
Journal of Parallel and Distributed Computing 58, 26�43 (1999)

Synchronous Load Balancing in Hypercube
Multicomputers with Faulty Nodes1

Kyungwan Nam,* Jaewon Seo,* Sunggu Lee,* , 2 and Jong Kim-

*Department of Electrical Engineering,
-Department of Computer Science and Engineering,

Pohang University of Science and Technology (POSTECH),
San 31 Hyoja Dong, Pohang 790-784, South Korea

E-mail: slee�vision.postech.ac.kr

Received February 20, 1998; revised and accepted March 18, 1999

This paper presents a new dynamic load-balancing algorithm for hyper-
cube multicomputers with faulty nodes. The emphasis in our method is on
obtaining global load information and performing task migration using
``short paths'' in a synchronous manner so that a minimal amount of com-
munication overhead is required. To accomplish this, we present an algo-
rithm for constructing a new logical topology from a hypercube topology
with faulty nodes. This new topology is used to obtain the global load infor-
mation and to perform task migration. Simulation results are used to evaluate
the performance of our dynamic load balancing method when compared with
previous methods. � 1999 Academic Press

Key Words: dynamic load balancing, fault tolerance, hypercube, multicom-
puter, task migration.

1. INTRODUCTION

In a highly parallel multicomputer system, a time-critical application can be
executed quickly by splitting the application into several tasks that are executed in
parallel. To get the maximum performance benefit out of the parallel system, the
set of tasks should be scheduled on processing nodes such that the load on each
processing node is approximately equal. Given that the set of tasks are available at
the beginning and the execution times of the tasks can be accurately estimated, a
static load-balancing method can be used to balance the load at each processing
node. However, in the general situation in which the execution times of tasks

Article ID jpdc.1999.1547, available online at http:��www.idealibrary.com on

260743-7315�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

1 This paper is a revised and updated version of work presented at the International Conference on
Parallel and Distributed Systems, Seoul, Korea, in December 1997. This work was supported in part by
the Korea Science and Engineering Foundation (KOSEF) under Grant 961-0101-09-01-3.

2 Corresponding author.

cannot be accurately estimated and tasks may arrive at any time, a dynamic load-
balancing method becomes necessary [7, 9].

There has been much research on dynamic load-balancing strategies for distributed
computing systems. However, on parallel computing systems, the dynamic load-
balancing problem takes on different characteristics. First, parallel computers typically
use a regular point-to-point or dynamic interconnection network, instead of a random
network configuration. Second, the load imbalance in a distributed computer is due
primarily to external task arrivals, whereas the load imbalance in a parallel computer
is due to the uneven and unpredictable nature of tasks. In applications such as partial
differential equations solvers using adaptively generated grids [6], the execution time
cannot be known in advance. In general, the dynamic load-balancing problem in a
parallel computer involves the reduction of the total application execution time by re-
adjusting the allocation of tasks as the application progresses [7, 8, 1]. The overhead
for dynamic load balancing includes the communication time required to obtain the
load information and the cost of task migration.

Two types of load-balancing strategies can be identified. A synchronous load-
balancing strategy [7, 8] is one in which the load information collection and task
migration are performed in a global synchronous manner, On the other hand, an
asynchronous load-balancing strategy [9, 5, 10] is one in which each node executes
load-balancing operations independently of the other nodes. Receiver initiated diffu-
sion (RID) and sender initiated diffusion (SID) are two examples of asynchronous
load-balancing strategies. In SID, an overloaded node uses information obtained
from its neighboring nodes to send extra tasks to underloaded nodes. In RID, an
underloaded node uses local load information to request extra tasks from over-
loaded nodes.

Two examples of synchronous load-balancing strategies are the dimension
exchange method (DEM) [7] and the cube walking algorithm (CWA) [8]. DEM
has been proposed for the hypercube topology, but it can be extended to k-ary
n-cube topologies [1]. DEM uses the load information of its neighbor nodes to
balance the loads between pairs of nodes in each dimension of the hypercube. CWA
is another hypercube-topology-based algorithm in which global load information is
used to migrate the necessary number of tasks along each dimension. DEM shows
superior performance to the asynchronous load-balancing methods. CWA requires
fewer task migrations than DEM and thus has lower load-balancing overhead.
Furthermore, CWA can fully balance the load. However, if the structure of the
hypercube is destroyed due to the presence of faulty nodes, the CWA algorithm
cannot be used because task migrations may require links which are no longer
available.

In this paper, we present a new dynamic load-balancing method for hypercube
multicomputers with faulty nodes. Although the basic load-balancing strategy
follows the CWA [8] method, the CWA algorithm has been modified to permit the
gathering of global load information and task migration, even in the presence of
faulty nodes. Section 2 describes the load-balancing model assumed in this paper.
Section 3 describes the previous algorithms for synchronous dynamic load-balancing.
Sections 4 and 5 present the proposed load-balancing strategy. Section 6 presents
simulation results, and the paper concludes with Section 7.

27SYNCHRONOUS LOAD BALANCING

2. LOAD-BALANCING MODEL

The target architecture of this paper is a hypercube multicomputer with faulty
nodes. When there is a load-balancing request message broadcast from a nonfaulty
node, all nonfaulty nodes perform task migrations in a synchronous manner.

2.1. Basic Assumptions

It is assumed that there is a single long-running application executing on a hyper-
cube multicomputer with faulty nodes. All nodes in the system are assumed to pos-
sess knowledge of the identity of the faulty nodes. It is assumed that node failures
occurring during the execution of the target application are handled by a backup-
sparing scheme such as [3], which has the effect of increasing the load at a backup
processor in the case of a fault.

It is assumed that the target application can be divided into a fixed number of
independent tasks and that all tasks can be executed on any processor in any
sequence (a common assumption in load-balancing [2, 7, 8]). Although all tasks
require approximately equal amounts of computation time, the exact execution time
of each task is not known in advance due to its unpredictable nature. External task
arrivals can be handled simply as changes in the load estimate for each node, which
occur anyway due to load estimate updates resulting from the completion of tasks
with previously uncertain execution times.

As the application progresses and tasks finish execution, an imbalance forms in
the number of tasks waiting to execute at each node. When the load imbalance
progresses to the point where severely underloaded nodes exist, an underloaded
node initiates load-balancing by broadcasting a load-balancing request. The load
balancer at each node is invoked when the load-balancing request is received. Then,

TABLE 1

Table of Mathematical Notation

Qn n-dimensional hypercube
Qk healthy k-dimensional subcube
Cb balancing subcube
N number of nodes in Qn

F set of faulty nodes
C set of maximum size healthy subcubes
Gi set of faulty nodes that have distance i from Qk

l(ui) number of tasks in node ui

lt(ui) number of tasks in ui and all descendant nodes of u i

l j (ui) number of tasks in a j-cube in Cb and all tree nodes attached to the j-cube
lavg average number of tasks per node
qt(ui) task quota of ui and all descendant nodes of ui

q j (ui) task quota of a j-cube in Cb and all tree nodes attached to the j-cube
l(ui) [l 0(ui), ..., l n(ui), lt(ui), lt(child(ui))] (a load vector)
q(ui) [q0(ui), ..., qn(ui), qt(ui), qt(child(u i))] (a quota vector)
|(ui) unit number of descendant nodes of ui plus 1
childj (ui) j th child node of ui in a tree
parent(ui) parent node of ui in a tree

28 NAM ET AL.

when all nodes reach an agreed-upon synchronization point, the load-balancing
algorithm is executed in a synchronous manner. This type of synchronous operation
facilitates the accumulation of global load information through message exchanges
and also facilitates the actual transfer of overloaded tasks.

2.2. Table of Notation

Table 1 presents a table of notation for the various mathematical symbols which
will be used to describe our load-balancing algorithm and previous load-balancing
algorithms.

3. PREVIOUS WORK

3.1. Receiver Initiated Diffusion (RID)

RID and SID are decentralized, asynchronous load-balancing algorithms which
are initiated by underloaded and overloaded nodes, respectively. It has previously
been reported that the RID strategy outperforms the SID strategy [7]. Therefore,
we will compare our proposed algorithm with only the RID strategy. In RID, when
a processor's load drops below a prespecified threshold, the load-balancing process
is activated by the underloaded node sending load-balancing requests to its
neighbor nodes. The underloaded node collects information about the number of
tasks owned by each of its neighbors and then calculates the number of tasks to be
received from its neighbors as

.i�k(i)=lavg

l(k)
�k=neighbor node l(k)

, lavg=
�k=neighbor node l(k)

number of neighbor nodes+1
,

where l(i) is the number of tasks owned by node i, lavg is the average number of
tasks owned by node i and its neighbor nodes, and .i�k(i) is the number of tasks
that node i wishes to receive from node k. Note that RID uses only local load infor-
mation.

3.2. Dimension Exchange Method (DEM)

DEM [7] is a synchronous load-balancing algorithm proposed for the hyper-
cube multicomputer. In DEM, load-balancing is achieved by exchanging load infor-
mation along each dimension and migrating tasks between adjacent nodes based on
this information. Algorithm 1 provides a formal description of the DEM algorithm.

Algorithm 1 (Dimension exchange method).

DEM (Qn , l).
1. for k=0 to n&1
2. send l(ui) to u i�2k

3. receive l(ui�2k) from ui�2k

4. if (l(ui)>l(ui�2k))
5. send w(l(ui)&l(ui�2k))�2x tasks to ui�2k

6. if (l(ui)<l(ui�2k))
7. receive w((l(ui�2k)&l(ui)�2x tasks from u i�2k .

29SYNCHRONOUS LOAD BALANCING

FIG. 1. Dimension exchange method [7].

Load balancing begins when an underloaded node with a load value less than
a prespecified threshold broadcasts a load-balancing request. Figure 1 shows an
example of the DEM algorithm in operation when load-balancing is initiated by
node 100, where circled numbers represent loads and labeled arrows represent task
migrations. As can be seen from Algorithm 1 and Fig. 1, 2 log N steps of informa-
tion exchange and log N task migrations are required for the load-balancing.
However, note that the DEM algorithm does not fully balance the load��the algo-
rithm only guarantees that the final load difference will be bounded by log N, the
dimension of the hypercube. Also, there are several unnecessary task migrations. If
we consider dimension 0, we observe that the load imbalance between subcubes
XX0 and XX1 could be resolved by migrating just one task, since subcube XX0 has
31 tasks and subcube XX1 has 33 tasks. However, due to the lack of global load
information in the DEM method, 14 task migrations are performed. The CWA
algorithm [8] was proposed specifically to overcome these kinds of shortcomings.

3.3. Cube Walking Algorithm (CWA)

Of the two components of load-balancing overhead (load information gathering
and task migration), the task migration cost is the dominant factor as a
significantly larger-sized message is required to migrate a task, as opposed to
sending load information. Since the task migration cost is proportional to the total
number of tasks to be migrated and the total distance to be migrated, we must
attempt to minimize �k ek , where ek denotes the number of tasks migrated along
edge k. The minimization of this metric can be accomplished by modeling the

30 NAM ET AL.

problem as a flow graph and solving a minimum cost maximum flow problem.
However, this type of solution has a time complexity of O(N2v), where N is the
total number of nodes and v is the required flow, which is considered to be too
severe for a dynamic load-balancing algorithm [8]. Thus, the CWA method, shown
as Algorithm 2 below, was proposed [8] to provide a fast heuristic solution to this
problem.

Algorithm 2 (Cube walking algorithm).

CWA(l, Qn)
1. for k=0 to n&1
2. send l k(ui) to ui�2k

3. receive l k(u i�2k) from ui�2k

4. l k+1(u i)=l k(ui)+l k(ui�2k)
5. QuotaCalculation(l(ui), q(ui), $(ui))
6. for k=n&1 to 0
7. TaskMigration(l(ui), q(ui), $(ui), k)

QuotaCalculation(l(ui), q(ui), $(ui))
8. lavg=wl n(ui)�Nx
9. R=l n(u i) mod N

10. if i<R q0(ui)=lavg+1
11. else q0(ui)=lavg

12. for k=0 to d&1
13. qk(ui)=qk&1(ui)+qk&1(ui�2k)
14. $k(ui)=l k(ui)&qk(ui)

TaskMigration(l(ui), q(ui), $(ui), k)
15. if $k(u i)>0
16. %k(ui)=$k(ui), #k(ui)=0
17. for j=k&1 to 0
18. % j (u i)=

{
0
min($ j(ui)&# j+1(ui), % j+1(ui))
% j+1(ui)
max($ j(ui), 0)

if $ j(u i)�# j+1(u i) and i 7 2 j=0,
if $ j(u i)># j+1(u i) and i 7 2 j=0,
if $ j(ui�2 j)�# j+1(ui) and i 72 j{0,
if $ j(u i�2 j)># j+1(u i) and i 72 j{0,

where # j(ui)=$ j(ui)&% j(ui)

19. send %0(ui) tasks to u i�2k with % vector
20. update its own vectors l j (ui)=l j (ui)&% j (ui)

$ j (u i)=$ j (ui)&% j (ui)
for all j=0, 1, ..., k-1

21. else receive tasks and % vector from ui�2k

22. update its own vectors l j (ui)=l j (ui)+% j (ui�2k)
$ j (u i)=$ j (ui)+% j (ui�2k)
for all j=0, 1, ..., k-1

In Algorithm 2, vector l=[l n(ui), l n&1(ui), ..., l 0(u i)] is a vector of the loads of
all subcubes containing node ui . If a node pair in dimension 0 adds their l 0(ui)

31SYNCHRONOUS LOAD BALANCING

FIG. 2. Cube walking algorithm [8].

loads, the resulting load is l 1(ui), which is the load in the corresponding 1&cube.
Likewise, l 2(ui) is formed as the sum of the loads l 1(ui) of a node pair in dimension
1, and so on. ``QuotaCalculation'' is a function that uses the l vector to calculate
the quota vector q. Then, in ``TaskMigration,'' the difference $ between l and q is
used to determine whether to send tasks to a neighbor or to receive tasks from a
neighbor. When transferring tasks, the % vector, which is a summary of task migra-
tion information, is sent so that global load information can be updated at the
receiving node. Given an overloaded k-dimensional subcube, %k(ui) tasks are
divided among the member nodes in order to transfer those %k(ui) tasks to an
underloaded k-dimensional subcube��the load that a node ui has to transfer is
given by %0(ui). This procedure is repeated for each dimension, thereby balancing
the load at each node. The number of communication steps in the CWA algorithm
is 3 log N. Example 1 shows an example of the CWA algorithm in operation, with
the resulting task migrations shown in Fig. 2.

TABLE 2

Calculation Results at Nodes in Subcube 0XX

Node l 0 $0 %0 #0 l 1 $1 %1 #1 l 2 $2 %2 #2

000 19 11 6 5 30 14 9 5 41 9 9 0
001 11 3 3 0 30 14 9 5 41 9 9 0
010 2 &6 0 &6 11 &5 0 &5 41 9 9 0
011 9 1 0 1 11 &5 0 &5 41 9 9 0

32 NAM ET AL.

TABLE 3

Calculation Results for Nodes in Subcube 00X and 10X

Node l 0 $0 %0 #0 l 1 $1 %1 #1

000 13 5 5 0 21 5 5 0
001 8 0 0 0 21 5 5 0
100 6 &2 0 &2 18 2 2 0
101 12 4 2 2 18 2 2 0

Example 1. CWA starts when an underloaded node broadcasts a load-balancing
request, in this case node 100 with 0 load. Messages are exchanged in each dimen-
sion to obtain the l vector. Then, ``QuotaCalculation'' is used to calculate q from
l. Then, task migration begins on the basis of the global load information obtained
through the information exchanged in each dimension. The first dimension along
which task migration is performed is dimension 2. Table 2 shows the % and $ values
calculated at nodes in overloaded subcube 0XX.

Using the values calculated in Table 2, tasks are migrated along dimension 2 as
shown in Fig. 2(a)��the number of tasks migrated are %0(ui)=6 and 3 tasks from
nodes 000 and 001, respectively. Then the loads between subcubes 0XX and 1XX
are balanced.

After task migration in dimension 2, the % vector is calculated for dimension 1.
Since the overloaded 1-cubes are 00X and 10X, nodes 000, 001, 100, and 101
calculate % and $ vectors. The calculated values are shown in Table 3.

Based on the values calculated in Table 3, tasks are migrated along dimension 1
as shown in Fig. 2(b). Nodes 000 and 101 transfer %0 tasks in dimension 1. Next,
to perform the necessary task migrations in dimension 0, the % vector is calculated
for overloaded nodes 011, 101, and 110 (shown in Table 4).

According to Table 4, in dimension 0, nodes 011, 101, and 110 should transfer
1, 2, and 2 tasks, respectively. After this final step, all nodes in the system should
have approximately equal loads, as shown in Fig. 2(d).

Although CWA appears to perform well on nonfaulty hypercubes, as docu-
mented in [8], this algorithm fails to function properly if the hypercube topology is
disrupted due to node failures. Problems occur in both the global load information-
gathering stage and in the task migration stage. Task migration becomes a problem
because some links will become effectively unusable due to the presence of the
faulty nodes. The gathering of global load information becomes a problem because
n stages of information exchange in each of the n dimensions of an n-dimensional

TABLE 4

Calculation Results at Nodes
011, 101, and 110

Node l 0 $0 %0 #0

011 9 1 1 0
101 10 2 2 0
110 10 2 2 0

33SYNCHRONOUS LOAD BALANCING

faulty hypercube will not be sufficient to gather all of the load information. Thus,
a modified CWA algorithm has been devised in order to perform synchronous
dynamic load-balancing on a hypercube with faulty nodes.

4. MODIFIED CUBE WALKING ALGORITHM

The modified cube walking algorithm (MCWA) works by embedding the faulty
hypercube (hypercube with missing nodes) on a new logical topology and per-
forming dynamic load-balancing on this new logical topology. Our strategy
involves first finding a maximum-size healthy subcube Cb (referred to as a balancing
subcube) within the faulty hypercube. All other nodes then attach to the balancing
subcube in a tree-like manner. The resulting logical topology is shown in Fig. 3,
and the method for generating this topology is described in Section 5.

Load balancing is performed using MCWA and the new logical topology in the
following manner. Load balancing is initiated when an underloaded node broad-
casts a load-balancing request message. Each node starts the load-balancing process
in a synchronized manner, following reception of the load-balancing request
message. First, all nodes must propagate their load information up to a node in the
balancing subcube. Then, CWA (in which quota calculations must be weighted
according to the size of the respective ``trees'') is used to distribute the global load
information and to migrate tasks within the balancing subcube. Finally, the
accumulated tasks must be migrated to the underloaded nodes in a tree. MCWA
is shown below as Algorithm 3 and a detailed example (Example 2) is used to
demonstrate the operation of this algorithm. Figure 4 is used to show the task
migrations involved in Example 2.

Algorithm 3 (Modified cube walking algorithm).

MCWA(l, Qn)
1. if ui is a node in balancing subcube
2. for each child node childj (ui)
3. receive load information lt(childj (ui))
4. l 0(ui)=l(ui)+�j lt(childj (ui))
5. for k=1 to dim(Cb), where m is k th dimension of Cb

FIG. 3. New topology for dynamic load balancing.

34 NAM ET AL.

6. send l k&1(ui) to u i�2m

7. receive l k&1(u i�2m) from u i�2m

8. l k(ui)=l k&1(ui)+l k&1(ui�2m)

9. QuotaCalculation(l(ui), q(ui), $(ui))
10. for each child node child j (ui)
11. send quota information qt(childj (ui))
12. for each child node childj (ui) such that lt(childj (ui))>qt(childj (ui))
13. receive lt(childj (ui))&qt(childj (u i)) tasks
14. for k=dim(Cb)&1 to 0

15. TaskMigration(l(ui), q(ui), $(ui), k)
16. for each child node childj (ui) such that lt(childj (ui))<qt(childj (ui))
17. send qt(childj (ui))<(child j (ui)) tasks
18. else
19. for each child node child j (ui)
20. receive load information lt(child j (ui))
21. lt(ui)=l(ui)+�j lt(child j (ui))
22. send lt(ui) to parent(ui)
23. receive qt(ui) from parent(ui)

24. QuotaCalculation(l, q)
25. for each child node child j (ui)
26. send quota information qt(childj (ui))
27. for each child node childj (ui) such that lt(childj (ui))>qt(childj (ui))
28. receive lt(childj (ui))&qt(childj (u i)) tasks
29. if lt(ui)>qt(u i) send lt(ui)&qt(ui) tasks to parent
30. elseif lt(ui)<qt(u i) receive lt(ui)&qt(ui) tasks from parent
31. for each child node childj (ui) such that lt(childj (ui))<qt(childj (ui))
32. send qt(childj (ui))<(child j (ui)) tasks

QuotaCalculation(l(ui), q(ui), $(ui))
33. if ui is a node in balancing subcube
33. lavg=wl dim(Cb)(ui)�(number of safe node)x
34. R=l dim(Cb)(ui) mod (number of safe node)
35. if R{0 and � i

j=0|(u j)<R, where uj is a node in Cb

36. q0(ui)=|(ui) lavg+min(|(ui), R&� i
j=0 |(uj))

37. else q0(ui)=|(ui) lavg

38. $0(ui)=l 0(ui)&q0(ui)
39. for k=1 to dim(Cb)
40. qk(ui)=qk&1(u i�2k)+qk&1(ui)
41. $k(ui)=l k(ui)&qk(ui)
42. qt(ui)=q0(u i)
43. rt(ui)=qt(u i) mod |(u i)
44. if rt(ui)�1 rt(u i)=rt(ui)&1
45. for each child node childj (ui)
46. if (rt(ui)&� j&1

m=0 |(childm(ui))>0)

35SYNCHRONOUS LOAD BALANCING

47. qt(childj (ui))=wqt(ui) |(childj (ui))�|(ui)x+min(|(childj (ui)), rt(ui)&
� j&1

m=0 |(childm(ui)))
48. else qt(childj (ui))=wqt(ui)|(childj (ui))�|(ui)x

MCWA operates as follows. First, in lines 2, 3, 4, 19, 20, and 21, load informa-
tion is gathered within a tree by accumulating the load information of each child
node. Steps 5, 6, 7 , and 8 involve forming global load information by message
exchange in each dimension of Cb. Then each node calculates the quota which is a
number of tasks in balanced condition. The procedure for quota calculation is
shown in QuotaCalculation. qt(ui) is the quota of ui and all descendant nodes of ui .
qk(ui) is the quota of a k&cube in Cb and all tree nodes attached to that k&cube.
Each quota value depends on the number of descendant nodes attached. In lines 10,
11, 25, and 26, the quota value calculated is sent to child nodes.

In lines 12, 13, 27, 28, and 29, nodes in trees whose loads lt(ui) exceed their quota
qt(ui) send excess tasks to parent nodes. After the excess tasks of a tree is
accumulated at a balancing subcube node, task migration in the balancing subcube
starts according to CWA. Steps 14 and 15 involve task migration in the balancing
subcube. Function TaskMigration is same as in the CWA method. In lines 16, 17,
30, 31, and 32, tasks are migrated to underloaded child nodes. Then the load in the
system should be fully balanced with a difference in the number of tasks in each
node of at most 1.

FIG. 4. Running example of modified cube walking algorithm.

36 NAM ET AL.

TABLE 5

Calculation Results at Nodes in 10X1

Node l 0 $0 %0 #0 l 1 $1 %1 #1

1001 37 7 7 0 74 14 14 0
1011 37 7 7 0 74 14 14 0

In this algorithm, execution of lines 2, 3, 19, 20, and 22 take T communication
steps, where T is the maximum depth of all trees attached to the balancing subcube.
Similarly, execution of lines (10, 11, 23, 25, and 26), lines (12, 13, and 27�29), and
lines (16, 17, and 30�32) each (each set of lines in parentheses) require T steps.
Execution of lines 5�7 takes 2 V (log N&T) steps and execution of lines 14�15 takes
log N&T steps. Therefore, the total number of communication steps is 3 log N+T,
which is O(log N).

Example 2. Figure 5(a) shows an example of a hypercube multicomputer with
faulty nodes, 0101, 0110, 1000, and 1010. The logical topology constructed from
Fig. 5(a) is shown in Fig. 4. MCWA is performed using this topology.

MCWA starts with the broadcast of a load-balancing request from node 0001.
All nodes propagate load information lt(u i) up to a node in the balancing subcube.
lt(ui) is the number of tasks in node u i and all ui 's descendant nodes. For example,
lt(1011) is 37, lt(1111) is 32, and lt(1110) is 14.

Messages are exchanged in each dimension of the balancing subcube to form a
global load information vector l. After global load information is acquired, a balanc-
ing subcube node calculates its quota vector, q, and distributes its quota of child
nodes. For example, qt(1011) is 30, qt(1111) is 20, and qt(1110) is 10. Nodes whose
lt(ui) exceed qt(ui) send excess tasks to parent nodes as shown in Fig. 4(a). Then,
nodes in overloaded 1&cube 10X1 calculate % and send %0 tasks to underloaded
1&cube 00X1 as shown in Fig. 4(b). The calculated % vector of 1&cube 10X1 is
shown in Table 5.

After task migration between 10X1 and 00X1, overloaded node 0011 calculates
its % vector as shown in Table 6 and sends %0(0011) tasks to underloaded node 0001
as shown in Fig. 4(c).
Task migration to the underloaded tree is shown in Fig. 4(d). The load in the
system is fully balanced after the execution of the MCWA algorithm, as shown in
Fig. 4(e).

TABLE 6

Calculation Results at 0011

Node l 0 $0 %0 #0

0011 41 11 11 0

37SYNCHRONOUS LOAD BALANCING

5. GENERATION OF NEW LOGICAL TOPOLOGY

A ``deep'' tree in the logical topology has a negative effect on the task migration
cost. The task migration cost between different tree nodes increases as the tree
depth is increased. Kim [4] has proposed an algorithm which finds a healthy Qn&2

cube from a Qn with faulty nodes. But in our approach, all maximum size healthy
cubes are identified and the one that has the minimum tree depth is selected. The
complexity of applying a breadth-first traversal algorithm to find a maximum size
healthy subcube with minimum tree depth is O(n22n). To reduce this complexity, we
propose an algorithm, shown below as Algorithm 4, which selects a maximum
size healthy subcube Qk with tree depth n&k from Qn (with time complexity
O(n2N 2

f +2n), where Nf is the number of faulty nodes). This complexity is not
excessive since 2n=N is simply the total number of nodes in the system.

Algorithm 4 (Algorithm for the generation of a new logical topology).

NewTopology(Qn , F)
11. FindMaxHealthyCubes(F, C, k)
next: for each Qk # C
3. Group the faulty nodes into G1 , G2 , ..., Gi , ..., where i is the distance to a
healthy subcube
4. for j such that (1� j�n&k)
5. for a in Gj

6. if the number of b in Gj such that a[i]=b[i]
for all i satisfying Qk[i]= X is larger than j

7. go to next
8. go to find
find: BreadthFirstTraversal(Qn , Qk.

An example of the proposed algorithm is shown in Fig. 5. There are four
maximum-size healthy cubes, XX11, X0X1, 1XX1, and 11XX. Function
FindMaxHealthyCubes finds these healthy cubes. Faulty nodes are grouped into G1 ,
G2 , according to the distance from each healthy subcube. The case for XX11 is
shown in Fig. 5(b). In the case of XX11, nodes 0110 and 0101 in G1 satisfy the con-
dition of step 6. Thus function NewTopology determines that XX11 is not adequate
as a balancing subcube and examines the next healthy subcube, X0X1.

The reason why XX11 is not adequate as a balancing subcube is that faulty nodes
0110 and 0101 disconnect the minimum path from 0100 to XX11. The purpose of
this algorithm is to exclude healthy subcubes which cannot connect to nodes using
minimum length paths. This algorithm selects X0X1 as the balancing subcube as
shown in Fig. 5(c). The tree depth of the new logical tree is 2.

Theorem 1. The tree depth of a new logical topology generated by Algorithm 4
is at most n&k when the maximum-size healthy subcube is a k-cube.

Proof. Given an arbitrary node ui , assume that all ui 's minimum length paths
to a healthy subcube Qk selected by Algorithm 4 are disconnected by faulty nodes.
If the length of a disconnected minimum path is j (2� j�n&k), there are faulty

38 NAM ET AL.

FIG. 5. Selecting balancing subcube from candidate healthy cube.

nodes whose number is not less than j adjacent to ui , and the length of their mini-
mum path to Qk is j&1. But Algorithm 4 excludes all such Qk . Thus all nodes are
connected to Qk with minimum paths of length at most n&k.

6. SIMULATION RESULTS

We tested MCWA, DEM, and RID algorithms for hypercube topologies of
various sizes with various numbers of faulty nodes. CWA could not be compared
with our algorithm as CWA does not work properly in the presence of faulty nodes.

All dynamic load balancing strategies begin when an underloaded node broad-
casts a load-balancing request. If a neighbor node is a faulty node, DEM performs
message exchange and task migration along the next dimension. In RID, an under-
loaded node sends load-balancing requests to only nonfaulty neighbor nodes and
performs load balancing with only nonfaulty nodes; 2n_100 tasks are distributed
across all nodes in an n-dimensional hypercube. The number of tasks in each node
is set to 100. To model the uneven and unpredictable nature of tasks, we generated
the execution time for each task as follows. The execution time for each task j in
node ui , {j (ui), has a uniform distribution in the range 0<{j (ui)<2{(ui): {(ui) is

39SYNCHRONOUS LOAD BALANCING

the mean of the task execution time in node ui ; {(ui) has uniform distribution in the
range 0<{(ui)<2E[{]. This approach was also used in [7] to model the load
imbalance. Faulty nodes are generated randomly at the start of the simulation.
Tasks allocated to faulty nodes are redistributed across all other nonfaulty nodes.

To investigate the effect of communication overhead on the dynamic load-balancing
strategy, we assumed that the time for migration of one task is 100 of E[{] and
the time to send load information is 10 of E[{]. This assumption was also used
in [5].

We compared the performance of the three dynamic load-balancing strategies on
the basis of speedup over the case when no load balancing was used, i.e.,

Speedup=
Tnobal

Tbal

,

where Tbal and Tnobal are execution times with and without load balancing, respec-
tively.

Three dynamic load-balancing strategies were tested on 300 different runs of 100
tasks per node with different system sizes. Graphs of speedup versus number of
faulty nodes are shown in Figs. 6�8, where the vertical bar is the 950 confidence
interval computed by using a Student's t distribution. MCWA shows the best per-
formance in the nonfaulty case. As the number of faulty nodes increases, all the
strategies show a performance degradation. With a small number of faulty nodes,
the MCWA algorithm performs significantly better than the alternative algorithms.
However, when the number of faulty nodes increases beyond about 5, the perfor-
mance of MCWA approaches that of the other methods, and sometimes even dips
below the other methods. In Fig. 9, the average number of task migrations per node
in the DEM and MCWA algorithms are shown for a 7-cube. As can be seen, in
MCWA, the number of task migrations escalates when there are more than about
four faulty nodes. This result which leads to degraded performance is due to the
large tree depth of logical topologies in the MCWA algorithm when there are
a large number of faulty nodes. A similar result is observed for the 5-cube and

FIG. 6. Performance of MCWA, DEM, and RID in the 5-cube system.

40 NAM ET AL.

FIG. 7. Performance of MCWA, DEM, and RID in the 6-cube system.

FIG. 8. Performance of MCWA, DEM, and RID in the 7-cube system.

FIG. 9. Comparison of task migrations of MCWA and DEM in the 7-cube system.

41SYNCHRONOUS LOAD BALANCING

6-cube��the MCWA algorithm has degraded performance in the 5-cube beyond five
faults and in the 6-cube beyond six faults.

Overall, however, the relative performance of MCWA improves with the size of
the hypercube, provided that the number of faulty nodes does not increase beyond
the hypercube dimension. In the case of a 7-cube, the MCWA algorithm outper-
forms all other algorithms up to seven faulty nodes. RID shows almost constant
performance irrespective of the number of faulty nodes as the RID algorithm
operates independently of the topology. However, RID still performs poorly
because of the absence of global load information and the many local load balancing
messages. With a large number of faulty nodes, the DEM algorithm may be
preferable over both the RID and MCWA algorithms.

7. DISCUSSION

In this paper, a dynamic load-balancing algorithm for hypercube multicomputers
with faulty nodes has been presented, and the performance of the proposed algo-
rithm has been evaluated through simulation. The proposed algorithm is a syn-
chronous dynamic load-balancing algorithm, in which load-balancing is executed in
a synchronous manner when initiated by a severely underloaded node. Such syn-
chronous operation facilitates the accumulation of global load information through
message exchanges, and also it facilitates the actual transfer of overloaded tasks.

The proposed load-balancing algorithm, denoted as MCWA, was obtained by
modifying a previous synchronous dynamic load-balancing algorithm, called CWA
(cube walking algorithm), to permit efficient operation in the presence of faulty
nodes. A novel concept referred to as a balancing subcube was used to permit
efficient message exchange in hypercubes with faulty nodes. MCWA was compared
to another algorithm, termed DEM (dimension exchange method), for performing
synchronous dynamic load-balancing in possibly faulty hypercube multicomputers,
and the well-known RID (receiver initiated diffusion) algorithm. MCWA was
shown to significantly outperform both DEM and RID when there are a small
number of faulty nodes (less than the dimension of the hypercube). However, when
the number of faulty nodes was increased beyond the dimension of the hypercube,
DEM resulted in the best performance. Overall, the performance of MCWA,
relative to DEM and RID, improves with the size of the hypercube, provided that
the number of faulty nodes does not increase beyond the hypercube dimension.

REFERENCES

1. C. Xu and C. M. Lau, The generalized dimension exchanged method for load-balancing in k-ary
n-cubes and variants, J. Parallel and Distrib. Comput. 24, 1 (Jan 1995), 72�85.

2. G. Cybenko, Dynamic load-balancing for distributed memory multicomputers, J. Parallel Distrib.
Comput. 7, 2 (Oct. 1989), 279�301.

3. J. Kim, H. Lee, and S. Lee, Replicated process allocation for load distribution in fault-tolerant multi-
processors, IEEE Trans. Comput. 46, 4 (Apr. 1997), 499�505.

4. J. Kim and K. G. Shin, Deadlock free fault-tolerant routing in injured hypercubes, IEEE Trans.
Comput. 42, 9 (Sept. 1993), 1078�1088.

42 NAM ET AL.

5. K. G. Shin and Y. Chang, Load sharing in distributed real-time system with state-change broadcasts,
IEEE Trans. Comput. 38, 8 (Aug. 1989), 1124�1142.

6. M. J. Berger and S. H. Bokhari, A partitioning strategy for nonuniform problems on multipro-
cessors, IEEE Trans. Comput. C-36, 5 (May 1987), 570�580.

7. M. Willebeek-Lemair and A. P. Reeves, Strategies for dynamic load-balancing on highly parallel
computers, IEEE Trans. Parallel Distrib. Systems 4, 9 (Sept. 1993), 979�993.

8. M. Wu and W. Shu, A load-balancing algorithm for n-cubes, in ``Proc. 1996 International
Conference on Parallel Processing,'' IEEE Computer Society, 1996, pp. 148�155.

9. N. G. Shivaratri and P. Krueger, Load distributing for locally distributed systems, IEEE Comput.
(Dec. 1992), 33�44.

10. Y. Chang and K. G. Shin, Load sharing in hypercube-connected multicomputers in the presence of
node failures, IEEE Trans. Comput. 45, 10 (Oct. 1996), 1203�1211.

KYUNGWAN NAM is currently a Ph.D. student in the Department of Electrical Engineering at the
Pohang University of Science and Technology (POSTECH), Pohang, Korea. He received the B.S.
degree in electronic engineering from Chungang University, Seoul, Korea, in 1994, and the M.S. degree
in electrical engineering from POSTECH, Pohang, Korea, in 1996. His research interests include load-
balancing, high-performance computing, and network of workstations (NOW).

JAEWON SEO is currently an electrical engineer employed by Samsung Electronics. Previously, he
was a Masters student in the Department of Electrical Engineering at the Pohang University of Science
and Technology (POSTECH), Pohang, Korea, during his work on this paper.

SUNGGU LEE received the B.S.E.E. degree with highest distinction from the University of Kansas,
Lawrence, Kansas in 1985 and the M.S.E. and Ph.D. degrees from the University of Michigan, Ann
Arbor, Michigan in 1987 and 1990, respectively. He is currently an associate professor in the Depart-
ment of Electrical Engineering at the Pohang University of Science and Technology (POSTECH),
Pohang, Korea. His research interests are in parallel and fault-tolerant computing. Currently, his main
research focus is on the high-level and low-level aspects of inter-processor communications for parallel
computers.

JONG KIM received the B.S. degree in electronic engineering from Hanyang University, Seoul,
Korea, in 1981, the M.S. degree in computer science from the Korea Advanced Institute of Science and
Technology, Seoul, Korea, in 1983, and the Ph.D. degree in computer engineering from Pennsylvania
State University, in 1991. Since 1992, he has been an assistant professor and then an associate professor
in the Department of Computer Science and Engineering, Pohang University of Science and Technology
(POSTECH), Pohang, Korea. From 1991 to 1992, he was a research fellow in the Real-Time Computing
Laboratory of the Department of Electrical Engineering and Computer Science, University of Michigan.
His major areas of interest are fault-tolerant computing, performance evaluation, and parallel and
distributed computing.

43SYNCHRONOUS LOAD BALANCING

	1. INTRODUCTION
	2. LOAD-BALANCING MODEL
	TABLE 1

	3. PREVIOUS WORK
	FIG. 1
	FIG. 2
	TABLE 2
	TABLE 3
	TABLE 4
	FIG. 3

	4. MODIFIED CUBE WALKING ALGORITHM
	FIG. 4
	TABLE 5
	TABLE 6

	5. GENERATION OF NEW LOGICAL TOPOLOGY
	FIG. 5

	6. SIMULATION RESULTS
	FIG. 6
	FIG. 7
	FIG. 8
	FIG. 9

	REFERENCES

