigid.i with i > 0). In the latter
case, it is exploited that thread identifiers are choserementally by fork-events and
thatthreadtid) = () holds after termination of a thread with identifigl. Summariz-
ing, cseq(tid, thread denotes the sequence consisting of the command of the thread
with identifiertid and the commands of all threads spawned by this thread aclilits
dren.cseqthread denotes the command sequence for all threads that restdradtie
initial thread.

In Theorem 2 we will show that every trace of an MWL thread pmaoldels a be-
havior that complies with the semantics of MWL. We now prédeim lemmas that
are helpful for proving Theorems 2, 4, and 5. The proofs ofrteas and theorems
that are omitted in the text of this and subsequent sectiomg@ntained in the ap-
pendix. Throughout this section, we assume 8&8= (S, sq, E,I,0,T) models an
MWL thread pool, i.e., thaBES= MWLPoolinitthread) holds for some command
initthreade CMD.

Lemma 1 If s is a reachable state of SES then one of the following is true:

e executed = ff A atid; # L A thread (atids) ¢ {L, T, ()},
e executed = tt A atid, # L, or
e executed = ff A atid, = L.

Hence, it suffices to consider these three cases when amglgzécutions c6ES

Lemma 2 Lets, s’ be states of SES with executed ff, atid, # L, thread,(atid,) ¢

{L,T,()}, ande € EM be an event such that—= s’ holds.

e If e # fork(C,D, ...D,) then
(thread; (atid;), mem) — (thread. (atidy ), mem}).

e Ife= fork(C, D, ...D,) then
(thread; (atid;), mem) — (thread. (atid, .0) . .. thread, (atids .n), mem).
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Lemma 2 ensures that the occurrence of a local eve®ij, corresponds to some
small step in the operational semantics.

Theorem 2 Lets, s'eS be reachable states of SES¢ E* be a sequence of events,
D, = cseqthread,) and D, = cseqthread, ) be vectors of MWL commands. If

s =% o and~ contains no setvar-events theﬁs, mem) —* QD},memfb holds.

In Theorem 3, we will show that for every behavior that coraphivith the semantics of
MWL, there is a trace of the corresponding MWL thread pool thadels this behavior.
The following lemma is helpful for proving this theorem arddaTheorems 4 and 5.

Lemma3 LetC' € cMD U {()}, C" € CMD, D;...D; € CMD, and merh :
VAR — VAL . Moreover, lets be a state of SES with executed ff, atid; # 1, and
thread, (atid,) ¢ {L, T, ()}.

1. If {thread,(atid,), mem) — (C', meni) then there exist € E¢, ands’ € S
with s = ', mem, = men, thread, (atid,) = C', atid, = atid,, and
executegd = tt. Moreover, threag (tid) = thread,(tid) holds for tid# atid;.

2. If {thread;(atid;), mem) — (C" D, ... Dy, men) (with £ > 1) then there ex-
iste € EM ands’ € S with s —— s/, meny = men, atidy, = atid;,
and executed = tt. Moreover, thread(atid;) = T, thread. (atid;.0) =
C", thread, (atid;.i) = D; holds for alli € {1,...,k}, and thread (tid) =

thread, (tid) holds for tid¢ {atid,, atid,.0, .. ., atid,.k}.

Lemma 3 ensures that a small step in the operational sermatitesponds to the
occurrence of some local eventif{is,.

Theorem 3 Let s be a reachable state of SES with gtie 1. and executed = ff.
LetD, = cseqthread,), D' € cMD, and merh: var — val. If qﬁs,memb —*
(D', men) then there exists a sequenge E* that contains no setvar-events and a
states’ € S such thats == s', mem, = mem, andD’ = csedthread, ).

Theorems 2 and 3 ensure that MWL thread pools are an adegeatiification of MWL
programs and their behavior. All behaviors of an MWL threadlpcomply with the
semantics of MWL and all behaviors that comply with the seticarof MWL are
possible for an MWL thread pool.

6 Soundness and Completeness Results

The aim of this section is to establish the soundness andleteness results. Sound-
ness means that @ is secure as an MWL program then its translation is secure as a
state-event system. On the other hand, completeness niedrt@’s translation is
secure as a state-event system tfies secure.

Recall that, according to Definition 8 from Section 4, theslationMWLPoo(C')
of an MWL program(C' is a thread pool withnitthread = C. The following two
subsections present the soundness and completeness,nesgectively.
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6.1 Soundness

Before we present the soundness theorem we state a secwdtyance lemma. In-
tuitively, the lemma says that if computation starts witheawge program then all the
threads in the thread pool are secure at all times. As an widlion, we define the
predicatdive(s, tid) <= (thread,(tid) ¢ {L, T,{)}) that holds whenever threai
is alive in states (exists and has not terminated). Note thw(s, tid) is a precondition
for scheduling threatld in s.

Lemma 4 Assume an MWL prografi is secure ang € Tr is a trace for MWLPodC')
such thats, == s. Thenvtid. live(s, tid) = thread,(tid) =, thread,(tid).

Theorem 4 (Soundness)f an MWL programC' is secure then the MWL thread pool
MWLPoolC) satisfies the security property SecProp.

6.2 Completeness

Let us first recall some facts from standard bisimulatiorothidefore we turn to prov-
ing completeness. Restating Definition 6, two thread p(fbl& (Cy...Cy) and

D = (Dy...D,) are strongly low-bisimilatC ~; D iff 3R.R C F(R) where

function F' from pers to pers (partial equivalence relations ogeéfD) is given by:

C F(R) D iff

Ymem, mem,i.({C;, mem) — 4(7’,men‘1b A mem =; mem) =
(3D", mem.(D;, mem) — (D', mem) A menj =, memy A C' R D')

Let us state two lemmas that give an alternative representttr the strong low-
bisimulation. The proof of the lemmas is a standard argunigrappeal to the Knaster-
Tarski fixed-point theorem (see, e.g., [9]).

Lemma 5 Function F' is w-cocontinuous, i.e., for a nonincreasingchain of pers
RyD---DR; D..., F preserves colimits:

F(NicwRi) = Nicw F(R;)

Lemma 6 (Fixed point) The relationz,, is the greatest fixed point @f in the lattice
of pers. It can be alternatively representeddy = N, =~} wherex’"' = F(x?)
and=! is the total relationCMD x CMD.

We are now ready to present the completeness result.

Theorem 5 (Completeness)An MWL programC' is secure whenever MWLP@6!)
satisfies the security property SecProp.
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7 Secure Communication for Distributed Programs

So far, we have only considered local multi-threaded comjmr based on MWL. Our
original motivation was to embrace the security of both lamanputations and com-
munication between local computations. Thus, the next istép investigate system
security in the case of distributed programming. This secfiresents DMWL (dis-
tributed MWL), which is an extension of MWL with message-giag primitives for
distributed programming. In this section, we define the sgcaf DMWL programs,
translate DMWL's semantics into an event-based settingwsthe adequacy of the
translation and give soundness and completeness reshissertion culminates with
presenting a compositionality result that allows for decaized compositional design
of systems that fulfill global security.

7.1 DMWL's Communication Primitives

In a distributed setting each process has its own memorys,Tihe processes com-
municate by a communication network exchanging messagfesrttnan using shared
memory. Typical examples of message-passing-basedoditetd implementations are
client-server applications. Recall the file server exanfden the beginning of Sec-
tion 3. The file server program creates a new thread for evergrning request, and
terminates afterwards. Such a request is nothing else b@isaage passed by a client
program that, e.g, needs to open, read, write and then clfise & he server grants
read and write permissions by sending respective messagdignts. Message pass-
ing for distributed programming has been adopted by manyibliged languages in-
cluding Erlang [5], Java [16] (message-passing primitaesavailable in the standard
j ava. net package), and Linda [6]. In fact, any sequential languagebsaaug-
mented with Linda, which is a collection of message-paspiimgitives implemented
on the top of the sequential language using tagged tuples.

Message passing is based on sending and receiving messagesnmelswhich
can be thought of alinks between processes. We assume that each link connects two
processes in one direction and that no process can be liokesblf. Each channelis a
FIFO queue of messages. Messages can be put into a chanmgldg@mmands and
be taken out of a channel by receive commands.

In this section, we extend MWL with such communication ptiveis. The new lan-
guage is called DMWL, which stands for distributed MWL. Fig@8 gives DMWL's
new commands apart from those of MWL. The commae(cid, Exp) is used for
sending the result of evaluating the expresdsiog on channekid. We distinguish
between two receiving primitives. The first one iblackingreceive(cid, var) which
blocks until it receives a value on the chanciel Once the value has been received, the
variablevar is set to that value. Theonblockingeceiveif-receive(cid, var, Cy, Cs) al-
ways continues execution. If the chanoilis nonempty therar is set to the received
value and execution continues with the commaéhd Otherwise execution continues
with the command’s.

Figure 9 defines the deterministic semantics of these cordmabeterministic
transitions between configurations are denoted, as bdfgre,-arrows. Now a config-
uration has the forndC’, mem o) where the difference to an MWL configuration is the
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channel statusunctiono : CID — VAL *. Givencid this function returns the queue
of messages that are currently waiting on chamwitel The deterministic transitions for
MWL, defined in Figure 5, are part of the DMWL semantics witk thodification that
configurations are extended with The channel status functienremains unchanged
in those transitions. The same extension is made for thePiglefor nondeterministic
transitions (denoted by»-arrows). The extended rule is depicted in Figure 10.

Given a (possibly distributed) collection of DMWL prograﬁs, ...,C.,, inwhich
each program executes on its own memorgm, ..., meny,, respectively, aglobal
DMW.L configuration< ((71, mem), ..., (Cil, mem,); o> consists of two components.
The first component is a sequence of pairs each containing #DMrogram and
its memory. The second component is the current channeissfahctiono. New
nondeterministie»-transitions on global configurations are defined by the 8tégp in
Figure 11. The rule Step is similar to the rule Pick. It ensufat a global transition
takes place whenever a local transition occurs.

7.2 Security of DMWL Programs

We assume that communication channels are partitionedamt@nd high channels.
Low channels are observable by the attacker. Communicatioowmchannels corre-
sponds to, e.g., communication using standard Internédpots such as TCP/IP and
HTTP. Here, the traffic is vulnerable to eavesdropping byatttacker.High channels
are secure links between processes that are invisible &attacker. Communica-
tion on high channels corresponds to, e.g., communicatithmma protected Intranet,
which is an IP-based network of nodes behind a firewall ortlsieveral firewalls.
Here, the traffic cannot be seen by the attacker.

Let domy, : CID — {high,low} be a function that given a channelgd returns
the security leveldomn(cid) of that channel. Let us extend low-equalkty, (defined
in Section 4.1) to relate channel status functions thateagretheir low arguments.
Formally, define fowr;, 05 : CID — VAL *:

01 =1 02 < (Vcid € CID. domn(cid) = low = ¢, (cid) = o3(cid))

In a similar way as we extended MWL semantics to DMWL semanti@ now extend
strong low-bisimulation for MWL programs (Definition 6) tereng low-bisimulation
for DMWL programs.

Definition 10 Definestrong low-bisimulatior®;, to be the union of all symmetric re-
lations R on DMWL command pools (programs) of equal size for which when
vmem, mem, oy, 05,i.(C;,mem, a1) — (C', mem, o)
A mem =;, memA oy =g, 09 =
30", mend, o.(D;, mem, o) — (D', mend, oh)
A menj =, mem Ac) = o, AC' R D'

25



C ::= ... | send(cid, Exp) | receive(cid, var) | if-receive(cid, var, Cy, C5)
Figure 8: Command syntax

Exp!M¢Mval
{send(cid, Exp), memoa) — {(), memo|cid — val.o(cid)])

[Send

o(cid) = valsval

[Receivé (receive(cid, var), mema) — ((), menjvar — val], o[cid — valg)
o(cid) = {)
[IfRcvy] (if-receive(cid, var, C1, C»), memo) — {Cy, memo)
— o(cid) = valsval

(if-receive(cidvarCy,Cs),menv) — (C,menivar — val],o[cid — valg)

Figure 9: Small-step deterministic semantics of commuitogrimitives

(C;,memo) — (C, mem, o')

[PicK i
((Cr...Cp),memao) = ({(C1...Ci_1CCiyq ... Cp), mem, g’)
Figure 10: Concurrent semantics of programs
Step qd,men},ab%q@,men’k,a’b

Q(C,mem),. . .,(C,,mem), o> — < (C),mem),. ..,(C\,menY).. . .,(C,,mem); o't>

Figure 11: Global concurrent semantics
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The channel status functioss ando, are treated in the same way as memonnesn
andmem. This corresponds to our assumption that high channels argisible to
the attacker whereas low channels are fully observable.nNai approach has been
applied to define program security in a version of MWL enrithéth high and low
synchronization [35]. This definition of low-bisimulati@morresponds to whether two
DMWL programs are observationally equivalent in the lowedkeobserver’s point of
view. The DMWL security definition is based on this represgion of the attacker’s
view (as before in Definition 7).

Definition 11 A DMWL programC is secureif and only ifC' =, C.

Having defined security for a single DMWL program, we haveywitgiven a security
definition for an overall system that is distributed and cocbnsist of a number of
DMWL programs. In other words, having definkmtal security we have not yet de-
fined any notion ofjlobalsecurity. As we have argued, the underlying semantic model
for the global distributed computation is event-baseds #lgo in terms of event-based
systems that we will specify the global security conditian @listributed programs.
Rather than defining a global condition for distributed DM\ftograms in an ad-hoc
manner, our goal is to derive this condition. Moreover, wa ait a compositionality
principle of the following flavor:

Proving local DMWL security for individual DMWL command&isough
for the global security of the overall (potentially distuted) system of
communicating DMWL programs.

How to exploit this principle is illustrated in Figure 12. Hwse we want to
prove that two program&’; C») and (D; D»D3) constitute a secure distributed sys-
tem. Proving that each of these two programs is secure refigsroving the secu-
rity of each command separately according to Definition 11.pobular approach
to ensuring the security of individual commands is by usiegusity-type systems
(e.g.,[45, 19, 42, 1, 44, 2, 38, 39, 35]). We have proposediadseecurity-type sys-
tem for DMWL in a separate article [36]. That each commane@uge is depicted by
single-lined ovals around the commands. That each mukiatted program is secure
is illustrated by double-lined ovals around the programsc®we have proved that the
two programs are secure the soundness and completenelts ofSection 7.6 assure
that the corresponding state-event syst&BS andSES satisfy the security property
SecProp The solid arrows in Figure 12 symboli£® the adequacy of the semantics
of the programs and the state-event systems (to be showrctin®&.5) and alsdii)
the connection between their security (soundness and edemass to be shown in
Section 7.6). The bold ovals correspond to the security atestvent systems. Fi-
nally, the compositionality results (to be presented inti®ac/.7) imply that the global
(trace-based) security condition holds for the overaltesys Such a global system is
composed of local state-event systems by the compositifinedein Section 2. This
corresponds to the bold oval in Figure 12 around the oveaalimosed system.

27



state-event system satisfyisgcProp

setva;H outvar

secure as a DMWL command

Figure 12: Derivation of global security

High—Level Environment

Thread Pool Thread Pool
- - - - - - - - - = Y - - - - - — - - — = )
inbuf outbuf pending | inbuf outbuf pending |
trans || Lo pending | trans | ol PENEINg 1 rans
]! mem atid executed »| | mem atid executed' [ o
‘ ‘L thread ainfo J ~ ‘L thread ainfo J “

Low-Level Envi

ronment

Figure 13: Generic processes with interface events angl skgécts
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7.3 Generic Process Pools

This section describes the extension of generic threadsgottoduced in Section 3)
with communication. Further, we defirgeneric process poolss a composition (cf.
Definition 2) of extended generic thread pools. Each threaal porresponds to a
multi-threaded process that is identified by a unique pagsntifier (typically de-
noted bypid). Throughout the rest of the article we use “process” symooysly to
“thread pool"”.

Figure 13 depicts two processes (or thread pools) with nésrface eventsrans
along with new state objectabuf, pendingandoutbuf Theinput bufferstate object
inbuf : CID — VAL * is a buffer for incoming messages. Given a channetid
inbuf(cid) stores the sequence of messages that have been sent todhsspbat are
not yet ready to be processed. The functmending: CID — VAL * serves similar
purposes. Namely, it stores messages that have not yet besormed. Theutput
buffer state objecbutbuf: (CID x VAL ) U {()} is the dual tanbuf. Eitheroutbufis
empty or contains a paicid, val) of a channel id and a value to be sentath The
actual sending is delayed until the next outgoing trandonssvent. Initially, these
three parameters store the empty sequence fordll

A process can communicate with the environment by four kofdsterface events
(setvar, outvar, schedule andyield-events as before). A process can communicate
with other processes by meanstainsmissioreventstrang(cid, val). Whether trans-
mission events are input or output events to a given prosesgdcified by functions
senderreceiver: CID — PID. For a channel idid, sendefcid) is the pid of the sender
process andeceivelcid) is the pid of the receiver process. We assumeghkatemland
receiverare fixed and/cid € CID. sendefcid) # receivefcid). Such functions guar-
antee that channels are directed links. l.e., for each aanere is exactly one sender
and one receiver process and no channel can connect a ptodessdf.

Thesetvar outvarevents are defined as before. The incoming transmissioriseven
trang(cid, val) (whenreceivefcid) = pid) are always enabled. The outgoing trans-
mission eventsdrang(cid, val) (whensendefcid) = pid) are enabled when the pro-
cess has produced a messagein the output buffer value on the chanrwdl, i.e.,
outbuf= (cid, val).

The precondition of eventscheduléid) is extended by the condition that the
thread with the identifietid is not blocked. Essentially, a thread is blocked if it
tries to receive on an empty channel. The set of blocked thidsais abbreviated by
blocked-setlefined at the bottom of Figure 15. The postconditiosdfedulesvents
ensures that values inbufare moved tgpending Once values are ipending they are
ready for processing.

yield-events have now an additional paramdifercked-infowhich propagates in-
formation about blocked threads to the scheduler. Thisdsatted in the precondition
of yield: blocked-info= blocked-setWe also requir@utbuf= (), which ensures that
all messages fromutbufhave been sent out before yielding.

Generic processes are formalized as state-event systehesfisllowing definition.

Definition 12 Let VAR, VAL, TID, THREAD, INFO, PID, andCID be types and pid
PID. LetS, sq, Epool Ipool, Opool, @aNdTpoo be defined as depicted in Figure 2 with
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the extensions depicted in Figure 15. Let inite@lVAL , inittid € TID, initthread €
THREAD, Ejocal be a set of events that is disjoint frafaool, Tiocal C S X FEiocal X S be
a transition relation, and sendeteceiver: CID — PID be two functions such that for
all cid € CID holds send€rid) # receive(cid). Thegeneric procesis defined by the
following state-event system:

GenProcessAR, VAL , TID, THREAD, INFO, PID, CID, pid,
initval, initthread inittid, Fiocal, Tiocal, SENDErreceive)

= (57 S0, Epool U EIocaI; Ipool; Opool; Tpool U Tlocal)

In order to state the security definition for generic proessae need to define the
security levels for the newans-events. This is done in Figure 14. Note that neither
the security predicatBSIA BSDnor the definition of the viewrp need to be changed
(except for the addition dfans-events).

Definition 13 The security property SecProp for generic processes iseatbhy:
SecProp= ({Vrr},BSIABSD

Note that according to the vieWrp, only setvarevents on high variables and incom-
ing trans-events on high channels are confidential. I.e., for a poaéth identifierpid,

an eventrang(cid, val) is only confidential if domn(cid) = highandreceivelcid) =
pid hold.

In a distributed setting, we have a collection of genericcpsses such that each
process has its unique process id. Such a collection forigenaric process pogl
which we will define using the composition (Definition 2) omgeic processes. Re-
call that in such a composition, synchronization is perfednthrough shared events.
Naturally, trans-events should be shared between communicating processrsas
all other events should be disjoint. To avoid cluttering tiagation, we simply assume
thatall but trans-events are implicitly tagged with the respeeprocess identifiers.

Definition 14 Given a collection GenProce¥s . ..., GenProces¥- of generic pro-

cesses, assume that each process has the same parawterD,CID,sender and
receiver. Let us define@eneric process pobly:

GenProcPodiGenProced¥" | ... GenProced¥-)
= GenProces¥" ||---|| GenProced¥™

The view for a process pool can be easily constructed fromvithes of the individual
processes. Sincdomy, senderandreceiverare defined globally, it is guaranteed that
low (high) output channels may only be connected to (high) ilmput channels, re-
spectively. Like for individual processes, all low-levebats are assumed to be visible
and all high-level input events are assumed to be confidelflaen composing state-
event systems, the communication events between prodessasie internal events of
the composed system (cf. Definition 2). I.e., an ewertg cid, val) is an internal event
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e side conditions levele) e€

trang(cid, val) domn(cid) = low low Lrp

trang(cid, val) | domn(cid) = highA receive(cid) = pid | high Hlrp

trang(cid, val) | domn(cid) = highA sendefcid) = pid high | Hyp\Hlyp

Figure 14: Security levels dfansevents

S = {(...,inbuf pendingoutbuf}
inbuf : CID — VAL* , buffer for incoming messages
pending : CID — VAL * , buffer for incoming messages
outbuf : (CID x VAL)U {()} , buffer for outgoing messages
S0 = (...,inbuf_,pending ,outbuf )€ S

veid : CID. inbuf, (cid) = ()
vcid : CID. pending (cid) = ()

outbuf = ()
| Epool - Ipool ) Opool |
| Ioo = {....trang(cid,val) | cid: CID,val: VAL, receivefcid) = pid}
| Opoo = {....trang(cid,val) | cid : CID,val: VAL , sendefcid) = pid}
Tooot € S X Epool X S

setvafvar, val) affectsmentvar)
Pre: true
Post mem(var) = val

outvar(var,val) affects —
Pre: menfvar) = val
Post true
schedulétid) affectsatid, inbuf, pending
Pre: atid = L Athreadtid) ¢ {L, T, ()} Atid ¢ blocked-set
Post atid’ = tid A inbuf’ = ()
AVcid : CID.pending(cid) = inbuf(cid).pendindcid)
yield(info, blocked-infg affectsexecutedatid, ainfo
Pre: executed= tt A ainfo = info A outbuf= ()
A blocked-info= blocked-set
Post executed = ff A atid’ = 1 Aainfd = L

trans(cid, val) (casereceive(cid) = pid) affectsinbuf(cid)
Pre: true
Post inbuf’(cid) = val.inbuf(cid)

trans(cid, val) (casesende(cid) = pid) affectsoutbuf
Pre: outbuf= (cid, val)
Post outbuf = ()

where

blocked-set= {tid | first(threadtid)) = receive(cid, var) A pendingcid) = ()}

Figure 15: Definition of fixed components of a generic proweisis id pid
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of the process pool endefcid) andreceive(cid) are identifiers of processes that are
contained in the process pool. High-letgns-events that are internal to the process
pool cannot introduce new secrets from outside the systemsétjuently, these events
need not be considered as confidential. This is formalizetearfollowing definition

of security for process pools.

Definition 15 Given a process pool GenProcP@énProced¥’. .., GenProced¥™ )
and the viewpp = (Lpp,Hpp\Hlpp,Hlpp) defined as followsKpp and Ipp
shall be the sets of all events and of all input events, ragpy, of the process pool)

Lpp = {e€ Epp |levele) =low}
Hlpp = {6 € Epp ‘ IeveKe) = hlgh} NIpp
HPP\Hlpp = {6 € Epp ‘ IeveKe) = hlgh} \ Ipp

the security property SecProp for the process pool is defiyed
SecProp= ({Vrpr},BSIABSD

7.4 DMWL Process Pools

We now instantiate our generic model for process pools frautiBn 7.3 in order
to model the behavior of DMWL programs. This section patalend extends Sec-
tion 4.3. The types and values to instantiate, accordingetiinion 14, are:

e types:VAR, VAL, TID, THREAD, INFO, PID, CID,;
e initial values:pid, initval, initthread inittid;

e connecting functionssendeyreceiver

e internal eventsEqc4; and their behaviorTioca.

Similarly to Section 4.3, we setAR = {h,l}, THREAD = CMD (whereCMD
is defined in Figures 4 and 8)inittid = 0 and leaveVAL andinitval unspecified.
Moreover, we do not further specify the new paramefdts, CID, pid and functions
sendey receiver Local eventsEiq,cy and transition relatiofjycq are extended with
communication events in the following way.

The setERe of internal events of a DMWL process is defined in Figures 7 &fd
For each of these events there is a corresponding rule ofrttadl-step semantics
(cf. Figures 5 and 9). The behavior of internal events is @efipy the transition rela-
tion T.0%- (cf. Figures 7 and 16). Thailly indeed reflects the semantics of DMWL
will be proved in Section 7.5. The instantiation of genenogesses for DMWL is
summarized in the following definition.

Definition 16 TheDMWL processfor pid € PID and initthreade CMD results from
the following instantiation of a generic process:

DMWLProces&id, initthread)
= GenProcesd!, h}, VAL ,N*, CMD, VAL x INT, PID, CID, pid,

initval, initthread 0, Egcar, Tiocar, Senderreceive)

32



EDMWL — EMWL

local local

U {sendcid, val), receivecid', var, val),
ite-revi (cid', var, val, Cy, Cs), ite-rev (cid', var, val, Cy, Cs) |
val € VAL ,var € VAR, cid, cid' € cID,C;,Cy € CMD,
sende(cid) = pid, receivefcid’) = pid}
Tl S S % Eigeal X S [Tiocal” 2 Tiocal

sendcid, val) affectsthreadatid), executedainfo, outbuf
Pre: readyn Expl™®Mval A first(thread atid)) = send(cid, Exp)

Post outbuf = (cid, val) A thread'(atid) = resfthreadatid)) A done
Aainfd = (menfl), terminateséthread atid)))

receivécid, var, val) affectsthread atid), executegdainfo, menfvar),
pendindcid)
Pre: readyA pendingdcid) # () A last(pendindcid)) = val
Airst(threadatid)) = receive(cid, var)
Post memi(var) = val A pending(cid) = butlas{pendingcid))
Athread' (atid) = rest(thread atid)) A done
Aainfd = (menfl), terminategthreadatid)))

ite-rev(cid, var, val, Cy, C,) affectsthreadatid), executedainfo, mengvar),
pendingcid)
Pre: readyA pendingdcid) # () A last(pendindcid)) = val
Airst(threadatid)) = if-receive(cid, var, Cy, Cs)
Post meni(var) = val A pending(cid) = butlastpendingcid))
Athread (atid) = C1 ; restthread atid)) AddoneAainfo' = (mendl), 0)

ite-rev’ (cid, var,val, Cy, C,) affectsthreadatid), executedainfo
Pre: readyA pendingcid) = ()
Nirst(thread atid)) = if-receive(cid, var, C1, Cs)
Post thread' (atid) = C»; rest(thread atid)) A doneA ainfd = (mentl), 0)

where the following abbreviations are used:

ready <= (executed= ff A atid # 1)

done<=> (executed = tt)

terminategthread atid)) equals—1 if restthreadatid)) = () and0 otherwise.

Figure 16: Local event&2% and transition relatioff )3y~ of a DMWL process
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We finally arrive at a formalization of BMWL process pooMwhich corresponds to a
distributed collection of DMWL programs.

Definition 17 Given a collection of process ids pid . ., pid,, € PID and a collection
of DMWL commands initthreade CMD, ..., initthread, € CMD, define aDMWL
process poaby:

DMWLProcPool(pid, , initthread, ), . . ., (pid,,, initthread, ))

= GenProcPodIDMWLProcesgpid, , initthread, ),
..., DMWLProces§id,, , initthread,))

Note that this definition is based on a correct use of Definifid of generic process
pools. Indeed, the condition that the paramet&ts , PID, CID, sendefreceiverare
the same for all instantiations of generic processes iseddiy Definition 16. Recall
from Section 7.3 that we assume all events, exceptréorsevents, to be implicitly
tagged with the respective process ids. Hence, the onlytetleat can be shared by
two processes ateans-events.

Let us introduce a useful property that intuitively stateatteach command in a
process correctly uses channel connections, i.e., sertieeanives only on channels
it is supposed to. This is a desirable property that we wilhirhere on impose on
DMWL process pools.

Definition 18 A commandC' € CMD and a process identifigrid comply with func-
tions senderreceiver if for every send commasend(cid, Exp), which is a subcom-
mand ofC, holds sendécid) = pid and for every receive commareteive(cid, var)
or if-receive(cid, var, Cy, Cs ), which is a subcommand 6f, holds receivefeid) = pid.

7.5 Adequacy of DMWL Process Pools

In this section, we extend the results from Section 5 toithisted DMWL programs. In
Theorem 6, we will show that every trace of a DMWL process pootlels a behavior
that complies with the semantics of DMWL. In Theorem 7, wel wilow that for
every behavior that complies with the semantics of DMWL ré¢his a trace of the
corresponding process pool that models this behavior. Lemn8, and 9 (extensions
of Lemmas 1-3) are helpful for proving these theorems aru Bt®orems 8 and 9.

Notational Conventions. Throughout this subsection and Sections 7.6—7.7, we as-
sume thaPid is a finite set of process identifiers, i.Bid = {pid,, ..., pid,} C PID,

for pid € Pid, initthread®@® € THREAD, SESd = (sPid gPId ppid rpid opid 7pid)

is defined bySE$'Y = DMWLProcespid, initthread®®). SES= (S, s, E,1,0,T)
models the resulting DMWL process pool, i.e., is definedSB86= ||igepiq SES,
Moreover, recall from Section 7.3 that no process can seiitged, i.e., for allcid €

CID holdssendefcid) # receivefcid). Recall from Section 7.4 that we assume all
commands in a process pool to comply wsndesreceiverand the respectiveid.
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We first define functionshanneandconfigthat, respectively, extract a channel status
function or the configuration of a process from a state of thmposedSES Here
and further, we useutbufcid) to denote the function that retur{sin caseoutbufis
empty or contains an entry with an identifier different froid; and returns the second
element obutbufotherwise, i.e.putbufcid) = valif outbuf= (cid, val).

Definition 19 Let pid, = sende(cid) and pid. = receivefcid). Moreover, lets|pig, =
(...,outbuf’® .. ) and s|pa. = (...,inbufP% pending”®-,...). The function
channel S — (CID — VAL *) is defined by:

channefs) : cid — outbut™® (cid). inbufP® (cid). pending®® (cid)
where, if pid (or pid,) is not in the process pool, then outgﬁ'jjfi (cid) = () (or
inbufP'%- (cid) = () and pending®- (cid) = (), respectively).

Definition 20 config: S — PID — [(CMD x (VAR — VAL )) U { 1}] is defined by:

fie(s, pid) 1 , if pid¢ Pid
coniig.s, pid) = (csedthread,), mem), if pid € Pid ands|piq = (mem;, thread, .. .)

Lemma 7 If s is a reachable state for the composed SES, @idPid is a process
identifier, ands|pig = (.. ., thread,, atid,, . . ., executegl, .. ., outbuf) then

executed = ff A atid; # L A thread,(atid,) ¢ {L, T, ()} A outbuf = (),
executed = tt A atid, # L A outbuf # (),

executed = tt A atid, # L A outbuf = (), or

executed = ff A atid, = L A outbuf, = () holds.

Lemma 8 Lets,s’ be reachable states for the composed SES; Rid, e € Epuyn EPd
with s —= s, s|pia = (mem,thread,, atid;, . . ., executeg, . .., pending, outbuf ),
ands’|yig = (memy, thread, , atid,., . . ., outbuf,). Assume executgek ff, atid, # L,

and ife = ite-rcvﬁ(cid,var, val, C1, C5) thenchannes)(cid) = ().

e If e # fork(C, D, ...D,) then

(thread; (atidy), mem, channe{s)) — (thread, (atid, ), mem., channe(s')).
e Ife= fork(C, D, ...D,) then

(thread,(atidy), mem, channe(s))

— (thread, (atid;.0) . .. thread. (atids.n), mem, channe(s')).

The following theorem shows that every trace of a DMWL pracpsol, which is
closed models a behavior that complies with the semantics of DMWek.say that a
DMWL process pool iglosedif all channels are connected, i.e., if for ald € CID
holdssendefcid) € Pid <= receive(cid) € Pid.

Theorem 6 Let s, s’ be reachable states for the composed SESyaadE*. Assume
that SES is closed. == s’ and~ contains no setvar-events then

<config(s, pid, ), . . ., config(s, pid,,); channe(s)>
—* Qceonfig(s', pid,), . .., config(s', pid,,); channe(s’)>
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Lemma9 Lets € S be a reachable state for the composed SES,epidid, s|piq =
(mem, thread,, atid,, . . ., executed, . . ., pending, outbuf), C' € CMD, D, ... Dy, €
CMD, mem: VAR — VAL, andc¢’ : CID — VAL *. Assume executgek ff, atid, # L,
and, moreover, if firgthread, (atid)) € {receive(cid', ... ), if-receive(cid’,...)} and
pending(cid') = () thenchanne(s)(cid') = ().

1. If (thread, (atid,), mem, channe(s)) — (C', mem, ¢') thene € ERENN EPdand
s' €S exist withs —= ', s'|pig = (memy, thread, , atid, , . . ., executed, . ..),
mem, =men, thread, (atid;) =C", atid,, = atid,, executed =tt, channe(s') =
o'. Moreover, it holds thread(tid) = thread,(tid) for tid # atid, ands’|,i¢ =
s|piar for pid’ € Pid with pid # pid.

2. If {thread,(atid, ), mem, channels)) — (C'D; ... Dy, mem,o’) (with k& > 1)
then an event € E N EPd ands' € S exist withs —= s/, s'|pig =
(mem, thread, , atidy, ..., executed, ...), memy = men, atid, = atid,
executed = tt, andchannes’') = o'. Moreover, it holds thread(atid;) = T,
thread, (atid;.0) =C", thread, (atid;.i) = D, fori€ {1, ..., k}, thread. (tid) =
thread, (tid) for tid ¢ {atid,, atid;.0, .. ., atid,.k}, ands’|pig = s|pig for pid’ €
Pid with pid # pid.

The following theorem shows that for every behavior of ardisted DMWL program
that is closed there is a trace of the corresponding DMWL @ssqool.

Theorem 7 Let s be a reachable state for the composed SES. Assume that SES is
closed. Moreover, assume for all pidPid holds atid = L and executed= ff where

slpia = (..., atids, ..., executeg,...). Let(CF’;idl, men?)idl) e (ng", men?)idn) be a
sequence of pairs, each consisting of a command vector arahzsony.

If < configs, pid,),. .., config(s, pid,,); channels)t>

3 3

then there exist € E* ands’ € S of the composed SES with== s', v contains no
setvar-events;onfig(s', pid) = (Oéiw mengid) for all pid € Pid, andchanne{s') = o'.

7.6 Soundness and Completeness Results

In this subsection, we present the soundness and compdsteaseilts for DMWL pro-
grams. We show thata DMWL program is secure iff the corredpanDMWL process
satisfiesSecProp In distinction to Subsection 7.5, we assume to have a sjmgleess
pid, so thatPid = {pid}. Otherwise, the same notational conventions apply. Nate th
the definition of the channel status extractigrannel: S — (CID — VAL*) in the
case of one process can be expressed as:

inbufP(cid).pending”(cid),  if receivercid) = pid

h s) : cid i
channels) : cid — { outbut”d(cid), if sendefcid) = pid
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The next auxiliary lemma is analogous to Lemma 4 from Sediomwill be used
in the proof of Theorem 8.

Lemma 10 Assume a DMWL prograr® is secure. Suppose € Tr is a trace for

DMWLProces§id, C) such thats . 5. Thenvtid. live(s, tid) = thread, (tid) =/,
thread, (tid).

Let us conclude this subsection by stating the soundnessangleteness results.

Theorem 8 (Soundness)f a DMWL programC' is secure then the corresponding pro-
cess DMWLProce$pid, C) satisfies the security property SecProp.

Theorem 9 (Completeness)A DMWL progranC' is secure whenever the correspond-
ing process DMWLProce§sid, C) satisfies the security property SecProp.

The proof of the completeness theorem for DMWL makes use hfBSlandBSDse-
curity predicates fronsecProp InterestinglyBSDis not necessary in the completeness
result for MWL (Theorem 5) [27]. Indeed, the deletion of a fidantial setvafh, -)-
event can be simulated by the insertion cfedvalh, -)-event that undoes the change
to the memory of a thread pool. However, this technique doeapply to confidential
trans-events occurring in DMWL process pools because insertirgdp £vents might
not comply with the semantics of communicating thread p¢ciisthe proof for fur-
ther details).

7.7 Compositionality

In this section, we demonstrate tigdcProps preserved under composition of DMWL
processes. This result holds even though generalized teof@rence is, in general, not
preserved under composition as demonstrated by McCull¢28h Our technique
for establishing compositionality is to develop a compdsadvopertyCSecPropand
prove that it is equivalent t&ecPropfor DMWL processed? In Theorem 10, we
demonstrate thatSecPropindeed, is preserved under the composition of processes.
In order to representSecPropn the assembly kit, we introduce the building block
forward correctable hsertion(abbreviated byCl) [26]. Besides a view and a sefr
of traces, thi8SPtakes two set¥, T C E as parameters.

FCI demands that the insertion of a confidential event into eetsaelds, again,
a possible trace. In this aspe&Cl is related toBSI (cf. Section 2). Technically,
FCIX’T(Tr) demands that a confidential evene C' N Y can be inserted before the
occurrence of a visible evente V NV if the sequence that followsv contains no
confidential input events fror@. During the insertion of, the trace may be adapted,
however, adaptations are only allowed after the occurraice®® l.e., « may be

12CcsecProfran be regarded as a weakened version of Johnson and THayegsd correctability [20].
13In [26] a more general definition ¢¥Cl is presented that takes another paramétemd permits adap-
tations inN N A beforev. However, this flexibility is not needed here.
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changed ta’ where visible events ifY and events i’ must remain unchanged.

FCIY . o(Tr)
=Va,B € E*Yce CNY. Yo e VNV.((B(v).a e TrAalc =)
= da' € E*.(d'|v = aly Ad'|c = () A B.{cv).a’ € Tr))

The security predicat€SP(for “composable security predicate”) is defined by:
CSR; " (Tr) = BSh/(Tr) A BSD,(Tr) A FCIy ™ (Tr)
For the purposes of the current article, we choosendY wrt a setPid C PID.
vPid = yPd —  ftrang(cid, val) | receivercid) € Pid, sendefcid) ¢ Pid} .

Given the viewV,ig of a thread pool with identifigpid, we refer to the security property

({Veia} csP " ") ascSsecProgfor “composable security property”).

Below, we assume that for eaplid € Pid, E®® = (EP, [Pid OPid TrPd) js the
event system foBESY, i.e., EPY = ES,rq0, thatVPd = (1P, Pid, Op'd) = Vrpy
is the view for procespid, that VP4 = v{Pd} — yprid and thatSecProp? =
({VPd}, BSIA BSD and CSecProf?® = ({VPd}, csP ™" T™) are the security
properties for processid. Moreover, we assume th8ES= (S, s, F,1,0,T) is the
process pool resulting from the composition of these DMWabaessses, i.e SES=
||pidepidSE§'d, thatES= (E,1,0,Tr) is the corresponding event system, ieS =
ESes that VP = (V,N,C) = Vpp,, is the view for the process pooI and that

Pid

SecProf® = ({VP}, BSIA BSD andCSecProf® = ({VPd}, cSPT™) are the
security properties for the process pool.

The following “zipping lemma” will be helpful for proving it CSecProps pre-
served under composition of DMWL processes (cf. Theorem I)e proof tech-
nique that we use is similar to the one used in [20] for the cosapility of forward
correctability®* However, our security property is slightly weaker than fard cor-
rectability®

Lemma 11 (Zipping Lemma) Letr € E*, A\ € V*, andtyiq € EP" for pid € Pid.

id id caticfi pid, ypid id
If 7 € Tr, 7| gpa.tpia € TP, tpialy = A| oo, and ES" satisfies CSB,,"  (TrP') for
pid € Pid then there is a sequente E* with .t € Tr, t|y = A, andt|c = ().

The following theorem shows th&SecProps, indeed, preserved under the composi-
tion of DMWL processes.

14For a more general account of this proof technique in theeoaraf MAKS, we refer the interested
reader to [26].

15Technically, this difference to forward correctabilitystdts from that we do not require all high input
events to be forward correctable. In particular, higltivarevents are not contained 1 although they are
high input events. Moreover, events@hn Y need not be forward correctable wrt all low-level input egen
rather, only wrttrans-events on incoming low-level channels. Recall that fooveorrectability, as defined
in [20], requires that all high input events are forward ectable wrt all low-level input events. Another
difference is that we require onfyClI but no correspondin8SPfor forward correctable deletion.
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Theorem 10 (Compositionality) If CSecProp holds for each E%' then CSecPr6}d
holds for ES, the composition of these DMWL processes.

The following lemma implies that any DMWL process that Sa&sSecPropalso sat-
isfiesCSecProp

Lemma 12 If BShyie(TrP9) holds for ESgge then FCIZ,S:’Wid (TrP9) also holds.

Theorem 10 and Lemma 12 give rise to the following corolldiyis corollary ensures
thatSecProgs preserved under the composition of processes.

Corollary 1 If for each pide Pid, ES satisfies SecPré then the composed system
ES satisfies SecPr3p.

Recalling from Section 3.2 th&ecPropcorresponds to generalized noninterference
[28], Corollary 1 can be reformulated bifieach process in a process pool satisfies gen-
eralized noninterference then the overall process poa aktisfies generalized non-
interference This result holds despite generalized noninterferencimigeneral, not
preserved under composition [28] and no specialized forooafposition is employed
for which generalized noninterference is known to be presg(like cascade [31, 47]
or absence of communication cycles with less than three ocoemts [48]). Corol-
lary 1 provides a basis for analyzing complex systems in autawdvay. |.e., security
of the overall system is derived by establishing local sigtior each process. Since
the language-based techniques are also compositionai¢devel of commands), es-
tablishing security of a process, again, can be reducedableshing security of each
command (also cf. the motivation for this approach in Secti® and Figure 12).

Note that local security of each process is, in general, eaessary for global
security. The above corollary only ensures that it is sugfiti Hence, there are process
pools that satisffsecPropalthough some processes in the pool do not sa8sfyProp
individually. This overrestrictiveness of the local satuicondition seems to be a
price that needs to be paid in order to allow for modular systievelopment and for
the application of efficient language-based techniquese iBwportant advantage of
our compositionality result in this respect (together witle rigorous relation of the
language-based techniques and the trace-based propéstibst hybrid techniques
can be used to verify the security of the overall system, tee tries to verify local
security individually for every process using the most @it technique available,
e.g., by performing security-type inference. For grouppuafcesses for which the
local security condition does not hold, the trace-basegdgnty can be verified directly.
Global security of the overall distributed system followsrh the compositionality of
our security property together with the results in Sectidrisand 7.6.

8 Discussion and Future Work
Contributions. We have established a one-to-one correspondence betwé@ee-a t

sensitive definition of security for the multi-threaded grams of MWL (from [38])
and a security property based on traces of events that wginalty developed in the
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context of a general security framework—the assemblyM#&KS (from [22, 23]).
As a prerequisite for this, we had to model the semantics ofUIMWing state-event
systems, which resulted in the specification of MWL threadlpoThe development
of this specification has been straightforward (althougimmécally subtle). To us, it
is appealing that generic thread pools, which served as tamiediate step in this
process, are independent of MWL. We expect that this withvalthe adaptation of
other multi-threaded programming languages, e.g., Slaéj. [1

The main motivation of our work has been the objective tograée the two kinds
of security: the security of local computations and the sgcof their communica-
tions. Event-based security aims at protecting occurreatevents and programming-
language-based security aims at protecting secret valuasyork is a step to aid in the
systematic security analysis of complex (potentially rilistted) systems where some
of the components are (or shall be) implemented in a speciligramming language.
To the best of our knowledge this article is the first attengpestablish a rigorous
connection between these two notions of security.

The connection suggests directions for mutual benefits evtte two areas can
borrow from each other (cf. Future Work). Already in thisicle, we have fruitfully
exploited the rigorous relation between global and locableage-based security in
deriving a compositionality principle for DMWL, the multirreaded language MWL
augmented with message passing. We have shown that thd gémlaity of the over-
all system consisting of a collection of distributed DMWLlograms is implied by the
local security of each thread. This opens up the opportuoityeducing the secu-
rity certification for the global system to a decentralizeditification of the security
of individual threads. This can be done by language-basgthiqgues such as, e.g.,
security-type systems [45, 19, 42, 1, 44, 2, 38, 39, 35] ausioverification [21]. For
DMWL, this approach accommodates both local security arstalvsystem’s global
security. This provides high security assurance withourtdptoo restrictive for the pro-
grammer. That interesting secure programs manipulatingiteee data can be written
is illustrated by, e.g., efficient searching and sortingathms that comply to timing-
sensitive security [3].

As a side effect, we have demonstrated how to Mge&KS at the concrete exam-
ple of the multi-threaded programming language MWL. Usihg assembly kit has
turned out to be very helpful in the identification of an aggiate security property.
This application is also interesting because it shows hme-{sensitive security can be
specified iINMAKS. For a different technique to address timing channels byiakp
tick-events we refer to [13].

Bisimulation vs. Trace-based Equivalence. The reader familiar with transition-sys-
tem-based semantics might be surprised by the fact thattickeaelates a bisimula-
tion-based property of programs with a trace-based ones wtell-known that small-
step bisimulation makes more distinctions than trace-bageivalence. Itis also well-
known that trace-based properties are usually not coripnaitwhereas bisimulation-
based ones often are. Nevertheless, we have been able ®quuectness and com-
pleteness results for our translation of the security prigpe

What made these developments possible in spite of the tworrdiferences be-
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tween the bisimulation-based and trace-based models? ribalcproperty is the de-
terministic nature of the transition system underlyingsty low-bisimulation. Indeed,
bisimulation is defined on deterministic transitions eireyithat two bisimilar thread
pools have the same branching behavtdFhis property is necessary for guaranteeing
scheduler-independent securitfwo programs have to have identical branching be-
havior in order to be indistinguishable for the attacker ema scheduler-independent
low-bisimulation. Otherwise, the two programs in then andelse branches, respec-
tively, of anif statement with a secret condition could be used to leak ttretseon-
dition through observing the branching behavior ([38] shdvow to implement this
attack using the properties of a particular scheduler).

Although the determinism of the transition system undedybisimulation is the
key feature to relating bisimulation-based and trace-thasedels, it is not crucial for
the actual security definition of MW, For example, if MWL had a nondeterministic
choice operatof| then the nondeterministic prograim= 0[] [ := 1 would be con-
sidered secure under Definition 7. However, the two secdefinitions (Definition 7
and Definition 5 for MWL thread pools) would be no longer eglént. Indeed, at no
surprise, the completeness theorem (Theorem 5) would ridt Ho counterexample
is the progranif b = 0 then C; else Cy whereCy, =1 :=0;(l := 1] := 2) and
Cy = (l:=0;1:=1)[] (I :=0;1:=2). This program is considered secure under the
trace-based model (Definition 5) but not secure accordinpeéobisimulation-based
Definition 7. Note that, whether one intuitively considengstprogram as secure or
not depends very much on the model of computation one hasrid.nior a detailed
investigation of this close relation between notions obmfation flow and models of
computation (notions of equivalence) we refer to [34].

Future Work.  Plans for future work are centered around further explgitime con-
nection between the two types of security that we have ashaddl in the present article.
Promising directions include the adaptation of intramsiecurity policie¥ for MWL
based on solutions that were proposed in the context of thendsly kit [24] and to
progress towards a development method that allows for #pmsse development start-
ing from abstract specifications and ending with concretgrams (cf. [25] for recent
progress on the refinement of information flow propertiesjother attractive direction
of research is to apply the reduction techniques of [38] doetbwith the results of
this article to reasoning about probabilistic securitygaties for event-based systems.
In this article, we have limited the consideration of comication primitives to
three primitives: a nonblocking send together with a blagkand a nonblocking re-
ceive. In a separate study [36] we present a comparison f&frelift communication
primitives with respect to their impact on security. Besidiee three above primitives,
we have considered synchronous communication (represbptglocking send and re-
ceive) and channels for encrypted traffic where an attackgrobserve the presence of

16Technically one can view the identifiid of a thread that is chosen by the scheduler for the next tran-
sition as a label that is distinguished by the strong lovirfiigation. Hence, an occurrence sithedulétid)
reveals which branch has been chosen in the computation.

17Certain security properties can be defined through low detésm, as in [33, 32].

L8|ntransitive flow policies would provide a way to represeatvtigrading (and thus, e.g., secure encryp-
tion) in the multi-threaded while-language.
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messages but not their contents. We have proposed a typasi@tthe extension that
enforces timing-sensitive security. This is a step towaalizing the compositionality
principle for DMWL (cf. Contributions). Another interesty extension of the model
would be to consider other I/O primitives in additiongetvay outvarfor interaction
with the environment.

Only recently have there been attempts to address the pnaiflexformation flow
for systems that are run on a combination of trusted and st&duhosts. A notable
example is thesecure partitioningapproach by Zdancewic et al. [50]. This approach
allows for automatic partitioning of a sequential progranthwsecurity annotations
(that specify the levels of data confidentiality and hosstirinto communicating pro-
grams that run on the available hosts and perform the ofigovaputation. However,
there is no proof that the system enforces system-wide tenfémence. Because mu-
tual distrust and potential failure of the distributed caments are intrinsic properties
of many distributed systems, incorporating these propgrith our model is another
important goal for future work.
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Appendix

Proof. [of Theorem 1] Assume th8ES = (S7,s), B/, 17,07, T7) for j € J and
ll,cs SES = (S, 50, E,1,0,T).

T E Tr”_U SE§ — ds e S. (SO LT_>T S)
i

< 3ds€ S.Vje J (sl gw‘ s]5)
= VjeJ (| € Treeg)

The second equivalence is established by an inductionover |

Proof. [of Lemma 1] There exists an event sequence E* such thats, == s
because is reachable. The proof proceeds by inductionyon

Base cas¢y = ()): executeg, = ff andatid;, = L according to Figure 2.

Step caséy = d.{e)): There existss; € S with s N s; ands; — s. The
induction hypothesis ensures that the proposition holds.iWe have to show that it
also holds ins. If e is asetvar or outvarevent then the proposition follows directly
because these events do not affect the values@dutedatid, andthread In the rest
of the proof, we assume thats nosetvar or outvarevent. According to the induction
hypothesis, we have to distinguish three cases.

e Assumeexecuted = ff A atids, # L A thread,; (atidy,) ¢ {L,T,()}. The
preconditions of events (cf. Section 3 and 4) implg E™ . The postcondition

local*
of anye € B, ensureexecuted = tt andatid, # L.

e executeg = ttAatids, # L impliese = yield(info) for someinfo € INFO. The
postcondition ofyield ensuregxecuted = ff andatid, = L.

e executeg = ffAatid;, = L impliese = schedulétid) for sometid € TID. The
postcondition ensuresxecuted=ff, atid; # L, thread, (atid;) ¢ {L, T,()}. O

Proof. [of Lemma 2] We make a case distinction on the event

skip Pre- and postcondition dagkip imply first(thread;(atids)) = skip, mem. =
mem, andthread, (atidy') = rest{thread, (atids)). Rules Skip and Sedn Fig-
ure 5 ensurdthread, (atid,), mem) — (thread, (atid,' ), mem.).

assigr(var,val) We havefirst(thread;(atid;)) = var := Exp for some expression
Expwith Exp {™€™ val, mem. = mem|var — val], andthread. (atidy') =
rest(thread;(atidy)). Rules Assign and Secnsure(thread, (atid, ), mem) —
(thread. (atidy ), mem).

ite(B, C1, Cy) We havefirst(thread, (atid,)) = if B then C, else Cy, B [ MM tt,
menm = men, andthread. (atidy') = C;; rest(thread;(atids)). Rules If; and
Seq ensure{thread; (atids), mem) — (thread. (atidy/ ), mem}).

iteff (B, Cy,C3) We havefirst(thread; (atid,)) = if B then Cy else Cy, B |[MeM ff,
mem: = mem, andthread, (atidy') = Cs; rest(thread;(atid,)). Rules If and
Seq ensure(thread, (atidy), mem) — (thread, (atidy ), mem).
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while"(B, 1) We havfirst(thread, (atid,)) = while B do Cy, B [M™ tt, mem =
mem, andthread, (atidy,) = C4;while B do Cy;restthread (atids)). Rules
Whileyt and Segq ensure(thread, (atid, ), mem) — (thread. (atidy ), mem).

while™ (B, C1) We havefirst(thread, (atid,)) = while B do C;, B |MeM ff, mem, =
mem, andthread. (atid, ) = rest(thread;(atid;)). Rules Whilg and Seg en-
sure(thread, (atid, ), mem) — (thread. (atidy ), mem).

fork(C, D) We havefirst(thread, (atid,)) = fork(CD; ...D,,), mem: = mem,
thread. (atid;) = T, andthread. (atid.0) = C;restthreadatid)). For all
i € {1,...,n} holdsthread, (atid.i) = D,. Rules Fork and Segensure
(thread; (atid;), mem) — (thread. (atid, .0) . ..thread, (atids:.n), memy). O

Proof. [of Theorem 2] The proof proceeds by induction on the lerufth.

Base cas€y = ()): The proposition holds because= s and—* is reflexive.

Step caséy = (e).6): There exists; € S with s - s; ands; == s'. If e is an
outvarevent thers; = s and the proposition follows from the induction hypothesis.
Assume that is nooutvarevent. We make a case distinction according to Lemma 1.

e Assumeexecuted = ff A atid, # L A thread,(atidy) ¢ {L, T, ()}. The propo-
sition follows frome € EJ%,, Lemma 2, the frame-axioms ftireadfor events
in E%,, Definition 9, rule Pick, and the induction hypothesis.

e Assumeexecuteg = tt A atid; # L. e = yield(ainfo,) holds. mem, =
mem andcsedthread,,) = D, are implied by the postcondition gfeld. The
proposition follows from the induction hypothesis.

e Assumeexecuted = ff A atid; = L. e = scheduléid) for sometid € TID.
mem, = mem andcseqthread,,) = ﬁs are implied by the postcondition of
schedule The proposition follows from the induction hypothesis. |

Proof. [of Lemma 3] LetD be a derivation ofthread (atid;), mem) — (C’, men)
(or {thread,(atid;), mem) — (C'D; ...D,,men)). According to the operational
semantics of MWL (cf. Figure 5) there must be exactly one igppbn of one of the
rules Skip, Assign, if, Ifg, Whiley, Whileg, or Fork inD.

We make a case distinction depending on which of these relass inD:

Skip and Seg ensurdirst(thread; (atid,)) = skip, C' = resfthread, (atid;)), mem =
mem. Fore = skipthere existss’ € S with s —— s/, thread, (atid,/) =
rest(thread; (atidy)), mem. = mem, atid,, = atid,, andexecuteg = tt. More-
over, for alltid with tid # atid, holdsthread. (tid) = thread, (tid).

Assign and Seg ensurefirst(thread;(atid;)) = var := Expfor somevar € VAR,
val € VAL, Exp € EXP with Exp J™™ val, C' = rest(thread,(atid,)), and
mem = mem[var — val]. Fore = assigrfvar, val) there existss’ € S with
s - ', thread, (atid, ) = rest{thread, (atid,)), mem, = mem[var — val|,
atid,, = atid,, andexecuteg = tt. Moreover, for alltid with tid # atid; holds
thread, (tid) = thread;(tid).
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If+ and Seq ensurefirst(thread,(atid,)) = if B then C; else C, for Cy,Cy € CMD,
B € BOOL with B [MeM tt, C' = (4;resf(thread,(atid,)), mem = mem.
Fore = ite'(B, Cy, Cy) there existss’ € S with s - s, thread, (atid, ) =
Cy;restthread, (atid;)), mem: = mem, atid,, = atid,, andexecuted = tt.
Moreover, for alltid with tid # atid,; holdsthread. (tid) = thread,(tid).

If¢ and Seg ensurefirst(thread, (atids)) = if B then C else Cs for Cy,Co € CMD,
B € BooOL with B MM ff ' = (,;resfthread (atid,)), mem = mem.
Fore = iteﬁ(B,O],Og) there existss’ € S with s - s, thread, (atid,/) =
C,; restthread, (atid;)), mem: = mem, atid,, = atid,, andexecuted = tt.
Moreover, for alltid with tid # atid, holdsthread. (tid) = thread, (tid).

Whiley and Seg ensurefirst(thread;(atids)) = while B do C, for C, € CMD, B €
BOOL with B |M®M t C' = Cy;while B do Cy; rest(thread, (atid,)), mem =
mem. Fore:WhiIett(B, C,) there exists’ € S with s - s', thread, (atid, ) =
C4;while B do C;resfthread (atids)), mem, = mem, atid;, = atid,, and
executegd = tt. For alltid with tid # atid; holdsthread. (tid) = thread,(tid).

Whileg and Seg ensurefirst(thread;(atid;)) = while B do C, for C; € CMD,
B € BoOoOL with B |[MM ff C' = resfthread (atid,)), mem = mem.
Fore = whileﬁ(B,Cl) there existss’ € S with s —— s', thread, (atidy/) =
rest(thread;(atid;)), mem. = mem, atid,, = atids, andexecuted = tt. More-
over, for alltid with tid # atid,; holdsthread. (tid) = thread,(tid).

Fork and Seg ensurdfirst(thread, (atids)) = fork(C'D; ... Dy) for someC € CMD
andD, ... D, € CMD, C" = C; restthread; (atid;)), andmen = mem. For
e = fork(C, D, ... D},) there exists' € S with s —— ', thread, (atid,) = T,
thread, (atid;.0) = C”, for all i € {1,...,k} holdsthread, (atid;.i) = D;,
mem = mem, atidy, = atidy, andexecuteg = tt. Moreover, for alltid with
tid ¢ {atid,, atid;.0, ..., atid,.k} holdsthread, (tid) = thread,(tid). O

Proof. [of Theorem 3] Assume a derivatid for (D,, mem) —* (D', men). The
proof proceeds by induction oty the number of applications of the rule Picklin

Base casén = 0): D contains no rule applications at all. Hend#, = D, and
menm = mem. Consequently, the proposition holds foe= () ands’ = s.

Step casén = n' + 1): There exists4D1;, mem) with qﬁs, mem) — QDZ, mem)
and(D;, mem) —* (D', mem). LetD; be a derivation of D,, mem) — (D;, mem)
andD’ be a derivation of D;, mem) —* (D', mem) with n’ application of rule Pick.
If there existsy; € E* that contains neetvarevents and a state with s UL
mem, = mem, csedthread,) = D;, atid,, = L, andexecuteg = ff then the
proposition follows from the induction hypothesis.

Pick is applied once i®;. Lettid be the identifier of the thread that is selected in
this application.e; = schedulétid) is enabled irs. Fors, € S with s = s; holds
thread, = thread, mem, = mem, atid,, # L, andexecutegl = ff. According

to the definition of rule Pick and Lemma 3, there exist € E@Y, so € S with
s1 2 s,, csedthread,,) = D;, mem, = mem, atid,, # L, andexecuteg, = tt.

e3 = yield(ainfo,,) is enabled ins,. There existss; € S with s, 2, ;. Thus, for
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i = (e1.€2.e3) holdss =% s;, csedthread,,) = D;, mem, = mem, atid,, = L, and
executed = ff. O

Proof. [of Lemma 4] The proof is by induction on the length &f In the base case
B = () we havevtid # 0. live(s, tid) = ff andthread,(0) = thread,(0) = C. We have
C =, C by the security of”.

By the inductive stepsg =% -5 s such thavtid. live(t, tid) = thread (tid) =,
thread (tid). If e is not local, then no threads may be created or updated. Ehuas-
not affectthread so thathread = thread, which completes the inductive step for this
case. Now supposeis local. We need to showtid. live(s, tid) = thread, (tid) ~,
thread, (tid). We will appeal to Lemma 2 in order to match the transitiorhia $eman-
tics of MWL and unwind Definition 6 of strong low-bisimulatio We have two cases
one:
first(thread (atid;)) # fork(--) We have thaexecuted= ff, atid; # L, live(t, atid;),

andt - s hold. By applying Lemma 2 we obtaifthread (atid;), mem) —
(thread; (atid;), mem). By the induction hypothesis, we dedubeead (atid;)
~;, thread(atid;). Unwinding Definition 6 of strong low-bisimulation, there
existC' andmen such that(thread (atid;), mem) — (C', menm) so that both
thread (atid;) =, C’' andmem =, men hold. Due to the fact thate-
transitions are deterministic, it must be the case @fat= thread (atid,) and
meni = mem. This givesthread,(atid;) =, thread,(atid,). Because no other
tid’s are affected, the proof for this case is completed.

first(thread (atid;)) = fork(--) We have thaexecuted= ff, atid; # L, live(¢, atid;),
andt -= s hold. By applying Lemma 2 we obtaifthread (atid;), mem) —
(thread; (atid;.0) . . .thread(atid;.n), mem) wheren € N is the maximal nat-
ural number for whichthread, (atid;.n) # L holds. According to the induction
hypothesisthread (atid;) =;, thread (atid;). By Definition 6 of strong low-
bisimulation, there exist a commanti, asequencé ={(D;...D,),andmem
such that{thread (atid;), mem) — QC’ﬁ,men‘ID wherethread, (atid;.0) =,
C', thread (atid;.1) =, D, ..., thread (atid;.n) =, D, andmem =, meni.
Since—-transitions are deterministic, we receié = thread,(atid;.0), D, =
thread, (atid;.1), ..., D,, = thread,(atid;.n) andmenm = mem. We receive
thread, (atid;.i) &, thread (atid;.i) fori € {0,...,n}. Becausdive(s, atid;) =
ff and that no othetid’'s have been affected, the proof is completed. |

Proof. [of Theorem 4] Assume thdt is secure. We need to show tid¥VLPool C)
satisfiesSecProp According to Section 3.2, to satisfgecPropwe need to prove
BSh,,. (Tr) andBSDy,.,, (Tr) whereTr = Trywipoo(c)- L€t us proveBSh,. . (Tr).
The proof forBSD,,.,. (Tr) can be conducted analogously. By definitB8h,..,. (Tr)
holds iff

Ya,8 € E*Vc € HlTp.((ﬂ.Oz € TrA ()A‘H|TP = <>)
= Ja' € E*.(|L,p = Lpp A 11y, = O ABA{c).a’ €Tr))

Let C be secure. Given, 5 € E* andc € Hlp satisfying the conditions above, our
aim is to construct an appropriaié by modifyinga.
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The proof idea is to construet’ by induction on the length ofy, making use
of Lemmas 2, 3. The only kind of events classifiedHls p is setva(h, -)-events.
Hence,c = setvalh, val) for someval. In the inductive construction, we will prove
the following invariant for sequencesand«’. The invariantnv(a, o, s, s',4) holds
iff

Llengta) =i  2.alL,, =a'l,, 3.0, =0 45923 s

5. 80 REGR (and therebys.(c).a € Tr)
6.V tid.thread; (tid) = thread, (tid) = L v thread,(tid) = thread, (tid) = T
V thread, (tid) = thread. (tid) = () v thread,(tid) =,, thread. (tid)
7.mem =; meny 8. atid; = atid,
9. ainfo, = ainfo,, 10. executegl = executeg
Initially, we seta = o' = (). Supposesg ’@ s' for somes’. Clearly, we have
Inv(a, o', s,s',0) since addingsetvakh, val) can be done at any time in the compu-
tation (the precondition for aetva(h, val)-event istrue). Such an event can only
change the value df in mem.. Lemma 4 guarantees that part 6 of the invariant holds
(traversings preserves the security of the respective commands in thenaom pool).
In the inductive step, we have to construct s’ such thatinv(a, o', s, s',i + 1)
assuming that = §.(e) and, by the induction hypothesisw(4, §’,¢,t',4) for some

o', t'. The proofis by considering cases esuch thats, 22 4 24 s for somes. In

. . . . . ) . 5’
all cases we will aim at preserving the invariant. We haye’8:> t andsg 6% t.

Clearly,e cannot be &etvalh, -)-event by thex|n,., = () condition ona. The rest
of the cases on are:

setva(l,val) Seta’ = d¢'.(e). Thensg 25 p 2, ¢ for somes’. A setva(l, -)-
event is always enabled. The event makes the same updatelowtipart of the
memory in bothmem andmemny.. By induction hypothesisnem =; mem
which yieldsmem =; mem.. The event does not affect any other part of either
t ort' (in the transition tes or s’ respectively) which givekw(a, o', s, s', i + 1).

outvar(l,val) Seta’ = ¢'.(e). The precondition for this event ih—— s is mem =
val. Due to the induction hypothesisem =; mem we havemem. = val

€

which gives the precondition fat —= s’ for somes’. Thus,sq 2% t' —% &'
for somes’. The event does not change any part of eith@rt’ (in the transition
to s or s’ respectively) which givebw(a, o, s, s', i + 1).

outvar(h,val) Seta’ = ¢'.(¢') wheree’ = outvarh,val') andval = mem (h).
Thensg 8o 4 2y & for somes’. We havelnv(a, o', s, s',i + 1) since the
potential difference ival for o' anda does not affect’|_,., = a|.,, because
outvar(h, -) events are classified &5, p\Hl;». Note that we could have just as
well chosen to set’ = §' without affecting the invariant.

schedulétid) Seta’ = &'.(e). Thensy 22 ¢' -5 s' for somes’ since the precondi-
tions fort’ —= s' are guaranteed by the induction hypothesdid; = atid,, =
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1, live(#',tid) = tt. The postconditions are updated in the same way, namely,
atid, = atid,, = tid ensuringnv(a, o', s,s',i + 1).

yield(info) Seta’ = §'.(e). Yieldinginfoin ¢t —— s has the preconditioexecuted =
tt A ainfo, = info. By the induction hypothesigxecuted = executed =

tt A ainfo, = ainfo,, = info which givess B ¢ %5 ' for somes’ The

postconditions are updated in the same wayecutegd = executeg = ff A
ainfo, = ainfo,, = L ensuringnv(a, o', s, s',i + 1).

Let us turn to local events. We are able to treat all eventsnae dy appealing to
Lemmas 2, 3 and unwinding strong low-bisimulation accogdim Definition 6. We
only have two cases an

first(thread (atid;)) # fork(--) We have thaexecuted= ff, atid; # L, live(t, atid;),
andt —= s hold. By applying the first case of Lemma 2 we receive that
(thread (atid;), mem) — (thread,(atid,), mem). By the induction hypothesis
holdsmem =, mem andthread (atid;) =,, thread. (atid; ) (note thatatid; =
atid; ). Unwinding the definition of strong low-bisimulation (Deition 6) yields
that there exis€’ andmem such thaf{thread. (atid;:), mem.) — (C’, meni),
thread, (atid;) =; C’, andmem =; men. According to the induction hy-
pothesis, we havexecuted = ff, atid;, # L, andlive(¢', atid;'). Thus, we can
apply Lemma 3. By Lemma 3 there exists an eve€nt E{Y, and an SES-

states’ with ¢/ = ', atid, = atid,, thread, (atid,,) = C' andmem, =
men, executegd = tt. We havethread (atid;) =, thread(atids,). More-
over, for alltid with tid # atid;, holdsthread, (tid) = thread. (tid). Because
thread, (atid,) =, thread. (atid, ), boththread, (atids) andthread, (atid, ) ei-
ther make a computation step or terminate. Hetereinategthread, (atid,)) =
terminatesthread. (atids')). As a resultexecutedcandainfo are updated in the
same way for botls ands’. Therefore, setting’ = ¢'.{(¢') givessy RN
s' such thatnv(a, o, s,s',i + 1).

first(thread (atid;)) = fork(--) We have thaexecuted= ff, atid; # L, live(¢, atid;),
andt — s hold. By applying Lemma 2 we obtaifthread (atid;), mem) —
(thread; (atid;.0) . . .thread(atid;.n), mem) wheren € N is the maximal nat-
ural number for whichthread; (atid;.n) # L holds. According to the induction
hypothesis, we havanem =; mem. andthread(atid;) = thread. (atid; )
(note thatatid; = atid;'). Unwinding the definition of strong low-bisimulation
(Definition 6) yields that there exists a comma@d, a command sequence
D= (D1 ...D,), and a memoryneni such that{thread (atid, ), mem) —
4()’5, meni) wherethread, (atid;.0) =, C’, thread(atid;.1) =, D,...,
thread, (atid;.n) =, D, andmem =; mem. According to the induction hy-
pothesis, we havexecuted = ff, atid; # L, andlive(t', atid,/). Thus, we can

apply Lemma 3. By Lemma 3 there is an evehtc EY; and an SES-state

e

s witht' — §', atidy, = atidy .0, thread. (atid¢) = T, mem = mem, and
executed = tt. Moreover,thread, (atid;.0) = C' andthread, (atid,.1) =
Dy, ... thread, (atid; .n) = D,,. Further, for alltid with tid ¢ {atid, , atid; .0,

3
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..., atidy.n} holdsthread. (tid) = thread.(tid). Finally, executecandainfo
are updated in the same way for batland s’ (n threads are spawned in both
cases). Therefore, setting = 4'.(¢') gives sqg BY y ¢y ¢ such that
Inv(a, o', s,8"i 4+ 1). |

Proof. [of Theorem 5] Assuming thalWLPool C) satisfieBSl,,.,. (Tr) (whereTr =
TrmwLrootc)) We will show thatC' is secure, i.e.(" =, C (by Definition 7). Note
that we do not need to assurB&Dy,.,. (Tr) although it is implied bySecProp Let
us prove this statement by contraposition. In other wordsumingC %2; C A
SecPropMWLPoolC)) we aim to arrive at a contradiction.

By Lemma 6 =/, C <= C(N;<,=%)C. AssumingC #,, C implies3i. C 2%
C. Takek = min{i | C =}, C AC #:™' C}. Note thatk > 0 since, obviously,

~7 C. Assume for simplicity that ndork-command occurs i€, i.e., C' never
spawns new threads. Along the way, we discuss how the praoolbeanodified to go
through without the assumption. We consider two sequenfdgarssitions of the form
given in Figure 17. Note that each element of the sequenbesiia the command in
the configuration from the previous element. Observe thatd parts of the memory
progress in both sequences in the same way. The sequendesieas shown in Fig-
ure 18. These sequences must exist dugite {0,...,k}.C &} C andC g4 C.
Matching the first steps in both sequences and the low-equivalence of the nesnor
during the firstt steps are guaranteed by € {0, ..., k}.C =% C. However, at step

k+1we havey Dy, By, (Di, (oo 1)) — ADir, (Ryyy, By )) = i 2 0.

In caseC' may spawn new threads, the difference is that instead ofititigethe com-
mands from the previous element in the sequences Seql a@dtBeaext command

is chosen from the command in the previous configuration lactag the thread that

is the counterexample for the low-bisimulation of threadlgmbtained at the previ-
ous step. Importantly, the sequencegidk chosen in both Seql and Seqg2 are then
identical. We will use this observation later.

We proceed by constructing two tracesM¥#LPool C) that correspond to the two
sequences. We will transform one trace into the other uSexPropsuch that the low-
equivalences and step matching is preserved. This willuake a contradiction at step
k + 1. Start off by constructing a trace 8fWLPool C') that corresponds to Seql. We
appeal to Lemma 3 to obtain step-by-step construction afcetr of the form given in
Figure 19 forsomédy, . . ., tidy, info, , . .., info, ., whereeacl; (i = 1,...,k+1)is
the internal event that corresponds to thetransition in Seql according to Lemma 3.
In case no threads are spawnt&t] = 0 foralli = 0,...,k. As we noted, in case
C may spawn new threads the sequence8dd chosen in both Seql and Seq2 are
identical. By a similar argument the information contaiedhfo sequences must also
be identical for Seql and Seq2 upindo,. Due toSecPropwe can insert high events
into right tails of+ that do not contain any high events. We get a legitimate tadies
the insertion. Let us insert theetvarh, hy) event betweesetvalh, hy,) andeg., in
3. Definec = setvath, hy), a = (ext.yield(info,, ,).outvarl, lx+1)), and =
d0.(setvafh, hy,)) for somed such thaty = 5.a. We haven |, = (). By SecPropve
haveda'. o], = aliyp A g, = () Ad.(setvath, hy,).setvakh, hy)).of € Tr.
Observe that setting to h;, means restoring the value a&f from the result of the
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Seql:{C, (ho,lo)) — {Ch, (ill,il)b (C1, (h1, 1)) —={(C>, (il2:i2)b (C2, (h2,l2)) — ...

Seq2:(C, (ho, lo)) — (Di, (A1, 1)) (D1, (hi, 1)) —(Da, (hb,12)) (Da, (hh,12)) — ...

Figure 17: Sequences Seql and Seq2

Seql:... — (Ck, (hi, 1)) (Cr, (hie, 1)) —> (Crpr, (higr, lrs))

Seqz: cee TP {Dka (h;ca lk» {Dka (h;ca lk» 7Z> 4Dk+17 (il;c+17 lAk+1»
Figure 18: The continuation of Seql and Seq2

~ = (schedulétidy).setvarl, ly).setvarh, ho).e: .yield(info, ).outvar(, I, ).
schedulétid, ).setval, [,).setvakh, hi1).e».yield(info, ).outvar(i, [»). . ..
...schedulétid, ,).setvakl, I, _,).setvakh, hy_1).e; yield(info, ).outvar(l, iy ).

schedulétid, ) .setvall, ) .setvalh, hy).ex+1.yield(info, _ , ).outvar(l, L))
Figure 19: Sequence

' = (schedulétidy ).setvarl, lo).¢} .yield(info, ).outvar(l, I ).
schedulétid, ).setvaKl, I, ).e5.yield(info, ) .outvar(l, i5). . . .
...schedulétid;, 1 ).setvall, I, ).} .yield(info, ).outvar(l, Iy ).

schedulétidy ) .setval, i ).ej 1, .yield(info, , , ).outvar(l, Irs1))
Figure 20: Sequencg
4" = (schedulétidy ) .setvar, l).setvalh, hy).e} .yield(info, ).outvar(l, i ).
schedulétid, ).setval, [,).setvak h, h').e; .yield(info, ).outvar(l, ). . . .
..schedulétid;. _,).setvall, I ).setvakh, h},_, ). .yield(info, ) .outvar(i, ).
schedulétid,).setvarl, I;).setvalh, hy,).ej .1 .yield(info,  , ).outvar(l, lj+1))

Figure 21: Sequencg’

Seq2:(C, (ho,lo)) — (D1, (', 11)) (D, (B, 1)) — (D2, (b, 12)) (Do, (Bh, 1)) —. ..
oo = Dy, (i, 1)) (Dx, (hig, 1)) = (Disr, (higr, Trgn))

Figure 22: New form of Seq2
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previous transition in Seql. We can just as well omit bothates ofh implying
0.a € Tr.

Carrying on with the elimination of the rightmost evesgtvalh, h;) for i =
k,...,0 we get a trace/ € Tr that (after removing all occurrences ofitvar(h, -)-
events without loss of generality) has the form depictedigufe 20. Due to the low
events embracing each local evepfori = 1, ...,k + 1 it must be the case that there
is a one-to-one correspondence betweeande] fori = 1,...,k + 1 (although they
are not necessarily identical).

The next pass is the insertion sétva(h, -) following the sequence Seq2. Let us
construct new versions @f «, 8 in order to applySecProp Let ¢ = setvalh, hy),

B = (schedulétidy).setvafl, ly)) anda is such thaty’ = §.a. By SecPropwve have
Ao A |Lrp = AlLrp A |Hip, = (Y AB.(SEtValh, h()).a' € Tr. Continuing rightmost
setvalh,h}) (i = 0,...,k + 1) insertion we get a trace” € Tr that (again, after
removing all occurrences afutvar(h, -)-events without loss of generality) has the form
depicted in Figure 21. Due to the leseheduleandyield-events embracing each local
evente; (i =1,...,k+1) itmust be the case that there is a one-to-one correspondence
betweere; ande} fori =1, ...,k + 1 (although they are not necessarily identical).

According to Lemma 2 we can now convert the traceinto a sequence of»-
transitions. The crucial property is that these transdi@me deterministic, i.e., if
(E,mem) — (E',men) thenVE" menf.(E,men) — (E" menf) — E' =
E" A mem = menf. In caseC may spawn threads, we also need the observation we
made about the same sequencesdd andinfo’'s that are used in the construction of
Seql and Seqg2. This is important to restore the branchingvahof traces as it was
in Seql and Seqg2. The fact that only programs with the sameebitag structure can
be low-bisimilar is reflected in the traces, because thedirizug behavior is recorded
in the low scheduleevents. Thus, by induction, we can restore the sequenc®, Seq
as depicted in Figure 22 for some commadngl,,, which contradicts our original as-
sumption about Seqz2. ]

Proof. [Sketch of Lemma 7] The proof can be carried out along theeshnes as
the proof of Lemma 1. Choose € E* with sy == s. The proof is by induction
on~. The step casey(= d.{e)), is trivial if e is asetvar, outvar, inputtrans-event
ore ¢ EPY. For other events, a case distinction is made accordingetonitiuction
hypothesis where € EQ'", e = trans(cid, val) for somecid € CID andval € VAL

with sendefcid) = pid, e = yield(info), e = schedulétid), respectively, hold in the
four cases. Each of these cases follows from Figures 2, Grib16. O

Proof. [Sketch of Lemma 8] The proof can be carried out along theestames as for

Lemma 2. A case distinction anis made. The cases wheres E}; can be handled

as in the proof of Lemma 2 becausieanne(s') = channe(s). If e is asend, receive,
ite-rcvit-, orite-revf-event then the proposition follows from Figures 9 and 16. O

Proof. [of Theorem 6] First, we establish a few restrictionstanObserve that the
following properties are satisfied for atlid, cid’ € cID, all val,val € VAL, all

pid, . pid, € Pid with pid, # pid;, and allschedul®® (...), ite-rev™ (cid, ...),
send" (cid, val')-events:
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o If v = 71.(schedul (. ..)).,.(ite-rcv™ ™ (cid, . .. )) s
andys| e, € {trang(cid’, val') | receivefcid’) = pid,, sendefcid’) # pid, }*

thens - ¢’ wherey' = ~1.(schedul (.. . ).ite-rev™ " (cid, . . . )).7.7s.

o If v = ~;.(send™ (cid, val)).y,.(schedul&® (.. . ).ite-rC\ﬂpid" (cid,...)).ys
andys | e, € {trang(cid’, val') | cid’ # cid}*

thens == s’ where y _
' = 71.72.(scheduld® (. .. ).ite-rcv™ " (cid, . . . ).send® (cid, val)).ys.

Both of these properties can be proved by a simple inductien. According to the
above properties we may make the following assumptionstahothese assumptions
will be helpful for applying Lemma 8.

1. If v = 7. (schedulBd: (...} 4. (ite-rev™ " (cid, . . . ).y
ands| g, € {trang(cid’, val') | receivercid’) = pid, A sendefcid’) # pid, }*
thenvy, = ().

2. 1f v = ~1.(send™ (cid, val)).7». (schedul®® (. .. ).ite-rev™™ (cid, . . . )). 5
then an eventrang(cid, val) occurs invy,. Together with the precondition of
ite-rev, this implies that there must beraceive or ite-rcvi-event in+, that
consumes the messaga on cid.

Moreover, we assume thatcontains ncsetvar or outvarevents. Thaty contains no
setvarevents is an assumption of the theoremtvarevents have no effect on the state
and, hence, they can safely be removed.

The proof of the theorem proceeds by induction on the lenfjth o

Base cas¢y = ()): The proposition holds because= s and—* is reflexive.

Step caséy = (e).6): There exists; € S with s —— s; ands; L. &' We make a
case distinction depending onifis associated with one or more DMWL thread pools
(at most two).

Firstly, assume that there apid,, pid, € Pid with pid;, # pid, ande € EP4 N
EPY- ¢ = trang(cid, val) holds. Without loss of generality, assusende(cid) = pid,
andreceivefcid) = pid,. We havechanne{s') = channe(s). The occurrence of
affects onlyinbufandoutbufbut no other state variables. The proposition follows from
the reflexivity of —*.

Secondly, assume that there is exactly piee Pid with e € EP9. Let s|pq =
(mem, thread, atid;, . . ., executed, . .. ,outbuf). We make a case distinction ac-
cording to Lemma 1.

e Assumeexecuted = ffAatid, # L Athread; (atid;) ¢ {L, T, () }Aoutbuf = ().
The proposition follows frome € Ep?-, Lemma 8, the frame-axioms for events
in Ex-, Definition 20, rule Step, rule Pick, and the induction hyystis. Note
that if e = ite-rev(cid’, . ..) then channels)(cid) = () holds because of our
initial assumptions (1,2) of. Hence, the requirements of Lemma 8 are, indeed,

satisfied.
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e The caseexecuted = tt A atid, # L A outbuf # () cannot happen. Since
e = trang(cid, val), sende(cid), receivefcid) € Pid, and a process cannot send
to itself, this case contradicts our assumption that theexactly ongid € Pid
with e € EP,

e Assumeexecuteg = tt A atid; # L A outbuf = (). e = yield(ainfo,) holds.
config(s', pid) = (cseqthread,), mem) andchanne(s') = channe(s) are implied
by the postcondition ofield. Proposition follows from the induction hypothesis.

e Assumeexecuted = ff A atid; = L A outbuf = (). e = schedulétid) holds.
config(s', pid) = (cseqthread,), mem) andchanne(s') = channe(s) are implied
by the postcondition adcheduleProposition follows from the induction hypoth-
esis. |

Proof. [Sketch of Lemma 9] The proof can be carried out along theestames as for
Lemma 3. LeD be a derivation ofthread, (atid, ), mem, channe{s)) — {(C! mem, o')
(or (thread;(atidy), mem, channe(s)) — (C'D; ...D,,mem,¢’')). There must be
exactly one application of one of the rules Skip, Assigs, s, Whiley, Whileg, Fork,
Send, Receive, IfRgy or IfRcw in D. All cases except for Send, Receive, IfRev
or IfRcvg can be handled as in the proof of Lemma 3 becatise channe(s). The
remaining cases follow from Figures 9 and 16. |

Proof. [Sketch of Theorem 7] The proof can be carried out along #messlines as the
proof of Theorem 3. We only point out the differences.

The induction needs to be done over the application of rudg &ther than rule
Pick. In the step case, Lemma 9 is used rather than Lemma 3h&arase where the
command is &end-command, choosg = (e;.ey.e3.e4) Wheree; = schedulé .. ),
es € BN, e3 = trang...), e, = yield(...). For the case where the command is
no send-command, choose = (e;.es.e4). If ey is areceive or aite-rc-event, the
requirementhanne(s)(cid’) = () of Lemma 9 is, indeed, satisfiedgénding(cid’) =
(). The argument is thahbuf of the chosen thread pool is empty after gehedule
event andutbufis empty for all thread pools (follows from reachability gfatid, =
1, executed = ff, and Lemma 7). O

Proof. [of Lemma 10] The proof is conducted similarly to the probf.emma 4. We
proceed by induction on the length 6f using Lemma 8 to match the transition in the
semantics of DMWL, and unwinding Definition 10 of strong ldisimulation. In the

inductive step, we have =%t % s such thawtid. live(t, tid) = thread (tid) =,
thread (tid). Suppose eithéfirst(thread (atid;)) = fork(--) or first(thread (atid;)) #
fork(-+) such that ife = ite-rC\ff(cid, var, val, C1, Cy) thenchanne(t)(cid) = (). Then,
Lemma 8 is directly applicable and the proof follows the grafd_Lemma 4.

In caser = ite-rev(cid, var, val, Cy, C,) andchanneft) (cid) # (), we observe that
pending(cid) = () by the precondition foe. Becauseeceivefcid) = pid, we have
channe(t)(cid) = inbuf,(cid).pending(cid) (cf. Section 7.6). Thusnbuf,(cid) # ().
The precondition foe requires thafirst(thread (atid; )) = if-receive(cid, var, Cy, C5).
Moreover, we have the DMWL transitiofthread (atid;), mem, channe(t)[cid — ()])
— (thread; (atid;), mem, channe(s)[cid — ()]} such thafirst(thread (atids)) = C»,
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mem = mem, andchanne(t) = channels). Now, thread (atid;) is secure by the in-
duction hypothesis. By Definition 10 of strong low-bisimiida, there exist’, mem,
ands’ such that{thread (atid;), mem, channe{t)[cid — ()]) — (C', mem, o') where
mem =z mem, thread (atid;) ~; C', andchanne(s)[cid — ()] =L o'. Since—-
transitions are deterministic, it must be the case tat= thread (atid), menm =
mem ando’ = channels)[cid — ()]. Thus,thread (atid;) =,, thread;(atid;). Be-
cause no othdrd’s are affected, the proof for this case is completed. |

Proof. [Sketch of Theorem 8] Assume th@tis secure. We need to show that the
DMWL processDMWLProces&id, C') satisfiesSecProp According to Section 3.2,
we need to prov8Sh,,, (Tr) andBSDy,.,. (Tr) whereTr = Trywipooicy. We prove
BSl,,.,. (Tr) (BSD,,.,. (Tr) is proved similarly) using the technique of Theorem 4. Given
a, 8 € E* andc € Hlpp wherec is to be inserted, our aim is to inductively construct
an appropriater’ by modifyinga. In the inductive construction for sequences’,

we will prove the invariantnv(a, o', s, s, i) from the proof of Theorem 4, extended
with the following requirements:

11. blocked-sdt) = blocked-sets')
12.inbuf, =, inbuf,, A pending =, pending,
13.Vcid € CID. domn(cid) = low =
(outbuf = (cid, val) <= outbuf, = (cid, val))

Lemma 10 guarantees that part 6 of the invariant holds fob#se case. In the in-
ductive step, we have to construct s’ such thainv(«, o, s, s',i + 1) assuming that
a = §.{e) and, by the induction hypotheslsy(d, §',t, ', ) for somed’, t'. The proof

. S 8 .
is by considering cases @msuch thats, 22 4 5 sfor somes. In all cases we will

. . . . . A{c).o'
aim at preserving the invariant. We hame—i—5> t andsg ﬁ% t'. Clearly,e cannot

be asetvafh, -) or trangcid, -) (where domn(cid) = high andreceive(cid) = pid)

by thea|n,., = () condition ona. The cases = setva(l,val), e = outvarl, val),
ande = outvar(h, val) are handled identically to the cases in the proof of Theorem 4
In casee = schedulétid), part 11 of the invariant ensures that we can schedule the
same thread irt’. Part 12 is updated in both and s’ in the same way. The case

e = yield(info, blocked-infg is treated similarly. The cases wheris a newtrans
event are:

trans(cid, val), receive(cid) = pid It must be the case thadomn(cid) = low be-
causedomn(cid) = highwould imply trang(cid, val) € Hl;p ande cannot be
such an event. The case is analogous to the onediwar/, val)-events (the

precondition is alwayfue).

trans(cid, val), sendefcid) = pid The precondition for this event sutbufz, cid) =
(cid, val). In casedonmn(cid) = low, due to part 13 of the invariant, we have
outbuft’, cid) = (cid, val), which enableg in statet’. Seta’ = §’.(e); and we

haveoutbuf s, cid) = outbufs’, cid) = () which preserves the invariant.

In case domn(cid) = high, there are two different cases: dtitbuft’, cid) =
(cid,val'), thena’ = §'.(e') wheree’ = trang(cid, val') which preserves the
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invariant. Ifoutbuft’, cid) = (), then take simplyy’ = ¢’ which also preserves
the invariant.

The cases on local events are proved along the lines of thaf pfdheorem 4. The
cases when Lemmas 8, 9 are not applicable are resolved sdpémahe same manner
as in the proof of Lemma 10. Otherwise, we apply Lemmas 8, uanvand strong
low-bisimulation according to Definition 10. Part 11 of tmwariant is preserved as a
corollary of the following general statement. For a chareigélnd command® and

D' such thatD =,, D', if first(D) = receive(cid, -) thenfirst(D') = receive(cid, -)
and, furhermore,domn(cid) = low. Due to this statement and parts 6 and 12 of the
invariant, part 11 is preserved through the case whisra local event. O

Proof. [Sketch of Theorem 9] The proof is conducted by contrajpmsitas for The-
orem 5. We will use a version of Lemma 6 for the new strong lagirhulation to
facilitate the proof. Assuming' #; C' A SecProDMWLProces&id, C)) we arrive
at a contradiction t8Sh,,.,, (Tr) A BSDy,.,. (Tr) (whereTr = Trywipoo())-

In contrast to the proof of Theorem 5, we do relyB8D,,.,, (Tr) in the proof. The
idea is to use Lemmas 8 and 9 in building the sequences similae ones in the proof
of Theorem 5. Assume (without loss of generality) we onlyéawo high channels
cid, (receivefcid,) = pid) andcid; (sendefcid;) = pid) and two low channelsid,
(receivefcid;) = pid) andcid] (sendefcid;) = pid). We treattrans(cidy, -)-events
similarly to setvafh, -)-events andrang(cid; , -)-events similarly to local events. Both
trang(cid;, -)- andtrang(cid;, -)-events are similar to other low events.

The sequences Seql and Seq2 consist now of configurati@mext with channel
status functions that only differ in the high part for eacéprective configuration. When
building a tracey of DMWLProcesgid, C) that corresponds to Seql we use Lemma 9.
We use the same idea as in the proof of Theorem 5 addingnams-events that popu-
late the channels prior &chedulesvents and alstvans-events beforgield-events that
clearoutbufif a local sendevent has occurred. In the example below, let us represent
the channel status function as a quadruple of sequenceg Wieefirst and second se-
quences correspond to the high and low input channels, céggly; and the third and
fourth sequences correspond to the high and low output @isnrespectively. The
first elements of the sequences are:

Seq1{C, (ho, o), (Fo, o, %o, o)) — (C1, (h1, 1), (81,11, %1, 51))
Seq2:(C, (hy. lo), (vo. @, 0, §o)) — (D, (hi,1y), (31, b1, %"1,91))

First, we transform each transition of the sequences disogiredundant outputs and
all inputs except those consumed during the transition. uisetlustrate the transfor-
mation by an example of two first steps of the following two wemces. The first
transitions of these sequences are:

Seql:qca (h‘07 lO)7 (7}61)[2)7 U)é, '7‘.[1)7 ’U[l)ug)b - 4017 (il‘la Zl): (1)[1)7)37 U)é 3 T(l)T%/ Uéyg)b
Seq2:(C, (hy, lo), (v o'y, wi, (0, yay2)) — (D1, (B, 1), (v, wi, (. yay2))

Note that the low-level components are matched (includieglow-input and low-
output sequences) in the respective configurations. At thiestiep, no inputs are con-
sumed in Seql, while only a high input is consumed in Seq2. &esafely remove
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w} from the low input of both sequences arjd)2 andv';, from the high input of Seq1
and Seq2, respectively. No output is produced by Seqg2, wamilg a high output is
produced by Seql. Hence, we can safely disedug from the low output of both
sequences angd} from the high output of Seql. The first transitions of the Hasg
sequences Setand Seqlare:

SeqL: (C, (ho,lo), ((), 00+ () (D) = (Cr. (hu, 1), (0), 0525, ()
Seq2: (C, (hy:lo), (g, (), ), 0)) = (D, (A, 1), (0, ) 05 0))

Suppose the second transitions of the sequences Seql ahdrgeq

Seql:qch (h/hll): (1)},11)}11)%, <>7 <>)D - 4027 (i]Q: [2)7 (’U},’U}}, <>/ <>)b
Seq2:(Dy, (hi, 1), (v'10';, whwd, (), () — (D2, (hy, I2), (v' 107, wh, (), ()

Atthe second step, only low inputs are consumed in both Sed5eaq2. Thus, we can
safely remove] andv’}v’f from the high inputs of Seql and Seqg2, respectively. Also,
we can removev;} from the low inputs of both Seql and Seq2. On the other hand, we
can safely insert? from the first step of Sel in the high output sequence for Séq
for the second step. The second transitions of the resudgngences Segand Seq?2
are:

Seql: 401 ) (h] ; l1)= ((),’IU%CU(%, <))D - 402= (iL2= lAQ)? (<> ()7335 ())D

Seqz: 4D17 (h/lhll): (<>/ U)%, <>/ <>)b - 4D27 (h/127 l2)7 (<>7 <>; <>7 <>)D

The beginning ofy that corresponds to the first two steps of Seqthen:

~ = (schedulétid,).setvall, ly).setvakh, hg).
ey trang(cid?, 22).yield(info, ).outvar(l, i ).
trang(cid;, w?).schedulétid, ).setvafi, I,).setvalh, h,).
es.yield(info,).outvar(l, i) .. .)

In the example above, is asendcid;, z2)-event, and, therefore, it is followed by
atrangcidy, z2)-event. The rest of the proof uses Lemma 8 and continues dleng
lines of the proof Theorem 5. Note that Lemmas 8 and 9 are eadgk to the traces
we create, because inpgtains-events appear befosehedulesvents that ensure that all
values are forwarded frombufto pendingof the current state. Note thBSD,,... (Tr)

is used during the first pass (cf. sequent¢en the proof of Theorem 5) in order to
delete therang(cidy, v])-events, whereaBS),,.,. (Tr) is used during the second pass
(cf. sequence/” in the proof of Theorem 5) in order to insert th@ns(cidy,, v')-
events. Thus, we make use of both basic security predicatbssiproof. |

Proof. [of Lemma 11] The proof is carried out along the same linethasproof of
the Zipping Lemma for forward correctability in [20]. BecsriofBSDms(TrP9), it
suffices to prove the lemma under the assumpt8i-.« = () for all pid € Pid.

The proof proceeds by induction on In the base case, i.e., for = (), the
proposition holds with the choide= (). In the step case, i.e., for= (v).\’, we make
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a case distinction. Firstly, assume that theremdg, pid, € Pid (with pid, # pid,)
such that € VP9 N VP4 Secondly, assume that there is exactly pite € Pid for
which VP4 holds. We only prove the first case, since this is the morecditfcase.

Since DMWL processes may only interact vrans-events,y = trang(cid, val)
must hold. Without loss of generalitgendefcid) = pid; andreceive(cid) = pid,.
Chooser?™® "% ¢ EPd™ and/P% M ¢ EPY." such thattP® = 0% (1) s7%
PP = (), P =P ) P9 andrP™ |y = () hold. Becausér?® | g ) € CPY:”
andBSh e, (Tr"® ), there are?'™ s2% € BP9 * with 7/ o, . (r?% | e, )10 % (v).s0% €
T PP = ), D%y = P and (70 ()80 ) | ee, = (). Sincew €
VP P (P ) e (CPide i) andFCIE:‘f:’Tp‘dr (TrPd-), there exists
a sequence?® € EPY" with 7| g, 0% (rD% | o, ). (v).s0 % € TrPide | P~
s7% 1 ands8% | me, = (). For eachpid € Pid\ {pid,,pid,}, there is ast¥ €
EPE with (rP% 8% ppa.sB9 € TrPd, P9, = Pid), andsP9 e = () (because
(P 12%)| e € CP9* andBShy(TrP)). The proposition follows after an applica-
tion of the induction hypothesis forr?® 2% (v), X', andsB (for pid € Pid). O
Proof. [of Theorem 10] We abbreviate By = V"4 andT = Y"!9, We have to show
thatBSD,,(Tr), BSh,(Tr), andFCIE’T(Tr) hold. We only proveFCIE’T(Tr) explicitly.
The other statements can be proved along the same lines.

Assumen, § € E* andc,v € E suchtha3.(v).a € Tr,ce CNY,v € VNV,
anda|c = (). According to the definition of composition, we hay (v).a)|gea €
TrPd. QOur restrictions on the composition on DMWL processes tlogrewith ¢ €
C N Y imply thate € EPY holds for exactly ongid, € Pid. Our restrictions on the
composition on DMWL processes together witke 1 NV imply thato € EP holds
for exactly onepid, € Pid. We make a case distinction @id, = pid, Vv pid, # pid,.

Firstly, assumeid, = pid,. AtraceaP?: € EPY." exists with3| o, .(c.v).aP €
TP Pide |y = a)ypa,, andaP® | e, = () becaus@SD, s, (TrP9) (deleteal i,
in (B.(v).c0)| o) and FCI;q (TrP) (insertc beforev). The assumptions of the
Zipping Lemma are fulfilled forr = 3.(c.v), tP9 = a|gpe (for pid # pid,), tP9: =
Pl and) = aly.

Secondly, assunm@d, # pid,. AtraceaPd: ¢ EPY." exists with3| g, .(c).aP% €
TP oPide | = i p0,, andaP¥ | me. = () hold becaus@SD, e, (TrP%:) (delete
e, N (B.0)| goo. ) and BShyp, (TrP9%) (insertc after 5] e, ). The assumptions
of the Zipping Lemma are fulfilled for = £.{c.v), tP4 = a|gme for pid # pid,,
thide — oPid. and)\ = aly.

In both casesy’ € E* exists withg.(c.v).a’ € Tr, &'|y = aly, andd/|c = (). O
Proof. [of Lemma 12] Assumey, 5 € E*, ¢ € CP4 0 YPd andy € VP9 N VP with
B.(v).a € TP anda|cws = (). Hencey: = trang(cid, val) where domn(cid) = high,
receivefcid) = pid, andsendefcid) # pid.

We havev = trang(cid’, val') with domn(cid’) = low, receivefcid’) = pid, and
sendefcid’) # pid. BShya(TrP?) ensures that' € EP9” exists with3.(v.c).a’ €
TrPid, a'|yeie = alyea, @'|crie = (). The event has no preconditions and affects only
inbuf(cid). Sincecid’ # cid, trans(cid’, val') neither depends anbuf(cid) nor affects
it. Hence,c andv can be exchanged in the trace, i&{c.v).a’ € TrPd, O
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