
1 for ISMIS-91The Roles of Arti�cial Intelligence in Information SystemsGio WiederholdStanford UniversityNovember 1, 1998AbstractBy determining classes of information processing tasks which are suitable forarti�cial intelligence approaches we outline an architectural structure for largesystems. In that structure processing modules become specialized. We arguethat arti�cial intelligence programs should remain simple and constrained toa single ontology. Tasks are typed as focusing, pruning, fusion, and reduction.There are also control tasks associated with e�ective resource management.Their results are then composable by higher level applications, which have tosolve problems involving multiple subtasks.The arti�cial intelligence modules will need a machine-friendly interface tosupport those applications. This interface must provide good communication,while encapsulating the arti�cial intelligence tasks, so that the complexity ofthe composed system is not much greater than that of the individual subtasks.The corresponding architecture is a generalization of a server-client model.The partitioning enhances maintainability, but questions of e�ectiveness ande�ciency do arise.1. IntroductionWe de�ne information systems as computer-based systems which can access a varietyof computer-stored or generated base data, and select and process that data to providespeci�c information to aid planners and management in their decision-making. Whilethe source data are often voluminous, a modest amount of alternative choices shouldbe presented, in a clear and concise form. Presentation to the end-user of alternativesthat are not reasonable, are subsumed by other alternatives, or are largely similar onlycreate overload, forcing the decision-maker to delegate analysis to an assistant.In the computing tasks needed to support the higher levels of such processing we will�nd that arti�cial intelligence techniques are essential, since the regularity appropriateto algorithmic approaches is typically lacking. However, large databases and single-focus information retrieval can be e�ectively handled by algorithmic approaches. Ininformation retrieval heuristics appear when precision and completeness of search mustbe balanced with relevance and avoidance of reader's overload. Complexity aboundswhen there are multiple information sources. There will be mismatches of data repre-sentation, of time and space, of con�dence, and of level of abstraction. However, thelarge volume of data needed for many support tasks means that algorithmic approaches,when appropriate, must be exploited [Wiederhold:91].



2The need for a multiple-paradigm approach leads to a partitioned architecture,which is actually well suited to the modern multiprocessor networked environment, asdescribed in the next section. In the approach we advocate we assign tasks which oftenrequire arti�cial intelligence to the intermediate layer. The core of this paper is inSection 3, where we enumerate some of the tasks foreseen here. These mediating tasksare substantial, and require capabilities that are similar in scope to those attained bytodays successful free-standing applications of arti�cial intelligence.In Section 4 we discuss the e�ectivenes of the approach. We illustrate our notionswith some examples. Any multi-paradigm approach has to deal with the problems of theine�ciency of the interface. We discuss how this problem can be mitigated by carefulmatching of the partitioning to the proposed architecture.In the �nal section we enumerate problems to be addressed, with some hints fortheir solution.2. Architectural IssuesArti�cial Intelligence techniques deal well with problems of greater complexity thanalgorithmic approaches, but are in practice limited to relatively small amounts of in-formation. Whereas simulations, databases, and design-systems routinely deal withmillions of elements, major arti�cial intelligence tasks, as xcon are becoming very di�-cult to manage when the number of rules exceeds, say 10 000. These projects may thenlook for guidance from algorithmic approaches [Barker:89], or develop a partitioning, asmicro-theories[Lenat:90], to make maintenance more feasible.This di�culty faced in scaling arti�cial intelligence approaches is due to their needfor alternative processing paradigms, and not surprising. In algorithmic approachedthe logic complexity is in the processing algorithms, and this logic is applied to regularstructures, as numeric matrices, trees and other structures for hierarchically decom-posed data, time-series with �xed steps, and database tables. For the arti�cial intel-ligence tasks, the complexity is represented within the structures which represent theinformation: rules can have arbitrary linkages; frames have variable numbers of slots;and instances can be members of multiple classes [Cohen:82].We will hence assume a horizontal partitioning, where complex processing is allo-cated to a mediating layer. The mediators will draw upon resources from a voluminousbase layer. Applications will have to invoke multiple mediators, as argued below. Theoverall architectural concept is sketched below [Wiederhold:91]. In this presentation wefocus on dealing with the complexity of the the problems we �nd in the processing ofarti�cial intelligence representations.result ! decision makingLayer 3 Independent decision makers | managed on workstations- - - - network services to information servers - - - -Layer 2 Multiple mediators | managed by domain specialists- - - - network services to data servers - - - - -Layer 1 Multiple resources | managed in server systemsinput  real-world changes and simulationsFigure 1: The three layers of this architecture.



32.1 Interpretation and representationAs stated above, the problem statement in arti�cial intelligence approaches is mainlyrepresented in their knowledge structures. The logical interpreters of these structuresare typically intended to be domain independent, and must deal with the complexitypresented by these representations. We note that the issue of representation is in factso pervasive that knowledge representation is often regarded as a separate scienti�ce�ort. But representation without a de�ned interpreter is not wise. For a minimal taskcommon �rst-order logic may be an adequate interpreter; but a pure implementationwill be inadequate to deal with structured representations. The use of higher-orderconcepts, as classes, partition knowledge into groupings so that the computational e�ortis structured and reduced. Although the classi�cation concepts may be describablein terms of the �rst-order logic primitives, it is not practical to always reduce theirinterpretation of the representation to that level.Higher level concepts are hence essential. For execution these concepts requireexplicit semantic description and direct interpretation. This abstraction principle iscommon to all computer languages. Algorithmic languages can also be viewed the-oretically as abstractions over Turing machine concepts, but in practice always havealgebraic or English de�nitions of their actual semantics. Practical implementations oflisp de�ne the semantics of many available functions explicitly, even though they arealways reducible to the simple primitives which made up the foundations of lisp inthe early sixties. We are hence kidding ourselves when we attempt to study complexrepresentations independently of interpretation. With representation comes a wholeimplied ontology, and with the ontologies a variety of paradigms to address informationprocessing tasks.2.2 Partitioning the mediator layerThe diversity of arti�cial intelligence ontologies makes a vertical partitioning also de-sirable in that layer. We reject the notion then that a single knowledge-based layer candeal with a wide variety of resources and serve multiple applications [Sacca:86]. Theproposed partitioning matches the concept of having specialized experts to assist incomplex tasks. The experts will consult and maintain their own knowlegde bases, butmust also access a shared base of resource information describing the problem beingaddressed, and its environment [McIntyre:87].Once we have such a partitioning we need not be limited to arti�cial intelligenceapproaches. Some expert tasks might be best served by linear programming, and othersmay extract information from bibliographic �les.2.3 ResourcesTo clarify the tasks that are needed in the mediator layer we will summarize the typesof resources which are available. Many of the resources are likely to be massive. Theymust use representations that are e�ective for algorithmic approaches. Typical aredatabases, large bodies of text, and simulations of physical processes using spatial orfour-dimensional (space and time) representations. These types of base data do notrequire initially very complex processing, so that algorithmic processes will be e�ective.However, the results of this basic algorithmic processing are rarely directly suitable atthe level that we envisage.We do see a need for the arti�cial intelligence processes to acquire from themmodestamounts of selected, focused, but possibly complex results. These results must be easy



4to integrate into the representations used in intelligent processing. We see obviousmatches here:� Object representation � frames� Aggregation results � rules� Simulation results � event listsThe interface issues here are critical. But, again, not only the representation must beconsidered. The resources are active engines, invoked by modules in the mediator layer.Active interface management encompasses selection of input parameters, control ofexecution and distribution, as well as the further processing of results.Interface issues for databases, simulations, and the like are also being addressedby researchers concerned with direct user interfaces. Although our mediating modulesdo not need traditional user-friendly interfaces, there is sharable technology, due to thepreponderance of the client-server models in modern architectures. In that systemsinterface it is important that the developing standards be machine-friendly, since theywill rely on client-based interpretation. Unfortunately that architectural insight comesslowly, and corresponding standards lag even more. The sql standard for databases,for instance, is a compromise of a not-so-user-friendly language, with an awkward em-bedding convention into programs.2.4 Resource modulesWe expand now on the types of resources which the mediating routines can exploit. Theuse of these resources requires a level of understanding in terms of parameter settingand execution control which poses a challenge to arti�cial intelligence techniques. Wewill cite some of these as we survey those resources.2.4.1 DatabasesA simple resource is a database. It provides fairly rapid selection of factual information,especially when the volume of data or considerations of shared access demand the use ofsecondary storage. The database paradigm is to return closures, that is all valid results.Further computation is needed to reduce valid results to relevant ones.It is desirable to reduce as much as possible the valid output so that the subse-quent computations will be small, and also so that bandwidth requirements betweendatabase servers and analysis machines are minimized. For instance, practical databasesystems provide facilities to aggregate results by group classi�cations. A value as theaverage delay at a port may be all that is needed in a transportation analysis, ratherthan the detailed history. But the computational cost of aggregation over large datavolumes is high.Further e�ectiveness can be introduced by intelligent control. For instance, forlong histories the average value may also be estimated e�ectively from a sample of thedatabase [Ozsoyoglu:91], [Roy:91], [Lipton:90]. More di�cult to estimate are maximumor minimum values [Rowe:83], but the important concept of variance of the result valuesis estimatable from a sample. Now the bandwidth requirements for remote access arealso minimized. Some intelligence is needed to phrase queries that give su�cientlyaccurate results at low cost.Much information for e�ective minimization resides in the databases. An impor-tant optimization supported by databases processing is in scheduling join-operationsamong multiple relations [Ullman:88]. For a list of aircraft and pilots only those



5combinations of quali�ed pilots and pilotable planes will be considered. Further con-straints as range of aircraft can be integrally imposed. The declarative nature permitsthe database to optimize access schedules. It will be hard to balance the use of externalintelligence and internal optimization without good insights into database processing[Smith:85].Optimal transfer of database results into an object representation for expert sys-tems has only recently been considered [Lee:90]. The cost of the impedance mismatchis reduced by letting the client-server interface also be the representation interface[Shoshani:85].2.4.2 SimulationsThe results of simulations provide another resource for arti�cial intelligence processes.If the applications involve future planning, then data about, say, weather forecastsmay be critical. The simulations execute continuously, re�ning short-range predictingwith recent observations, and pushing the bounds of long-range predictions as the timeprogresses.The trade-o� of precision and depth of projection is not easy, and requires intelligentprocessing. For instance, stability for long-term prediction tends to be reduced whenmany parameters are used, but for short-term predictions more parameters will increasethe precision.2.4.3 High Performance ComputingWhereas traditional simulations prepare and store information for later use, there arealso instances where a particular situation has to be evaluated. In those cases thecomputational demands to evaluate the case may be immense. The use of high per-formance computing engines is warranted when the cost of transmitting input speci�-cations, starting and executing a computation, and transmitting the result is less thanlocal computation.An intermediate agent may make that assessment. In a resource-rich environmentboth local and remote computations may be initiated, and the alternative abandonedwhen measures of computational progress indicate that one approach is better. Thismodel easily extends to use of multiple asynchronous processors in parallel. A concernwill again be to minimize bandwidth and demands on the controlling mediator.2.4.4 Reference systemsDatabases, simulations, and the like, rarely try to justify their decisions. Bibliographic-style references remain an important part of back-up for decision making. However thesesystems are well-developed on support software that is typically wholly independent ofDBMS or AI technology. As indicated in the introduction, bibliographic systems areserved by their own heuristics. However, for many decision-making tasks it is useful toselect relevant backup references.We expect that many of these references will not only be available as citations, butthat abstract and full-text will be available [McCune:85]. Now hypertext paradigmsfor establishing conceptual linkages become e�ective, but they might be driven by anintelligent mediator, rather than by the end-user, who is likely to ignore even usefuljusti�cations if the browsing e�ort is made tedious by lack of linkages to the problemanalysis at hand.



62.5 A hardware mappingWith the functional divisions we have established, a corresponding hardware partition-ing makes sense, as was implied in Figure 1. When using foreign processes, it becomesnatural to also use remote processors for substantial tasks. The reduction of cost forpowerful hardware makes the use of specialized processors more attractive. This special-ization may merely be in terms of software, specialized knowledge, and data resources.Reduction of task-switching in processors, longer real-memory residence, full exploita-tion of caching makes software specialization attractive, even while the hardware plat-forms are interchangeable. The bene�ts are gained through improved response timeswithin the individual modules, and parallel operation overall.Since, when applying arti�cial intelligence, we are looking for minimal data quan-tities, with relatively high information content per representation unit to be transferredat the module interface, we believe that the same interface will be good for the networkcommunication boundaries. That assumption is evident in Figure 1 as well.3. TasksSince we are getting access to so much more data, from a variety of sources, arrivingat ever higher rates, automated intermediate processing will be essential. The pro-cessing tasks needed within the mediators include: selection, focusing, pruning, fusion,reduction, abstraction, and generalization.The tasks required from the mediating routines must create information for decisionmaking or actual action-taking. This requires a further reduction of choices, eitherby further abstraction, ranking, or mutual selection of alternatives. Often multipleresources will be used. Investment choices for instance involve assessments of costand pro�ts, the competitive situation, and alternative investments. Logistics decisionsinvolve availability of land, air, and sea transportation, readiness of the goods to beshipped, availability of storage at the destination, and prediction of weather conditions.All of these are likely to be on distinct resources, as outlined above.3.1 FocusingA primary task for a mediator is to transform the information obtained from sourcesinto a more focused representation. That involves �rst of all reorganizing the datarepresentation. Databases, for instance, because of their goal of universality, producelarge tables with no indication of what entries are important and what is not. A typicalobject-focused representation is a tree structure, where the objects of concern form theroot.Alternative or complementary representations are ranked list, which order the re-sults by some, possibly multi-variable, measure of relevance.In decision-making applications, the best ranking considers the bene�ts and thecosts. Risk may also be a concern. If solutions are subsumed on all criteria, they shouldbe deleted. If solutions have similar balance, then they should be presented as group,and then entries within a group ranked as secondary choices.The primary choices - good but di�erent in balance, are to become the initialfocus. Once a balance has been selected, then other members of the group can pop upfor further re�nement.



73.2 PruningImplied above was that the decision would be made over the closure of possible alter-natives. But in many cases generating closure fast is not computationally feasable. Wedo not want all routes to y from San Francisco to Knoxville. There are many validchoices, but an in�nity of invalid ones. Stopping in Singapore may be fun, but is notvalid.To manage pruning requires intelligence in dealing with the resources. A simpleheuristic is that any trip with a leg longer or more costly than the best trip now in theresult set should be avoided.An initial assessment may consider hubs: Denver, Chicago, Salt Lake City, Atlanta,Dallas, as well as Dulles. Limiting search to a depth three makes also sense here, butthe depth will vary based on itinerary. Erik Sandewall might not be able to attend ismiswith that limit.In general breadth-�rst search is preferable over depth-�rst when pruning is anissue. But breadth-�rst is a poor strategy when pruning rules are not e�ective and thesolution set is large.3.3 FusionNew discoveries are made and insights are gained when information from distinct sourcesare combined, or even when the combination is attempted and fails. Historical infor-mation from references can be combined with current detail from databases, and usedto compare with simulation results. Further simulations can project into the future.The fusion of results from such widely di�ering sources is complex. To accesshistorical references text has to be processed. Databases contain a mix of textual andnumeric data, and simulations procude numeric results.3.3.1 Mismatch resolutionData obtained from remote and autonomous sources will often not match in terms ofnaming, scope, granularity of abstractions, temporal bases, and domain de�nitions. Thedi�erences shown in the examples must be resolved before automatic processing can jointhese values [deMichiel:89].When data match semantically, but not precisely, as for instance town-names versuszipcodes, uncertainty in the match is generated. Ignoring the result when the match isuncertain can involve great risk | there may be dangerous material in this town, andpeople have to be noti�ed.Processing with mismatched data also creates null values. For items where only apartial match exists, as exempli�ed by outerjoin results in relation models, null valuesare created. Mediating modules will, in general, need to deal intelligently with missingdata, as well as with partial values and sets of alternative values. [Winslett:87]3.4 ReductionAggregation of detail into higher level classes is a primary means of reduction. Whenclasses are well de�ned, the computation may be delegated to one of the resource mod-ules. But classi�cations for a given objective may be vague, and in fact deduced byinspection of data and their correlations. Classi�cation is already a traditional task forAI programs [Cohen:82]. Linking these programs with existing resources, and makingthem responsive to a variety of applications can provide major bene�ts.



83.4.1 Temporal reductionA frequent task will be to reduce voluminous time series data to a simple predictivevalue at some point in time, or perhaps instantiate a function to permit assessments atmultiple points in the future.The mediator task will have to deal with cyclic e�ects, perhaps due to seasonalpatterns, long term e�ects, and correlations with concurrent events.3.4.2 Exception seekingAnother variety of reduction of information volume is in exception reporting. An ex-ample is a search for places where money appears to be laundered. The banking regu-lations now require the reporting of large cash transactions to the treasury, but furtherassumptions need to be made to identify those transactions that need further investiga-tion. When a hypothesis is known the controlling system can select and analyze sourcedata to prove or disprove the hypothesis.A generalization of exception seeking is automated knowledge acquisition, or asrefered to by some database folk, data dredging or data mining. This activity is alsoa component of future information systems. It does depend critically on having deepdatabases: i.e., databases with enough attributes so that unexpected hypotheses arepossible, and enough instances to validate �ndings even in the presence of noise andmany covariates [Blum:82].3.4.3 Missing DataMissing data, whether created by computation or in the source information, is a majorproblem in simple tabular processing. Many statistical systems deal poorly with it.However, if values are intelligently aggregated, then at the higher conceptual levelsmissing data will be reduced, although uncertainly will remain [DeZegher:88].3.5 ExamplesWe do not now have a single system which contains a general composition of these tasks.We can however cite a large number of examples where intermediate and intelligenttransformations of source data take place.1 Database view de�nitions and object templates [Chamberlin:75] [Lai:88]2 Multi-database schemas to integrate data [Smith:81] [Dayal:83]3 Methods to achieve closure [Beeri:87] [Ramakrishnan:89]4 Library catalogs and indexing aids [Humphrey:87]5 Thesaurus structures for access to bibliographic systems [McCarthy:88]6 Materialized views and view indexes [Hanson:87] [Roussopoulos:86]7 Rule bases for semantic query optimization [King:84] [Chakravarthy:85]8 Object-generators [Wiederhold:86] [Barsalou:88]9 Knowledge-bases to access multiple databases [Sacca:86]10 Computations on derived data [Hammer:78] [Adiba:81]11 Graphic tools to help in hypothesis generation [deZegher:88] [Downs:86]12 Statistical summarizations [Ozsoyoglu:84] [Olken:86]13 Interpolation functions for interpreting incomplete observed data [Callahan:81]



914 Programs that fuse data arriving from sources that di�er in terms encodingand accuracy [Litwin:86] [deMichiel:89]15 Programs that relate information, say, factory production to budgets, compen-sating for di�erences in reporting periods [Chiang:82]16 The FAST component ordering system [Cohen:89]17 Modules to provide privacy protection for sensitive data [Cohen:88]This list is based on direct observation. Most readers will be able to augment the listfrom their experience.4. E�ectivenessThe complexity of the resources and the variety of applications may make the mediationconcept unattainable. We can in fact point to research where the complexity caused adrastic scaling-down of applications.Furthermore, to be e�ective, the mediators must be useful in many applications,and we are all aware of the high cost of generalization. In this section we presentarguments why we believe that the concept of partitioning is managable, and what thecriteria are to keep mediation e�ective.4.1 Limiting MediatorsThe tasks presented in the previous section, if integrated into a single application, wouldbe complex, deal with multiple computational paradigms, and access a wide variety ofbase resources. Their complexity would cause problems in maintenance and hencerapid obsolescence. At the same time, the subtasks would not be separatable for reuse,although many provide sharable functions.For these reasons we do not envision large mediators; but rather a variety of small,maintainable and specialized ones. Each mediator would be characterized by a singleontology: knowledge representation and its corresponding interpreter. A single mediatorwould only access a few base resources, so that it can be adapted to changes in resources.In operational databases, we observe that schemas tend to change about every two years.Having a single ontology, and a speci�c knowledge domain permits maintenance bya single individual or focused group. No costly committee work is needed to decide oncompromises.4.2 Composing MediatorsSince mediators are specialized, applications will need to compose results from multiplemediators. Since only results are to be composed, the application does not now havea complexity that is based on the union of all the mediators it invokes. For instance,the mediator that uses temporal reasoning will produce results valid for the instance oftime speci�ed. The application which uses these results does not have to understandtemporal reasoning.Similarly, many computations of alternatives require pruning. In practice the clo-sure of all choices on how to perform a task, say to transport some good from A to Bis immense. But it becomes composable once a basic means of primary transportationis selected, based on approximate information. If air transport is the choice, then wehave the tasks of getting to A's airport, getting from there to B's airport, and thengetting to B proper. These tasks use distinct information, and can execute relativelyindependently. However, their dependencies are crucial.



10If the time-of-arrival at B is the constraint, then we must perform a goal-drivensearch. Conditions at B determine the desired aircraft arrival time at B's airport, andso on. Other constraints, leading to alternate computations, might be to ship the goodsas soon as they are ready or to select the cheapest ight. The same mediating moduleswill be invoked, but in di�erent sequences, if optimal computation is desirable. Whencomputational requirements are heavy, some modules may be invoked in parallel.To perform optimization of module use, estimates of expected performance andresult cardinalities are needed. If autonomy of modules is to be preserved, then theseestimates must be produced in a canonical form by the modules, obviating the need forthe optimizers to model the modules. Such a proposal appears in [WWC:90].4.3 Sharing of mediator modulesDiverse mediator modules will use these functions in varying extents to provide thesupport for user applications at the decision making layer above.The mediator modules will be most e�ective if they can serve a variety of appli-cations [HayesRoth:84]. The applications will compose their tasks as much as possibleby acquiring information from the set of available mediators. Unavailable informationmay motivate the creation of new mediators.Sharing reinforces the need for two types of partitioning: one, into horizontal layersfor end-users, mediators, and databases, respectively, and two, vertically into multipleuser applications, each using various con�gurations of mediators. A mediator, in turn,will use distinct views over one or several databases. Just as databases are justi�ed bythe shared usage they receive, mediators should be sharable. Note that today's expertsystems are rarely modular and sharable, so that their development and maintenancecost is harder to amortize. The same is true for the examples listed in Section 3.5.For instance, the mediation module which can deal with ination adjustment canbe used by many applications. The mediator which understands postal codes and townnames can be used by the post o�ce, express delivery services, and corporate mailrooms.We foresee here an incentive for a variety of specialists to develop powerful, butgenerally useful mediators, which can be used by multiple customers. Placing one'sknowledge into a mediator can be more rapidly e�ective, and perhaps more rewarding,than writing a book on the topic.We can now summarize these observations in Figure 2.User1 ... User2 ... User3 ... User4 ... User5 ... Useri ... Userk ... UsernQuery# Relevant responses" Inspection#Mediatorj ... Mediatork ... Mediatorl ... MediatormFormatted query# Bulky responses" Triggered events"Database w ... Database x ... Database y ... Database zAll modules are distributed over nationwide networks.Figure 2. Interfaces for information ow.



11Further layering of mediators is reasonable. The tasks that we presented can begrouped into distinct conceptual levels. Since we do not have a generalized languageproposal for the composition of mediators, and too little experience as well, we do notspeculate further on this topic. A further generalization, as for instance seen in theactors model [Hewitt:73], seems unwise, because then we have to endow our media-tors with motivations to serve others, learn, and survive, as suggested for the beingshypothesized by [Litwin:89]. We have, as of now, no insight into a control structureadequate to simulate such an environment.5. ConclusionWe envisage a variety of information processing modules residing in nodes along thedata highways that advances in communication technology can now provide. A concep-tual layering distinguishes nodes by function: decision-making exploration, intelligentinformation support by mediation of data by knowledge, and base resources.The mediation function, now seen in a variety of programs, is placed into explicit,sharable mediation modules, or mediators. For clarity we place all the mediators intoone horizontal layer. These mediators are to be limited in scope and size to enablemaintenance by an expert as well as inspection and selection by the end-user. Mediatorsare associated with the domain expert, but may be replicated and shipped to othernetwork nodes to increase their e�ectiveness. Specialization increases the power andmaintainability of the mediators and provides choices for the users.In addition to performing information-processing tasks, as outlined in Section 3,we see that management of the operation of the resources, in support of the tasks,is equally important, as shown in Section 2. These latter functions can range fromtraditional semantic query optimization [King:84] to making tradeo�s in estimation,relevance, and precision.Applications obtain information by dealing with abstractions supported by the me-diators, and not by accessing base resources data directly. A language will be neededto provide exibility in the interaction between the end-users' workstation and the me-diators. We discuss the partitioning of arti�cial intelligence paradigms into pragmatics(at the user-workstation layer) and the formal infrastructure (in the mediation layer)further in [Wiederhold:91]. The functions in the mediation layer itself may be struc-tured. Perhaps the controlling functions are performed by a lower layer of mediatorsthan the primary tasks. Multiple layers will demand more capabilities from the moduleinterfaces and the languages used to drive them. It will be di�cult to de�ne the neededlanguage concepts completely until more experience is gathered in the operation of suchsystems [WW*:89].
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