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Abstract

The security of computation at the level of a specific programming language
and the security of complex systems at a more abstract level are two major areas
of current security research. With the objective to integrate the two, this article
proposes an adequate translation of a timing-sensitive security property for simple
multi-threaded programs into a more general security framework. Soundnessand
completenessof the translation guarantee that the trace-based specification of the
translation of a multi-threaded program is secure if and only if the original pro-
gram is secure. Finally, the translation is extended to a distributed setting, and it
is demonstrated how to derive global security of the overallsystem from local se-
curity of each thread. The translation is presented as a two-step process where the
first step is independent from the concrete programming language.

1 Introduction

1.1 Motivation

An important step in the specification of secure informationflow in a complex dis-
tributed system where local parts are written in a particular programming language is
to combine two types of security. Namely, the first type is thesecurity of commu-
nication between local computations and the second type is the security of the local�To appear inJournal of Computer Security, 2002. c IOS Press 2002. This is an extended version of the
article [27] that appeared inProceedings of the 14th IEEE Computer Security FoundationsWorkshop, Cape
Breton, Nova Scotia, Canada, June 11–13, 2001.yThis work was partly supported by the German Research Foundation (DFG).zThis research was partly supported by the Department of the Navy, Office of Naval Research, ONR Grant
N00014-01-1-0968. Any opinions, findings, conclusions, orrecommendations contained in this material are
those of the authors and do not necessarily reflect the views of the Office of Naval Research. This work
was partly supported by TFR while this author was with the Department of Computer Science, Chalmers
University of Technology and University of Göteborg, Sweden.
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computations themselves. The former is often defined as security of an event-based
system (as in the underlying model of [22]) whereas the latter relies on the security
specification of the programming language (as in the underlying model of [38] for a
simple imperative multi-threaded language). Embracing the two kinds of security into
a single security framework is the motivation of this article.

1.2 Background

There is a large body of research on information flow control aiming at specifying,
verifying, and analyzing security. In the traditional abstract view, security is often
defined for an abstracttrace-basedmodel of computation. In particular, a system can be
represented as a set of its traces and, thus, security is a property that can be true or false
for a given set of traces. In a distributed setting, these traces can be viewed as sequences
of events like, e.g., communication of local processes in a distributed network.

Many different approaches to this type of general information flow control have
been proposed. Nondeducibility was developed by Sutherland [43] because the orig-
inal definition of noninterference [15] was based on a systemmodel, deterministic
state machines, that is not adequate for modeling nondeterministic systems. Motivated
by the observation that nondeducibility is not preserved under composition, McCul-
lough suggested restrictiveness, a composable security property [28]. Subsequently,
numerous other possibilistic information flow properties have been proposed (e.g.,
[14, 20, 18, 46, 33, 34]). To date, it appears that none of these information flow proper-
ties is optimal for all purposes. Rather, it depends on the particular application, which
of the various information flow properties is most appropriate. The desire to under-
stand the existing information flow properties and their metaproperties better has led to
detailed comparisons and uniform frameworks [31, 12, 49, 22].

Another line of research that is becoming increasingly popular is information flow
control in a setting of a concrete programming language (see[37] for a state-of-the-art
survey). The efforts in this area are focused on determiningwhether a given program
written in a particular programming language has secure information flow. More con-
crete assumptions are usually made about local computations. For example, one might
assume that the program runs on a partition of data on high (private) and low (public)
security data (although a more general lattice of security levels can be considered).
The program is not trusted (possibly received over the Internet). The program’s low
output is publicly available (e.g., sent over the Internet)as well as, perhaps, timing in-
formation about the program’s execution (e.g., times when the program makes Internet
accesses are observable).

Originating from early work of Denning [10, 11] and Cohen [7,8], secure infor-
mation flow in programming languages received its recent reincarnation in work of
Volpano et al. [45] with the main contribution being soundness proofs for a Denning-
style security analysis. Many other researchers have investigated the problem of se-
cure information flow. This work includes Joshi and Leino’s equational specification
[21], a single calculus for security, binding-time analysis, program slicing and call-
tracking (DCC) by Abadi et al. [1], Heintze and Riecke’s Secure Lambda Calculus
(Slam) [19], Volpano and Smith’s investigations on security of concurrent programs
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[42, 44], and Sabelfeld and Sands’s compositional securityspecifications for sequen-
tial [39] and multi-threaded programs [38].

The security formalization in the studies mentioned is founded on the extensional
approach to security, namelynoninterference[15]. The idea behind noninterference is
that a system is considered secure if high inputs do not interfere with low-observable
behavior of the system (low outputs, timing, etc.). It has often been claimed that exten-
sional programming-language-based security can be viewedas a form of noninterfer-
ence (e.g., in [45]), especially since the revival of the interest in language-based secu-
rity. Nevertheless, for the language-based extensional security models that have been
proposed since the mid-nineties a rigorous connection to noninterference-like proper-
ties has not so far been established to the best of our knowledge.1 This article is a step
in this direction.

1.3 Foreground

Our choice for the abstract event-based framework isMAKS , themodular assembly
kit for security properties[22]. Guided byMAKS , we can pick an appropriate secu-
rity property from the assembly kit rather than inventing a new one. This also allows
for combining the security of programs with the security of other components in a
(potentially distributed) system usingMAKS as an interface. This means integrat-
ing programming-language-based security at a higher levelof abstraction, opening the
opportunity for plugging the security of subsystems written in a particular program-
ming language to the global security of the system defined in ageneral event-based
framework. Finally,MAKS enjoys a number of useful extensions including local ver-
ification conditions [23], intransitive security policies[24], refinement operators [25],
and compositionality results [26], which potentially enables us to use these verification
techniques, to apply intransitive security policies, and to do stepwise development in
the setting of secure information flow in multi-threaded programs (although, besides
compositionality, these issues are outside the scope of thepresent article).

The focus of this article is on a simple multi-threaded while-language (MWL) and
a timing-sensitive security specification (strong security[38]) that implies robust secu-
rity independently of a particular scheduler. We translateMWL programs into state-
event systems, pick an appropriate definition of security from the assembly kit, and
establish a precise correspondence between the security ofMWL programs and their
translations. Namely, that the translation issoundin the sense that the translation of
any secure MWL program is secure as a state-event system; andcompletein the sense
that if the translation of an MWL program is secure as a state-event system then the
original program is secure.

Benefits of such a rigorous connection between the two types of security become
evident when extending MWL programming to a truly distributed setting. Given a dis-
tributed collection of programs (each equipped with its ownmemory) that interact by
message passing, we have a complex global system with the ultimate security require-
ment beingglobal security. The underlying semantic model for a global distributed
computation is event-based. Accordingly, the global security condition is expressed

1Not forgetting McLean’s article [30] from the early nineties, that used functional specifications as an
intermediate step when proving noninterference for programs in a sequential imperative language.
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as a security property from the assembly kit. However, showing such a property is
greatly facilitated by the rigorous relation established in this article. Due to such a
relation, global security can bederivedfrom local securityof all programs in the sys-
tem. In particular, we will show that in the case of distributed MWL, global security
follows from the local security of each individual thread, as a basic part of the overall
system. As a direct consequence, language-based techniques (e.g., security-type sys-
tems [45, 19, 42, 1, 44, 2, 38, 39, 35] or security verification[21]) applied to individual
threads, can be used to guarantee the global security of the overall distributed system.

1.4 Overview

After recalling some preliminaries in Section 2, we introduce the concept of thread
pools in Section 3. In Section 4, we specialize this generic model according to the
syntax and semantics of the MWL programming language. That this specialization
indeed reflects the semantics of MWL, is ensured by a collection of theorems in Sec-
tion 5. The key contribution of our translation is that it preserves the specification of
secure information flow. Section 6 shows that a thread pool isconsidered to be se-
cure in the MWL programming language if and only if the corresponding state-event
system is also considered to be secure in the assembly kit. InSection 7, we enrich
MWL with message-passing primitives and adapt the securitycondition in order to
support distributed programming. The thread pool model is extended accordingly and
we show that the security condition for the distributed extension of MWL coincides
with a trace-based security property that is preserved under the composition of thread
pools. We conclude by a discussion in Section 8.

2 Preliminaries

2.1 System Specifications

The behavior of systems can often be adequately specified by the set of its possible
execution sequences. We follow this trace-based approach throughout this article (with
the exception of parts where we use a concrete programming language). Atrace is a
sequence of events that models a possible execution sequence of the system. Anevent
is an atomic action like, e.g., the sending or receiving of a message on some channel.
We distinguish between input, internal, and output events.The underlying intuition is
that input events are controlled by the environment of a system while internal and
output events are controlled by the system. Input and outputevents constitute the
interface of a system. The distinction between input and output events is somewhat
fuzzy. When a system is capable of preventing the occurrenceof input events, then this
can be interpreted as a signal to the environment. To avoid this kind of communication,
input totality is often assumed, i.e., that a system cannot prevent the occurrence of
input events. However, a limitation to input total systems appears to be quite restrictive.
Therefore, we refrain from making the assumption of input totality in this article.

For specifying systems, we do not define the set of traces directly but rather use
states as an auxiliary concept. This allows us to define the possible traces inductively
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by a transition relation. The system model, we use for specification, are state-event
systems [23]. This system model allows for the specificationof nondeterministic sys-
tems where the nondeterminism is reflected by the choice between different events that
are enabled. For simplicity, any nondeterminism in the effects of events is ruled out.

Definition 1 Let S be a set of states,E be a set of events, andT � S � E � S
be a transition relation. Astate-event systemSES is a tuple(S; s0; E; I; O; T ) wheres0 2 S is the initial state andI; O � E, respectively, are the input and output events.
Moreover, it is assumed thatI \ O = ; holds and that for a given states and evente
there is at most one states0 with (s; e; s0) 2 T .2

Note that the set of internal events, i.e.,E n (I [ O), may be nonempty.

Example 1 A random generator that outputs a sequence of random naturalnumbers
and then terminates can be specified by the state-event system SES=(S; s0; E; I; O;T ).
SES is defined byS = fs0; sfg, E = O [ ftermg, I = ;, O = fout(n) j n 2 Ng,T = f(s0; out(n); s0) j n 2 Ng [ f(s0; term; sf )g. Possible traces for this state-event
system include, e.g.,hout(42)i andhout(17):out(42):termi.
Let s1; s2; s0 2 S, e 2 E, and 2 E�. Instead of(s1; e; s2) 2 T we sometimes use the
notations1 e�!T s2. For multi-event transitions, we use the notations1 =)T s0. If T
is obvious from the context then we omit the index and writes1 e�! s2 or s1 =) s0.
The relation

=)T is formally defined as follows:s1 hi=)T s0 , if s1 = s0s1 hei:=)T s0 , if 9s2 2 S:s1 e�!T s2 ^ s2 =)T s0
A sequence� 2 E� of events is atraceof a state-event systemSES=(S; s0; E; I; O;T )
if it is accepted in the initial state, i.e., if9s0 2 S:s0 �=)T s0. The set of all traces that
are possible forSESis denoted byTrSES. We omit the index and simply writeTr if the
state-event system is obvious from the context. The tupleESSES= (E; I;O;TrSES) is
referred to as theevent system[20] corresponding toSES. A states 2 S is reachableif
there exists a sequence� 2 E� such thats0 �=) s. Theprojection�jE0 of a sequence� 2 E� to the events inE0 � E results from� by deleting all eventsnot in E0.

In complex systems, communication between components is done by synchroniza-
tion on the occurrence of shared events (usually output events of the one component
that are input events of others). We define the composition ofstate-event systems.

Definition 2 Given an index setJ and, for eachj 2 J , a state-event system SESj =(Sj ; sj0; Ej ; Ij ; Oj ; T j) such that for allk; l 2 J with k 6= l holdsEk \ El � (Ik \Ol) [ (I l \Ok). We define thecompositionof the state-event systems
fj2J SESj to be

2Note that our system model is possibilistic, i.e., it abstracts from probabilities of occurrences of particu-
lar events. This is a common assumption that, e.g., has also been made in [43, 14, 28, 18, 20, 31, 12, 49, 34,
22]. For information flow properties that are based on a probabilistic system model, we refer to [29, 17].
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the state-event system(S; s0; E; I; O; T ) whereS = �j2JSjs0 = (sj0)j2JE = [j2JEjI = [j2JIj n [j2JOjO = [j2JOj n [j2JIjT = f(s; e; s0) 2 S �E � S j 8j 2 J: [(e 2 Ej ^ (sjj ; e; s0jj) 2 T j)_ (e =2 Ej ^ sjj = s0jj)℄g
The state of a composed state-event system is a tuple of component states.sjj de-
notes thejth element of a states of a composedSES. Note that the definition above,
indeed, guarantees that communication between componentsis only possible by syn-
chronization on occurrences of shared events, i.e., eventsthat are output events of one
component and input events of another component. Such communication events are
considered to be internal events for the composed system.

The following theorem justifies the definition of the composition on state-event
systems by relating it to the usual definition of compositionfor event systems (cf.,
e.g., [20, 26]). Essentially, the theorem ensures thatESfj2J SESj = fj2J ESSESj holds.

Theorem 1 For an index setJ and a collection of state-event systems(SESj)j2J we
have Trfj2J SESj = f� 2 E� j 8j 2 J: � jEj 2 TrSESjg.
2.2 Security Properties

Many security requirements can be expressed as restrictions on the information flow
within a system. To express confidentiality or integrity by such restrictions is the key
idea of information flow control.

The assembly kitMAKS that supports the uniform and modular representation of
information flow properties has been previously proposed byone of the authors [22].
It simplifies the comparison among the existing security properties that are based on
possibilistic information flow as well as a goal-directed construction of new ones. In
MAKS , asecurity propertyconsists of a set of views and a security predicate.3

A view [24] specifies restrictions on the permitted flow of information within a
system. Formally, a viewV (in a set of eventsE) is a triple(V;N;C) whereV;N;C �E are sets of events that form a disjoint partition ofE.4 Intuitively, a view describes
the perspective of a (potentially malicious) observer of the system. For a given viewV = (V;N;C), the setV specifies the events that arevisible for the observer (or
an attacker in the observer’s guise). These events can be directly observed when they
occur. Occurrences of all other events (i.e., events inN[C) arenotdirectly observable.

3If desired, the set of views can be specified by a flow policy anda domain assignment using a graphical
notation. This approach has been explained, e.g., in [24]. However, this possibility is not important for the
purposes of the current article.

4I.e.,V \N = V \ C = N \C = ; andV [N [ C = E.
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Hence, if a trace� 2 Tr occurs then the observer only sees the projection� jV . The setC specifies the set of events that areconfidentialfor the observer. I.e., the observer must
not be able to learnany information about occurrences of events inC (based on his
observations and other knowledge he might have about the systems).5 All other events
(i.e., events inV [N ) arenotconfidential. Since the setsV;N;C must form a disjoint
partition ofE, a view is completely determined by the setsV andC. The remaining
events are collected in the setN . These events areneithervisible nor confidential for
the observer.

Example 2 A viewV1 = (V;N; ;) does not impose any restrictions on the information
flow because there are no confidential events. A viewV2 = (;; N; C) specifies that
nothing can be observed during system execution because theset of visible events is
empty. Note that for all possible traces� 2 Tr holds� j; = hi. Clearly, V1 andV2
constitute two extreme cases.

A more interesting case is specified by the viewV3 = (L;HnHI;HI). Assuming a
two-level security policy where each event is either classified as a high- or a low-level
event,V3 states that low-level events (L) are visible and high-levelinput events (HI)
are confidential. This view captures the original idea of noninterference, i.e., that high
inputs do not interfere with low-observable behavior of a system.6

A security predicate[24] specifies under which conditions the requirements of a given
view are satisfied for a set of traces.

Definition 3 For a view setVS and asecurity predicateSP, asecurity property(VS;SP)
is satisfied by an event system ES= (E; I;O;Tr) if SPV(Tr) holds for each viewV 2 VS. A state-event system SESsatisfiesa security property if the corresponding
event system ESSESsatisfies it.

In MAKS , security predicates are composed by conjunction from one or more basic
security predicates (abbreviated byBSP). For the purposes of the current article, only
two BSPsare of interest:backwards strict insertion of confidential events(abbreviated
by BSI) andbackwards strict deletion of confidential events(abbreviated byBSD) [24].

For a viewV , BSIrequires that the occurrence of an event fromC doesnot remove
possibleV -observations. Consider the system after a trace� has occurred. AnyV -
observation� 2 V � that is possible at this point must also be possible after 2 C
has occurred. Consequently, if theV -observation� results from the sequence� 2(V [N)�, i.e.,�jV = �, then some sequence�0 2 (V [N)� must be enabled after has
occurred where�0 may differ from� only in events fromN . Hence,�0jV = � = �jV
holds. For a given viewV = (V;N;C), BSIV(Tr) is formally defined as follows:

BSIV;N;C(Tr) � 8�; � 2 E�:8 2 C: ((�:� 2 Tr ^ �jC = hi)=) 9�0 2 E�: (�0jV = �jV ^ �0jC = hi ^ �:hi:�0 2 Tr))
5As usual in investigations of secure information flow, we assume that the observer has complete knowl-

edge of the system specification. This is a worst-case assumption.
6The viewV3 is appropriate for systems that operate on confidential datathat they receive as input but

do not generate new secrets internally (in the sense of ,e.g., a random-number generator).
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For simplicity of reasoning aboutBSI, it requires only that a confidential event can
be inserted at a point that is not followed by any other confidential events (�jC = hi)
and that no other confidential events besides are inserted (�0jC = hi).

If BSIV(Tr) does not hold then it might be possible for an adversary to infer from
someV -observation� that cannot have occurred. The security guarantee provided by
BSI is: if an adversary observes� starting in some state then he or she cannot deduce
that a confidential event has notoccurred. Clearly, it can also be important to prevent
an adversary from deducing that a confidential eventhasoccurred. This is the purpose
of BSD, anotherBSPfrom the assembly kit.

For a viewV , BSDrequires that the occurrence of an event fromC doesnot add
possible low-level observations. Considering the system after a trace�:hi has oc-
curred, any observation� that is possible must have been possible also without 2 C
in the trace. Consequently, some sequence�0 2 (V [ N)� must be enabled after�
where�0 may differ from� only in events fromN . For a given viewV = (V;N;C),
BSDV(Tr) is formally defined as follows:

BSDV;N;C(Tr) � 8�; � 2 E�:8 2 C: ((�:hi:� 2 Tr ^ �jC = hi)=) 9�0 2 E�: (�0jV = �jV ^ �0jC = hi ^ �:�0 2 Tr))
For otherBSPsbesidesBSIandBSDand the representation of various existing infor-
mation flow properties inMAKS , we refer to [22, 24, 26].

3 Generic Thread Pools
For distributed programming, the use of multi-threaded programming languages has
become extremely popular [4]. The use of concurrent threadsthat operate in the same
address space appears to be the adequate approach for applications that are, e.g., based
on the client-server paradigm. For example, this allows oneto program a file server
that creates, for every incoming request, a new thread that handles this request and
terminates afterwards. Compared to parallelism at the level of processes, an important
advantage is that context switching is far less expensive for threads.

In this article, we assume thatthreadsare sequential programs and multi-threading
occurs at the level of local computation which operates on a shared memory. On the
other hand,processesare potentially distributed such that each process has its own
memory. The processes communicate by a communication network (between local
computations) exchanging messages rather than using shared memory. Each process is
potentially a multi-threaded program.

To model the behavior of multi-threaded processes in state-event systems is tech-
nically somewhat difficult.7 The main difficulty is that threads communicate with each
other asynchronously via shared memory, while state-eventsystems are based on a syn-
chronous, message-passing-like communication paradigm (cf. Section 2.1). However,
to specify processes with these formalisms is very natural because handshake-based
inter-process communication is synchronous.

In this section, we demonstrate how the behavior of multi-threaded processes can
be modeled using state-event systems. The proposed specification is highly generic

7Similar problems occur when using process algebras like CSPor CCS.
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Figure 1: Generic thread pool with interface events and state objects

because it is not only parametric in the particular program but also in the programming
language. How to instantiate this specification for the concrete programming language
MWL will be demonstrated in Section 4. The specification willbe extended to a truly
distributed setting in Section 7.

3.1 Trace-Based Formal Specification

In our specification, a multi-threaded process is modeled asa collection of threads that
shares a global memory. We refer to such a collection as athread pool. As depicted
in Figure 1, a thread pool has five state objects:mem, thread, atid, ainfo, executed;
and can communicate with the environment by four kinds of interface events:setvar-,
outvar-, schedule- andyield-events.

Theshared memoryof a thread pool is modeled by the functionmem: VAR ! VAL
that assigns values (fromVAL ) to variables (fromVAR ). The functionmemcan be
updated at the interface of a thread pool bysetvar-events. If an eventsetvar(var; val)
occurs then variablevar is assigned valueval. Theoutvar-events output the value of
variables to the environment. An eventoutvar(var; val) is only enabled ifvar currently
has valueval. For simplicity, we assume thatoutvar-events have no other preconditions
and do not affect the state. Moreover,setvar-events are always enabled.

Thesetvar-, outvar-, schedule-, andyield-events constitute the interface between a
thread pool and its environment. For the purposes of security, direct security violations
must be excluded. Hence, the environment is assumed to be separated into a high-
and a low-level environment that must not communicate with each other directly. The
low-level part of the environment may not inspect high-variables, i.e., occurrences of
outvar-events on high variables must not be observable. The high-level part of the
environment must not be able to alter low-level variables, i.e., occurrences ofsetvar-
events on low variables must originate from the low-level part of the environment only.

The local state of threadsis modeled by the functionthread: TID ! (THREAD [f?;>; hig). The functionthread returns a local state (fromTHREAD) for a thread
identifier, i.e.,thread(tid) denotes the local state of the thread with identifiertid 2 TID .
The results?, >, andhi do not denote a proper local state but have a special mean-
ing. If a thread with identifiertid has never existed thenthread(tid) = ? holds (here
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and below,? stands for “undefined”). After a thread has spawned child processes, the
identifier of the parent thread is modified andthreadreturns, respectively,> for the old
identifier and the resulting parent thread for the new identifier (which results from the
old identifier by appending0). Identifiers for child threads are chosen incrementally,
i.e., the identifier of theith child thread is constructed by appendingi to the old identi-
fier of the parent thread. Ifthread(tid) = hi then a thread with identifiertid has existed
but has already terminated.

The remaining state objects are used for controlling the execution of threads. The
value ofatid 2 TID [f?g denotes the identifier of the thread that is currently activein
the thread pool. Ifatid = ? holds then no thread is active. For simplicity, we assume
that there is at most one active thread at any point of time. The state objectainfo is
a buffer in which information is collected that shall be sendto the scheduler. Note
that the scheduler is external to a thread pool. The flagexecuted2 BOOL is used for
managing context switching. Thread execution proceeds as follows.� If no thread is active (indicated byatid = ?) thenschedule-events are enabled.

After an occurrence ofschedule(tid), atid is set totid, and the thread with local
statethread(tid) becomes active.schedule(tid) is only enabled if the thread is
alive (thread(tid) 62 f?;>; hig).� If there is an active thread (indicated byatid 6= ?^executed= ff) then this thread
can run. Thread execution is formally modeled by the occurrence of events that
are internal to the thread pool. Since these internal eventsdepend closely on
the particular instantiation of a generic thread pool, especially on the program-
ming language, they are intentionally not modeled at the generic level. During
execution, a thread can affect the state objectsmemandthread. Additionally, in-
formation for the scheduler is stored inainfo. Eventually, the active thread stops
executing (indicated byexecuted= tt).� After the active thread has stopped (executed= tt), the scheduler can be in-
formed about this by ayield-event. yield(info) is only enabled ifinfo corre-
sponds to the actual scheduler information (info = ainfo). A yield-event resets
theexecuted-flag,atid, andainfo.

For the initial state, we assume that all variables are initialized with the valueinitval.
Moreover, we assume that there is exactly one thread, which has inittid as identifier
andinitthreadas local state. In the initial state,atid, ainfo, andexecutedare reset.

Generic thread pools are formalized as state-event systemsas follows.

Definition 4 LetVAR , VAL , TID , THREAD, andINFO be types. LetS, s0,Epool, Ipool,Opool, andTpool be defined as depicted in Figure 2.8 Let initval 2 VAL , inittid 2 TID ,
initthread2 THREAD, Elocal be a set of events that is disjoint fromEpool, andTlocal �S �Elocal � S be a transition relation.

8In Figure 2, the transition relationTpool is specified by preconditions and postconditions. E.g., forthe
setvar-events, the precondition is trivially satisfied (Pre: true), the postcondition demands thatmem(var) =
val holds after (indicated by primed state objects) the occurrence ofsetvar(var; val), and the affects-slot
specifies that the values of all other state objects (except for mem(var)) remain unchanged.
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S = f(mem; thread; atid; ainfo; executed)g
mem : VAR ! VAL , current local shared memory
thread : TID ! THREAD [ f?;>; hig , current local state of threads
atid : TID [ f?g , id of active thread
ainfo : INFO [ f?g , actual scheduler information
executed : BOOL , has a step been executed?s0 = (mems0 ; threads0 ; atids0 ; ainfos0 ; executeds0) 2 S8var : VAR :mems0(var) = initval
threads0(inittid) = initthread8tid : TID : tid 6= inittid =) threads0(tid) = ?
atids0 = ?; ainfos0 = ?; executeds0 = ffEpool = Ipool[ OpoolIpool = fsetvar(var; val); schedule(tid) j var : VAR ; val : VAL ; tid : TIDgOpool = foutvar(var; val); yield(info) j var : VAR ; val : VAL ; info : INFOgTpool � S �Epool� S

setvar(var; val) affectsmem(var)
Pre : true
Post: mem0(var) = val

outvar(var; val) affects —
Pre : mem(var) = val
Post: true

schedule(tid) affectsatid
Pre : atid = ?^ thread(tid) 62 f?;>; hig
Post: atid 0 = tid

yield(info) affectsexecuted, atid, ainfo
Pre : executed= tt ^ ainfo= info
Post: executed0 = ff ^ atid 0 = ?^ ainfo0 = ?

Figure 2: Definition of fixed components of a generic thread poole side conditions level(e) e 2
schedule(tid) true low LTP
yield(info) true low LTP

setvar(var; val) domvar(var) = low low LTP
outvar(var; val) domvar(var) = low low LTP
setvar(var; val) domvar(var) = high high HITP
outvar(var; val) domvar(var) = high high HTP nHITPe e 2 Elocal high HTP nHITP

Figure 3: Security levels for events
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A generic thread poolis parametric inVAR , VAL , TID , THREAD, INFO, initval,
initthread, inittid,Elocal, Tlocal and is defined by the following state-event system:

GenPool(VAR ;VAL ; TID ; THREAD; INFO; initval; initthread; inittid; Elocal; Tlocal)= (S; s0; Epool [Elocal; Ipool; Opool; Tpool[ Tlocal)
3.2 Security of Thread Pools

The problem of information flow control in multi-threaded programming languages
is to prevent information flow from high to low variables. Forthis purpose, a secu-
rity level (low or high) is assigned to each variable by a functiondomvar : var !flow; highg. This differs from the event-based approach, in which information flow
control prevents the occurrence or non-occurrence of confidential events from affect-
ing the possibility of observable behaviors. Although bothapproaches share the same
intuitive motivation, i.e., that there should be no information flow from high to low, this
technical difference complicates an integration of the twoapproaches. However, an in-
tegration is very desirable because it allows for a uniform investigation of information
flow at the level of processes as well as at the level of threads.

The key observation, which will allow us to integrate the twoapproaches, is that
high-level data can only be introduced into a thread pool by occurrences ofsetvar-
events that change the value of high-level variables. All other events can change the
state of the thread pool but cannot increase the confidentiality of data. Thus, we can
express the security requirement by demanding that the occurrences of thesesetvar-
events must not influence the possibility of low-level observations.

It is natural to extend security level assignments from variables to events. We de-
note a level-assignment function on events bylevel : Epool[Elocal ! flow; highg. We
assume that a (malicious) low-level user has complete knowledge about the definition
of thread pools (as usual), can observe the occurrence ofschedule- andyield-events,
and can observe the occurrences ofoutvar- andsetvar-events that involve only low-
level variables. Consequently, these events are assigned level low. All other events,
i.e., setvar- andoutvar-events on high variables and local events, are assigned level
high (as displayed in Figure 3). The viewVTP = (LTP ;HTP nHITP ;HITP ) expresses
the necessary restrictions on the flow of information withina thread poolTP where

LTP = fe 2 Epool[ Elocal j level(e) = lowg
HITP = fe 2 Epool[ Elocal j level(e) = highg \ Ipool

HTP nHITP = fe 2 Epool[ Elocal j level(e) = highg n Ipool

(cf. Figure 2 for the definition ofIpool andEpool). According toVTP , only low-level
events (setLTP ) are visible and only high-level inputs (setHITP ) are confidential. The
last column of Figure 3 shows the partition of events into these classes.

Note that the assumption that the scheduler’s actions (schedule- andyield-events)
are low-observable adequately reflects that the scheduler is a part of the low-level envi-
ronment. In particular, this model rules out all insecure schedulers, i.e., schedulers that
depend on high data. The same assumption stipulates that an attacker has full knowl-
edge of the scheduler. Indeed, even if the attacker may initially have no knowledge
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about the scheduler, such knowledge is possible to obtain experimentally by getting
the system to execute code supplied by the attacker. Finally, yet another implication of
the assumption is that the attacker is capable of observing timing behavior of the pro-
gram through observingschedule- andyield-events. This allows for expressing timing-
sensitive security properties.9

Definition 5 The security property SecProp for thread pools is defined by:

SecProp= (fVTP g;BSI^ BSD)
A thread pool satisfiesSecPropif BSI and BSD hold for the viewVTP . Note that
BSI (cf. Section 2.2) alone would already be an appropriate definition of information
flow for this application.10 The argument is as follows: if changing the value of high-
level variables does not eliminate the possibility of low-level behaviors, then there
is no information flow from high to low because high-level variables could have any
value at any given point of time. Technically, the same effect can be achieved by
demanding onlyBSD. The motivation for requiring bothBSI andBSDwill become
clear in Section 7 when we extend our results to a truly distributed setting.

In general, choosing a definition of information flow closelydepends on the par-
ticular application under consideration and there appearsnot to be a single “right”
definition (as, e.g., also observed in [34]). The assembly kit offers a (still growing)
collection of very primitive definitions of information flow(BSPs) and allows one to
assemble these into more complex definitions (security predicates). This fine-grained
view has proved to be very helpful for determiningSecProp. Interestingly,SecPropcor-
responds togeneralized noninterference[28], a well known security property. These
aspects and also the compositionality ofSecPropwill be investigated in greater detail
in Section 7.7.

4 MWL Thread Pools

In this section, we revisit the simple multi-threaded while-language (abbreviated by
MWL) along with the timing-sensitive definition of securityfor MWL from [38]. Fur-
ther, we demonstrate how our generic specification of threadpools from Section 3 can
be instantiated for MWL.

4.1 The Multi-Threaded While-Language MWL

MWL is a shared-variable multi-threaded while-language with dynamic thread cre-
ation. The syntax of MWL commands is given by the grammar in Figure 4. As usual,

9It might be more appropriate to considerschedule- andyield-events as invisible in a setting where the
observational power of the attacker is reduced. Technically, this can be done, e.g., by assigning security level
high rather thanlow to these events and restricting confidential events in the view explicitly to high-level
setvar-events rather than all high-level input events. We believethat these assignments need to be imposed
for linking event-system-based security with language-based information flow in, e.g., the line of [40, 41].

10In [27], the BSP BSIA(for backwards strict insertion of admissible confidential events) was used as
security predicate. In this article,BSI is used instead because the definition ofBSI is simpler than the one of
BSIA. Note that for thread pools,BSIandBSIAare equivalent sincesetvar-events are always admissible.
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boolean expressionsB range overBOOL and arithmetic expressionsExp range over
EXP. Let C;D;E; : : : range over commands (MWL threads)CMD , and let ~C de-
note a vector of commands of the formhC1 : : : Cni. Vectors~C; ~D; ~E; : : : range over~CMD = [n2NCMDn, the set of multi-threaded programs.

MWL programs execute under a shared memory on a single processor (or in a
single process) such that at most one thread can be active at any given point of time. A
configurationhjC;memji (or hj~C;memji) is a pair, consisting of a commandC 2 CMD

(or a vector of commands~C 2 ~CMD ) and a memorymem : VAR ! VAL . mem
is a finite mapping from variables to values, as in Section 3. The set of variables
is partitioned into high and low security classes. For simplicity (but without loss of
generality, because the case of multiple variables is handled similarly), we will assume
that there is only one variable for each security class,h and l, respectively. We will
often write the memory simply as a pair(valh; vall) with the valuesvalh for h andvall
for l. Further, we definelow-equivalenceon memories by:mem1 =L mem2 if and
only if the values ofl for mem1 andmem2 are the same. The small-step semantics is
given by transitions between configurations. The deterministic part of the semantics
is defined by the transition rules in Figure 5. Arithmetic andboolean expressions are
executed atomically by# transitions.Exp#memval denotes thatExp2 EXP evaluates
to val where the memorymemin the index is only important ifExpcontains variables.
Similarly,B #mem tt andB #mem ff denote, respectively, thatB 2 BOOL evaluates to
trueor false.

The_-transitions are deterministic. The general form of a deterministic transition
is eitherhjC;memji _ hjhi;mem0ji, which means termination with the final memory
mem0, or hjC;memji _ hjC 0 ~D;mem0ji. Here, one step of computation starting with
commandC in a memorymemgives a new main threadC 0, a vector~D of spawned
threads, and a new memorymem0. The commandfork(C ~D), where ~D is required to
be nonempty, dynamically creates a new vector~D of threads that, afterwards, run in
parallel with the main threadC. This has the effect of adding the vector~D to the
configuration. The rule Pick in Figure 6 defines the concurrent semantics of MWL.
Whenever the scheduler picks a threadCi for execution, then a!-transition takes place
updating the command pool and the shared memory according toa (small) computation
step ofCi. Let!� denote the reflexive and transitive closure of!.

While the rule Pick is nondeterministic, it is, in general, important to explicitly
model the scheduler for addressing flows that result from scheduling policies. Yet, as
we will see later, our security condition for MWL is defined purely on_-transitions.
As has been shown in [38], this condition implies scheduler-independent security.
Thus, there is no reason to introduce explicit schedulers inthe semantics for our pur-
poses. Indeed, our main goal here is to relate the semantics and security of MWL to
the corresponding event system in a possibilistic setting.

We can extract a simple model of the timing behavior of multi-threaded programs
from the small-step semantics. This is done by the assumption that each_-transition
takes a single unit of time to execute. This approach gives only a rough approximation
of real timing behavior, but simple extensions are possiblein order to make it sensitive
to the timing behavior of particular commands (cf. [2]).
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C ::= skip j var := Expj C1;C2 j if B then C1 else C2j while B do C j fork(C ~D)
Figure 4: Command syntax[Skip℄ hjskip;memji _ hjhi;memji[Assign℄ Exp#memnhjvar := Exp;memji _ hjhi;mem[var 7! n℄ji[Seq1℄ hjC1;memji _ hjhi;mem0jihjC1;C2;memji _ hjC2;mem0ji[Seq2℄ hjC1;memji _ hjC 01 ~D;mem0jihjC1;C2;memji _ hj(C 01;C2) ~D;mem0ji[If tt℄ B #memtthjif B then C1 else C2;memji _ hjC1;memji[If ff℄ B #memffhjif B then C1 else C2;memji _ hjC2;memji[Whilett℄ B #memtthjwhile B do C;memji _ hjC;while B do C;memji[Whileff℄ B #memffhjwhile B do C;memji _ hjhi;memji[Fork℄ hjfork(C ~D);memji _ hjC ~D;memji

Figure 5: Small-step deterministic semantics of commands[Pick℄ hjCi;memji _ hj~C;mem0jihjhC1 : : : Cni;memji ! hjhC1 : : : Ci�1 ~CCi+1 : : : Cni;mem0ji
Figure 6: Concurrent semantics of programs
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4.2 Definition of Security for MWL

Now, we define the security of MWL programs and motivate the choice of this defi-
nition. The central idea ofextensionalsecurity, as opposed tointensionalsecurity, is
that confidentiality should not be specified by a special-purpose security formalism,
but, rather, should be defined in terms of a standard semantics as a dependency prop-
erty (more precisely, absence of dependence). If direct, indirect, and timing flows are
considered, then, intuitively, a program has the extensional noninterferenceproperty,
if varying the high input will not change the possible low-level observations, i.e., low
inputs/outputs and timing. This differs from intensional security which relies on partic-
ular security primitives that are only motivated by intuition rather than a mathematical
justification. Many investigations have successfully followed the extensional view in-
cluding [8, 45, 19, 42, 1, 44, 21, 38, 2, 39] for justification of security analysis and
verification techniques for different languages. We followthe extensional approach
and focus on extensional security for MWL.

A previous investigation [38] gives an account on choosing an adequate defini-
tion of extensional security for multi-threaded programs.Which definition is appro-
priate depends on, for instance, whether a particular scheduler is assumed, or a robust
scheduler-independent security is wanted. The central idea of the bisimulation-based
approach is to define alow-bisimulationon commands such that the indistinguisha-
bility of the behaviors of two programsC andD for the attacker is formalized byC �L D, where�L is a low-bisimulation. Such an approach is flexible in the choice
of an appropriate low-bisimulation (different low-bisimulations are available for dif-
ferent degrees of security). For a given low-bisimulation�L, the definition of security
is simply: “C is secure iffC �L C”. Note that such a relation�L is not necessarily
reflexive. Indeed, the intention is that insecure programs are not related by�L to itself.
For the purpose of this article we adopt thestrong low-bisimulation[38].

Definition 6 Definestrong low-bisimulationuL to be the union of all symmetric rela-
tions R on MWL command pools (programs) of equal size for which wheneverhC1 : : : Cni R hD1 : : : Dni then8mem1;mem2; i:(hjCi;mem1ji _ hj ~C 0;mem01ji ^ mem1 =L mem2) =)(9 ~D0;mem02:hjDi;mem2ji _ hj ~D0;mem02ji ^ mem01 =L mem02 ^ ~C 0 R ~D0)
Our definition of security for MWL programs is based on stronglow-bisimulation.
The choice of this particular bisimulation results in a definition of security that is
timing-sensitiveand scheduler-independent. If two commands might have a differ-
ent timing behavior depending on high data (which would result in information flow
from high to low) then they are not low-bisimilar. Strong bisimulation guarantees
scheduler-independent security which is robust with respect to a wide class of a sched-
ulers (including probabilistic schedulers as shown in [38]). Although these features
impose restrictions11 on what can be considered low-bisimilar, the choice of strong

11For example, one restriction is the requirement that two low-bisimilar programs must have the same
number of threads. However, if this requirement is lifted, secret information might be revealed to the attacker
through certain schedulers (see Section 4.3 in [38]).
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low-bisimulation is adequate (not too restrictive) for, e.g., the type-based analysis that
is proposed in [38]. This analysis is sound with respect to the security definition, i.e.,
if a program passes the analysis, then it must be secure. For more details on the power
of this type of security definition to capture insecure programs and examples of se-
cure programming with common algorithms, such as sorting and searching, we refer to
[38, 3].

Definition 7 An MWL program~C is secureif and only if ~C uL ~C .

In order to illustrate Definitions 6 and 7 we give some examples of secure and insecure
information flow which may occur in MWL programs. Recall thata memory is a pair(valh; vall) of the valuesvalh andvall of the variablesh andl, respectively.l := h This is an example of adirect flow. To see that this program is insecure ac-

cording to Definition 7, choosemem1 = (0; 0) and mem2 = (1; 0). Sincehjl := h; (0; 0)ji _ hjhi; (0; 0)ji and hjl := h; (1; 0)ji _ hjhi; (1; 1)ji holds, the
resulting memories are not low-equivalent(0; 0) 6=L (1; 1). Thus, there cannot
be a relation with the properties necessary for strong low-bisimilarity.

if h = 1 then l := 1 else l := 0 This exemplifies anindirect flow through branching
on a high condition. If the computation starts with low-equivalent memories(0; 0) and(1; 0), then, after one step of the computation (the test of the condi-
tion), the memories are still low-equivalent. However, after another computation
step they become different depending on the initial value ofh. There cannot be
a relation with the properties necessary for strong low-bisimilarity.

if h = 1 then (while h < MaxInt do h := h+ 1) else skip From the timing behav-
ior of the program the attacker may deduce secret information. This is an in-
stance of atiming leak. Clearly, the timing behavior of the branches is different.
This is captured by Definition 7. Indeed, in case thethen-branch of theif is cho-
sen, there will be no transition in the other branch to match the transitions of the
while-loop.

if h = 1 then (while true do skip) else skip is a variation of the timing leak called a
terminationleak.

All examples above are insecure according to our definition.Here is an instance of a
secure program:

if h = 1 then h := h+ 1 else skip Indeed, the timing behavior is independent of the
value ofh, as well as the low variablel. A suitable symmetric relation that makes
this program low-bisimilar to itself is, e.g., the relationf(if h = 1 then h :=h+1 else skip; if h = 1 then h := h+1 else skip); (h := h+1; skip); (skip; h :=h+ 1); (h := h+ 1; h := h+ 1); (skip; skip); (hi; hi)g.

4.3 Instantiating Generic Thread Pools

We now instantiate our generic model for thread pools from Section 3 in order to model
the behavior of the multi-threaded programs of MWL. Recall,that, according to Defi-
nition 4, the following parameters must be actualized:
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� types:VAR , VAL , TID , THREAD, INFO,� initial values:initval, initthread, inittid,� internal events:Elocal; and their behavior:Tlocal.

Consistently with the simplification of Section 4.1, the setVAR of variables consists
of only two variablesh andl (having in mind thath is a high-level andl a low-level
variable). We do not further specify the setVAL of values. However, as in the previous
section, we assume that there are sets of arithmeticEXP and booleanBOOL expres-
sions. As before,Exp#memval (resp.,B #memtt orB #memff ) denote thatExp2 EXP
evaluates toval (resp.,B 2 BOOL evaluates totrue or false). TID is specialized to the
set of sequences of natural numbers (TID = N� ). The setTHREAD is specialized to
CMD , i.e., the local state of a thread is simply an MWL command.INFO is specialized
to VAL � INT whereVAL is the value of the priority variable (which is adapted to bel for simplicity) and theINT part says whether the process has been killed (value�1),
continues running (value0) or has spawnedn > 0 new processes (valuen).

We do not further specifyinitval, the initial value of all variables. The identifier
of the (unique) initial thread is zero, i.e.,inittid = 0. MWL thread pools shall be
parametric in the initial thread (parameterinitthread).

We now introduce two auxiliary functionsfirst andreston commands. The purpose
of first andrest is to decompose sequential compositions. If a commandC is not itself
a sequential composition on the top level, thenfirst(C) = C andrest(C) = hi. If C
can be written in the formC1;C2 such thatC1 is not a sequential composition on the
top level, thenfirst(C) = C1 andrest(C) = C2.

The setEMWL
local of internal events of an MWL thread pool is defined in Figure 7.Note

that for each of these events there is a corresponding rule ofthe small-step semantics
(cf. Figure 5). E.g., theassign-events correspond to rule Assign and the eventsitett and
iteff respectively correspond to Iftt and Ifff. With the exception of the rules Seq1 and
Seq2, there are corresponding events inEMWL

local for each rule in Figure 5. The reason for
this correspondence is that, on the one hand, events model atomic actions and, on the
other hand, rules of a small-step semantics model atomic transitions between states (or
configurations—in the case of MWL). The atomic actions that can occur during the ex-
ecution of an MWL thread pool include, taking up time (causedby skip), assignments
to variables, branching in the control flow depending on boolean tests (if or while), or
spawning of threads (fork). Note that, we do not consider the decomposition of se-
quentially composed commands as a separate action. Thus, there are no corresponding
events.

The behavior of internal events is defined by the transition relationT MWL
local (cf. Fig-

ure 7). Clearly,T MWL
local should reflect the semantics of MWL. The pre- and postcondition

of each event shall capture the corresponding rule of the small-step semantics. E.g.,
the precondition ofassign(var; val) requires that there is an active thread (atid 6= ?)
that has not already executed a command (executed= ff), the current command must
be an assignment (first(thread(atid)) = var := Exp), and the expressionExp must
evaluate toval under the current memory (Exp#memval). Note that, when new threads
are spawned, then the generation of thread identifiers is managed in such a way that no
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EMWL
local = fskip; assign(var; val); itett(B;C1; C2); iteff(B;C1; C2)

whilett(B;C1);whileff(B;C1); fork(C; ~D) j
var : VAR ; val : VAL ; B : BOOL; C; C1; C2 : CMD ; ~D : ~CMDgT MWL

local � S �EMWL
local � S

skip affectsthread(atid), executed, ainfo
Pre : ready^ first(thread(atid)) = skip
Post: thread0(atid) = rest(thread(atid)) ^ done^ainfo0 = (mem(l); terminates(thread(atid)))

assign(var; val) affectsmem(var), thread(atid), executed, ainfo
Pre : ready^ Exp#memval^ first(thread(atid)) = var := Exp
Post: mem0(var) = val^ thread0(atid) = rest(thread(atid)) ^ done^ainfo0 = (mem(l); terminates(thread(atid)))

itett(B;C1; C2) affectsthread(atid), executed, ainfo
Pre : ready^ B #memtt ^ first(thread(atid)) = if B then C1 else C2
Post: thread0(atid) = C1; rest(thread(atid))^ donê ainfo0 = (mem(l); 0)

iteff (B;C1; C2) affectsthread(atid), executed, ainfo
Pre : ready^ B #memff ^ first(thread(atid)) = if B then C1 else C2
Post: thread0(atid) = C2; rest(thread(atid))^ donê ainfo0 = (mem(l); 0)

whilett(B;C1) affectsthread(atid), executed, ainfo
Pre : ready^ B #memtt ^ first(thread(atid)) = while B do C1
Post: thread0(atid) = C1;while B do C1; rest(thread(atid)) ^ done^ainfo0 = (mem(l); 0)

whileff (B;C1) affectsthread(atid), executed, ainfo
Pre : ready^ B #memff ^ first(thread(atid)) = while B do C1
Post: thread0(atid) = rest(thread(atid)) ^ done^ainfo0 = (mem(l); terminates(thread(atid)))

fork(C;D1 : : : Dn) affectsthread(atid), thread(atid:0) : : : thread(atid:n),
executed, ainfo

Pre : ready^ first(thread(atid)) = fork(CD1 : : : Dn)
Post: thread0(atid) = >^ thread0(atid:0) = C; rest(thread(atid))^8i : f1; : : : ; ng:thread0(atid:i) = Di^donê ainfo0 = (mem(l); n)

where the following abbreviations are used:
ready() (executed= ff ^ atid 6= ?)
done() (executed0 = tt)
terminates(thread(atid)) equals�1 if rest(thread(atid)) = hi and0 otherwise.

Figure 7: Local eventsEMWL
local and transition relationT MWL

local of an MWL thread pool
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tid is used for two different threads. This is enforced by the useof > and the hierar-
chical identifier generation in the postcondition offork. ThatT MWL

local indeed reflects the
semantics of MWL will be proved in Section 5.

The instantiation of generic thread pools for MWL is summarized as follows.

Definition 8 LetVAL be some type of values,CMD be defined as depicted in Figure 4,
initval 2 VAL be some value,EMWL

local andT MWL
local be defined as depicted in Figure 7.

TheMWL thread poolfor initthread2 CMD results from the following instantia-
tion of generic thread pools:

MWLPool(initthread) = GenPool(fl; hg;VAL ;N� ;CMD ;VAL � INT ;
initval; initthread; 0; EMWL

local; T MWL
local)

5 Relating MWL Programs and MWL Thread Pools

The objective of our specification of MWL thread pools was to provide an adequate
model of MWL programs and their behavior. Firstly, any behavior of an MWL thread
pool should comply with the MWL semantics. Secondly, any behavior that complies
with the MWL semantics should be possible for an MWL thread pool. That our speci-
fication, indeed, is adequate is ensured by the results presented in the current section.

Recall that the system models that, respectively, underlieMWL programs and
MWL thread pools are somewhat different. The model underlying MWL programs
is based ontrees of states(to be precise, configurations). It is possible to enrich these
trees with events but from the perspective of the underlyingparadigm these events
would be mere decorations. Since the model of computation isstate-based, the nat-
ural communication paradigm is via shared memory. The system model underlying
MWL thread pools is based onsequences of events. It is possible to enrich these se-
quences with states but from the perspective of the underlying model these states would
be mere decorations. Since the system model is event-based,the natural communica-
tion paradigm is via message passing. These differences between the system models
on which MWL programs and MWL thread pools are based somewhatcomplicate the
proofs of the following theorems.

5.1 Adequacy of MWL Thread Pools

In order to relate the transition relation of MWL thread pools to the operational se-
mantics of MWL programs, it is necessary to construct a translation from one syntax
to the other. For this purpose, we define the functioncseq, which translates a function
thread: TID ! (CMD [ f?;>; hig) into a corresponding vector (sequence) of MWL
commands.

Definition 9 The functioncseq : (TID ! (CMD [ f?;>; hig)) ! ~CMD returns a
vector of MWL commands for each function thread: TID ! (CMD [ f?;>; hig).
cseqis defined bycseq(thread) = cseqaux(0; thread) wherecseqaux : TID ! (TID !
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(CMD [ f?;>; hig))! ~CMD is defined as follows:

cseqaux(tid; thread) = hi , if thread(tid) 2 f?; hig
cseqaux(tid; thread) = thread(tid) , if thread(tid) 2 CMD

cseqaux(tid; thread) = cseqaux(tid:0; thread) : : : cseqaux(tid:n; thread),
if thread(tid) = >, n 2 N is chosen maximal such that thread(tid:n) 6= ?

For a thread with identifiertid that has already terminated (or has never existed),cseqaux
returns the empty command sequence. However, if the thread is still running and has
not spawned any child threads so far thencseqaux returns the command of that thread.
Finally, if the thread has spawned child threads during its execution then the result
of cseqaux is determined by a recursive application ofcseqaux to the continuing parent
thread (identifiertid:0) and to all child threads (identifiertid:i with i > 0). In the latter
case, it is exploited that thread identifiers are chosen incrementally by fork-events and
that thread(tid) = hi holds after termination of a thread with identifiertid. Summariz-
ing, cseqaux(tid; thread) denotes the sequence consisting of the command of the thread
with identifiertid and the commands of all threads spawned by this thread and itschil-
dren.cseq(thread) denotes the command sequence for all threads that resulted from the
initial thread.

In Theorem 2 we will show that every trace of an MWL thread poolmodels a be-
havior that complies with the semantics of MWL. We now present two lemmas that
are helpful for proving Theorems 2, 4, and 5. The proofs of lemmas and theorems
that are omitted in the text of this and subsequent sections are contained in the ap-
pendix. Throughout this section, we assume thatSES= (S; s0; E; I; O; T ) models an
MWL thread pool, i.e., thatSES= MWLPool(initthread) holds for some command
initthread2 CMD .

Lemma 1 If s is a reachable state of SES then one of the following is true:� executeds = ff ^ atids 6= ? ^ threads(atids) =2 f?;>; hig,� executeds = tt ^ atids 6= ?, or� executeds = ff ^ atids = ?.

Hence, it suffices to consider these three cases when analyzing executions ofSES.

Lemma 2 Lets; s0 be states of SES with executeds = ff, atids 6= ?, threads(atids) =2f?;>; hig, ande 2 EMWL
local be an event such thats e�! s0 holds.� If e 6= fork(C;D1 : : : Dn) thenhjthreads(atids);memsji _ hjthreads0(atids0);mems0 ji.� If e = fork(C;D1 : : : Dn) thenhjthreads(atids);memsji _ hjthreads0(atids0 :0) : : : threads0(atids0 :n);mems0 ji.
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Lemma 2 ensures that the occurrence of a local event inEMWL
local corresponds to some

small step in the operational semantics.

Theorem 2 Lets; s0 2 S be reachable states of SES, 2 E� be a sequence of events,~Ds = cseq(threads) and ~Ds0 = cseq(threads0) be vectors of MWL commands. Ifs =) s0 and contains no setvar-events thenhj ~Ds;memsji !� hj ~Ds0 ;mems0 ji holds.

In Theorem 3, we will show that for every behavior that complies with the semantics of
MWL, there is a trace of the corresponding MWL thread pool that models this behavior.
The following lemma is helpful for proving this theorem and also Theorems 4 and 5.

Lemma 3 Let C 0 2 CMD [ fhig, C 00 2 CMD , D1 : : : Dk 2 ~CMD , and mem0 :
VAR ! VAL . Moreover, lets be a state of SES with executeds = ff, atids 6= ?, and
threads(atids) =2 f?;>; hig.

1. If hjthreads(atids);memsji _ hjC 0;mem0ji then there existe 2 EMWL
local ands0 2 S

with s e�! s0, mems0 = mem0, threads0(atids) = C 0, atids0 = atids, and
executeds0 = tt. Moreover, threads0(tid) = threads(tid) holds for tid 6= atids.

2. If hjthreads(atids);memsji _ hjC 00D1 : : : Dk;mem0ji (with k � 1) then there ex-
ist e 2 EMWL

local and s0 2 S with s e�! s0, mems0 = mem0, atids0 = atids,
and executeds0 = tt. Moreover, threads0(atids) = >, threads0(atids:0) =C 00, threads0(atids:i) = Di holds for all i 2 f1; : : : ; kg, and threads0(tid) =
threads(tid) holds for tid =2 fatids; atids:0; : : : ; atids:kg.

Lemma 3 ensures that a small step in the operational semantics corresponds to the
occurrence of some local event inEMWL

local.

Theorem 3 Let s be a reachable state of SES with atids = ? and executeds = ff.
Let ~Ds = cseq(threads), ~D0 2 ~CMD , and mem0 : var ! val. If hj ~Ds;memsji !�hj ~D0;mem0ji then there exists a sequence : E� that contains no setvar-events and a
states0 2 S such thats =) s0, mems0 = mem0, and ~D0 = cseq(threads0).
Theorems 2 and 3 ensure that MWL thread pools are an adequate specification of MWL
programs and their behavior. All behaviors of an MWL thread pool comply with the
semantics of MWL and all behaviors that comply with the semantics of MWL are
possible for an MWL thread pool.

6 Soundness and Completeness Results

The aim of this section is to establish the soundness and completeness results. Sound-
ness means that ifC is secure as an MWL program then its translation is secure as a
state-event system. On the other hand, completeness means that if C ’s translation is
secure as a state-event system thenC is secure.

Recall that, according to Definition 8 from Section 4, the translationMWLPool(C)
of an MWL programC is a thread pool withinitthread = C. The following two
subsections present the soundness and completeness results, respectively.
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6.1 Soundness

Before we present the soundness theorem we state a security invariance lemma. In-
tuitively, the lemma says that if computation starts with a secure program then all the
threads in the thread pool are secure at all times. As an abbreviation, we define the
predicatelive(s; tid) () (threads(tid) 62 f?;>; hig) that holds whenever threadtid
is alive in states (exists and has not terminated). Note thatlive(s; tid) is a precondition
for scheduling threadtid in s.
Lemma 4 Assume an MWL programC is secure and�2Tr is a trace for MWLPool(C)
such thats0 �=) s. Then8tid: live(s; tid) =) threads(tid) uL threads(tid).
Theorem 4 (Soundness)If an MWL programC is secure then the MWL thread pool
MWLPool(C) satisfies the security property SecProp.

6.2 Completeness

Let us first recall some facts from standard bisimulation theory before we turn to prov-
ing completeness. Restating Definition 6, two thread pools~C = hC1 : : : Cni and~D = hD1 : : : Dni are strongly low-bisimilar~C uL ~D iff 9R:R � F (R) where
functionF from pers to pers (partial equivalence relations over~CMD ) is given by:~C F (R) ~D iff8mem1;mem2; i:(hjCi;mem1ji _ hj ~C 0;mem01ji ^ mem1 =L mem2) =)(9 ~D0;mem02:hjDi;mem2ji _ hj ~D0;mem02ji ^ mem01 =L mem02 ^ ~C 0 R ~D0)

Let us state two lemmas that give an alternative representation for the strong low-
bisimulation. The proof of the lemmas is a standard argument, by appeal to the Knaster-
Tarski fixed-point theorem (see, e.g., [9]).

Lemma 5 FunctionF is !-cocontinuous, i.e., for a nonincreasing!-chain of persR0 � � � � � Ri � : : : , F preserves colimits:F (\i<!Ri) = \i<!F (Ri)
Lemma 6 (Fixed point) The relationuL is the greatest fixed point ofF in the lattice
of pers. It can be alternatively represented byuL = \i<!uiL whereui+1L = F (uiL)
andu0L is the total relation ~CMD � ~CMD .

We are now ready to present the completeness result.

Theorem 5 (Completeness)An MWL programC is secure whenever MWLPool(C)
satisfies the security property SecProp.
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7 Secure Communication for Distributed Programs

So far, we have only considered local multi-threaded computation based on MWL. Our
original motivation was to embrace the security of both local computations and com-
munication between local computations. Thus, the next stepis to investigate system
security in the case of distributed programming. This section presents DMWL (dis-
tributed MWL), which is an extension of MWL with message-passing primitives for
distributed programming. In this section, we define the security of DMWL programs,
translate DMWL’s semantics into an event-based setting, show the adequacy of the
translation and give soundness and completeness results. The section culminates with
presenting a compositionality result that allows for decentralized compositional design
of systems that fulfill global security.

7.1 DMWL’s Communication Primitives

In a distributed setting each process has its own memory. Thus, the processes com-
municate by a communication network exchanging messages rather than using shared
memory. Typical examples of message-passing-based distributed implementations are
client-server applications. Recall the file server examplefrom the beginning of Sec-
tion 3. The file server program creates a new thread for every incoming request, and
terminates afterwards. Such a request is nothing else but a message passed by a client
program that, e.g, needs to open, read, write and then close afile. The server grants
read and write permissions by sending respective messages to clients. Message pass-
ing for distributed programming has been adopted by many distributed languages in-
cluding Erlang [5], Java [16] (message-passing primitivesare available in the standard
java.net package), and Linda [6]. In fact, any sequential language can be aug-
mented with Linda, which is a collection of message-passingprimitives implemented
on the top of the sequential language using tagged tuples.

Message passing is based on sending and receiving messages on channels, which
can be thought of aslinks between processes. We assume that each link connects two
processes in one direction and that no process can be linked to itself. Each channel is a
FIFO queue of messages. Messages can be put into a channel by send commands and
be taken out of a channel by receive commands.

In this section, we extend MWL with such communication primitives. The new lan-
guage is called DMWL, which stands for distributed MWL. Figure 8 gives DMWL’s
new commands apart from those of MWL. The commandsend(cid;Exp) is used for
sending the result of evaluating the expressionExp on channelcid. We distinguish
between two receiving primitives. The first one is ablockingreceive(cid; var) which
blocks until it receives a value on the channelcid. Once the value has been received, the
variablevar is set to that value. Thenonblockingreceiveif-receive(cid; var; C1; C2) al-
ways continues execution. If the channelcid is nonempty thenvar is set to the received
value and execution continues with the commandC1. Otherwise execution continues
with the commandC2.

Figure 9 defines the deterministic semantics of these commands. Deterministic
transitions between configurations are denoted, as before,by _-arrows. Now a config-
uration has the formhjC;mem; �ji where the difference to an MWL configuration is the
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channel statusfunction� : CID ! VAL �. Givencid this function returns the queue
of messages that are currently waiting on channelcid. The deterministic transitions for
MWL, defined in Figure 5, are part of the DMWL semantics with the modification that
configurations are extended with�. The channel status function� remains unchanged
in those transitions. The same extension is made for the rulePick for nondeterministic
transitions (denoted by!-arrows). The extended rule is depicted in Figure 10.

Given a (possibly distributed) collection of DMWL programs~C1; : : : ; ~Cn, in which
each program executes on its own memorymem1; : : : ;memn, respectively, aglobal
DMWL configuration�(~C1;mem1); : : : ; (~Cn;memn);�� consists of two components.
The first component is a sequence of pairs each containing a DMWL program and
its memory. The second component is the current channel status function�. New
nondeterministic�-transitions on global configurations are defined by the ruleStep in
Figure 11. The rule Step is similar to the rule Pick. It ensures that a global transition
takes place whenever a local transition occurs.

7.2 Security of DMWL Programs

We assume that communication channels are partitioned intolow and high channels.
Low channels are observable by the attacker. Communication on low channels corre-
sponds to, e.g., communication using standard Internet protocols such as TCP/IP and
HTTP. Here, the traffic is vulnerable to eavesdropping by theattacker.High channels
are secure links between processes that are invisible for the attacker. Communica-
tion on high channels corresponds to, e.g., communication within a protected Intranet,
which is an IP-based network of nodes behind a firewall or behind several firewalls.
Here, the traffic cannot be seen by the attacker.

Let domch : CID ! fhigh; lowg be a function that given a channel idcid returns
the security leveldomch(cid) of that channel. Let us extend low-equality=L (defined
in Section 4.1) to relate channel status functions that agree on their low arguments.
Formally, define for�1; �2 : CID ! VAL �:�1 =L �2 () (8cid 2 CID : domch(cid) = low =) �1(cid) = �2(cid))
In a similar way as we extended MWL semantics to DMWL semantics, we now extend
strong low-bisimulation for MWL programs (Definition 6) to strong low-bisimulation
for DMWL programs.

Definition 10 Definestrong low-bisimulationuL to be the union of all symmetric re-
lationsR on DMWL command pools (programs) of equal size for which wheneverhC1 : : : Cni R hD1 : : : Dni then8mem1;mem2; �1; �2; i:hjCi;mem1; �1ji _ hj ~C 0;mem01; �01ji^ mem1 =L mem2 ^ �1 =L �2 =)9 ~D0;mem02; �02:hjDi;mem2; �2ji _ hj ~D0;mem02; �02ji^ mem01 =L mem02 ^ �01 =L �02 ^ ~C 0 R ~D0
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C ::= : : : j send(cid;Exp) j receive(cid; var) j if-receive(cid; var; C1; C2)
Figure 8: Command syntax[Send℄ Exp#memvalhjsend(cid;Exp);mem; �ji _ hjhi;mem; �[cid 7! val:�(cid)℄ji[Receive℄ �(cid) = vals:valhjreceive(cid; var);mem; �ji _ hjhi;mem[var 7! val℄; �[cid 7! vals℄ji[IfRcvff℄ �(cid) = hihjif-receive(cid; var; C1; C2);mem; �ji _ hjC2;mem; �ji[IfRcvtt℄ �(cid) = vals:valhjif-receive(cid;var;C1;C2);mem;�ji_hjC1;mem[var 7! val℄;�[cid 7!vals℄ji

Figure 9: Small-step deterministic semantics of communication primitives[Pick℄ hjCi;mem; �ji _ hj~C;mem0; �0jihjhC1 : : : Cni;mem; �ji ! hjhC1 : : : Ci�1 ~CCi+1 : : : Cni;mem0; �0ji
Figure 10: Concurrent semantics of programs[Step℄ hj ~Ck ;memk; �ji ! hj ~C 0k ;mem0k; �0ji�(~C1;mem1);: : :;(~Cn;memn);����(~C1;mem1);: : :;(~C 0k;mem0k);: : :;(~Cn;memn);�0�

Figure 11: Global concurrent semantics
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The channel status functions�1 and�2 are treated in the same way as memoriesmem1
andmem2. This corresponds to our assumption that high channels are not visible to
the attacker whereas low channels are fully observable. A similar approach has been
applied to define program security in a version of MWL enriched with high and low
synchronization [35]. This definition of low-bisimulationcorresponds to whether two
DMWL programs are observationally equivalent in the low-level observer’s point of
view. The DMWL security definition is based on this representation of the attacker’s
view (as before in Definition 7).

Definition 11 A DMWL program~C is secureif and only if ~C uL ~C .

Having defined security for a single DMWL program, we have notyet given a security
definition for an overall system that is distributed and could consist of a number of
DMWL programs. In other words, having definedlocal security we have not yet de-
fined any notion ofglobalsecurity. As we have argued, the underlying semantic model
for the global distributed computation is event-based. It is also in terms of event-based
systems that we will specify the global security condition for distributed programs.
Rather than defining a global condition for distributed DMWLprograms in an ad-hoc
manner, our goal is to derive this condition. Moreover, we aim at a compositionality
principle of the following flavor:

Proving local DMWL security for individual DMWL commands isenough
for the global security of the overall (potentially distributed) system of
communicating DMWL programs.

How to exploit this principle is illustrated in Figure 12. Suppose we want to
prove that two programshC1C2i andhD1D2D3i constitute a secure distributed sys-
tem. Proving that each of these two programs is secure relieson proving the secu-
rity of each command separately according to Definition 11. Apopular approach
to ensuring the security of individual commands is by using security-type systems
(e.g., [45, 19, 42, 1, 44, 2, 38, 39, 35]). We have proposed a sound security-type sys-
tem for DMWL in a separate article [36]. That each command is secure is depicted by
single-lined ovals around the commands. That each multi-threaded program is secure
is illustrated by double-lined ovals around the programs. Once we have proved that the
two programs are secure the soundness and completeness results of Section 7.6 assure
that the corresponding state-event systemsSES1 andSES2 satisfy the security property
SecProp. The solid arrows in Figure 12 symbolize(i) the adequacy of the semantics
of the programs and the state-event systems (to be shown in Section 7.5) and also(ii)
the connection between their security (soundness and completeness to be shown in
Section 7.6). The bold ovals correspond to the security of state-event systems. Fi-
nally, the compositionality results (to be presented in Section 7.7) imply that the global
(trace-based) security condition holds for the overall system. Such a global system is
composed of local state-event systems by the composition defined in Section 2. This
corresponds to the bold oval in Figure 12 around the overall composed system.
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state-event system satisfyingSecProp

SES1 f
SES2

h�; �i secure as a DMWL program h�; �; �iC1 C2 D1 D2 D3
secure as a DMWL command

Figure 12: Derivation of global security
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Figure 13: Generic processes with interface events and state objects
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7.3 Generic Process Pools

This section describes the extension of generic thread pools (introduced in Section 3)
with communication. Further, we definegeneric process poolsas a composition (cf.
Definition 2) of extended generic thread pools. Each thread pool corresponds to a
multi-threaded process that is identified by a unique process identifier (typically de-
noted bypid). Throughout the rest of the article we use “process” synonymously to
“thread pool”.

Figure 13 depicts two processes (or thread pools) with new interface eventstrans
along with new state objectsinbuf; pendingandoutbuf. The input bufferstate object
inbuf : CID ! VAL � is a buffer for incoming messages. Given a channel idcid,
inbuf(cid) stores the sequence of messages that have been sent to the process but are
not yet ready to be processed. The functionpending: CID ! VAL � serves similar
purposes. Namely, it stores messages that have not yet been consumed. Theoutput
buffer state objectoutbuf : (CID � VAL ) [ fhig is the dual toinbuf. Eitheroutbufis
empty or contains a pair(cid; val) of a channel id and a value to be sent oncid. The
actual sending is delayed until the next outgoing transmission event. Initially, these
three parameters store the empty sequence for allcid.

A process can communicate with the environment by four kindsof interface events
(setvar-, outvar-, schedule- andyield-events as before). A process can communicate
with other processes by means oftransmissioneventstrans(cid; val). Whether trans-
mission events are input or output events to a given process is specified by functions
sender; receiver: CID ! PID. For a channel idcid, sender(cid) is the pid of the sender
process andreceiver(cid) is the pid of the receiver process. We assume thatsenderand
receiverare fixed and8cid 2 CID : sender(cid) 6= receiver(cid). Such functions guar-
antee that channels are directed links. I.e., for each channel there is exactly one sender
and one receiver process and no channel can connect a processto itself.

Thesetvar; outvarevents are defined as before. The incoming transmission events
trans(cid; val) (when receiver(cid) = pid) are always enabled. The outgoing trans-
mission eventstrans(cid; val) (whensender(cid) = pid) are enabled when the pro-
cess has produced a messageval in the output buffer value on the channelcid, i.e.,
outbuf= (cid; val).

The precondition of eventsschedule(tid) is extended by the condition that the
thread with the identifiertid is not blocked. Essentially, a thread is blocked if it
tries to receive on an empty channel. The set of blocked thread ids is abbreviated by
blocked-setdefined at the bottom of Figure 15. The postcondition ofschedule-events
ensures that values ininbufare moved topending. Once values are inpending, they are
ready for processing.

yield-events have now an additional parameterblocked-infowhich propagates in-
formation about blocked threads to the scheduler. This is accounted in the precondition
of yield: blocked-info= blocked-set. We also requireoutbuf= hi, which ensures that
all messages fromoutbufhave been sent out before yielding.

Generic processes are formalized as state-event systems inthe following definition.

Definition 12 Let VAR , VAL , TID , THREAD, INFO, PID, andCID be types and pid2
PID. Let S, s0, Epool, Ipool, Opool, andTpool be defined as depicted in Figure 2 with
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the extensions depicted in Figure 15. Let initval2 VAL , inittid 2 TID , initthread2
THREAD, Elocal be a set of events that is disjoint fromEpool, Tlocal � S�Elocal�S be
a transition relation, and sender; receiver: CID ! PID be two functions such that for
all cid 2 CID holds sender(cid) 6= receiver(cid). Thegeneric processis defined by the
following state-event system:

GenProcess(VAR ;VAL ; TID ; THREAD; INFO;PID;CID ; pid;
initval; initthread; inittid; Elocal; Tlocal; sender; receiver)= (S; s0; Epool[ Elocal; Ipool; Opool; Tpool[ Tlocal)

In order to state the security definition for generic processes we need to define the
security levels for the newtrans-events. This is done in Figure 14. Note that neither
the security predicateBSÎ BSDnor the definition of the viewVTP need to be changed
(except for the addition oftrans-events).

Definition 13 The security property SecProp for generic processes is defined by:

SecProp= (fVTP g;BSI^ BSD)
Note that according to the viewVTP , only setvar-events on high variables and incom-
ing trans-events on high channels are confidential. I.e., for a process with identifierpid,
an eventtrans(cid; val) is only confidential if domch(cid) = highandreceiver(cid) =
pid hold.

In a distributed setting, we have a collection of generic processes such that each
process has its unique process id. Such a collection forms ageneric process pool,
which we will define using the composition (Definition 2) on generic processes. Re-
call that in such a composition, synchronization is performed through shared events.
Naturally, trans-events should be shared between communicating processes whereas
all other events should be disjoint. To avoid cluttering thenotation, we simply assume
thatall but trans-events are implicitly tagged with the respective process identifiers.

Definition 14 Given a collection GenProcesspid1 ; : : : ;GenProcesspidn of generic pro-
cesses, assume that each process has the same parametersVAL ,PID,CID ,sender and
receiver. Let us define ageneric process poolby:

GenProcPool(GenProcesspid1 ; : : : ;GenProcesspidn)= GenProcesspid1 n � � �n GenProcesspidn
The view for a process pool can be easily constructed from theviews of the individual
processes. Sincedomch, sender, andreceiverare defined globally, it is guaranteed that
low (high) output channels may only be connected to (high) low input channels, re-
spectively. Like for individual processes, all low-level events are assumed to be visible
and all high-level input events are assumed to be confidential. When composing state-
event systems, the communication events between processesbecome internal events of
the composed system (cf. Definition 2). I.e., an eventtrans(cid; val) is an internal event
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e side conditions level(e) e 2
trans(cid; val) domch(cid) = low low LTP
trans(cid; val) domch(cid) = high^ receiver(cid) = pid high HITP
trans(cid; val) domch(cid) = high^ sender(cid) = pid high HTP nHITP

Figure 14: Security levels oftrans-eventsS = f(: : : ; inbuf; pending; outbuf)g
inbuf : CID ! VAL � , buffer for incoming messages
pending : CID ! VAL � , buffer for incoming messages
outbuf : (CID � VAL ) [ fhig , buffer for outgoing messagess0 = (: : : ; inbufs0 ; pendings0 ; outbufs0) 2 S8cid : CID : inbufs0(cid) = hi8cid : CID : pendings0(cid) = hi
outbufs0 = hiEpool = Ipool[ OpoolIpool = f: : : ; trans(cid; val) j cid : CID ; val : VAL ; receiver(cid) = pidgOpool = f: : : ; trans(cid; val) j cid : CID ; val : VAL ; sender(cid) = pidgTpool � S �Epool� S

setvar(var; val) affectsmem(var)
Pre : true
Post: mem0(var) = val

outvar(var; val) affects —
Pre : mem(var) = val
Post: true

schedule(tid) affectsatid, inbuf, pending
Pre : atid = ?^ thread(tid) 62 f?;>; hig ^ tid =2 blocked-set
Post: atid 0 = tid ^ inbuf0 = hi^ 8cid : CID:pending0(cid) = inbuf(cid):pending(cid)

yield(info; blocked-info) affectsexecuted, atid, ainfo
Pre : executed= tt ^ ainfo= info^ outbuf= hi^ blocked-info= blocked-set
Post: executed0 = ff ^ atid 0 = ?^ ainfo0 = ?

trans(cid; val) (casereceiver(cid) = pid) affectsinbuf(cid)
Pre : true
Post: inbuf0(cid) = val:inbuf(cid)

trans(cid; val) (casesender(cid) = pid) affectsoutbuf
Pre : outbuf= (cid; val)
Post: outbuf0 = hi

where
blocked-set= ftid j first(thread(tid)) = receive(cid; var) ^ pending(cid) = hig

Figure 15: Definition of fixed components of a generic processwith id pid
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of the process pool ifsender(cid) andreceiver(cid) are identifiers of processes that are
contained in the process pool. High-leveltrans-events that are internal to the process
pool cannot introduce new secrets from outside the system. Consequently, these events
need not be considered as confidential. This is formalized inthe following definition
of security for process pools.

Definition 15 Given a process pool GenProcPool(GenProcesspid1; : : : ;GenProcesspidn)
and the viewVPP = (LPP ;HPP nHIPP ;HIPP ) defined as follows (EPP and IPP
shall be the sets of all events and of all input events, respectively, of the process pool)

LPP = fe 2 EPP j level(e) = lowg
HIPP = fe 2 EPP j level(e) = highg \ IPP

HPP nHIPP = fe 2 EPP j level(e) = highg n IPP
the security property SecProp for the process pool is definedby:

SecProp= (fVPP g;BSI^ BSD)
7.4 DMWL Process Pools

We now instantiate our generic model for process pools from Section 7.3 in order
to model the behavior of DMWL programs. This section parallels and extends Sec-
tion 4.3. The types and values to instantiate, according to Definition 14, are:� types:VAR , VAL , TID , THREAD, INFO, PID, CID ;� initial values:pid, initval, initthread, inittid;� connecting functions:sender, receiver;� internal events:Elocal; and their behavior:Tlocal.

Similarly to Section 4.3, we setVAR = fh; lg, THREAD = CMD (whereCMD
is defined in Figures 4 and 8) ,inittid = 0 and leaveVAL and initval unspecified.
Moreover, we do not further specify the new parametersPID, CID , pid and functions
sender, receiver. Local eventsElocal and transition relationTlocal are extended with
communication events in the following way.

The setEDMWL
local of internal events of a DMWL process is defined in Figures 7 and16.

For each of these events there is a corresponding rule of the small-step semantics
(cf. Figures 5 and 9). The behavior of internal events is defined by the transition rela-
tion T DMWL

local (cf. Figures 7 and 16). ThatT DMWL
local indeed reflects the semantics of DMWL

will be proved in Section 7.5. The instantiation of generic processes for DMWL is
summarized in the following definition.

Definition 16 TheDMWL processfor pid 2 PID and initthread2 CMD results from
the following instantiation of a generic process:

DMWLProcess(pid; initthread)= GenProcess(fl; hg;VAL ;N� ;CMD ;VAL � INT ;PID;CID ; pid;
initval; initthread; 0; EDMWL

local ; T DMWL
local ; sender; receiver)
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EDMWL
local = EMWL

local[ fsend(cid; val); receive(cid0; var; val);
ite-rcvtt(cid0; var; val; C1; C2); ite-rcvff(cid0; var; val; C1; C2) j
val 2 VAL ; var 2 VAR ; cid; cid0 2 CID ; C1; C2 2 CMD ;
sender(cid) = pid; receiver(cid0) = pidgT DMWL

local � S �EDMWL
local � S [T DMWL

local � T MWL
local℄

send(cid; val) affectsthread(atid), executed, ainfo, outbuf
Pre : ready^ Exp#memval^ first(thread(atid)) = send(cid;Exp)
Post: outbuf0 = (cid; val) ^ thread0(atid) = rest(thread(atid)) ^ done^ainfo0 = (mem(l); terminates(thread(atid)))

receive(cid; var; val) affectsthread(atid), executed, ainfo, mem(var),
pending(cid)

Pre : ready^ pending(cid) 6= hi ^ last(pending(cid)) = val^first(thread(atid)) = receive(cid; var)
Post: mem0(var) = val^ pending0(cid) = butlast(pending(cid))^thread0(atid) = rest(thread(atid)) ^ done^ainfo0 = (mem(l); terminates(thread(atid)))

ite-rcvtt(cid; var; val; C1; C2) affectsthread(atid), executed, ainfo, mem(var),
pending(cid)

Pre : ready^ pending(cid) 6= hi ^ last(pending(cid)) = val^first(thread(atid)) = if-receive(cid; var; C1; C2)
Post: mem0(var) = val^ pending0(cid) = butlast(pending(cid))^thread0(atid)=C1; rest(thread(atid))^donê ainfo0= (mem(l); 0)

ite-rcvff (cid; var; val; C1; C2) affectsthread(atid), executed, ainfo
Pre : ready^ pending(cid) = hi^first(thread(atid)) = if-receive(cid; var; C1; C2)
Post: thread0(atid) = C2; rest(thread(atid))^ donê ainfo0 = (mem(l); 0)

where the following abbreviations are used:
ready() (executed= ff ^ atid 6= ?)
done() (executed0 = tt)
terminates(thread(atid)) equals�1 if rest(thread(atid)) = hi and0 otherwise.

Figure 16: Local eventsEDMWL
local and transition relationT DMWL

local of a DMWL process
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We finally arrive at a formalization of aDMWL process pool, which corresponds to a
distributed collection of DMWL programs.

Definition 17 Given a collection of process ids pid1; : : : ; pidn 2 PID and a collection
of DMWL commands initthread1 2 CMD ; : : : ; initthreadn 2 CMD , define aDMWL
process poolby:

DMWLProcPool((pid1; initthread1); : : : ; (pidn; initthreadn))= GenProcPool(DMWLProcess(pid1; initthread1);: : : ;DMWLProcess(pidn; initthreadn))
Note that this definition is based on a correct use of Definition 14 of generic process
pools. Indeed, the condition that the parametersVAL ;PID;CID ; sender; receiverare
the same for all instantiations of generic processes is assured by Definition 16. Recall
from Section 7.3 that we assume all events, except fortrans-events, to be implicitly
tagged with the respective process ids. Hence, the only events that can be shared by
two processes aretrans-events.

Let us introduce a useful property that intuitively states that each command in a
process correctly uses channel connections, i.e., sends and receives only on channels
it is supposed to. This is a desirable property that we will from here on impose on
DMWL process pools.

Definition 18 A commandC 2 CMD and a process identifierpid comply with func-
tionssender; receiver if for every send commandsend(cid;Exp), which is a subcom-
mand ofC, holds sender(cid) = pid and for every receive commandreceive(cid; var)
or if-receive(cid; var; C1; C2), which is a subcommand ofC, holds receiver(cid) = pid.

7.5 Adequacy of DMWL Process Pools

In this section, we extend the results from Section 5 to distributed DMWL programs. In
Theorem 6, we will show that every trace of a DMWL process poolmodels a behavior
that complies with the semantics of DMWL. In Theorem 7, we will show that for
every behavior that complies with the semantics of DMWL, there is a trace of the
corresponding process pool that models this behavior. Lemma 7, 8, and 9 (extensions
of Lemmas 1–3) are helpful for proving these theorems and also Theorems 8 and 9.

Notational Conventions. Throughout this subsection and Sections 7.6–7.7, we as-
sume thatPid is a finite set of process identifiers, i.e.,Pid = fpid1; : : : ; pidng � PID,

for pid 2 Pid, initthreadpid 2 THREAD, SESpid = (Spid; spid0 ; Epid; Ipid; Opid; T pid)
is defined bySESpid = DMWLProcess(pid; initthreadpid). SES= (S; s0; E; I; O; T )
models the resulting DMWL process pool, i.e., is defined bySES= f

pid2Pid SESpid.
Moreover, recall from Section 7.3 that no process can send toitself, i.e., for allcid 2
CID holdssender(cid) 6= receiver(cid). Recall from Section 7.4 that we assume all
commands in a process pool to comply withsender; receiverand the respectivepid.
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We first define functionschannelandconfigthat, respectively, extract a channel status
function or the configuration of a process from a state of the composedSES. Here
and further, we useoutbuf(cid) to denote the function that returnshi in caseoutbufis
empty or contains an entry with an identifier different fromcid; and returns the second
element ofoutbufotherwise, i.e.,outbuf(cid) = val if outbuf= (cid; val).
Definition 19 Let pidi = sender(cid) and pidr = receiver(cid). Moreover, letsjpidi =(: : : ; outbufpidis ; : : : ) and sjpidr = (: : : ; inbuf pidrs ; pendingpidrs ; : : : ). The function
channel: S ! (CID ! VAL �) is defined by:

channel(s) : cid 7! outbufpidis (cid): inbuf pidrs (cid): pendingpidrs (cid)
where, if pidi (or pidr) is not in the process pool, then outbufpidis (cid) = hi (or
inbuf pidrs (cid) = hi and pendingpidrs (cid) = hi, respectively).

Definition 20 config : S ! PID ! [( ~CMD � (VAR ! VAL )) [ f?g℄ is defined by:

config(s; pid)=�? , if pid =2Pid(cseq(threads);mems), if pid2Pid andsjpid = (mems; threads : : : )
Lemma 7 If s is a reachable state for the composed SES, pid2 Pid is a process
identifier, andsjpid = (: : : ; threads; atids; : : : ; executeds; : : : ; outbufs) then� executeds = ff ^ atids 6= ? ^ threads(atids) =2 f?;>; hig ^ outbufs = hi,� executeds = tt ^ atids 6= ?^ outbufs 6= hi,� executeds = tt ^ atids 6= ?^ outbufs = hi, or� executeds = ff ^ atids = ? ^ outbufs = hi holds.

Lemma 8 Lets;s0 be reachable states for the composed SES, pid2Pid,e2EDMWL
local\Epid

with s e�! s0, sjpid = (mems; threads; atids; : : : ; executeds; : : : ; pendings; outbufs),
ands0jpid = (mems0 ; threads0 ; atids0 ; : : : ; outbufs0). Assume executeds= ff, atids 6=?,
and ife = ite-rcvff(cid; var; val; C1; C2) thenchannel(s)(cid) = hi.� If e 6= fork(C;D1 : : : Dn) thenhjthreads(atids);mems; channel(s)ji _ hjthreads0(atids0);mems0 ; channel(s0)ji.� If e = fork(C;D1 : : : Dn) thenhjthreads(atids);mems; channel(s)ji

_ hjthreads0(atids:0) : : : threads0(atids:n);mems0 ; channel(s0)ji.
The following theorem shows that every trace of a DMWL process pool, which is
closed, models a behavior that complies with the semantics of DMWL.We say that a
DMWL process pool isclosedif all channels are connected, i.e., if for allcid 2 CID
holdssender(cid) 2 Pid() receiver(cid) 2 Pid.

Theorem 6 Let s; s0 be reachable states for the composed SES and 2 E�. Assume
that SES is closed. Ifs =)s0 and contains no setvar-events then�config(s; pid1); : : : ; config(s; pidn); channel(s)��� �config(s0; pid1); : : : ; config(s0; pidn); channel(s0)�
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Lemma 9 Let s 2 S be a reachable state for the composed SES, pid2 Pid, sjpid =(mems; threads; atids; : : : ; executeds; : : : ; pendings; outbufs), C 02CMD ,D1 : : : Dk 2~CMD , mem0 : VAR ! VAL , and�0 : CID ! VAL �. Assume executeds = ff, atids 6=?,
and, moreover, if first(threads(atids)) 2 freceive(cid0; : : : ); if-receive(cid0; : : : )g and
pendings(cid0) = hi thenchannel(s)(cid0) = hi.

1. If hjthreads(atids);mems; channel(s)ji_hjC 0;mem0; �0ji thene2EDMWL
local \Epid ands02S exist withs e�! s0, s0jpid = (mems0 ; threads0 ; atids0 ; : : : ; executeds0 ; : : : ),

mems0 =mem0, threads0(atids)=C 0, atids0 =atids, executeds0 = tt, channel(s0)=�0. Moreover, it holds threads0(tid) = threads(tid) for tid 6= atids ands0jpid0 =sjpid0 for pid0 2 Pid with pid0 6= pid.

2. If hjthreads(atids);mems; channel(s)ji _ hjC 0D1 : : : Dk;mem0; �0ji (with k � 1)
then an evente 2 EDMWL

local \ Epid and s0 2 S exist withs e�! s0, s0jpid =(mems0 ; threads0 ; atids0 ; : : : ; executeds0 ; : : : ), mems0 = mem0, atids0 = atids,
executeds0 = tt, andchannel(s0) = �0. Moreover, it holds threads0(atids) = >,
threads0(atids:0)=C 0, threads0(atids:i)=Di for i2f1; : : : ; kg, threads0(tid) =
threads(tid) for tid =2 fatids; atids:0; : : : ; atids:kg, ands0jpid0 = sjpid0 for pid0 2
Pid with pid0 6= pid.

The following theorem shows that for every behavior of a distributed DMWL program
that is closed there is a trace of the corresponding DMWL process pool.

Theorem 7 Let s be a reachable state for the composed SES. Assume that SES is
closed. Moreover, assume for all pid2 Pid holds atids = ? and executeds = ff wheresjpid = (: : : ; atids; : : : ; executeds; : : : ). Let ( ~C 0

pid1;mem0pid1) : : : ( ~C 0
pidn;mem0pidn) be a

sequence of pairs, each consisting of a command vector and a memory.
If � config(s; pid1); : : : ; config(s; pidn); channel(s)��� �( ~C 0

pid1 ;mem0pid1); : : : ; ( ~C 0
pidn ;mem0pidn);�0�

then there exist 2 E� ands0 2 S of the composed SES withs =) s0,  contains no
setvar-events,config(s0; pid) = ( ~C 0

pid;mem0pid) for all pid 2 Pid, andchannel(s0) = �0.
7.6 Soundness and Completeness Results

In this subsection, we present the soundness and completeness results for DMWL pro-
grams. We show that a DMWL program is secure iff the corresponding DMWL process
satisfiesSecProp. In distinction to Subsection 7.5, we assume to have a singleprocess
pid, so thatPid = fpidg. Otherwise, the same notational conventions apply. Note that
the definition of the channel status extractionchannel : S ! (CID ! VAL �) in the
case of one process can be expressed as:

channel(s) : cid 7! (
inbufpids (cid):pendingpids (cid); if receiver(cid) = pid
outbufpids (cid); if sender(cid) = pid
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The next auxiliary lemma is analogous to Lemma 4 from Section6. It will be used
in the proof of Theorem 8.

Lemma 10 Assume a DMWL programC is secure. Suppose� 2 Tr is a trace for

DMWLProcess(pid; C) such thats0 �=) s. Then8tid: live(s; tid) =) threads(tid) uL
threads(tid).
Let us conclude this subsection by stating the soundness andcompleteness results.

Theorem 8 (Soundness)If a DMWL programC is secure then the corresponding pro-
cess DMWLProcess(pid; C) satisfies the security property SecProp.

Theorem 9 (Completeness)A DMWL programC is secure whenever the correspond-
ing process DMWLProcess(pid; C) satisfies the security property SecProp.

The proof of the completeness theorem for DMWL makes use of both BSIandBSDse-
curity predicates fromSecProp. Interestingly,BSDis not necessary in the completeness
result for MWL (Theorem 5) [27]. Indeed, the deletion of a confidentialsetvar(h; �)-
event can be simulated by the insertion of asetvar(h; �)-event that undoes the change
to the memory of a thread pool. However, this technique does not apply to confidential
trans-events occurring in DMWL process pools because inserting such events might
not comply with the semantics of communicating thread pools(cf. the proof for fur-
ther details).

7.7 Compositionality

In this section, we demonstrate thatSecPropis preserved under composition of DMWL
processes. This result holds even though generalized noninterference is, in general, not
preserved under composition as demonstrated by McCullough[28]. Our technique
for establishing compositionality is to develop a composable propertyCSecPropand
prove that it is equivalent toSecPropfor DMWL processes.12 In Theorem 10, we
demonstrate thatCSecProp, indeed, is preserved under the composition of processes.
In order to representCSecPropin the assembly kit, we introduce the building block
forward correctable insertion(abbreviated byFCI) [26]. Besides a viewV and a setTr
of traces, thisBSPtakes two setsr;� � E as parameters.

FCI demands that the insertion of a confidential event into a trace yields, again,
a possible trace. In this aspect,FCI is related toBSI (cf. Section 2). Technically,
FCIr;�V (Tr) demands that a confidential event 2 C \ � can be inserted before the
occurrence of a visible eventv 2 V \ r if the sequence� that followsv contains no
confidential input events fromC. During the insertion of, the trace may be adapted,
however, adaptations are only allowed after the occurrenceof v.13 I.e., � may be

12CSecPropcan be regarded as a weakened version of Johnson and Thayer’sforward correctability [20].
13In [26] a more general definition ofFCI is presented that takes another parameter� and permits adap-

tations inN \� beforev. However, this flexibility is not needed here.
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changed to�0 where visible events inV and events inC must remain unchanged.

FCIr;�V;N;C(Tr)� 8�; � 2 E�:8 2 C \�:8v 2 V \ r: ((�:hvi:� 2 Tr ^ �jC = hi)=) 9�0 2 E�: (�0jV = �jV ^ �0jC = hi ^ �:h:vi:�0 2 Tr))
The security predicateCSP(for “composable security predicate”) is defined by:

CSPr;�V (Tr) = BSIV(Tr) ^ BSDV(Tr) ^ FCIr;�V (Tr)
For the purposes of the current article, we chooser and� wrt a setPid� PID.rPid = �Pid = ftrans(cid; val) j receiver(cid) 2 Pid; sender(cid) =2 Pidg :
Given the viewVpid of a thread pool with identifierpid, we refer to the security property(fVpidg;CSPrfpidg;�fpidg) asCSecProp(for “composable security property”).

Below, we assume that for eachpid 2 Pid, ESpid = (Epid; Ipid; Opid;Tr pid) is the
event system forSESpid, i.e.,ESpid = ESSESpid, thatVpid = (V pid; Npid; Cpid) = VTPpid

is the view for processpid, that rpid = rfpidg = �pid, and thatSecProppid =(fVpidg;BSI^ BSD) and CSecProppid = (fVpidg;CSPrfpidg;�fpidg) are the security
properties for processpid. Moreover, we assume thatSES= (S; s0; E; I; O; T ) is the
process pool resulting from the composition of these DMWL processes, i.e.,SES=f

pid2Pid SESpid, thatES= (E; I;O;Tr) is the corresponding event system, i.e.,ES=
ESSES, that VPid = (V;N;C) = VPPPid is the view for the process pool, and that

SecPropPid = (fVPidg;BSI^ BSD) andCSecPropPid = (fVPidg;CSPrPid;�Pid) are the
security properties for the process pool.

The following “zipping lemma” will be helpful for proving that CSecPropis pre-
served under composition of DMWL processes (cf. Theorem 10). The proof tech-
nique that we use is similar to the one used in [20] for the composability of forward
correctability.14 However, our security property is slightly weaker than forward cor-
rectability.15

Lemma 11 (Zipping Lemma) Let � 2 E�, � 2 V �, andtpid 2 Epid� for pid 2 Pid.

If � 2 Tr, � jEpid:tpid 2 Tr pid, tpidjV = �jEpid, and ESpid satisfies CSPrpid;�pidVpid (Tr pid) for
pid 2 Pid then there is a sequencet 2 E� with �:t 2 Tr, tjV = �, andtjC = hi.
The following theorem shows thatCSecPropis, indeed, preserved under the composi-
tion of DMWL processes.

14For a more general account of this proof technique in the context of MAKS , we refer the interested
reader to [26].

15Technically, this difference to forward correctability results from that we do not require all high input
events to be forward correctable. In particular, highsetvar-events are not contained in� although they are
high input events. Moreover, events inC \� need not be forward correctable wrt all low-level input events,
rather, only wrttrans-events on incoming low-level channels. Recall that forward correctability, as defined
in [20], requires that all high input events are forward correctable wrt all low-level input events. Another
difference is that we require onlyFCI but no correspondingBSPfor forward correctable deletion.
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Theorem 10 (Compositionality) If CSecProppid holds for each ESpid then CSecPropPid

holds for ES, the composition of these DMWL processes.

The following lemma implies that any DMWL process that satisfiesSecPropalso sat-
isfiesCSecProp.

Lemma 12 If BSIVpid(Tr pid) holds for ESSESpid then FCIrpid;�pidVpid (Tr pid) also holds.

Theorem 10 and Lemma 12 give rise to the following corollary.This corollary ensures
thatSecPropis preserved under the composition of processes.

Corollary 1 If for each pid2 Pid, ESpid satisfies SecProppid then the composed system
ES satisfies SecPropPid.

Recalling from Section 3.2 thatSecPropcorresponds to generalized noninterference
[28], Corollary 1 can be reformulated by:if each process in a process pool satisfies gen-
eralized noninterference then the overall process pool also satisfies generalized non-
interference. This result holds despite generalized noninterference is, in general, not
preserved under composition [28] and no specialized form ofcomposition is employed
for which generalized noninterference is known to be preserved (like cascade [31, 47]
or absence of communication cycles with less than three components [48]). Corol-
lary 1 provides a basis for analyzing complex systems in a modular way. I.e., security
of the overall system is derived by establishing local security for each process. Since
the language-based techniques are also compositional (on the level of commands), es-
tablishing security of a process, again, can be reduced to establishing security of each
command (also cf. the motivation for this approach in Section 7.2 and Figure 12).

Note that local security of each process is, in general, not necessary for global
security. The above corollary only ensures that it is sufficient. Hence, there are process
pools that satisfySecPropalthough some processes in the pool do not satisfySecProp
individually. This overrestrictiveness of the local security condition seems to be a
price that needs to be paid in order to allow for modular system development and for
the application of efficient language-based techniques. One important advantage of
our compositionality result in this respect (together withthe rigorous relation of the
language-based techniques and the trace-based properties) is that hybrid techniques
can be used to verify the security of the overall system. I.e., one tries to verify local
security individually for every process using the most efficient technique available,
e.g., by performing security-type inference. For groups ofprocesses for which the
local security condition does not hold, the trace-based property can be verified directly.
Global security of the overall distributed system follows from the compositionality of
our security property together with the results in Sections7.5 and 7.6.

8 Discussion and Future Work

Contributions. We have established a one-to-one correspondence between a time-
sensitive definition of security for the multi-threaded programs of MWL (from [38])
and a security property based on traces of events that was originally developed in the

39



context of a general security framework—the assembly kitMAKS (from [22, 23]).
As a prerequisite for this, we had to model the semantics of MWL using state-event
systems, which resulted in the specification of MWL thread pools. The development
of this specification has been straightforward (although technically subtle). To us, it
is appealing that generic thread pools, which served as an intermediate step in this
process, are independent of MWL. We expect that this will allow the adaptation of
other multi-threaded programming languages, e.g., Slam [19].

The main motivation of our work has been the objective to integrate the two kinds
of security: the security of local computations and the security of their communica-
tions. Event-based security aims at protecting occurrences of events and programming-
language-based security aims at protecting secret values.Our work is a step to aid in the
systematic security analysis of complex (potentially distributed) systems where some
of the components are (or shall be) implemented in a specific programming language.
To the best of our knowledge this article is the first attempt to establish a rigorous
connection between these two notions of security.

The connection suggests directions for mutual benefits where the two areas can
borrow from each other (cf. Future Work). Already in this article, we have fruitfully
exploited the rigorous relation between global and local language-based security in
deriving a compositionality principle for DMWL, the multi-threaded language MWL
augmented with message passing. We have shown that the global security of the over-
all system consisting of a collection of distributed DMWL programs is implied by the
local security of each thread. This opens up the opportunityfor reducing the secu-
rity certification for the global system to a decentralized certification of the security
of individual threads. This can be done by language-based techniques such as, e.g.,
security-type systems [45, 19, 42, 1, 44, 2, 38, 39, 35] or security verification [21]. For
DMWL, this approach accommodates both local security and overall system’s global
security. This provides high security assurance without being too restrictive for the pro-
grammer. That interesting secure programs manipulating sensitive data can be written
is illustrated by, e.g., efficient searching and sorting algorithms that comply to timing-
sensitive security [3].

As a side effect, we have demonstrated how to useMAKS at the concrete exam-
ple of the multi-threaded programming language MWL. Using the assembly kit has
turned out to be very helpful in the identification of an appropriate security property.
This application is also interesting because it shows how time-sensitive security can be
specified inMAKS . For a different technique to address timing channels by explicit
tick-events we refer to [13].

Bisimulation vs. Trace-based Equivalence. The reader familiar with transition-sys-
tem-based semantics might be surprised by the fact that the article relates a bisimula-
tion-based property of programs with a trace-based one. It is well-known that small-
step bisimulation makes more distinctions than trace-based equivalence. It is also well-
known that trace-based properties are usually not compositional whereas bisimulation-
based ones often are. Nevertheless, we have been able to prove correctness and com-
pleteness results for our translation of the security property.

What made these developments possible in spite of the two major differences be-
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tween the bisimulation-based and trace-based models? The crucial property is the de-
terministic nature of the transition system underlying strong low-bisimulation. Indeed,
bisimulation is defined on deterministic transitions ensuring that two bisimilar thread
pools have the same branching behavior.16 This property is necessary for guaranteeing
scheduler-independent security. Two programs have to have identical branching be-
havior in order to be indistinguishable for the attacker under a scheduler-independent
low-bisimulation. Otherwise, the two programs in thethen andelse branches, respec-
tively, of an if statement with a secret condition could be used to leak the secret con-
dition through observing the branching behavior ([38] shows how to implement this
attack using the properties of a particular scheduler).

Although the determinism of the transition system underlying bisimulation is the
key feature to relating bisimulation-based and trace-based models, it is not crucial for
the actual security definition of MWL17. For example, if MWL had a nondeterministic
choice operator8 then the nondeterministic programl := 0 8 l := 1 would be con-
sidered secure under Definition 7. However, the two securitydefinitions (Definition 7
and Definition 5 for MWL thread pools) would be no longer equivalent. Indeed, at no
surprise, the completeness theorem (Theorem 5) would not hold. A counterexample
is the programif h = 0 then C1 else C2 whereC1 = l := 0; (l := 1 8 l := 2) andC2 = (l := 0; l := 1) 8 (l := 0; l := 2). This program is considered secure under the
trace-based model (Definition 5) but not secure according tothe bisimulation-based
Definition 7. Note that, whether one intuitively considers this program as secure or
not depends very much on the model of computation one has in mind. For a detailed
investigation of this close relation between notions of information flow and models of
computation (notions of equivalence) we refer to [34].

Future Work. Plans for future work are centered around further exploiting the con-
nection between the two types of security that we have established in the present article.
Promising directions include the adaptation of intransitive security policies18 for MWL
based on solutions that were proposed in the context of the assembly kit [24] and to
progress towards a development method that allows for the stepwise development start-
ing from abstract specifications and ending with concrete programs (cf. [25] for recent
progress on the refinement of information flow properties). Another attractive direction
of research is to apply the reduction techniques of [38] combined with the results of
this article to reasoning about probabilistic security properties for event-based systems.

In this article, we have limited the consideration of communication primitives to
three primitives: a nonblocking send together with a blocking and a nonblocking re-
ceive. In a separate study [36] we present a comparison of different communication
primitives with respect to their impact on security. Besides the three above primitives,
we have considered synchronous communication (represented by blocking send and re-
ceive) and channels for encrypted traffic where an attacker may observe the presence of

16Technically one can view the identifiertid of a thread that is chosen by the scheduler for the next tran-
sition as a label that is distinguished by the strong low-bisimulation. Hence, an occurrence ofschedule(tid)
reveals which branch has been chosen in the computation.

17Certain security properties can be defined through low determinism, as in [33, 32].
18Intransitive flow policies would provide a way to represent downgrading (and thus, e.g., secure encryp-

tion) in the multi-threaded while-language.
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messages but not their contents. We have proposed a type system for the extension that
enforces timing-sensitive security. This is a step toward realizing the compositionality
principle for DMWL (cf. Contributions). Another interesting extension of the model
would be to consider other I/O primitives in addition tosetvar=outvar for interaction
with the environment.

Only recently have there been attempts to address the problem of information flow
for systems that are run on a combination of trusted and untrusted hosts. A notable
example is thesecure partitioningapproach by Zdancewic et al. [50]. This approach
allows for automatic partitioning of a sequential program with security annotations
(that specify the levels of data confidentiality and host trust) into communicating pro-
grams that run on the available hosts and perform the original computation. However,
there is no proof that the system enforces system-wide noninterference. Because mu-
tual distrust and potential failure of the distributed components are intrinsic properties
of many distributed systems, incorporating these properties in our model is another
important goal for future work.
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Appendix

Proof. [of Theorem 1] Assume thatSESj = (Sj ; sj0; Ej ; Ij ; Oj ; T j) for j 2 J andfj2J SESj = (S; s0; E; I; O; T ).� 2 Trfj2J SESj () 9s 2 S: (s0 �=)T s)() 9s 2 S:8j 2 J: (s0jj � jEj=)T j sjj)() 8j 2 J: (� jEj 2 TrSESj )
The second equivalence is established by an induction over� . 2
Proof. [of Lemma 1] There exists an event sequence 2 E� such thats0 =) s
becauses is reachable. The proof proceeds by induction on.

Base case( = hi): executeds0 = ff andatids0 = ? according to Figure 2.

Step case( = Æ:hei): There existssi 2 S with s0 Æ=) si andsi e�! s. The
induction hypothesis ensures that the proposition holds insi. We have to show that it
also holds ins. If e is asetvar- or outvar-event then the proposition follows directly
because these events do not affect the values ofexecuted, atid, andthread. In the rest
of the proof, we assume thate is nosetvar- or outvar-event. According to the induction
hypothesis, we have to distinguish three cases.� Assumeexecutedsi = ff ^ atidsi 6= ? ^ threadsi(atidsi) =2 f?;>; hig. The

preconditions of events (cf. Section 3 and 4) implye 2 EMWL
local. The postcondition

of anye 2 EMWL
local ensuresexecuteds = tt andatids 6= ?.� executedsi = tt^atidsi 6= ? impliese = yield(info) for someinfo 2 INFO. The

postcondition ofyieldensuresexecuteds = ff andatids = ?.� executedsi = ff^ atidsi = ? impliese = schedule(tid) for sometid 2 TID . The
postcondition ensuresexecuteds= ff, atids 6=?, threads(atids) =2 f?;>; hig. 2

Proof. [of Lemma 2] We make a case distinction on the evente.
skip Pre- and postcondition ofskip imply first(threads(atids)) = skip, mems0 =

mems, andthreads0(atids0) = rest(threads(atids)). Rules Skip and Seq1 in Fig-
ure 5 ensurehjthreads(atids);memsji _ hjthreads0(atids0);mems0 ji.

assign(var,val) We havefirst(threads(atids)) = var := Exp for some expression
Exp with Exp #mems val, mems0 = mems[var 7! val℄, andthreads0(atids0) =
rest(threads(atids)). Rules Assign and Seq1 ensurehjthreads(atids);memsji _hjthreads0(atids0);mems0 ji.

itett(B;C1; C2) We havefirst(threads(atids)) = if B then C1 else C2, B #mems tt,
mems0 = mems, andthreads0(atids0) = C1; rest(threads(atids)). Rules Iftt and
Seq1 ensurehjthreads(atids);memsji _ hjthreads0(atids0);mems0 ji.

iteff (B;C1; C2) We havefirst(threads(atids)) = if B then C1 else C2, B #mems ff,
mems0 = mems, andthreads0(atids0) = C2; rest(threads(atids)). Rules Ifff and
Seq1 ensurehjthreads(atids);memsji _ hjthreads0(atids0);mems0 ji.

45



whilett(B;C1) We havefirst(threads(atids)) = while B do C1, B #mems tt, mems0 =
mems, and threads0(atids0) = C1;while B do C1; rest(threads(atids)). Rules
Whilett and Seq1 ensurehjthreads(atids);memsji _ hjthreads0(atids0);mems0 ji.

whileff (B;C1) We havefirst(threads(atids)) = while B do C1, B #mems ff, mems0 =
mems, andthreads0(atids0) = rest(threads(atids)). Rules Whileff and Seq1 en-
surehjthreads(atids);memsji _ hjthreads0(atids0);mems0 ji.

fork(C; ~D) We havefirst(threads(atids)) = fork(CD1 : : : Dn), mems0 = mems,
threads0(atids) = >, and threads0(atid:0) = C; rest(thread(atid)). For alli 2 f1; : : : ; ng holds threads0(atid:i) = Di. Rules Fork and Seq2 ensurehjthreads(atids);memsji _ hjthreads0(atids0 :0) : : : threads0(atids0 :n);mems0 ji. 2

Proof. [of Theorem 2] The proof proceeds by induction on the lengthof .
Base case( = hi): The proposition holds becauses0 = s and!� is reflexive.

Step case( = hei:Æ): There existssi 2 S with s e�! si andsi Æ=) s0. If e is an
outvar-event thensi = s and the proposition follows from the induction hypothesis.
Assume thate is nooutvar-event. We make a case distinction according to Lemma 1.� Assumeexecuteds = ff ^ atids 6= ? ^ threads(atids) =2 f?;>; hig. The propo-

sition follows frome 2 EMWL
local, Lemma 2, the frame-axioms forthreadfor events

in EMWL
local, Definition 9, rule Pick, and the induction hypothesis.� Assumeexecuteds = tt ^ atids 6= ?. e = yield(ainfos) holds. memsi =

mems andcseq(threadsi) = ~Ds are implied by the postcondition ofyield. The
proposition follows from the induction hypothesis.� Assumeexecuteds = ff ^ atids = ?. e = schedule(tid) for sometid 2 TID .
memsi = mems andcseq(threadsi) = ~Ds are implied by the postcondition of
schedule. The proposition follows from the induction hypothesis. 2

Proof. [of Lemma 3] LetD be a derivation ofhjthreads(atids);memsji _ hjC 0;mem0ji
(or hjthreads(atids);memsji _ hjC 0D1 : : : Dn;mem0ji). According to the operational
semantics of MWL (cf. Figure 5) there must be exactly one application of one of the
rules Skip, Assign, Iftt, If ff, Whilett, Whileff, or Fork inD.

We make a case distinction depending on which of these rules occurs inD:

Skip and Seq1 ensurefirst(threads(atids))= skip,C 0 = rest(threads(atids)), mem0 =
mems. For e = skip there existss0 2 S with s e�! s0, threads0(atids0) =
rest(threads(atids)), mems0 = mems, atids0 = atids, andexecuteds0 = tt. More-
over, for alltid with tid 6= atids holdsthreads0(tid) = threads(tid).

Assign and Seq1 ensurefirst(threads(atids)) = var := Exp for somevar 2 VAR ,
val 2 VAL , Exp 2 EXP with Exp #mems val, C 0 = rest(threads(atids)), and
mem0 = mems[var 7! val℄. For e = assign(var; val) there existss0 2 S withs e�! s0, threads0(atids0) = rest(threads(atids)), mems0 = mems[var 7! val℄,
atids0 = atids, andexecuteds0 = tt. Moreover, for alltid with tid 6= atids holds
threads0(tid) = threads(tid).
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If tt and Seq1 ensurefirst(threads(atids)) = if B then C1 else C2 for C1;C2 2 CMD ,B 2 BOOL with B #mems tt, C 0 = C1; rest(threads(atids)), mem0 = mems.
For e = itett(B;C1; C2) there existss0 2 S with s e�! s0, threads0(atids0) =C1; rest(threads(atids)), mems0 = mems, atids0 = atids, andexecuteds0 = tt.
Moreover, for alltid with tid 6= atids holdsthreads0(tid) = threads(tid).

If ff and Seq1 ensurefirst(threads(atids)) = if B then C1 else C2 for C1;C2 2CMD ,B 2 BOOL with B #mems ff, C 0 = C2; rest(threads(atids)), mem0 = mems.
For e = iteff(B;C1; C2) there existss0 2 S with s e�! s0, threads0(atids0) =C2; rest(threads(atids)), mems0 = mems, atids0 = atids, andexecuteds0 = tt.
Moreover, for alltid with tid 6= atids holdsthreads0(tid) = threads(tid).

Whilett and Seq1 ensurefirst(threads(atids)) = while B do C1 for C12 CMD , B 2
BOOL with B #mems tt, C 0 = C1;while B do C1; rest(threads(atids)), mem0 =
mems. Fore=whilett(B;C1) there existss02S with s e�!s0, threads0(atids0)=C1;while B do C1; rest(threads(atids)), mems0 = mems, atids0 = atids, and
executeds0 = tt. For all tid with tid 6= atids holdsthreads0(tid) = threads(tid).

Whileff and Seq1 ensurefirst(threads(atids)) = while B do C1 for C1 2 CMD ,B 2 BOOL with B #mems ff, C 0 = rest(threads(atids)), mem0 = mems.
For e = whileff(B;C1) there existss0 2 S with s e�! s0, threads0(atids0) =
rest(threads(atids)), mems0 = mems, atids0 = atids, andexecuteds0 = tt. More-
over, for alltid with tid 6= atids holdsthreads0(tid) = threads(tid).

Fork and Seq2 ensurefirst(threads(atids)) = fork(CD1 : : : Dk) for someC 2 CMD
andD1 : : : Dk 2 ~CMD , C 00 = C; rest(threads(atids)), andmem0 = mems. Fore = fork(C;D1 : : : Dk) there existss0 2 S with s e�! s0, threads0(atids) = >,
threads0(atids:0) = C 00, for all i 2 f1; : : : ; kg holds threads0(atids:i) = Di,
mems0 = mems, atids0 = atids, andexecuteds0 = tt. Moreover, for alltid with
tid =2 fatids; atids:0; : : : ; atids:kg holdsthreads0(tid) = threads(tid). 2

Proof. [of Theorem 3] Assume a derivationD for hj ~Ds;memsji !� hj ~D0;mem0ji. The
proof proceeds by induction onn, the number of applications of the rule Pick inD.

Base case(n = 0): D contains no rule applications at all. Hence,~D0 = ~Ds and
mem0 = mems. Consequently, the proposition holds for = hi ands0 = s.

Step case(n = n0 + 1): There existshj ~Di;memiji with hj ~Ds;memsji ! hj ~Di;memiji
andhj ~Di;memiji !� hj ~D0;mem0ji. LetDi be a derivation ofhj ~Ds;memsji ! hj ~Di;memiji
andD0 be a derivation ofhj ~Di;memiji !� hj ~D0;mem0ji with n0 application of rule Pick.
If there existsi 2 E� that contains nosetvar-events and a statesi with s i=) si,
memsi = memi, cseq(threadsi) = ~Di, atidsi = ?, andexecutedsi = ff then the
proposition follows from the induction hypothesis.

Pick is applied once inDi. Let tid be the identifier of the thread that is selected in
this application.e1 = schedule(tid) is enabled ins. For s1 2 S with s e1�! s1 holds
threads1 = threads, mems1 = mems, atids1 6= ?, andexecuteds1 = ff. According
to the definition of rule Pick and Lemma 3, there existe2 2 EMWL

local, s2 2 S withs1 e2�! s2, cseq(threads2) = ~Di, mems2 = memi, atids2 6= ?, andexecuteds2 = tt.e3 = yield(ainfos2) is enabled ins2. There existssi 2 S with s2 e3�! si. Thus, for
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i = he1:e2:e3i holdss i=) si, cseq(threadsi) = ~Di, memsi = memi, atidsi = ?, and
executedsi = ff. 2
Proof. [of Lemma 4] The proof is by induction on the length of�. In the base case� = hi we have8tid 6= 0: live(s; tid) = ff andthreads(0) = threads(0) = C. We haveC uL C by the security ofC.

By the inductive step,s0 Æ=) t e�!s such that8tid: live(t; tid) =) threadt(tid)uL
threadt(tid). If e is not local, then no threads may be created or updated. Thus,e can-
not affectthreadt so thatthreadt = threads which completes the inductive step for this
case. Now supposee is local. We need to show8tid: live(s; tid) =) threads(tid) uL
threads(tid). We will appeal to Lemma 2 in order to match the transition in the seman-
tics of MWL and unwind Definition 6 of strong low-bisimulation. We have two cases
one:
first(threadt(atidt)) 6= fork(��) We have thatexecutedt = ff, atidt 6= ?, live(t; atidt),

andt e�! s hold. By applying Lemma 2 we obtainhjthreadt(atidt);memtji _hjthreads(atids);memsji. By the induction hypothesis, we deducethreadt(atidt)uL threadt(atidt). Unwinding Definition 6 of strong low-bisimulation, there
existC 0 andmem0 such thathjthreadt(atidt);memtji _ hjC 0;mem0ji so that both
threads(atids) uL C 0 and mems =L mem0 hold. Due to the fact that_-
transitions are deterministic, it must be the case thatC 0 = threads(atids) and
mem0 = mems. This givesthreads(atids) uL threads(atids). Because no other
tid’s are affected, the proof for this case is completed.

first(threadt(atidt)) = fork(��) We have thatexecutedt = ff, atidt 6= ?, live(t; atidt),
andt e�! s hold. By applying Lemma 2 we obtainhjthreadt(atidt);memtji _hjthreads(atidt:0) : : : threads(atidt:n);memsji wheren 2 N is the maximal nat-
ural number for whichthreads(atidt:n) 6= ? holds. According to the induction
hypothesis,threadt(atidt) uL threadt(atidt). By Definition 6 of strong low-
bisimulation, there exist a commandC 0, a sequence~D = hD1 : : :Dni, andmem0
such thathjthreadt(atidt);memtji _ hjC 0 ~D;mem0ji wherethreads(atidt:0) uLC 0, threads(atidt:1) uL D1; : : : ; threads(atidt:n) uL Dn andmems =L mem0.
Since_-transitions are deterministic, we receiveC 0 = threads(atidt:0); D1 =
threads(atidt:1); : : : ; Dn = threads(atidt:n) andmem0 = mems. We receive
threads(atidt:i) uL threads(atidt:i) for i 2 f0; : : : ; ng. Becauselive(s; atidt) =
ff and that no othertid’s have been affected, the proof is completed. 2

Proof. [of Theorem 4] Assume thatC is secure. We need to show thatMWLPool(C)
satisfiesSecProp. According to Section 3.2, to satisfySecPropwe need to prove
BSIVTP (Tr) and BSDVTP (Tr) whereTr = TrMWLPool(C). Let us proveBSIVTP (Tr).
The proof forBSDVTP (Tr) can be conducted analogously. By definitionBSIVTP (Tr)
holds iff 8�; � 2 E�:8 2 HITP :((�:� 2 Tr ^ �jHITP = hi)=) 9�0 2 E�:(�0jLTP = �jLTP ^ �0jHITP = hi ^ �:hi:�0 2 Tr))
LetC be secure. Given�; � 2 E� and 2 HITP satisfying the conditions above, our
aim is to construct an appropriate�0 by modifying�.
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The proof idea is to construct�0 by induction on the length of�, making use
of Lemmas 2, 3. The only kind of events classified asHITP is setvar(h; �)-events.
Hence, = setvar(h; val) for someval. In the inductive construction, we will prove
the following invariant for sequences� and�0. The invariantInv(�; �0; s; s0; i) holds
iff 1: length(�) = i 2: �jLTP = �0jLTP 3: �0jHITP = hi 4: s0 �:�=) s5: s0 �:hi:�0=) s0 (and thereby�:hi:�0 2 Tr)6:8 tid:threads(tid) = threads0(tid) = ?_ threads(tid) = threads0(tid) = >_ threads(tid) = threads0(tid) = hi _ threads(tid) uL threads0(tid)7:mems =L mems0 8: atids = atids09: ainfos = ainfos0 10: executeds = executeds0
Initially, we set� = �0 = hi. Supposes0 �:hi=) s0 for somes0. Clearly, we have
Inv(�; �0; s; s0; 0) since addingsetvar(h; val) can be done at any time in the compu-
tation (the precondition for asetvar(h; val)-event istrue). Such an event can only
change the value ofh in mems0 . Lemma 4 guarantees that part 6 of the invariant holds
(traversing� preserves the security of the respective commands in the command pool).

In the inductive step, we have to construct�0; s0 such thatInv(�; �0; s; s0; i + 1)
assuming that� = Æ:hei and, by the induction hypothesis,Inv(Æ; Æ0; t; t0; i) for someÆ0; t0. The proof is by considering cases one such thats0 �:Æ=) t e�! s for somes. In

all cases we will aim at preserving the invariant. We haves0 �:Æ=) t ands0 �:hi:Æ0=) t0.
Clearly,e cannot be asetvar(h; �)-event by the�jHITP = hi condition on�. The rest
of the cases one are:

setvar(l; val) Set�0 = Æ0:hei. Thens0 �:Æ0=) t0 e�! s0 for somes0. A setvar(l; �)-
event is always enabled. The event makes the same update in the low part of the
memory in bothmemt andmemt0 . By induction hypothesis,memt =L memt0
which yieldsmems =L mems0 . The event does not affect any other part of eithert or t0 (in the transition tos or s0 respectively) which givesInv(�; �0; s; s0; i+1).

outvar(l; val) Set�0 = Æ0:hei. The precondition for this event int e�! s is memt =
val. Due to the induction hypothesismemt =L memt0 we havememt0 = val

which gives the precondition fort0 e�! s0 for somes0. Thus,s0 �:Æ0=) t0 e�! s0
for somes0. The event does not change any part of eithert or t0 (in the transition
to s or s0 respectively) which givesInv(�; �0; s; s0; i+ 1).

outvar(h; val) Set�0 = Æ0:he0i wheree0 = outvar(h; val0) and val0 = memt0(h).
Thens0 �:Æ0=) t0 e0�! s0 for somes0. We haveInv(�; �0; s; s0; i + 1) since the
potential difference inval for �0 and� does not affect�0jLTP = �jLTP because
outvar(h; �) events are classified asHTP nHITP . Note that we could have just as
well chosen to set�0 = Æ0 without affecting the invariant.

schedule(tid) Set�0 = Æ0:hei. Thens0 �:Æ0=) t0 e�! s0 for somes0 since the precondi-
tions for t0 e�! s0 are guaranteed by the induction hypothesisatidt = atidt0 =
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?, live(t0; tid) = tt. The postconditions are updated in the same way, namely,
atids = atids0 = tid ensuringInv(�; �0; s; s0; i+ 1).

yield(info) Set�0 = Æ0:hei. Yielding info in t e�! s has the preconditionexecutedt =
tt ^ ainfot = info. By the induction hypothesis,executedt = executedt0 =
tt ^ ainfot = ainfot0 = info which givess0 �:Æ0=) t0 e�! s0 for somes0 The
postconditions are updated in the same way:executeds = executeds0 = ff ^
ainfos = ainfos0 = ? ensuringInv(�; �0; s; s0; i+ 1).

Let us turn to local events. We are able to treat all events at once by appealing to
Lemmas 2, 3 and unwinding strong low-bisimulation according to Definition 6. We
only have two cases one:
first(threadt(atidt)) 6= fork(��) We have thatexecutedt = ff, atidt 6= ?, live(t; atidt),

and t e�! s hold. By applying the first case of Lemma 2 we receive thathjthreadt(atidt);memtji _ hjthreads(atids);memsji. By the induction hypothesis
holdsmemt =L memt0 andthreadt(atidt) uL threadt0(atidt0) (note thatatidt =
atidt0 ). Unwinding the definition of strong low-bisimulation (Definition 6) yields
that there existC 0 andmem0 such thathjthreadt0(atidt0);memt0 ji _ hjC 0;mem0ji,
threads(atids) uL C 0, andmems =L mem0. According to the induction hy-
pothesis, we haveexecutedt0 = ff, atidt0 6= ?, andlive(t0; atidt0). Thus, we can
apply Lemma 3. By Lemma 3 there exists an evente0 2 EMWL

local and an SES-

states0 with t0 e0�! s0, atids0 = atidt0 , threads0(atids0) = C 0 andmems0 =
mem0, executeds0 = tt. We havethreads(atids) uL threads0(atids0). More-
over, for all tid with tid 6= atidt0 holdsthreads0(tid) = threadt0(tid). Because
threads(atids) uL threads0(atids0), boththreads(atids) andthreads0(atids0) ei-
ther make a computation step or terminate. Hence,terminates(threads(atids)) =
terminates(threads0(atids0)). As a result,executedandainfo are updated in the

same way for boths ands0. Therefore, setting�0 = Æ0:he0i givess0 �:Æ0=) t0 e0�!s0 such thatInv(�; �0; s; s0; i+ 1).
first(threadt(atidt)) = fork(��) We have thatexecutedt = ff, atidt 6= ?, live(t; atidt),

andt e�! s hold. By applying Lemma 2 we obtainhjthreadt(atidt);memtji _hjthreads(atidt:0) : : : threads(atidt:n);memsji wheren 2 N is the maximal nat-
ural number for whichthreads(atidt:n) 6= ? holds. According to the induction
hypothesis, we havememt =L memt0 and threadt(atidt) uL threadt0(atidt0)
(note thatatidt = atidt0 ). Unwinding the definition of strong low-bisimulation
(Definition 6) yields that there exists a commandC 0, a command sequence~D = hD1 : : : Dni, and a memorymem0 such thathjthreadt0(atidt0);memt0 ji _hjC 0 ~D;mem0ji where threads(atidt:0) uL C 0, threads(atidt:1) uL D1; : : : ;
threads(atidt:n) uL Dn andmems =L mem0. According to the induction hy-
pothesis, we haveexecutedt0 = ff, atidt0 6=?, andlive(t0; atidt0). Thus, we can
apply Lemma 3. By Lemma 3 there is an evente0 2 EMWL

local and an SES-states0 with t0 e0�! s0, atids0 = atidt0 :0, threads0(atidt0) = >, mems0 = mem0, and
executeds0 = tt. Moreover,threads0(atidt0 :0) = C 0 and threads0(atidt0 :1) =D1; : : : ; threads0(atidt0 :n) = Dn. Further, for alltid with tid =2 fatidt0 ; atidt0 :0;
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: : : ; atidt0 :ng holds threads0(tid) = threadt0(tid). Finally, executedandainfo
are updated in the same way for boths ands0 (n threads are spawned in both

cases). Therefore, setting�0 = Æ0:he0i gives s0 �:Æ0=) t0 e0�! s0 such that
Inv(�; �0; s; s0; i+ 1). 2

Proof. [of Theorem 5] Assuming thatMWLPool(C) satisfiesBSIVTP (Tr) (whereTr =
TrMWLPool(C)) we will show thatC is secure, i.e.,C uL C (by Definition 7). Note
that we do not need to assumeBSDVTP (Tr) although it is implied bySecProp. Let
us prove this statement by contraposition. In other words, assumingC 6uL C ^
SecProp(MWLPool(C)) we aim to arrive at a contradiction.

By Lemma 6,C uL C () C(\i<!uiL)C. AssumingC 6uL C implies9i: C 6uiLC. Takek = minfi j C uiL C ^ C 6ui+1L Cg. Note thatk � 0 since, obviously,C u0L C. Assume for simplicity that nofork-command occurs inC, i.e., C never
spawns new threads. Along the way, we discuss how the proof can be modified to go
through without the assumption. We consider two sequences of transitions of the form
given in Figure 17. Note that each element of the sequences inherits the command in
the configuration from the previous element. Observe that the low parts of the memory
progress in both sequences in the same way. The sequences continue as shown in Fig-
ure 18. These sequences must exist due to8i 2 f0; : : : ; kg: C uiL C andC 6uk+1L C.
Matching the firstk steps in both sequences and the low-equivalence of the memories
during the firstk steps are guaranteed by8i 2 f0; : : : ; kg: C uiL C. However, at stepk+1we have8Dk+1; l̂0k+1: hjDk; (h0k; lk)ji _ hjDk+1; (ĥ0k+1; l̂0k+1)ji =) l̂k+1 6= l̂0k+1.
In caseC may spawn new threads, the difference is that instead of inheriting the com-
mands from the previous element in the sequences Seq1 and Seq2, the next command
is chosen from the command in the previous configuration by selecting the thread that
is the counterexample for the low-bisimulation of thread pools obtained at the previ-
ous step. Importantly, the sequences oftid’s chosen in both Seq1 and Seq2 are then
identical. We will use this observation later.

We proceed by constructing two traces ofMWLPool(C) that correspond to the two
sequences. We will transform one trace into the other usingSecPropsuch that the low-
equivalences and step matching is preserved. This will takeus to a contradiction at stepk + 1. Start off by constructing a trace ofMWLPool(C) that corresponds to Seq1. We
appeal to Lemma 3 to obtain step-by-step construction of a trace of the form given in
Figure 19 for sometid0; : : : ; tidk; info1; : : : ; infok+1 where eachei (i = 1; : : : ; k+1) is
the internal event that corresponds to the_-transition in Seq1 according to Lemma 3.
In case no threads are spawnedtidi = 0 for all i = 0; : : : ; k. As we noted, in caseC may spawn new threads the sequences oftid’s chosen in both Seq1 and Seq2 are
identical. By a similar argument the information containedin info sequences must also
be identical for Seq1 and Seq2 up toinfok. Due toSecPropwe can insert high events
into right tails of that do not contain any high events. We get a legitimate traceafter
the insertion. Let us insert thesetvar(h; ĥk) event betweensetvar(h; hk) andek+1 in�. Define = setvar(h; ĥk), � = hek+1:yield(infok+1):outvar(l; l̂k+1)i, and� =Æ:hsetvar(h; hk)i for someÆ such that = �:�. We have�jHITP = hi. By SecPropwe
have9�0: �0jLTP = �jLTP ^ �0jHITP = hi ^ Æ:hsetvar(h; hk):setvar(h; ĥk)i:�0 2 Tr.
Observe that settingh to ĥk means restoring the value ofh from the result of the
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Seq1:hjC; (h0; l0)ji _ hjC1; (ĥ1; l̂1)ji hjC1; (h1; l1)ji _hjC2; (ĥ2; l̂2)ji hjC2; (h2; l2)ji _ : : :
Seq2:hjC; (h00; l0)ji _ hjD1; (ĥ01; l̂1)ji hjD1; (h01; l1)ji _hjD2; (ĥ02; l̂2)ji hjD2; (h02; l2)ji _ : : :

Figure 17: Sequences Seq1 and Seq2

Seq1: : : : _ hjCk; (ĥk; l̂k)ji hjCk; (hk; lk)ji _ hjCk+1; (ĥk+1; l̂k+1)ji
Seq2: : : : _ hjDk; (ĥ0k; l̂k)ji hjDk; (h0k; lk)ji 6_ hjDk+1; (ĥ0k+1; l̂k+1)ji

Figure 18: The continuation of Seq1 and Seq2 = hschedule(tid0):setvar(l; l0):setvar(h; h0):e1:yield(info1):outvar(l; l̂1):
schedule(tid1):setvar(l; l1):setvar(h; h1):e2:yield(info2):outvar(l; l̂2): : : :: : :schedule(tidk�1):setvar(l; lk�1):setvar(h; hk�1):ek:yield(infok):outvar(l; l̂k):
schedule(tidk):setvar(l; lk):setvar(h; hk):ek+1:yield(infok+1):outvar(l; l̂k+1)i

Figure 19: Sequence0 = hschedule(tid0):setvar(l; l0):e01:yield(info1):outvar(l; l̂1):
schedule(tid1):setvar(l; l1):e02:yield(info2):outvar(l; l̂2): : : :: : :schedule(tidk�1):setvar(l; lk�1):e0k:yield(infok):outvar(l; l̂k):
schedule(tidk):setvar(l; lk):e0k+1:yield(infok+1):outvar(l; l̂k+1)i

Figure 20: Sequence000 = hschedule(tid0):setvar(l; l0):setvar(h; h00):e001 :yield(info1):outvar(l; l̂1):
schedule(tid1):setvar(l; l1):setvar(h; h01):e002 :yield(info2):outvar(l; l̂2): : : :: : :schedule(tidk�1):setvar(l; lk�1):setvar(h; h0k�1):e00k :yield(infok):outvar(l; l̂k):
schedule(tidk):setvar(l; lk):setvar(h; h0k):e00k+1:yield(infok+1):outvar(l; l̂k+1)i

Figure 21: Sequence00
Seq2:hjC; (h00; l0)ji _ hjD1; (ĥ01; l̂1)ji hjD1; (h01; l1)ji _ hjD2; (ĥ02; l̂2)ji hjD2; (h02; l2)ji_ : : :: : : _ hjDk; (ĥ0k; l̂k)ji hjDk; (h0k; lk)ji _ hjDk+1; (ĥk+1; l̂k+1)ji

Figure 22: New form of Seq2
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previous transition in Seq1. We can just as well omit both updates ofh implyingÆ:�0 2 Tr.
Carrying on with the elimination of the rightmost eventsetvar(h; hi) for i =k; : : : ; 0 we get a trace0 2 Tr that (after removing all occurrences ofoutvar(h; �)-

events without loss of generality) has the form depicted in Figure 20. Due to the low
events embracing each local eventei for i = 1; : : : ; k+1 it must be the case that there
is a one-to-one correspondence betweenei ande0i for i = 1; : : : ; k + 1 (although they
are not necessarily identical).

The next pass is the insertion ofsetvar(h; �) following the sequence Seq2. Let us
construct new versions of, �, � in order to applySecProp. Let  = setvar(h; h00),� = hschedule(tid0):setvar(l; l0)i and� is such that0 = �:�. By SecPropwe have9�0: �0jLTP = �jLTP ^�0jHITP = hi^�:hsetvar(h; h00)i:�0 2 Tr. Continuing rightmost
setvar(h; h0i) (i = 0; : : : ; k + 1) insertion we get a trace00 2 Tr that (again, after
removing all occurrences ofoutvar(h; �)-events without loss of generality) has the form
depicted in Figure 21. Due to the lowschedule- andyield-events embracing each local
evente0i (i = 1; : : : ; k+1) it must be the case that there is a one-to-one correspondence
betweene0i ande00i for i = 1; : : : ; k + 1 (although they are not necessarily identical).

According to Lemma 2 we can now convert the trace00 into a sequence of_-
transitions. The crucial property is that these transitions are deterministic, i.e., ifhjE;memji _ hjE0;mem0ji then8E00;mem00: hjE;memji _ hjE00;mem00ji =) E0 =E00 ^ mem0 = mem00. In caseC may spawn threads, we also need the observation we
made about the same sequences oftid’s andinfo’s that are used in the construction of
Seq1 and Seq2. This is important to restore the branching behavior of traces as it was
in Seq1 and Seq2. The fact that only programs with the same branching structure can
be low-bisimilar is reflected in the traces, because the branching behavior is recorded
in the low schedule-events. Thus, by induction, we can restore the sequence Seq2,
as depicted in Figure 22 for some commandDk+1, which contradicts our original as-
sumption about Seq2. 2
Proof. [Sketch of Lemma 7] The proof can be carried out along the same lines as
the proof of Lemma 1. Choose 2 E� with s0 =) s. The proof is by induction
on . The step case ( = Æ:hei), is trivial if e is a setvar-, outvar, input trans-event
or e =2 Epid. For other events, a case distinction is made according to the induction
hypothesis wheree 2 EDMWL

local , e = trans(cid; val) for somecid 2 CID andval 2 VAL
with sender(cid) = pid, e = yield(info), e = schedule(tid), respectively, hold in the
four cases. Each of these cases follows from Figures 2, 7, 15,and 16. 2
Proof. [Sketch of Lemma 8] The proof can be carried out along the same lines as for
Lemma 2. A case distinction one is made. The cases wheree 2 EMWL

local can be handled
as in the proof of Lemma 2 becausechannel(s0) = channel(s). If e is asend-, receive-,
ite-rcvtt-, or ite-rcvff-event then the proposition follows from Figures 9 and 16. 2
Proof. [of Theorem 6] First, we establish a few restrictions on. Observe that the
following properties are satisfied for allcid; cid0 2 CID , all val; val0 2 VAL , all

pidr; pidi 2 Pid with pidr 6= pidi, and allschedulepidr (: : : ), ite-rcvffpidr (cid; : : : ),
sendpidi(cid; val0)-events:
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� If  = 1:hschedulepidr(: : : )i:2:hite-rcvffpidr (cid; : : : )i:3
and2jEpidr 2 ftrans(cid0; val0) j receiver(cid0) = pidr; sender(cid0) 6= pidrg�
thens 0=) s0 where0 = 1:hschedulepidr (: : : ):ite-rcvffpidr(cid; : : : )i:2:3.� If  = 1:hsendpidi(cid; val)i:2:hschedulepidr (: : : ):ite-rcvffpidr(cid; : : : )i:3
and2jEpidi 2 ftrans(cid0; val0) j cid0 6= cidg�
thens 0=) s0 where0 = 1:2:hschedulepidr (: : : ):ite-rcvffpidr (cid; : : : ):sendpidi(cid; val)i:3.

Both of these properties can be proved by a simple induction over2. According to the
above properties we may make the following assumptions about . These assumptions
will be helpful for applying Lemma 8.

1. If  = 1:hschedulepidr(: : : )i:2:hite-rcvffpidr (cid; : : : )i:3
and2jEpidr 2 ftrans(cid0; val0) j receiver(cid0) = pidr ^sender(cid0) 6= pidrg�
then2 = hi.

2. If  = 1:hsendpidi(cid; val)i:2:hschedulepidr (: : : ):ite-rcvffpidr(cid; : : : )i:3
then an eventtrans(cid; val) occurs in2. Together with the precondition of
ite-rcvff, this implies that there must be areceive- or ite-rcvtt-event in2 that
consumes the messageval oncid.

Moreover, we assume that contains nosetvar- or outvar-events. That contains no
setvar-events is an assumption of the theorem.outvar-events have no effect on the state
and, hence, they can safely be removed.

The proof of the theorem proceeds by induction on the length of .
Base case( = hi): The proposition holds becauses0 = s and�� is reflexive.

Step case( = hei:Æ): There existssi 2 S with s e�! si andsi Æ=) s0. We make a
case distinction depending on ife is associated with one or more DMWL thread pools
(at most two).

Firstly, assume that there arepidi; pidr 2 Pid with pidi 6= pidr ande 2 Epidi \Epidr . e = trans(cid; val) holds. Without loss of generality, assumesender(cid) = pidi
and receiver(cid) = pidr. We havechannel(s0) = channel(s). The occurrence ofe
affects onlyinbufandoutbufbut no other state variables. The proposition follows from
the reflexivity of��.

Secondly, assume that there is exactly onepid 2 Pid with e 2 Epid. Let sjpid =(mems; threads; atids; : : : ; executeds; : : : ; outbufs). We make a case distinction ac-
cording to Lemma 1.� Assumeexecuteds = ff^atids 6= ?^threads(atids) =2 f?;>; hig^outbufs = hi.

The proposition follows frome 2 EDMWL
local , Lemma 8, the frame-axioms for events

in EDMWL
local , Definition 20, rule Step, rule Pick, and the induction hypothesis. Note

that if e = ite-rcvff(cid0; : : : ) thenchannel(s)(cid0) = hi holds because of our
initial assumptions (1,2) on. Hence, the requirements of Lemma 8 are, indeed,
satisfied.
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� The caseexecuteds = tt ^ atids 6= ? ^ outbufs 6= hi cannot happen. Sincee = trans(cid; val), sender(cid); receiver(cid) 2 Pid, and a process cannot send
to itself, this case contradicts our assumption that there is exactly onepid 2 Pid
with e 2 Epid.� Assumeexecuteds = tt ^ atids 6= ? ^ outbufs = hi. e = yield(ainfos) holds.
config(s0; pid) = (cseq(threads);mems) andchannel(s0) = channel(s) are implied
by the postcondition ofyield. Proposition follows from the induction hypothesis.� Assumeexecuteds = ff ^ atids = ? ^ outbufs = hi. e = schedule(tid) holds.
config(s0; pid) = (cseq(threads);mems) andchannel(s0) = channel(s) are implied
by the postcondition ofschedule. Proposition follows from the induction hypoth-
esis. 2

Proof. [Sketch of Lemma 9] The proof can be carried out along the same lines as for
Lemma 3. LetD be a derivation ofhjthreads(atids);mems; channel(s)ji_hjC 0;mem0; �0ji
(or hjthreads(atids);mems; channel(s)ji _ hjC 0D1 : : : Dn;mem0; �0ji). There must be
exactly one application of one of the rules Skip, Assign, Iftt, If ff, Whilett, Whileff, Fork,
Send, Receive, IfRcvtt, or IfRcvff in D. All cases except for Send, Receive, IfRcvtt,
or IfRcvff can be handled as in the proof of Lemma 3 because�0 = channel(s). The
remaining cases follow from Figures 9 and 16. 2
Proof. [Sketch of Theorem 7] The proof can be carried out along the same lines as the
proof of Theorem 3. We only point out the differences.

The induction needs to be done over the application of rule Step rather than rule
Pick. In the step case, Lemma 9 is used rather than Lemma 3. Forthe case where the
command is asend-command, choose = he1:e2:e3:e4i wheree1 = schedule(: : : ),e2 2 EDMWL

local , e3 = trans(: : : ), e4 = yield(: : : ). For the case where the command is
no send-command, choose = he1:e2:e4i. If e2 is a receive- or a ite-rcvtt-event, the
requirementchannel(s)(cid0) = hi of Lemma 9 is, indeed, satisfied ifpendings(cid0) =hi. The argument is thatinbuf of the chosen thread pool is empty after theschedule-
event andoutbufis empty for all thread pools (follows from reachability ofs, atids =?, executeds = ff, and Lemma 7). 2
Proof. [of Lemma 10] The proof is conducted similarly to the proof of Lemma 4. We
proceed by induction on the length of�, using Lemma 8 to match the transition in the
semantics of DMWL, and unwinding Definition 10 of strong low-bisimulation. In the

inductive step, we haves0 Æ=) t e�! s such that8tid: live(t; tid) =) threadt(tid) uL
threadt(tid). Suppose eitherfirst(threadt(atidt)) = fork(��) or first(threadt(atidt)) 6=
fork(��) such that ife = ite-rcvff(cid; var; val; C1; C2) thenchannel(t)(cid) = hi. Then,
Lemma 8 is directly applicable and the proof follows the proof of Lemma 4.

In casee = ite-rcvff(cid; var; val; C1; C2) andchannel(t)(cid) 6= hi, we observe that
pendingt(cid) = hi by the precondition fore. Becausereceiver(cid) = pid, we have
channel(t)(cid) = inbuft(cid):pendingt(cid) (cf. Section 7.6). Thus,inbuft(cid) 6= hi.
The precondition fore requires thatfirst(threadt(atidt)) = if-receive(cid; var; C1; C2).
Moreover, we have the DMWL transitionhjthreadt(atidt);memt; channel(t)[cid 7! hi℄ji
_ hjthreads(atids);mems; channel(s)[cid 7! hi℄ji such thatfirst(threads(atids)) = C2,
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memt = mems, andchannel(t) = channel(s). Now, threadt(atidt) is secure by the in-
duction hypothesis. By Definition 10 of strong low-bisimulation, there existC 0, mem0,
and�0 such thathjthreadt(atidt);memt; channel(t)[cid 7! hi℄ji _ hjC 0;mem0; �0ji where
mems =L mem0, threads(atids) uL C 0, andchannel(s)[cid 7! hi℄ =L �0. Since_-
transitions are deterministic, it must be the case thatC 0 = threads(atids), mem0 =
mems and�0 = channel(s)[cid 7! hi℄. Thus,threads(atids) uL threads(atids). Be-
cause no othertid’s are affected, the proof for this case is completed. 2
Proof. [Sketch of Theorem 8] Assume thatC is secure. We need to show that the
DMWL processDMWLProcess(pid; C) satisfiesSecProp. According to Section 3.2,
we need to proveBSIVTP (Tr) andBSDVTP (Tr) whereTr = TrMWLPool(C). We prove
BSIVTP (Tr) (BSDVTP (Tr) is proved similarly) using the technique of Theorem 4. Given�; � 2 E� and 2 HITP where is to be inserted, our aim is to inductively construct
an appropriate�0 by modifying�. In the inductive construction for sequences�,�0,
we will prove the invariantInv(�; �0; s; s0; i) from the proof of Theorem 4, extended
with the following requirements:11: blocked-set(s) = blocked-set(s0)12: inbufs =L inbufs0 ^ pendings =L pendings013:8cid2 CID : domch(cid) = low =)(outbufs = (cid; val) () outbufs0 = (cid; val))
Lemma 10 guarantees that part 6 of the invariant holds for thebase case. In the in-
ductive step, we have to construct�0; s0 such thatInv(�; �0; s; s0; i+ 1) assuming that� = Æ:hei and, by the induction hypothesis,Inv(Æ; Æ0; t; t0; i) for someÆ0; t0. The proof

is by considering cases one such thats0 �:Æ=) t e�! s for somes. In all cases we will

aim at preserving the invariant. We haves0 �:Æ=) t ands0 �:hi:Æ0=) t0. Clearly,e cannot
be asetvar(h; �) or trans(cid; �) (where domch(cid) = high andreceiver(cid) = pid)
by the�jHITP = hi condition on�. The casese = setvar(l; val), e = outvar(l; val),
ande = outvar(h; val) are handled identically to the cases in the proof of Theorem 4.
In casee = schedule(tid), part 11 of the invariant ensures that we can schedule the
same thread int0. Part 12 is updated in boths and s0 in the same way. The casee = yield(info; blocked-info) is treated similarly. The cases whene is a newtrans-
event are:

trans(cid; val); receiver(cid) = pid It must be the case thatdomch(cid) = low be-
causedomch(cid) = high would imply trans(cid; val) 2 HITP ande cannot be
such an event. The case is analogous to the one forsetvar(l; val)-events (the
precondition is alwaystrue).

trans(cid; val); sender(cid) = pid The precondition for this event isoutbuf(t; cid) =(cid; val). In case domch(cid) = low, due to part 13 of the invariant, we have
outbuf(t0; cid) = (cid; val), which enablese in statet0. Set�0 = Æ0:hei; and we
haveoutbuf(s; cid) = outbuf(s0; cid) = hi which preserves the invariant.

In case domch(cid) = high, there are two different cases: Ifoutbuf(t0; cid) =(cid; val0), then�0 = Æ0:he0i wheree0 = trans(cid; val0) which preserves the
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invariant. Ifoutbuf(t0; cid) = hi, then take simply�0 = Æ0 which also preserves
the invariant.

The cases on local events are proved along the lines of the proof of Theorem 4. The
cases when Lemmas 8, 9 are not applicable are resolved separately in the same manner
as in the proof of Lemma 10. Otherwise, we apply Lemmas 8, 9 andunwind strong
low-bisimulation according to Definition 10. Part 11 of the invariant is preserved as a
corollary of the following general statement. For a channelcid and commandsD andD0 such thatD uL D0, if first(D) = receive(cid; �) thenfirst(D0) = receive(cid; �)
and, furhermore,domch(cid) = low. Due to this statement and parts 6 and 12 of the
invariant, part 11 is preserved through the case whene is a local event. 2
Proof. [Sketch of Theorem 9] The proof is conducted by contraposition, as for The-
orem 5. We will use a version of Lemma 6 for the new strong low-bisimulation to
facilitate the proof. AssumingC 6uL C ^ SecProp(DMWLProcess(pid; C)) we arrive
at a contradiction toBSIVTP (Tr) ^ BSDVTP (Tr) (whereTr = TrMWLPool(C)).

In contrast to the proof of Theorem 5, we do rely onBSDVTP (Tr) in the proof. The
idea is to use Lemmas 8 and 9 in building the sequences similarto the ones in the proof
of Theorem 5. Assume (without loss of generality) we only have two high channels
cidh (receiver(cidh) = pid) andcidoh (sender(cidoh) = pid) and two low channelscidl
(receiver(cidl) = pid) andcidol (sender(cidol ) = pid). We treattrans(cidh; �)-events
similarly to setvar(h; �)-events andtrans(cidoh; �)-events similarly to local events. Both
trans(cidl; �)- andtrans(cidol ; �)-events are similar to other low events.

The sequences Seq1 and Seq2 consist now of configurations extended with channel
status functions that only differ in the high part for each respective configuration. When
building a trace of DMWLProcess(pid; C) that corresponds to Seq1 we use Lemma 9.
We use the same idea as in the proof of Theorem 5 adding nowtrans-events that popu-
late the channels prior toschedule-events and alsotrans-events beforeyield-events that
clearoutbufif a local send-event has occurred. In the example below, let us represent
the channel status function as a quadruple of sequences where the first and second se-
quences correspond to the high and low input channels, respectively; and the third and
fourth sequences correspond to the high and low output channels, respectively. The
first elements of the sequences are:

Seq1:hjC; (h0; l0); (~v0; ~w0; ~x0; ~y0)ji _ hjC1; (ĥ1; l̂1); (~̂v1; ~̂w1; ~̂x1; ~̂y1)ji
Seq2:hjC; (h00; l0); (~v00; ~w0; ~x00; ~y0)ji _ hjD1; (ĥ01; l̂1); (~̂v01; ~̂w1; ~̂x01; ~̂y1)ji

First, we transform each transition of the sequences discarding redundant outputs and
all inputs except those consumed during the transition. Letus illustrate the transfor-
mation by an example of two first steps of the following two sequences. The first
transitions of these sequences are:

Seq1:hjC; (h0; l0); (v10v20 ; w10; x10; y10y20)ji _ hjC1; (ĥ1; l̂1); (v10v20 ; w10 ; x10x20; y10y20)ji
Seq2:hjC; (h00; l0); (v010v020; w10 ; hi; y10y20)ji _ hjD1; (ĥ01; l̂1); (v010; w10 ; hi; y10y20)ji

Note that the low-level components are matched (including the low-input and low-
output sequences) in the respective configurations. At the first step, no inputs are con-
sumed in Seq1, while only a high input is consumed in Seq2. We can safely remove
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w10 from the low input of both sequences andv10v20 andv010 from the high input of Seq1
and Seq2, respectively. No output is produced by Seq2, whileonly a high output is
produced by Seq1. Hence, we can safely discardy10y20 from the low output of both
sequences andx10 from the high output of Seq1. The first transitions of the resulting
sequences Seq10 and Seq20 are:

Seq10: hjC; (h0; l0); (hi; hi; hi; hi)ji _ hjC1; (ĥ1; l̂1); (hi; hi; x20 ; hi)ji
Seq20: hjC; (h00; l0); (v020; hi; hi; hi)ji _ hjD1; (ĥ01; l̂1); (hi; hi; hi; hi)ji

Suppose the second transitions of the sequences Seq1 and Seq2 are:

Seq1:hjC1; (h1; l1); (v11 ; w11w21 ; hi; hi)ji _ hjC2; (ĥ2; l̂2); (v11 ; w11 ; hi; hi)ji
Seq2:hjD1; (h01; l1); (v011v021; w11w21 ; hi; hi)ji _ hjD2; (ĥ02; l̂2); (v011v021; w11 ; hi; hi)ji

At the second step, only low inputs are consumed in both Seq1 and Seq2. Thus, we can
safely removev11 andv011v021 from the high inputs of Seq1 and Seq2, respectively. Also,
we can removew11 from the low inputs of both Seq1 and Seq2. On the other hand, we
can safely insertx20 from the first step of Seq10 in the high output sequence for Seq10
for the second step. The second transitions of the resultingsequences Seq10 and Seq20
are:

Seq10: hjC1; (h1; l1); (hi; w21 ; x20; hi)ji _ hjC2; (ĥ2; l̂2); (hi; hi; x20; hi)ji
Seq20: hjD1; (h01; l1); (hi; w21 ; hi; hi)ji _ hjD2; (ĥ02; l̂2); (hi; hi; hi; hi)ji

The beginning of that corresponds to the first two steps of Seq10 is then: = hschedule(tid0):setvar(l; l0):setvar(h; h0):e1:trans(cidoh; x20):yield(info1):outvar(l; l̂1):
trans(cidl; w21):schedule(tid0):setvar(l; l1):setvar(h; h1):e2:yield(info2):outvar(l; l̂2) : : : i

In the example above,e1 is a send(cidoh; x20)-event, and, therefore, it is followed by
a trans(cidoh; x20)-event. The rest of the proof uses Lemma 8 and continues alongthe
lines of the proof Theorem 5. Note that Lemmas 8 and 9 are applicable to the traces
we create, because inputtrans-events appear beforeschedule-events that ensure that all
values are forwarded frominbuf to pendingof the current state. Note thatBSDVTP (Tr)
is used during the first pass (cf. sequence0 in the proof of Theorem 5) in order to
delete thetrans(cidh; vji )-events, whereasBSIVTP (Tr) is used during the second pass
(cf. sequence00 in the proof of Theorem 5) in order to insert thetrans(cidh; v0ji )-
events. Thus, we make use of both basic security predicates in this proof. 2
Proof. [of Lemma 11] The proof is carried out along the same lines asthe proof of
the Zipping Lemma for forward correctability in [20]. Because ofBSDVpid(Trpid), it
suffices to prove the lemma under the assumptiontpidjCpid = hi for all pid 2 Pid.

The proof proceeds by induction on�. In the base case, i.e., for� = hi, the
proposition holds with the choicet = hi. In the step case, i.e., for� = hvi:�0, we make
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a case distinction. Firstly, assume that there arepidi; pidr 2 Pid (with pidi 6= pidr)
such thatv 2 V pidi \ V pidr . Secondly, assume that there is exactly onepid0 2 Pid for
whichV pid0 holds. We only prove the first case, since this is the more difficult case.

Since DMWL processes may only interact viatrans-events,v = trans(cid; val)
must hold. Without loss of generality,sender(cid) = pidi andreceiver(cid) = pidr.
Chooserpidi1 ; spidi1 2 Epidi� andrpidr1 ; spidr1 2 Epidr� such thattpidi = rpidi1 :hvi:spidi1 ,rpidi1 jV = hi, tpidr = rpidr1 :hvi:spidr1 , andrpidr1 jV = hi hold. Because(rpidr1 jEpidi )2Cpidi�
andBSIVpidi (Trpidi), there arerpidi2 ; spidi2 2Epidi� with � jEpidi :(rpidr1 jEpidi ):rpidi2 :hvi:spidi2 2
Trpidi , rpidi2 jV = hi, spidi2 jV = spidi1 jV , and(rpidi2 :hvi:spidi2 )jCpidi = hi. Sincev 2V pidr \ rpidr , (rpidi2 jEpidr ) 2 (Cpidr \ �pidr)�, andFCIrpidr ;�pidrVpidr (Trpidr ), there exists

a sequencespidr2 2 Epidr� with � jEpidr :rpidr1 :(rpidi2 jEpidr ):hvi:spidr2 2 Trpidr , spidr2 jV =spidr1 jV , andspidr2 jCpidr = hi. For eachpid 2 Pid n fpidi; pidrg, there is aspid2 2Epid� with (rpidr1 :rpidi2 )jEpid:spid2 2 Trpid, spid2 jV = tpidjV , andspid2 jCpid = hi (because(rpidr1 :rpidi2 )jEpid 2 Cpid� andBSIVpid(Trpid)). The proposition follows after an applica-
tion of the induction hypothesis for�:rpidr1 :rpidi2 :hvi, �0, andspid2 (for pid 2 Pid). 2
Proof. [of Theorem 10] We abbreviate byr = rPid and� = �Pid. We have to show
thatBSDV(Tr), BSIV(Tr), andFCIr;�V (Tr) hold. We only proveFCIr;�V (Tr) explicitly.
The other statements can be proved along the same lines.

Assume�; � 2 E� and; v 2 E such that�:hvi:� 2 Tr,  2 C \ �, v 2 V \ r,
and�jC = hi. According to the definition of composition, we have(�:hvi:�)jEpid 2
Trpid. Our restrictions on the composition on DMWL processes together with  2C \ � imply that 2 Epid holds for exactly onepid 2 Pid. Our restrictions on the
composition on DMWL processes together withv 2 V \r imply thatv 2 Epidv holds
for exactly onepidv 2 Pid. We make a case distinction onpid = pidv _ pid 6= pidv.

Firstly, assumepid = pidv. A trace�pid 2 Epid� exists with�jEpid :h:vi:�pid 2
Trpid , �pid jV = �jV pid , and�pid jCpid = hi becauseBSDVpid (Trpid) (delete�jCpid
in (�:hvi:�)jEpid ) and FCIr;�Vpid (Trpid) (insert  beforev). The assumptions of the
Zipping Lemma are fulfilled for� = �:h:vi, tpid = �jEpid (for pid 6= pid), tpid =�pid , and� = �jV .

Secondly, assumepid 6= pidv . A trace�pid 2 Epid� exists with�jEpid :hi:�pid 2
Trpid , �pid jV = �jV pid , and�pid jCpid = hi hold becauseBSDVpid (Trpid) (delete�jCpid in (�:�)jEpid ) and BSIVpid (Trpid) (insert  after �jEpid ). The assumptions
of the Zipping Lemma are fulfilled for� = �:h:vi, tpid = �jEpid for pid 6= pid,tpid = �pid , and� = �jV .

In both cases,�0 2 E� exists with�:h:vi:�0 2 Tr, �0jV = �jV , and�0jC = hi. 2
Proof. [of Lemma 12] Assume�; � 2 E�,  2 Cpid \�pid, andv 2 V pid \ rpid with�:hvi:� 2 Trpid and�jCpid = hi. Hence, = trans(cid; val) where domch(cid) = high,
receiver(cid) = pid, andsender(cid) 6= pid.

We havev = trans(cid0; val0) with domch(cid0) = low, receiver(cid0) = pid, and
sender(cid0) 6= pid. BSIVpid(Trpid) ensures that�0 2 Epid� exists with�:hv:i:�0 2
Trpid, �0jV pid = �jV pid, �0jCpid = hi. The event has no preconditions and affects only
inbuf(cid). Sincecid0 6= cid, trans(cid0; val0) neither depends oninbuf(cid) nor affects
it. Hence, andv can be exchanged in the trace, i.e.,�:h:vi:�0 2 Trpid. 2
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