
J. Symbolic Computation (1998) 11, 1–000

Comparing Curried and Uncurried Rewriting†

RICHARD KENNAWAY‡, JAN WILLEM KLOP§, RONAN SLEEP‡

and FER-JAN DE VRIES¶

‡School of Information Systems, University of East Anglia, Norwich NR4 7TJ, U.K.
§CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

¶NTT, Communication Science Laboratories, Hikaridai, Seika-cho, Soraku-gun,
Kyoto 619-02, Japan

(Received 1 August 1994)

Currying is a transformation of term rewrite systems which may contain symbols of
arbitrary arity into systems which contain only nullary symbols, together with a single

binary symbol called application. We show that for all term rewrite systems (whether
orthogonal or not) the following properties are preserved by this transformation: strong
normalization, weak normalization, weak Church-Rosser, completeness, semi-complete-
ness, and the non-convertibility of distinct normal forms. Under the condition of left-
linearity we show preservation of the properties NF (if a term is reducible to a normal
form, then its reducts are all reducible to the same normal form) and UN→ (a term is
reducible to at most one normal form). We exhibit counterexamples to the preservation
of NF and UN→ for non-left linear systems. The results extend to partial currying
(where some subset of the symbols are curried), and imply some modularity properties
for unions of applicative systems.

1. Introduction

Curry and Feys originally introduced term rewriting in 1958 in the “applicative” form
(or in their terminology, quasi-applicative). In this form, terms are built from variables,
nullary function symbols, and a binary application (often suppressed in notation). An
alternative is the “functional” form, where terms are constructed from function symbols
of various arities and variables.

The main example of an applicative term rewrite system, Combinatory Logic (CL),
was developed by Schönfinkel and rediscovered by Curry (Curry and Feys, 1958). Ap-
plicative term rewriting systems related to CL play an important role in the design and

implementation of functional programming languages such as Haskell and Miranda‖ (cf.

† Dedicated to Dirk van Dalen on the occasion of his 60th anniversary. The authors are partially
sponsored by SEMAGRAPH II, ESPRIT working group 6345. Richard Kennaway was also partially
supported by a SERC Advanced Fellowship and by SERC grant no. GR/F 91582. From July 1995,
F.J. de Vries will be at the Hitachi Advanced Research Laboratory, Hatoyama, Saitama 350-03, Japan.
The authors’ respective email addresses are jrk@sys.uea.ac.uk, jwk@cwi.nl, mrs@sys.uea.ac.uk AND
ferjan@cwi.nl.

‖ Miranda is a trademark of Research Software Ltd., Canterbury, U.K.

0747–7171/90/000000 + 00 $03.00/0 c© 1998 Academic Press Limited

2 R. Kennaway et al.

Field and Harrison, 1958). However, the theory of term rewriting nowadays is more usu-
ally studied in the functional form (cf. Dershowitz and Jouannaud, 1988; Klop, 1992). It
is therefore interesting to study the relationship between the two styles of presentation.

Any functional term rewrite system can be transformed into an applicative term
rewrite system by the well-known method of currying credited to Schönfinkel in
Curry and Feys, 1958. So it is natural to ask which properties of term rewrite systems
are preserved by currying.

In this paper we show that strong normalization (SN), weak normalization (WN),
the weak Church-Rosser property (WCR), the unique normal form property (UN), com-
pleteness, and semi-completeness are preserved by currying. For left-linear term rewrite
systems we show that currying also preserves the normal form property (NF) and the
UN→ property. (All these properties are defined in Section 2.5.) Counterexamples demon-
strate that NF and UN→ are not always preserved for non-left-linear systems. We also
explore connections between currying and modular properties.

Kahrs, 1994 has recently shown that the Church-Rosser property (CR) is preserved by
currying for all rewrite systems. This corrects an error in an earlier version of this paper,
which proved preservation of CR for left-linear systems, but claimed a counterexample
for non-left linear systems.

We use two different definitions of currying: Schönfinkel’s original definition, and a
different definition which is not equivalent, but is technically easier to work with. For
every term rewrite system, and for each of the properties mentioned above, we prove
that the property is preserved for that system by one form of currying if and only if it is
preserved by the other. In addition, we consider partial currying, in which the currying
transformation is applied to only some of the symbols of the system. All our results for
full currying also apply to partial currying.

Finally, we consider the modularity of these properties with respect to unions of curried
rewrite systems.

2. Preliminaries

2.1. term rewriting

Dershowitz and Jouannaud, 1989 and Klop, 1992 contain ample introductions to term
rewriting. A term rewriting system (TRS) is a pair (Σ, R) of a signature Σ and a set of
rewrite rules R. The signature consists of a set of function symbols, each of which has
an arity (a non-negative integer). The set Ter(Σ) of terms over Σ is built in the usual
way from the function symbols and a countably infinite set of variables, disjoint from Σ.
Every variable is a term, and if F is a function symbol of arity n and t1, . . . , tn are terms,
then F (t1, . . . , tn) is a term. When n = 0, we write just F instead of F ().

A position or occurrence is a finite string of positive integers. The empty string is
denoted by ǫ. The set of positions O(t) of a term t is defined inductively by:

(1) If t is a variable then O(t) = ǫ.
(2) If t = F (t1, . . . , tn) then O(t) = {ǫ} ∪ {i · u | 1 ≤ i ≤ n and u ∈ O(ti)}.

Positions are partially ordered by prefix order: u ≤ v if there is a (necessarily unique) w

such that u ·w = v. The subterm of t at position u ∈ O(t) is denoted by t|u and defined
inductively by:

Comparing Curried and Uncurried Rewriting 3

(1) t|ǫ = t,
(2) t|i·u = (ti)|u, if t = f(t1, . . . , tn).

If the principal function symbol of t|u is F , t is said to have an occurrence of F at u.
A context is a “term” containing one occurrence of a special symbol “2”, denoting an

empty place. A context may be written as C[]. The result of substituting a term t for
the hole in C[] is denoted C[t]. t is said to be a subterm of C[t].

A substitution is a function from a set of variables to terms. A substitution σ may be
extended to be a function from terms to terms by defining σ(t) to be the term resulting
from replacing every occurrence in t of a variable x in the domain of σ by σ(x). Where
σ is defined on variables x1, . . . , xn, and maps them to t1, . . . , tn, we may write t[x1 :=
t1, . . . , xn := tn] for σ(t).

A term s is contained in (or encompassed by) a term t (notation s�· t) if there is a
context C[] and a substitution σ such that t = C[σ(s)]. (Examples: F (x)�·G(F (a)) and
x�· y.) s is also said to be a component of t. s will be called strict if the substitution σ

maps distinct variables to distinct terms, and linear if none of the variables in the domain
of σ occurs more than once in s. It is clear that every component can be represented as
either a strict or a linear component (though not necessarily both simultaneously). We
may write the component s as P [x1, . . . , xn], where x1, . . . , xn consists of all the variables
in the domain of σ (perhaps with repetitions), and write the corresponding subterm of t

as P [t1, . . . , tn], where ti = σ(xi) for all i.
A rewrite rule is a pair of terms, written l→ r, subject to the following two conditions:

l must not be a variable, and every variable occurring in r must also occur in l. l and r are
called the left- and right-hand sides of the rule. A rewrite rule l → r is called collapsing
if r is a variable. It is duplicating if there is a variable which occurs more often in r than
it does in l.

A rewrite system R consists of a signature Σ and a set of rewrite rules over Σ. We also
write Ter(R) for its set of terms, i.e. Ter(Σ).

A set of rewrite rules determines a reduction relation → on Ter(Σ). A redex of a term
t is an occurrence u and a rule l→ r such that l is a component of t at u. t thus has the
form C[σ(l)]; the term C[σ(r)] is the result of reducing this redex. We write t→ s when t

reduces to s.→= is the reflexive closure of→, →+ its transitive closure,→∗ its reflexive
transitive closure, and

∗
↔ its reflexive transitive symmetric closure. The last relation is

also called conversion; when t
∗
↔ s we say that t is convertible with s.

A normal form is a term which contains no redexes (with respect to some set of rewrite
rules). A normal form of a term t is a normal form n such that t→∗ n.

We will often consider pairs of reduction sequences having the same initial or final
term. A fork is a pair of reduction sequences of the form t1 ←

∗ t→∗ t2. A join is a pair
of reduction sequences of the form t′1 →

∗ t′ ←∗ t′2. It is a join of the above fork if t′1 = t1
and t′2 = t2, and the four reduction sequences together are then called a tile.

If R1 and R2 are rewrite systems such that every function symbol which they have in
common has the same arity in both systems, then R1 + R2 denotes the TRS obtained
by taking the union of their sets of function symbols and rules. If their signatures are
disjoint we write R1 ⊕R2.

4 R. Kennaway et al.

2.2. applicative term rewriting

Definition 2.1. (1) For any signature Σ, an applicative term over Σ is a term over
the signature obtained by making the arity of every member of Σ zero, and adding
the binary symbol Ap (assumed not to occur in Σ). The set of applicative terms
over Σ is denoted by ATer(Σ).

(2) The function cur :Ter(Σ)→ATer(Σ) is defined by induction on the structure of the
terms in Ter(Σ):
cur(x) = x

cur(F (t1, . . . , tn)) = Ap(. . .Ap(F, t1), . . . , tn)
(3) An applicative TRS (or ATRS) is a TRS whose terms are the applicative terms

over some signature, and in which the left-hand side of every rule has the form
cur(t) for some (non-applicative) term t.

Combinatory Logic is a standard example of an ATRS. It has the symbols S, K, and
I, with applicative arities 3, 2, and 1 respectively, and the following rewrite rules:

Ap(Ap(Ap(S, x), y), z) → Ap(Ap(x, z),Ap(y, z))
Ap(Ap(K,x), y) → x

Ap(I, x) → x.

The presence of only one binary operator allows for the usual notational conventions:

(1) use infix notation t · s for Ap(t, s);
(2) as in ordinary algebra, suppress the dot;
(3) associate to the left in order to use as few brackets as possible.

Following these notational conventions the above rewrite rules become:

CL =

Sxyz → xz(yz)
Kxy → x

Ix → x.

It is a convenient fiction to view the S, K, and I as “operators with variable arity”.

2.3. currying

Currying is a well-known construction that given a TRS R produces a corresponding
applicative TRS Cur(R). It is usually credited to Schönfinkel (cf. Curry and Feys, 1958).
Consider the TRS R given by the following rules:

M(x, x) → 0
M(Succ(x), x) → 1.

Its currying Cur(R) is the ATRS given by the rules:

Mxx → 0
M(Succ x)x → 1.

So the curried TRS is constructed with the same set of function symbols, together with
application, but we have “forgotten” about their arity and treat the former function
symbols as constants.

Comparing Curried and Uncurried Rewriting 5

Definition 2.2. Let R be a TRS with signature Σ. The currying Cur(R) of R is the
applicative TRS whose terms are the set ATer(Σ) and whose rewrite rules are {cur(l)→
cur(r) | l → r ∈ R}.

The function cur :Ter(Σ) →ATer(Σ) is not surjective: e.g., in the example above, the
terms xx, M , Mx and Mxyz are not in the image of cur : R→ Cur(R).

Lemma 2.1. (1) cur is one-one.
(2) σ(l) is a redex for R in t, if and only if (cur ◦ σ)(cur (l)) is a redex for Cur(R) in

cur(t).
(3) t→ s in R if and only if cur(t)→ cur(s) in Cur(R).
(4) If cur(t)→ s in Cur(R) then there is an s′ in R such that t→ s′ and cur(s′) = s.
(5) t is a normal form in R if and only if cur(t) is a normal form in Cur(R).

The lemma can be summed up as saying that Cur(R) contains an isomorphic copy of
R which is closed under reduction.

2.4. an alternative definition of currying

While Cur(R) is the traditional notion of currying, we find it more convenient to use
an alternative notion, in which R is extended to a system called PP(R) by adding an
Ap symbol and certain other symbols and rules, but keeping all the symbols and rules of
R. PP is Kahrs’s notation, and stands for “partial parameterization”. The two notions
are sufficiently similar that each of the properties we consider is easily proved to hold of
Cur(R) if and only if it holds of PP(R).

This version of currying has been known since at least Kennaway and Sleep, 1982, and
probably since much earlier. Kahrs, 1994 uses it in his proof of preservation of CR.

Definition 2.3. For any TRS R, the TRS PP(R) consists of R plus the following func-
tion symbols and rules:

(1) For every symbol F of arity n, new symbols Fi for i : 0 . . . n− 1, of arity i. These
are called incomplete function symbols.

(2) A binary symbol Ap.
(3) For each new symbol Fi, a rule

Ap(Fi(x1, . . . , xi), y)→ Fi+1(x1, . . . , xi, y)

where if i + 1 = arity(F) then Fi+1 denotes F . These rules will be called the
uncurrying rules.

The uncurrying rules are orthogonal. Since each uncurrying rewrite reduces the size of
the term, they are strongly normalizing. Therefore every term has a unique normal form
with respect to them.

Definition 2.4. For any term t of PP(R), Uncur(t) is the unique normal form of t with
respect to the uncurrying rules.

6 R. Kennaway et al.

t
∗- t1

t2

∗ ?
.......
∗- s

∗ ?........
Figure 1. The Church-Rosser property.

As for Cur(R), we may indicate the Ap operator in PP(R) by juxtaposition when this
is not syntactically ambiguous.

There is a very close connection between Cur(R) and PP(R) which the following defi-
nition and theorem make precise.

Definition 2.5. For a term t of Cur(R), let PP(t) be the term obtained by first sub-
scripting every non-nullary function symbol in t by 0, and then reducing the resulting term
of PP(R) to normal form with respect to the uncurrying rules. For a term t of PP(R),
define Cur(t) to be obtained by replacing every subterm of the form Fi(x1, . . . , xi) by
Ap(. . .Ap(F, x1), . . . , xi).

Theorem 2.1. (1) When restricted to the normal forms of Cur(R) and PP(R) respec-
tively, PP and Cur are inverse bijections.

(2) If t→ s in Cur(R), then PP(t)→+ PP(s) in PP(R), by a sequence consisting of a
single non-uncurrying reduction followed by a series of uncurrying reductions.

(3) If t→ s in PP(R) by an uncurrying rule, then Cur(t) = Cur(s). If t→ s in PP(R)
by a non-uncurrying rule, then Cur(t)→ Cur(s) in Cur(R).

(4) For t in Cur(R), Cur(PP(t)) = t. For t in PP(R), PP(Cur(t)) = Uncur(t).
(5) For every t in PP(R), there are only finitely many t′ in Cur(R) such that PP(t′) = t.

An example illustrating item (2) is the rule R = G(x, y)→ y, and the curried reduction
t = GG(Gx)z → Gxz = s. In the system PP(R) we have PP(t) = Ap(G(G0, G1(x)), z)→
Ap(G1(x), z)→ G(x, z) = PP(s).

The usefulness of PP(R) lies in the fact that it contains not merely an abstractly
isomorphic copy of R, as Cur(R) does, but R itself.

2.5. properties of term rewrite systems

Definition 2.6. A property P of term rewrite systems is preserved by currying if P (R)
implies P (Cur(R)). It is reflected by currying if P (Cur(R)) implies P (R).

We will be considering the following properties of term rewrite systems, and will demon-
strate which of them are preserved or reflected by the currying transformation.

Definition 2.7. (1) A TRS is strongly normalizing (SN) if it contains no infinite
reduction sequences.

(2) A TRS is weakly normalizing (WN) if every term has a normal form.
(3) A TRS is confluent or Church-Rosser (CR) if every fork t1 ←

∗ t→∗ t2 has a join
t1 →

∗ s←∗ t2.

Comparing Curried and Uncurried Rewriting 7

t - t1

t2

?
.......
∗- s

∗ ?........
Figure 2. The weak Church-Rosser property.

t � ∗ - s@@∗R ∗
n

Figure 3. The NF property.

(4) A TRS is locally confluent or weakly Church-Rosser (WCR) if every fork of the
form t1 ← t → t2 (that is, where the two reduction sequences each contain exactly
one step) has a join t1 →

∗ s←∗ t2.
(5) A TRS is complete if it is both SN and CR.
(6) A TRS is semi-complete if it is both WN and CR.
(7) A term t has the normal form property (NF) if when t is reducible to normal form

n, and t is convertible with s, then s is reducible to n. A TRS has the normal form
property if each of its terms does.

(8) A TRS has unique normal forms (UN) if convertible normal forms are identical.
(9) A term t has unique normal forms with respect to reduction (UN→(t)) if it cannot

be reduced to two distinct normal forms. A TRS has the UN→ property if each term
in it does.

Completeness is equivalent to the combined properties SN and WCR by the well-known
Newman’s Lemma.

Lemma 2.2. If a TRS is SN and WCR, then it is CR (see, e.g. Klop, 1992).

Several implications hold among these. For example, CR⇒ NF⇒ UN⇒ UN→ (Klop,
1992). However, these implications do not imply corresponding implications among the
corresponding preservation properties, each of which must be proved separately. In fact,
of the above properties, we will see that CR and UN are preserved by currying, but NF
and UN→ are not.

As we mentioned above, we find it technically more convenient to study PP(R) rather
than Cur(R). The following theorem justifies this approach.

Theorem 2.2. Let P be any of the properties SN, WN, CR, WCR, NF, UN, and UN→.
Then P (Cur(R)) if and only if P (PP(R)).

Proof. These follow immediately from Theorem 2.1. For example, by Theorem 2.1
item (2), the translation of Cur(R) to PP(R) maps infinite reduction sequences to infi-
nite reduction sequences. By Theorem 2.1 item (3) and the strong normalization of the
uncurrying rules, the reverse translation also has that property. Hence Cur(R) is SN if
and only if PP(R) is.

The other properties may be dealt with equally simply. 2

8 R. Kennaway et al.

Ap��	
G��	

G0

@@R
G1?
x

@@R
G @@R

y

��	
G0

��@@@@��@@@@
Figure 4. A term with three patches.

Ap(G(G0, G1(x)), G(G0, y)) - Ap(G1(x), G(G0, y)) - G(x, G(G0, y)) - G(G0, y)

Ap(G(G0, G1(x)), y)
? - Ap(G1(x), y)

? - G(x, y)
? - y

?
Figure 5. All reductions of the term in Figure 4.

Henceforth we will always deal with PP(R) instead of Cur(R).

2.6. patches

Of importance are the fragments of a term in a curried TRS in which all function
symbols receive exactly the right number of arguments.

Definition 2.8. Let t be a term of a TRS PP(R). A patch of t is a component s�· t such
that s is a term of R and there is no s′ in R such that s�· s′�· t. In other words, a patch
is a component containing neither Ap nor any incomplete function symbol, and subject
to that condition, maximal with respect to �· .

Our proofs will often use the following classification of terms of PP(R). Every term
of PP(R) is either Fi(t1, . . . , ti) for some incomplete function symbol Fi (i ≥ 0), or it is
Ap(. . .Ap(P [t1, . . . , tn], s1), . . . sm), where n ≥ 0, m ≥ 0, and P [x1, . . . , xn] is a patch of
the term.

Patches are important because reductions performed within a patch are reductions of
R. The reduction behaviour of a term of PP(R) does not, however, consist of the reduction
behaviour of each patch. This is because a patch can “collapse”, that is, reduce to one
of its arguments. This can create a redex by one of the uncurrying rules, and thus lead
to reduction sequences that have no direct counterpart in R. As an example consider
the ATRS obtained by currying the TRS consisting of the single rule G(x, y) → y.
Consider the term Ap(G(G0, G1(x)), G(G0, y)). This term has three patches: G(p, q), x,
and G(p, y), whose roots are at positions 1, 1 · 2 · 1, and 2, respectively. This is pictured
in Figure 4. All possible derivations of the term are pictured in Figure 5. Note that the
middle step in each of the horizontal sequences causes two patches to be merged into
one. In the upper sequence, the two patches x and G(p, y) merge into G(x,G(p, y)), and
in the lower, x and y merge into G(x, y). Finally, it is useful to observe that the pattern

Comparing Curried and Uncurried Rewriting 9

of any rewrite rule in any term t of a curried TRS PP(R) is entirely contained in a patch,
since the patterns are terms of R.

2.7. modularity properties and signature extensions

Definition 2.9. A property P of term rewrite systems is modular if, given two disjoint
systems (i.e. systems having no function symbols in common), P is true of their union
if and only if it is true of both systems.

We will use several modularity results, which we collect here. Klop, 1992 discusses all
of these results except the last.

Theorem 2.3. (1) The disjoint sum of two strongly normalizing TRSs is strongly nor-
malizing, if one of them contains neither collapsing rules nor duplicating rules.
(Conjectured by Rusinowitch and proved in Middeldorp, 1990.)

(2) WN is modular (noted by several authors, e.g. Middeldorp, 1990).
(3) CR is modular (Toyama, 1987).
(4) UN is modular (Middeldorp, 1990).
(5) NF is modular for left-linear systems (Middeldorp, 1990).

We do not actually need the full generality of the above result, but only the particular
case of signature extensions. A signature extension of a TRS is a system obtained by
adding to it a set of new function symbols, but no extra rules. Thus it is a special case
of a disjoint union, so all the properties listed in the preceding theorem are preserved by
signature extensions.

2.8. well-ordering lemmas

We will need the following constructions of well-founded partial orderings, i.e. partial
orderings containing no infinite descending chains.

Lemma 2.3. (Dershowitz and Manna, 1979) Let (X,≤) be a well-founded partial order.
Define a relation ≤ on the set of finite multisets of members of X, by stipulating that (i)
≤ is transitive and reflexive, and (ii) for multisets A and B, A ≥ B if B can be obtained
from A by replacing any element a of A by any finite multiset of elements strictly less
than a. Then ≤ is a well-founded partial ordering of the set of finite multisets of elements
of X.

Lemma 2.4. Let (X,≤) be a well-founded partial order. Consider the set of finite trees
whose nodes are labelled by elements of X. For trees T1 and T2, define T1 ≥ T2 if T2 can
be obtained from T1 by a finite sequence of any of the following operations:

(1) Delete any proper subtree.
(2) Replace the label of any node by a strictly lesser label, and replace each immediate

subtree of that node by any finite number of copies.

Then ≥ is a well-founded partial ordering of the set of trees.

10 R. Kennaway et al.

Proof. This follows from theorem 2.3.5 of Klop, 1992, since both of the above transfor-
mations of trees can be expressed as sequences of the transformations which that theorem
deals with. That theorem in turn is proved from Kruskal’s Tree Theorem (Kruskal, 1960).
We shall give a more direct proof which uses only the preceding lemma on well-orderings
of multisets.

For any tree T , let P (T) mean that it is not possible to apply an infinite sequence of the
above operations to T . We prove P (T) for all T by induction. The inductive hypothesis
is that P is true for each immediate subtree of T .

Let T have label x at the root, and immediate subtrees T1, . . . , Tn. (There is no special
base case of the induction: the case where n = 0 does not require a separate argument.)
There are only finitely many immediate subtrees, and by induction, P holds of each of
them. An infinite sequence of operations applied to T must therefore eventually apply
the second transformation at the root, replacing the root label by a smaller one, and
each immediate subtree by a finite number of copies. By the well-foundedness of (X,≤),
this can happen only finitely many times before a tree is obtained whose root label is
a minimal member of X . All subsequent operations must be applied to proper subtrees
of that tree. But each immediate subtree of that tree is a tree which was obtained from
one of T1, . . . , Tn by a sequence of operations, and by induction satisfies P . Therefore the
sequence of operations applied to T must terminate, i.e. P (T). 2

3. Properties reflected by currying arbitrary term rewriting systems

The question, which properties are reflected by currying, can be disposed of immedi-
ately.

Theorem 3.1. All of the properties SN, WN, CR, WCR, completeness, semi-complete-
ness, NF, UN, and UN→ are reflected by currying arbitrary term rewrite systems.

Proof. This follows immediately from the fact that PP(R) contains an isomorphic
reduction-closed copy of R. For example, if every reduction sequence in PP(R) is fi-
nite, then every reduction sequence in that copy of R is finite, hence also every reduction
sequence of R. Thus SN is reflected by currying.

Proofs for the other properties are equally simple. 2
We sketch how the proofs of reflection can be cast into a more systematic form. Each

of the properties we consider can be expressed in a first-order language containing the
predicates x→ y, x→∗ y, x↔∗ y, Seq(x, s, y) (s is a reduction sequence from x to y), and
Inf(x, s) (s is an infinite reduction sequence starting from x). x and y range over terms, s

ranges over reduction sequences. For example, the UN property is ∀xy.(x↔∗ y ∧ nf(x) ∧
nf(y))⇒ x = y, where nf(x) abbreviates ¬∃z.x→ z. Reflection by currying means that
the statement in which the variables range over terms and sequences of PP(R) implies
the statement where they are restricted to R. That R is a reduction-closed subset of
PP(R) implies that the above predicates have the following properties.

x→ y ∧ x∈R ⇒ x→R y ∧ y∈R

x→∗ y ∧ x∈R ⇒ x→∗
R y ∧ y∈R

x↔∗ y ∧ x∈R ⇒ x↔∗
R y ∧ y∈R

Comparing Curried and Uncurried Rewriting 11

Seq(x, s, y) ∧ x∈R ⇒ SeqR(x, s, y)

Inf(x, s) ∧ x∈R ⇒ InfR(x, s).

→R is the reduction relation of R, and similarly for SeqR and InfR. The notation x∈R

means that x is a term of R. From these properties, it is easy to prove that a large class
of statements formed from these predicates, including those of the theorem, are reflected
by currying. But we shall not attempt a formal description of such a class.

4. Properties preserved by currying arbitrary term rewriting systems

In this section we will show that currying preserves the following properties of term
rewrite systems: weak normalization, strong normalization, the weak Church-Rosser
property, and completeness.

4.1. preservation of WN by currying

Theorem 4.1. If R is WN, then PP(R) is WN.

Proof. Let the TRS R be WN. By induction on the structure of terms we will prove
that PP(R) is WN.

If t is a variable, it is already in normal form.
If t = F (t1, . . . , tn), where F is any function symbol of PP(R), then by induction, the

terms t1, . . . , tn have normal forms t′1, . . . , t
′
n. Either F (t′1, . . . , t

′
n) is a normal form of t,

or it contains a single redex, at its root. If that redex is an uncurrying redex, reducing it
gives another term containing no redex other than at its root (and that redex, if present,
cannot now be an uncurrying redex). If the redex is by a rule of R, then the term has the
form P [s1, . . . , sm], where P [x1, . . . , xm] is a patch (which we shall choose to be strict)
and each of s1, . . . , sm are normal forms. P [x1, . . . , xm] is a term of R, so has a normal
form P ′.

Now consider the term P ′[x′
1 := s1, . . . , x

′
m := sm]. A redex of this term must be either

a redex of some si, a redex of P ′, a redex whose pattern is partly in P ′ and partly in
some si, or a non-left-linear redex whose pattern lies in P ′ which tests the equality of
some subterms of P ′[x′

1 := s1, . . . , x
′
m := sm] including at least one si, and which is not

a redex of P ′.
The first two cases are impossible, since P ′ and all the si are normal forms.
Every symbol in P ′ is a symbol of R, but the root symbol of each si is not in R. Since

no left-hand side of PP(R) contains both symbols of R and symbols not in R, the third
case is impossible.

The strictness of P [x1, . . . , xm], and the fact that no si can be unifiable with any
subterm of P [x1, . . . , xm] other than variables rules out the fourth case.

Therefore P ′[x′
1 := s1, . . . , x

′
m := sm] is a normal form of t. 2

4.2. preservation of SN by currying

This is the most complicated of our proofs. We begin by outlining the method. First,
we extend R to R+, which consists of R and all the incomplete symbols of PP(R), but
without Ap or any of the uncurrying rules. This is a signature extension of R, therefore
it is SN. It is a subsystem of PP(R).

12 R. Kennaway et al.

Our first idea to prove that PP(R) is SN is to take any term t of PP(R), perform
in advance all the possible uncurrying reductions that it might undergo in PP(R), and
thus eliminate all occurrences of Ap. Call the resulting term α(t). α(t) will contain no
occurrences of Ap, and hence is a term of R+, and its reduction behaviour must be
identical in both R+ and PP(R). If we can show that t → s in PP(R) implies α(t) →+

α(s), then SN(R+) implies SN(PP(R)).
This does not quite work. The best we can do is to construct a transformation α such

that if t → s in PP(R) then α(t) →∗ α(s). The possibility that the latter reduction is
empty prevents the desired conclusion that SN(R+) implies SN(PP(R)). The possible
emptiness of the reduction results from the fact that our α transformation may discard
some parts of the term. However, we can use α to construct a more complicated trans-
formation β of terms in PP(R) which never discards subterms. β will map a term t to a
tree, each node of which is labelled with a term of the form α(t′) for some subterm t′ of
t. The root will be labelled with α(t), and the other nodes will be labelled with α(t′) for
subterms t′ which α might erase from t. This construction ensures that no part of t is
discarded. We define a reduction relation on the set RTLT of these term-labelled trees,
such that t→ s in PP(R) implies β(t)→+ β(s). A general theorem about well-orderings
of labelled trees implies that if R is SN, then so is RTLT . From this it follows that PP(R)
is SN.

We now carry out this programme.

Lemma 4.1. If t→ s in PP(R) then Uncur(t)→= Uncur(s).

Proof. If t→ s by an uncurrying rule, then completeness of the uncurrying rules implies
that Uncur(t) = Uncur(s).

If t→ s by some other rule, then since there are no critical pairs involving uncurrying
rules, and Uncur treats identical subterms identically, Uncur(t)→ Uncur(s) by the same
rule that reduces t to s. 2

Let R+ be the TRS consisting of R together with all the incomplete function symbols
of PP(R), but without the Ap symbol or the uncurrying rules. R+ is thus a subsystem of
PP(R), and furthermore is closed under the reduction relation of PP(R), since none of
its terms contains any redexes by the uncurrying rules. We shall define a transformation
α of terms of PP(R) to R+, by means of a reduction relation →α.

Definition 4.1. A candidate for collapsing is a term t of the form Ap(. . .Ap(P [t1, . . . ,
tn], s1), . . . sk), where P is a patch, n ≥ 0, and m > 0. For such a term, ∆(t) denotes the
term P [Ap(. . .Ap(t1, s1) . . . sm), . . . ,Ap(. . .Ap(tn, s1) . . . sm)], and ∆(t) denotes the set
{s1, . . . , sm}.

Definition 4.2. Let t be a term of PP(R). Let t′ be any outermost candidate for col-
lapsing of Uncur(t). Replace t′ by ∆(t′) in Uncur(t), to obtain a term t′′. If Uncur(t′′) is
different from t, then t→α Uncur(t′′).

α(t) will be defined below to be the unique normal form of t with respect to→α (which
we will prove exists). The idea behind this transformation is that the patch P [x1, . . . , xn]
might reduce to any of its arguments xi, and thus cause its ith argument to be applied
to the arguments s1, . . . , sm, possibly creating uncurrying redexes. We take a pessimistic

Comparing Curried and Uncurried Rewriting 13

view and apply every one of the arguments of P [. . .] to s1, . . . , sm. The resulting term
may be able to reduce in ways which the original term could not (because P [. . .] may in
fact be incapable of collapsing to some of its arguments). But this does not matter: we
only want that reductions of the original term t can be mapped to reductions of α(t).

Lemma 4.2. →α is confluent and strongly normalizing.

Proof. If Uncur(t) contains two distinct candidates for →α, and if either subterm is
replaced as described, the other subterm will still be a candidate for a subsequent →α

reduction. Thus if t →α u0 and t →α u1, then for some s, u0 →α s and u1 →α s.
Confluence follows.

Strong normalization is proved by induction, based on the way that the Ap symbol
occurs in t and s when t→α s. For any term t, for each occurrence of Ap in t, consider
the size of its first argument. Define a(t) to be the multiset of all these sizes.

Each application of an uncurrying rule removes one occurrence of Ap, and hence one
element from a(t), and every other element of a(t) is either unchanged or reduced by 1.

When t is in normal form with respect to the uncurrying rules, replacing a candidate
t′ = Ap(. . .Ap(P [t1, . . . , tn], s1), . . . sm) by ∆(t′) transforms a(t) thus: The element k

corresponding to the occurrence of Ap at the root of this subterm is removed (as well as
another m − 1 occurrences of Ap). n ×m new occurrences of Ap are created to attach
each ti to each sj . Each subterm si is replaced by n copies. All the new and copied
occurrences of Ap are at subterms strictly smaller than k. Hence the effect is to remove
k and some other elements, and to add a finite number of elements smaller than k.
This transformation strictly reduces the size of the multiset with respect to the partial
ordering of Lemma 2.3. It follows that →α is strongly normalizing. 2
Definition 4.3. α(t) is the unique normal form of t with respect to →α.

Lemma 4.3. α maps terms of PP(R) to terms of R+.

Proof. Any term which contains Ap must contain a subterm of the form Ap(F (. . .), t),
where F is either an incomplete symbol or a symbol of R. In the former case there is an
uncurrying redex; in the latter case there is a candidate for →α, so in both cases, the
term can be transformed to a different term by →α.

A normal form with respect to →α therefore cannot contain Ap. 2
Lemma 4.4. If t→ s in PP(R), then α(t)→∗ α(s).

Proof. Suppose t→ s by reduction of an uncurrying redex. Then Uncur(t) = Uncur(s),
and α(t) = α(s).

Suppose t → s by reduction of a redex by a rule of R, at a position p. Because
uncurrying rules do not conflict with rules of R, and do not duplicate or erase subterms,
Uncur(t) → Uncur(s). So we may assume without loss of generality that t is already in
normal form with respect to the uncurrying rules, i.e. t = Uncur(t).

If t contains no candidates for collapsing, then t is already a term of R, and therefore
so is s. Therefore α(t) = t→∗ s = α(s).

Otherwise, it is sufficient to prove that if t → s, then there are u and v such that
t→∗

α u, s→∗
α v, and u→∗ v. The lemma then follows from completeness of →α.

14 R. Kennaway et al.

Either the redex at p contains one or more candidates for →α, or it is contained in a
candidate, or neither of these holds.

Suppose it contains one or more candidates. Let u be the result of applying →α to
all of them. The corresponding subterms of s will also be candidates for →α. Let v be
the result of applying →α to all of those subterms of s. Then u → v by reduction at
p. (Note that it is essential to reduce all the candidates for →α contained in the redex,
since otherwise, if the redex is by a non-left-linear rule, there might not be a redex at
the same position in u.)

Suppose p is contained in a candidate for→α, of the form Ap(. . .Ap(P [t1, . . . , tn], s1),
. . . sm), at position q. Then q is the position of a candidate for →α in s. If p is contained
in t1, . . . , tn or s1 . . . sm, or if p is in the patch P and reduction at p does not reduce
P to one of its arguments, then it is clear that when →α is applied to the candidate
at q in both t and s, resulting in terms u and v, u reduced to v by reducing all the
resulting copies of the redex. If reduction at p reduces P [x1, . . . , xn] to xi, then p = q

and reduction of the redex at p gives the same result as reduction of the candidate at p

by →α. We can therefore take u = v = s.
Finally, if p neither contains nor is contained in any candidate, take u to be the result

of reduction by→α at any candidate q. The reductions at p and q clearly do not interfere
with each other; v can be taken to be the common result of reduction by R at p in u and
reduction by →α at q in s. 2

If in the preceding lemma, we were able to show that α(t) →+ α(s), at least when
t→ s by a rule of R, then we could immediately conclude preservation of SN. Any infinite
reduction starting from a term t of PP(R) must contain infinitely many steps of R, which
would give rise to an infinite reduction starting from α(t). But this would be a reduction
in R+, which must be SN if R is.

However, in general α(t) and α(s) may be identical. This is because if n = 0, then
the replacement of t′ = Ap(. . .Ap(P [t1, . . . , tn], s1), . . . sm), by ∆(t′) has the effect of
discarding all the subterms ∆(t′) = {s1, . . . , sm}. To obtain preservation of SN by curry-
ing, we need a transformation which will eliminate Ap symbols without discarding any
subterms.

Definition 4.4. RTLT is an abstract rewrite system whose objects are finite trees with
nodes labelled by terms of R+. For such term-labelled trees t and s, we define t → s in
either of the following cases:

(1) s is obtained from t by discarding any proper subtree.
(2) s is obtained from t by performing a reduction step of R on a term labelling some

node n of t, and then replacing each of the immediate subtrees of n by any finite
number of copies of themselves.

Lemma 4.5. If R is SN, then R+ is SN.

Proof. R+ is a signature extension of R; the result follows from Theorem 2.3 item (1).2
Lemma 4.6. If R+ is SN, then RTLT is SN.

Comparing Curried and Uncurried Rewriting 15��� HHH��@@ t ��@@ ���� PPPP��@@ α(t) ��@@�� @@
· · ·T · · ·

Figure 6. One step in the β transformation.

Proof. On RTLT , define t ≥ s if t →∗ s. That RTLT is SN is equivalent to ≥ being a
well-founded partial ordering of the members of RTLT . That it is well-founded follows
from Lemma 2.4. 2

We now define a transformation β from PP(R) to RTLT .

Definition 4.5. Let t be a term of PP(R). Construct a member of RTLT by the following
iterative method.

Begin with a tree containing a single node, labelled by t.
If none of the labels of the tree contains the symbol Ap, then the tree is a member of

RTLT . Stop.
Otherwise, choose any leaf n of the tree whose label t′ contains an occurrence of Ap.

Reduce t′ to α(t′) by applying →α enough times. Each →α-step will replace a candidate
t′′ = Ap(. . .Ap(P [t1, . . . , tn], s1), . . . sm) by ∆(t′′). Form the union T of the sets ∆(t′′)
for each →α-step.

Replace the label of n by α(t), and for each member of T , add a new descendant node
of n, labelled with that element of T . See Figure 6.

Since each member of T is smaller than t, by induction on the size of terms this process
terminates.

The nodes of the resulting tree will all be labelled by terms of R+. Denote this tree by
β(t).

Example 4.1. Let R have the function symbols F , G, and H, with arities of 1, 2, and
2, respectively. Consider the term t = Ap(H(Ap(y, F (x)),Ap(z,G0)),Ap(x, F0)). Figure
7 indicates the construction of β(t).

Lemma 4.7. If t→ s in PP(R), then β(t)→+ β(s).

Proof. If the reduction of t to s is by an uncurrying rule, then β(t) = β(s).
Otherwise, let t→ s by reduction of a redex at u. If u is not contained in any candidate

for →α in t, then it is clear that u is the position of a redex in the label of the root of
β(t), and that reduction at u in that label, together with the replacement of some of the
immediate subtrees by some number of copies of themselves yields β(s).

If u is contained in a candidate Ap(. . .Ap(P [t1, . . . , tn], s1), . . . sm) for →α in t, then
by arguments similar to those in the proof of Lemma 4.4, we can find a reduction of
β(t) to β(s). However, in the case where u is contained in si and n = 0, the reduction
sequence must be nonempty, since β(t) contains β(si) as a subtree even although α(t)
may not contain α(si) as a subterm. 2

16 R. Kennaway et al.

H(y, z)

Ap(H(Ap(y, F (x)), Ap(z, G)), Ap(x, F)) −→ �� @@
F (x) G0 Ap(x, F0)

H(y, z)�� @@
−→ F (x) G0 x

F0

Figure 7. The β transformation.

Theorem 4.2. If R is SN, then PP(R) is SN.

Proof. Immediate from Lemmas 4.5, 4.6 and 4.7. 2
Zantema (pers. comm.) has given an alternative proof, based on the technique of

semantic labelling (Zantema, 1994).

4.3. preservation of WCR by currying

Theorem 4.3. If R is WCR, then PP(R) is WCR.

Proof. (Suggested by Kahrs, pers. comm.) Since Ap and the incomplete function sym-
bols do not occur in rules of R, and there are no conflicts between uncurrying rules, every
critical pair of PP(R) must be a critical pair of R. Therefore if R is WCR, so is PP(R).2

4.4. preservation of UN by currying

Theorem 4.4. If R is UN, then PP(R) is UN.

Proof. Lemma 5.1.19 of Middeldorp, 1990 shows that if R satisfies UN, then R can be
extended by adding extra rules and symbols, to a system RCR such that:

(1) RCR is CR.

(2) t
∗
↔ s in R⇒ t

∗
↔ s in RCR.

(3) If t is a normal form of R, then it is a normal form of RCR.

(His lemma 5.1.19 is actually stronger, but the above is all that we require.) Now let R

be a TRS satisfying UN. Kahrs, 1994 has proved preservation of CR, and RCR is CR,
therefore PP(RCR) is CR. We will prove that PP(R) and PP(RCR) stand in the same
relation as do R and RCR.

Ad (2): RCR is R plus extra rules and symbols, therefore PP(RCR) is PP(R) plus extra
rules and symbols. Therefore convertibility in PP(R) implies convertibility in PP(RCR).

Ad (3): Let t be a term of PP(R) which is not a normal form of PP(RCR). If t contains

Comparing Curried and Uncurried Rewriting 17

an uncurrying redex, that redex is a redex of PP(R), since the two systems have the
same set of uncurrying rules. If t contains a redex by a rule of RCR, then that redex is
in some patch P [x1, . . . , xn] of t. P [x1, . . . , xn] is a non-normal form of RCR, therefore it
is a non-normal form of R. Hence t is a non-normal form of PP(R).

Now suppose t and s are normal forms of PP(R), and t
∗
↔ s in PP(R). By (2), t

∗
↔ s

in PP(RCR), and by (3), t and s are normal forms of PP(RCR). Since PP(RCR) is CR, t

and s must be identical. 2
4.5. preservation of (semi-)completeness by currying

Theorem 4.5. If R is (semi-)complete, then so is PP(R).

Proof. A TRS is complete if and only if it is SN and CR, and semi-complete if and
only if it is WN and CR. Theorems 4.1 and 4.2 establish preservation of WN and SN,
and Kahrs, 1994 has proved preservation of CR. 2

5. Counterexamples

5.1. NF is not preserved by currying

Let RNF be the system having the symbols A, B, C, F , and G, and the following rules:

F (x, x) → G

A → B

A → C

B → B

C → C

F (Z, x) → G, where Z is any of A,B, or C

F (x,Z) → G, where Z is any of A,B, or C.

Remark 5.1. The first rule and the next four rules are the two systems Middeldorp used
to refute modularity of NF (Middeldorp, 1990). The last six rules restore NF, but allow
it to be broken when a new symbol is added.

Lemma 5.1. RNF is NF.

Proof. Each of the terms A, B, and C has the NF property.
Call a reduction sequence an ABC-elimination if it uses only the last six rules, and

results in a term containing no occurrence of A, B, or C. Every term other than A, B,
or C can be so reduced: the effect is to replace every occurrence of F , either of whose
arguments is A, B, or C, by G. We indicate such a reduction sequence by →ABC . It is
clear that ABC-elimination commutes with every reduction step.

Let t be any term other than A, B, or C. Let t →∗ s be a reduction of a term t to a
normal form s, and let t→∗ r be any reduction sequence. Then by the preceding remarks,
we have reduction sequences t →ABC t′ →∗ s′, s →ABC s′, t′ →∗ r′, and r →ABC r′.
Since s is a normal form, s = s′. Since t′ contains no A, B, or C, only the first rule of
the system can be used in the reductions of t′ to s and r′. But this rule on its own is

18 R. Kennaway et al.

Church-Rosser. Therefore r′ and s have a common reduct, which must be s. Therefore r

reduces to s. 2
If we add a new unary function symbol H, the resulting system is not NF. A coun-

terexample is the term F (H(A),H(A)), which reduces to both the normal form G and
the term F (H(B),H(C)), which reduces only to itself.

From this we obtain a counterexample to the preservation of NF by currying. Ap(Ap(F,

Ap(A,G)),Ap(A,G)) has normal form G. It also reduces to Ap(Ap(F,Ap(B,G)),Ap(C,

G)), which reduces only to itself.

5.2. UN→ is not preserved by currying

Let RUN→ be the system having the symbols A, B, C, D, E, F , and G, and the
following rules:

F (x, x) → G

A → B

A → C

D → C

D → E

C → C

F (Z, x) → G, where Z is any of A,B,C,D, or E

F (x,Z) → G, where Z is any of A,B,C,D, or E.

Remark 5.2. This system bears the same relation to Middeldorp’s counterexample for
UN→ as the example of the previous section does to his counterexample for NF.

Lemma 5.2. RUN→ is UN→.

Proof. None of the terms A, B, C, D, or E is reducible to two distinct normal forms.
Define, as for the NF counterexample, an ABCDE-elimination (notation→ABCDE) to

be a reduction sequence using only the last ten rules, ending with a term not containing
any of the symbols A to E. Every term other than A, B, C, D, or E can be so reduced.
→ABCDE clearly commutes with the other rules.

Let t be any term other than A, B, C, D, or E. Suppose we have reductions of t to
normal forms r and s. Applying ABCDE-elimination to every term in both sequences
gives a reduction of a term not containing any of A, B, C, D, or E to r and s. Such
reduction sequences can only use the first rule of the system. That rule on its own is
confluent, hence r and s must be identical. 2

If we add a new unary function symbol H, the resulting system is not UN→. A coun-
terexample is the term F (H(A),H(D)), which reduces to both the normal forms G and
F (H(B),H(E)).

From this we obtain a counterexample to the preservation of UN→ by currying.
Ap(Ap(F,Ap(A,G)),Ap(D,G)) has normal forms G and Ap(Ap(F,Ap(B,G)),Ap(E,

G)).

Comparing Curried and Uncurried Rewriting 19

6. Properties preserved by currying left-linear term rewriting systems

In this section we will prove that the currying of a left-linear TRS preserves the NF
and UN→ properties.

6.1. preservation of NF by currying for left-linear TRSs

Definition 6.1. A patch P [x1, . . . , xn] of a term t of a TRS R is collapsible if P [x1,

. . . , xn] can be reduced in R to some xi.
We write t→C s if t→∗ s by a reduction sequence which takes place in some collapsible

patch of t, and reduces it to one of its arguments.

Lemma 6.1. →C is strongly normalizing.

Proof. Every application of →C reduces the size of the term. 2
Lemma 6.2. If a left-linear TRS R is NF, then every term of PP(R) containing no
collapsible patches is NF.

Proof. By induction on the structure of terms.
If t has the form Fn(t1, . . . , tn), where Fn is an incomplete function symbol, then a

reduction of t is the same thing as an interleaving of reductions of the subterms t1, . . . , tn.
Since each of those subterms is smaller than t, they each satisfy NF. Therefore so does t.

Otherwise, t has the form Ap(. . .Ap(P [t1, . . . , tn], s1), . . . sk) where P [x1, . . . , xn] is a
patch of t, n ≥ 0, and k ≥ 0. If n = 0 and k = 0, then t is a single patch, hence is a term
of R, hence is NF.

Otherwise, since P is not collapsible, a normal form of t must have the form s =
Ap(. . .Ap(t′, s′1) . . . s′k), where each s′i is a normal form of si, and t′ is obtained from
P [x1, . . . , xn] by first reducing it to normal form, then substituting for each occurrence
of each xi some normal form of ti. Since P [x1, . . . , xn] and each ti are smaller than
t, by induction they each have at most one normal form, so t′ in fact has the form
P ′[x1 := t′1, . . . , xn := t′n], where P ′ is a normal form of P [x1, . . . , xn], and for each i

such that xi occurs in P ′, t′i is a normal form of ti.
All of P, t1, . . . , tn, s1 . . . sk are smaller than t, hence by induction on the size of

terms, they also satisfy NF. Hence if a redex is reduced in t to give a term r =
Ap(. . .Ap(P ′′[x1 := t′′1 , . . . , xn := t′′n], s′′1) . . . s′′k) we can reduce P ′′ to P ′, each s′′i to
s′i, and for each i such that xi occurs in P ′ each t′′i to t′i. This reduces r to s. Therefore
t satisfies NF. 2
Lemma 6.3. If R is left-linear, then PP(R) satisfies the following:

(1) If s← t→C r, then there is a u such that s→∗
C u←∗ r.

(2) If s←∗ t→C r, then there is a u such that s→∗
C u←∗ r.

Proof. (1) Let s← t→C r. Suppose the redex q which reduces t to s is in a patch of
t other than the patch P which collapses in reducing t to r. Then after collapsing
P , either the part of the term containing q has been discarded, or the redex q is
still present. (Left-linearity is essential here.) Similarly, if we first reduce q, then

20 R. Kennaway et al.

r
∗

C

- r�����∗
*

6.3 �����∗
*

t
C

- s Ind.HHHHHj 6.3
HHHHH∗ j

q
∗

C

- v

∗

6
Figure 8. Proof of preservation of NF.

there will be some number of copies (perhaps zero) of the patch P , all of which can
still be collapsed in the same way. It is clear that if we collapse P , then reduce q,
we obtain the same result as if we first reduce q, then collapse the copies of P .
Suppose the reduction of t to s is in the patch P which collapses in reducing t

to r. The reduction of t to r reduces a subterm P [t1, . . . , tn] to its i’th argument,
by performing reductions only within P . By left-linearity, P [x1, . . . , xn] must be
reducible to xi, which is a normal form. Since P [x1, . . . , xn] is a term of R, it
satisfies NF. By left-linearity again, the redex which reduces t to s is present in
P [x1, . . . , xn]. Suppose reducing it gives a term P ′. Then by the NF property of R,
P ′ reduces to xi. Thus P ′[x1 := t1, . . . , xn := tn] reduces to ti, and s reduces to r.

(2) The second part of the lemma follows from the first and Lemma 6.1.2
Theorem 6.1. If R is left-linear and NF, then PP(R) is NF.

Proof. We proceed by induction on the strongly normalizing reduction relation →C .
See Figure 8.

If t contains no collapsible patches, then this is Lemma 6.2.
Suppose t contains a collapsible patch. Let t →C s, and let t →∗ r be a reduction of

t to normal form. Let t → q be any single step. We must show that q is reducible to r.
By Lemma 6.3, there are u and v such that r →∗

C u←∗ s and q →∗
C v ←∗ s. But r is a

normal form, therefore u = r and s→∗
C r. By induction on→C , s satisfies NF. Therefore

v →∗ r. Composing reduction sequences, s→∗ r. 2
6.2. preservation of UN→ by currying for left-linear TRSs

Lemma 6.4. If R satisfies UN→ and t is a term of PP(R) containing no collapsible
patches, then t satisfies UN→.

Proof. The proof is similar to that of Lemma 6.2, so we only outline it.
If t has the form Fn(t1, . . . , tn), where Fn is an incomplete function symbol, then the

lemma follows by exactly the same argument as in Lemma 6.2.
Let t = Ap(. . .Ap(P [t1, . . . , tn], s1), . . . sk), where P [x1, . . . , xn] is a patch of t. Then

a reduction of t to normal form reduces P [x1, . . . , xn] and each of t1, . . . , tn, s1 . . . sk to
normal form. P [x1, . . . , xn] is a term of R, hence satisfies UN→. Each of t1, . . . , tn, s1 . . . sk

is smaller than t, hence satisfies UN→, Therefore t satisfies UN→. 2

Comparing Curried and Uncurried Rewriting 21

r
∗

C

- r�����∗
*

6.3 �����∗
*

t
C

- s Ind.HHHHH∗ j 6.3
HHHHH∗ j

q
∗

C

- q

w

w

w

w

w

w

w

w

w

w

Figure 9. Proof of preservation of UN→.

Theorem 6.2. If R is left-linear and UN→, then PP(R) is UN→.

Proof. See Figure 9. Let t→∗ q and t→∗ r be two reductions of t to normal form. Let
t→∗

C s be a reduction to →∗
C-normal form. By Lemma 6.3, s is reducible to both q and

r. By Lemma 6.4, q = r. 2
7. Partial currying

We can generalize PP(R) to represent partial currying, where some symbols are curried
and others are not.

Definition 7.1. Let R be a term rewrite system, and F a subset of its function symbols.
The system PPF (R) is defined identically to PP(R) in Definition 2.3, expect that in part
(1), F ranges only over F , instead of over all the symbols of R.

PPF (R) is called a partial currying of R.

We can similarly define CurF (R), and prove a version of Theorem 2.1 relating the two
versions of partial currying.

Theorem 7.1. Let F1 and F2 be sets of symbols of a term rewrite system R, such that
F1 ⊇ F2. Let P be any of the properties SN, WN, CR, WCR, completeness, semi-com-
pleteness, UN, NF, UN→. Then P (PPF1

(R))⇒ P (PPF2
(R)). In particular, for any set

F of symbols of R, P (PP(R))⇒ P (PPF (R)) and P (PPF (R))⇒ P (R).

Proof. The proofs are virtually the same as for Theorem 3.1. 2
Note that the last of the above implications says that these properties are all reflected

by partial currying.

Corollary 7.1. All the properties for which we have proved preservation by currying
are preserved by every partial currying.

8. Modularity properties for applicative term rewrite systems

The notion of modularity was introduced in Toyama, 1987, although first given that
name in Middeldorp, 1989. A property of rewrite systems is modular if, whenever it is
true of two disjoint systems (i.e. systems sharing no function symbols) it is true of their

22 R. Kennaway et al.

union. The notion is important for proving properties of large systems, such as large
functional programs, which are built up by combining smaller systems. If a property is
modular, it can be proved of the whole system by dividing it into disjoint subsystems
and establishing it for each of these subsystems.

Much research has been done on modular properties of term rewrite systems, some
of which is summarized in Theorem 2.3. Unfortunately, applicative systems are never
disjoint, as they all contain the symbol Ap. Thus none of these modularity theorems
apply to unions of applicative systems. Some authors (e.g. Middeldorp and Toyama,
1991; Krishna Rao, 1993) have extended the notion to allow certain types of shared
symbols, but unions of applicative systems still fall outside the scope of known results.

Definition 8.1. Two applicative systems are applicatively disjoint if their only common
function symbol is Ap.

A property P of applicative systems is applicatively modular if whenever R1 and R2

are applicatively disjoint systems both satisfying P , then their union also satisfies P .

Our results do not allow us to prove applicative modularity results, but we can prove
a weaker form of modularity.

Definition 8.2. A property P of applicative systems is weakly applicatively modular if
whenever R1 and R2 are disjoint systems, F1 and F2 are subsets of the symbols of R1

and R2 respectively, and P is true of both PPF1
(R1) and PPF2

(R2), then P is true of
PPF1

(R1) + PPF2
(R2).

Applicative modularity implies weak applicative modularity, but in general modularity
is independent of each of these. In the case where P is both preserved and reflected by
partial currying, however, we can say more.

Theorem 8.1. If a property is preserved and reflected by partial currying, then it is
modular if and only if it is weakly applicatively modular.

Proof. Let P be preserved and reflected by partial currying. Let R1 and R2 be disjoint
rewrite systems, and F1 and F2 be subsets of their respective sets of symbols. Define
R′

1 = PPF1
(R1), R′

2 = PPF2
(R2), and R′

12 = PPF1∪F2
(R1 + R2).

If P is modular, then:

P (R′
1) ∧ P (R′

2) ⇒ P (R1) ∧ P (R2) (P is reflected)
⇒ P (R1 + R2) (modularity)
⇒ P (R′

1 + R′
2) (P is preserved)

⇒ P (R′
12) (R′

1 + R′
2 = R′

12).

Hence P is weakly applicatively modular.
If P is weakly applicatively modular, then:

P (R1) ∧ P (R2) ⇒ P (R′
1) ∧ P (R′

2) (P is preserved)
⇒ P (R′

1 + R′
2) (weak applicative modularity)

⇒ P (R′
12) (R′

1 + R′
2 = R′

12)
⇒ P (R1 + R2) (P is reflected).

Hence P is modular. 2

Comparing Curried and Uncurried Rewriting 23

Corollary 8.1. WN, CR, WCR, and semi-completeness, are weakly applicatively mod-
ular. Completeness, NF, and UN are weakly applicatively modular for left-linear systems.
UN→ is weakly applicatively modular for left-linear systems without collapsing rules (i.e.
rules whose right-hand side is a variable). SN is weakly applicatively modular, for applica-
tively disjoint unions where one system contains neither collapsing rules nor duplicating
rules (i.e. rules whose right-hand side contains any repeated variable).

Proof. All of these properties are preserved and reflected by currying for the relevant
systems, and all of the corresponding modularity properties hold. For SN, WN, CR, UN,
and NF, the modularity properties are stated in Theorem 2.3, and that for semi-complete-
ness (i.e. WN and CR) follows immediately. For completeness, see Toyama et al., 99 . For
UN→, see Middeldorp, 1990. 2

Weak applicative modularity is, as the name suggests, a rather weak property. Al-
though CR is weakly applicatively modular, examples in Klop, 1980 show that it is not
applicatively modular.

Let CL be the system with symbols S, K, and I, with applicative arities 3, 2, and 1,
with rules:

Sxyz → (xz)(yz)

Kxy → y

Ix → x.

Let D be the system with a binary symbol D and a nullary symbol E, and the rule
D(x, x)→ E. Then CL and Cur(D) are both CR, but CL+Cur(D) is not.

Several other properties fail to be applicatively modular.

Theorem 8.2. The following properties are not applicatively modular: SN, completeness,
semi-completeness, CR, NF, UN, and UN→.

Proof. For SN, completeness, and semi-completeness, take R1 to be the system S1wxyz

→ w(xz)(yx), and R2 to consist of the rules for K and I in CL. Then both R1 and R2

are complete, hence SN and semi-complete, but their union is equivalent to CL (define
S = S1I). CL has none of these properties.

For the other properties, take R1 to be CL, and R2 to be the system:

Exx → T

E(Sx)x → F.

Both systems are CR, and hence also NF, UN, and UN→. However, their union contains
the following reductions. Define M = NN where N = B(SI)(SII) and B = S(KS)I.
Then M has the property that Mx→∗ x(Mx). So we have:

EMM → T

EMM →∗ E(SM)M → F.

Therefore it is not UN→, hence not UN, NF, or CR. 2
The second counterexample is non-left-linear; we do not know if CR, NF, UN, or UN→

24 R. Kennaway et al.

are applicatively modular for left-linear systems. Likewise, the counterexample for SN
contains both duplicating and collapsing rules, for which SN is known not to be modular;
we do not know if it is applicatively modular under conditions similar to those of Theorem
2.3.

Theorem 8.3. WCR and WN are applicatively modular.

Proof. For WCR, the result follows from the absence of critical pairs between applica-
tively disjoint systems.

For WN, the proof is essentially the same as proof of modularity of WN in
Middeldorp, 1990. Given a term t of the combined system not in normal form, con-
sider an innermost redex of t. We can find a unique subterm of t of the form P [t1, . . . , tn]
having the properties that P [x1, . . . , xn] is a maximal strict component of t consisting en-
tirely of variables and function symbols from one of the two systems R, each of t1, . . . , tn
is a normal form, and P [x1, . . . , xn] contains the redex. (We must choose P to be strict,
so that every redex of P [t1, . . . , tn] is a redex of P [x1, . . . , xn], even if the system is
non-left-linear.)

By the WN property of Ri, P [x1, . . . , xn] is reducible to a normal form P ′. Replacing
x1, . . . , xn in P ′ by the normal forms t1, . . . , tn, giving a term P ′′, cannot create any new
redexes, since the principal symbol of each ti is not in R. Therefore P ′′ is in normal form.
Replacing P [t1, . . . , tn] by P ′′ in t can only create new redexes in t at positions which are
proper prefixes of the position of the originally chosen redex. Therefore if we consider the
multiset of depths of all redexes in t, this reduction removes one or more members from
that set (those corresponding to all the redexes in P [x1, . . . , xn]) and any new members
which are added are smaller than those which were removed. Therefore by Lemma 2.3,
the process terminates, giving a normal form of t. 2

Acknowledgements

An earlier version of this paper appeared in Kennaway et al., 1993. We would like to
acknowledge the help and criticism of Vincent van Oostrom, Aart Middeldorp, Femke
van Raamsdonk, Yoshihito Toyama, Hans Zantema, and especially Stefan Kahrs, whose
work inspired us to improve our proofs and extend our results. Some of the figures were
drawn with Paul Taylor’s diagram package.

References

Curry, H. and Feys, R. (1958). Combinatory Logic, volume I. North-Holland.
Dershowitz, N. and Jouannaud, J.-P. (1989). Rewrite systems. In van Leeuwen, J., editor, Handbook

of Theoretical Computer Science, volume B, chapter 15. North-Holland.
Dershowitz, N. and Manna, Z. (1979). Proving termination with multiset orderings. Comm.ACM,

22(8):465–476.
Field, A. and Harrison, P. (1988). Functional Programming. Addison-Wesley.
Kahrs, S. (1994). Confluence of curried term rewriting systems. Submitted to J. Symbolic Computation.
Kennaway, J., Klop, J., Sleep, M., and de Vries, F. (1993). Comparing curried and uncurried rewrit-

ing. In Barendregt, H., Bezem, M., and Klop, J., editors, Dirk van Dalen Festschrift, in series
Quaestiones Infinitae, volume 5, pages 57–78. Department of Philosophy, University of Utrecht.

Kennaway, J. and Sleep, M. (1982). Expressions as processes. In Proc. ACM Symposium on LISP and
Functional Programming, pages 21–27.

Klop, J. (1980). Combinatory Reduction Systems. Mathematical Centre Tracts Nr. 127. CWI, Ams-
terdam. PhD Thesis.

Comparing Curried and Uncurried Rewriting 25

Klop, J. (1992). Term rewriting systems. In Abramsky, S., Gabbay, D., and Maibaum, T., editors,
Handbook of Logic in Computer Science, Volume II. Oxford University Press.

Krishna Rao, M. (1993). Completeness of hierarchical combinations of term rewriting systems. In Proc.
13th Conference on Foundations of Software Technology and Theoretical Computer Science.

Kruskal, J. (1960). Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture. Trans. AMS,
95:210–225.

Middeldorp, A. (1989). Modular aspects of properties of term rewriting systems related to normal
forms. In Proc. 3rd International Conference on Rewriting Techniques and Applications, pages
263–277. Lecture Notes In Computer Science, vol.355.

Middeldorp, A. (1990). Modular Properties of Term Rewriting Systems. PhD thesis, Vrije Universiteit,
Amsterdam.

Middeldorp, A. and Toyama, Y. (1991). Completeness of combinations of constructor systems. J.
Symbolic Computation, 15:331–348.

Toyama, Y. (1987). On the Church-Rosser property for the direct sum of term rewriting systems.
JACM, 34(1):128–143.

Toyama, Y., Klop, J., and Barendregt, H. (199–). Termination for direct sums of left-linear complete
term rewriting systems. J. Assoc. Comp. Mach., to appear.

Zantema, H. (1994). Termination of term rewriting by semantic labelling. Technical report, University
of Utrecht.

