
Applying Meta-Analytical Procedures to SoftwareEngineering ExperimentsJames MillerDept. Computer Science, University of Strathclyde,Livingstone Tower, Richmond Street, Glasgow G1 1XH, ScotlandEFOCS-30-98AbstractDeriving reliable empirical results from a single experiment is an un-likely event. Hence to progress multiple experiments must be undertakenper hypothesis and the subsequent results e�ectively combined to producea single reliable conclusion. Since results are quantitative in nature, aquantitative conclusion would be the optimal solution. Other disciplinesuse meta-analytic techniques to achieve this result. The treatise of thispaper is: can meta-analysis be successfully applied to current SoftwareEngineering experiments? The question is investigated by examining a se-ries of experiments, which themselves investigate | which defect detectiontechnique is best? Applying meta-analysis techniques to the Software En-gineering data is relatively straightforward, but unfortunately the resultsare highly unstable, as the meta-analysis shows that the results are highlydisparate and don't lead to a single reliable conclusion. The reason forthis de�ciency is the excessive variation within various components of theexperiments. The paper outlines various ideas from other disciplines forcontrolling this variation and describes a number of recommendations forcontrolling and reporting empirical work to advance the discipline towardsa position where meta-analysis can be pro�tably employed.1 IntroductionSingle experiments or studies in Software Engineering rarely provide de�nitiveanswers. Hence if scienti�c investigation is to progress in Software Engineering,it must be through the discovery of trends and ideas derived from a large numberof studies. This has given rise to calls in many papers for "further work on thistopic" or "replications of this study are required" while these are necessary,they are not the end of the story. For success the material from these studiesmust be accumulated, summarised and a clear description of the current `stateof the art' must be produced. Traditional reviews su�er from their dependenceon subjective judgements, preferences, and biases of the reviewers and fromill-de�ned procedures for undertaking the process.Hence many disciplines have turned to more quantitative methods of pro-ducing such essential summaries, and in particular have adopted a meta-analytic1



approach to producing unbiased statements. The main purpose of this paperis to pose the question: "Is Software Engineering ready for meta-analysis?".This question will be answered by analysing a well-known set of experimentson defect detection.2 Meta-AnalysisMeta-analysis has existed for a long time, the �rst recorded use was by Pearson[30]in 1904. Despite its application to various disciplines for nearly a century, its ap-plication within Software Engineering1 remains unexamined. Having said this,several authors have produced work with some parallels to the meta-analyticapproach:� Porter and Johnson[33] describe using "meta-analysis" in their work.They use a process they call "reconciliation" rather than traditional meta-analysis.� Hu[21] describes the use of the Davidson and MacKinnon method[10] toanalyse di�erent software cost estimation models.� Banker and Kemerer[1] reconcile two opposing views regarding the pres-ence of economies or diseconomies of scale in software development byinformal vote counting[15]. This technique is not commonly used becauseof its independence from the size (in subjects) of the studies.� Also Brooks[4] gives a short discussion about the possibilities for applyingmeta-analysis to Software Engineering projects.A traditional meta-analysis starts with an exhaustive search of the literature to�nd all the articles describing empirical evaluations of the concept under inves-tigation. In conjunction with this the researcher should only identify the rele-vant variables. The unit of analysis in a meta-analysis should be the impact ofVariable X on Variable Y. It should be noted that this is a tightly focussed inves-tigation, the concept of exploring multi-variables and their inter-relationshipsvia a single meta-analysis is a topic of hot debate in many experimental disci-plines. Many experts express the viewpoint that a less focussed meta-analysisruns too great a risk of producing results, which su�er from in
ated error ratesand increased conceptual confusion. For example, Kulik[25], Rosenthal[36] andmany others recommend performing separate meta-analyses on each type ofdependent variable; Gilbert et al.[12] go further and suggest that the number ofresults, from a single study, be restricted to two when subsequently conductinga meta-analysis. Since this topic is the scene of continuing open-debate aboutwhich forms are valid and which are invalid, the author plans to adopt a conser-vative approach in examining the case study, to ensure that the study conformsto the model of currently accepted practice; see Smith and Glass[42] and Harris1The author has recently become aware of an unpublished manuscript by Pickard et al.[32],which discusses meta-analysis and its potential use in Software Engineering case-studies.2



and Rosenthal[16] for two di�ering viewpoints on the validity of various typesof meta-analysis involving multiple variables and analyses.Therefore, the study shall only focus on those variables that relate to ourspeci�c question or hypothesis. Even given these restrictions sometimes it isnecessary to reformulate the answers of some experiments to ensure that we aremeasuring the same e�ect | Porter and Johnson[33] provide a detailed accountof a possible procedure, and hence this paper will not repeat that discussion.Once the researcher has completed these processes, they are ready to startthe meta-analysis process, if the analyst has more than two studies, as is thecase here, six options are open to them:� Comparing Studies - Di�use Tests: used to determine if two or morestudies produce signi�cantly di�erent results, but does not reveal if thedi�erence is based upon any systemic cause.{ Signi�cance Testing: based upon the recorded p values from thestudies. Only used when information is not available for evaluationof e�ect sizes.{ E�ect-Size Estimation: based upon the recorded values of theinferential statistics (F or t values, for example) along with the as-sociated degrees of freedom2. E�ect sizes are estimated from thesestatistics. Strongly preferred over signi�cance testing.� Comparing Studies - Focused Tests: used to determine if two or morestudies produce signi�cantly di�erent results based upon a theoreticallypredictable or systemically meaningful way.{ Signi�cance Testing: similar to above.{ E�ect-Size Estimation: similar to above.� Combining Studies: used when you want to determine the potency of avariable across studies.{ Signi�cance Testing: can be used after comparing studies to arriveat an overall estimate of the probability of obtaining the p valuesunder the null hypothesis (i.e. no casual relationship).{ E�ect-Size Estimation: can be used after comparing studies toevaluate the average impact across studies of an independent variableon the dependent variable.Once having decided upon their approach, (normally at least one compar-ative study to check the homogeneity of the quantities under review, followedby a combinational calculation) the meta-analyst examines their data for:� Errors - As pointed out by Rosenthal and Rubin[37, 38], the meta-analystshould expect errors in any large set of data. These range from the simplearithmetic miscalculation to the misrecording of the raw data. For some2This assumes that raw data is not available.3



errors no correction is possible (often because they are undetectable),but often they are easily corrected, by recalculation, or the data can bereformulated to account for the problem. What is important, is for themeta-analyst to undertake this duty seriously and diligently.� Quality - One of the major criticisms of meta-analysis is that poor studiesare summarised as well as good studies. Hence, once all the studies havebeen found the meta-analyst must make a decision about the quality ofeach study, and hence, assign them a `weight' for the meta-analysis. Ob-viously this process can exhibit considerable bias, and the recommendedpractice is to organise for an independent panel of experts to adjudicateon the quality of the studies under review. See Walker and Lev[43] fora discussion on the reliability of judgements of quality by independentexperts.Finally the meta-analyst is ready to attempt the series of calculations that theyhave decided upon. Unfortunately multiple sets of alternative calculations areavailable to the meta-analyst, the chosen approach is dependent upon a numberof factors, but is most heavily in
uenced by the choice of e�ect size metric.E�ect size metrics can be derived by two di�erent mechanisms: di�erencesbetween means or proportions, and product moment correlations and derivedfunctions. Rosenthal[36] provides a description of most common e�ect sizemeasures and supplies many useful formulae for converting between them. It hasbeen shown[19] that the performance of most e�ect size measures is equivalentfor experiments involving more than ten subjects. Note: although e�ect sizemeasures tend to be parametric, nonparametric forms do exist, see Wolf[44] forsome examples.A full discussion of all the possible permutations of the approaches to cal-culating the �nal meta-analytic result is outside the scope of this paper, henceonly one approach will be illustrated for the chosen case study. Again seeRosenthal[36] (or Hedges[19]) for alternative approaches. Common wisdomis that the choice of technique is relatively unimportant, as most techniquesproduce similar results; in fact the meta-analyst is encouraged to use severaltechniques to check the results' sensitivity to the choice of the analysis tech-nique. Sensitivity analysis of the results against the various options open to themeta-analyst is an important part of the process.3 Case Study Overview: Defect Detection Experi-mentsThis topic has seen a large number of experiments based upon similar hypoth-esis. The basic premise investigated by these experiments is "Which (if any)defect detection technique is most e�ective at discovering faults?". On review-ing the literature �ve independent studies were found, which have investigatedthis concept:� The �rst experiment was performed by Hetzel[20] in 1976. He comparedcode reading, functional testing and a combination of functional and struc-4



Author(s) Code Reading (R) Functional (F) Structural (S)Hetzel 37.3 47.7 46.7Myers 38.0 30.0 36.0Basili . . . 54.1 54.6 41.2Kamsties . . . 43.9 44.2 35.0Roper . . . 43.4 55.1 57.9Table 1: Average Percentage of defects found in each experimenttural testing. His results implied that the two testing techniques wereequally e�ective, with code reading seeming to be inferior.� The next study was undertaken by Myers[28]; he compared `informal'versions of code reading, functional testing and structural testing; thistime within a team-oriented setting. He reported that all the techniqueswere of similar e�ectiveness, but that e�ectiveness seems to be highlydependent on defect `type'. He further demonstrated that the techniqueswere complementary with regard to �nding di�erent sets of defects.� The third experiment was by Basili and Selby[2]; they performed three ex-periments comparing functional testing using equivalence partitioning andboundary value analysis; structural testing using 100% statement coverageas its stopping criteria and code reading by stepwise abstraction. Theyreported `weak' evidence that code reading was more e�ective. Againthey suggested that a combinational approach of defect �nding strategiesseemed to o�er advantages.� More recently Kamsties and Lott[24] replicated the Basili and Selby ex-periment twice. They reported no signi�cant di�erences between the threetechniques.� Finally, Roper et al.[35] replicated the Kamsties and Lott experiment.Again, they reported no signi�cant di�erences, but again, reported thatthe di�erent techniques were complimentary.Table 1 summarises the results from the various experiments. Examining thistable informally yields little understanding of the relative merits of the varioustechniques, hopefully meta-analysis will present a clearer picture.4 Analysis of Defect Detection ExperimentsThe previous section describes all the evaluations comparing these three tech-niques, and hence completes the review of the literature.4.1 Evaluation of the Quality of the StudiesAt this point in time, it is unlikely that the �eld is su�ciently mature andsu�ciently populated with relevant experts to accommodate the independent5



assessment, from a meta-analytical viewpoint, of these studies. Hence, regret-tably, the author has undertaken this process. In an attempt to limit the biasesthis will undoubtedly introduce, the analysis was restricted to points, which are(hopefully) non-controversial:� In the study undertaken by Hetzel, the structured testing component hasbeen replaced by a functional and structural testing component, hencewe have given this study a weighting of zero, i.e. excluded it from themeta-analysis.� Kamsties and Lott state in their technical report[23] that the design ofthe initial experiment (but not the subsequent replication) was `
awed'.Hence, again, we have given the initial study a weighting of zero, but wehave given the subsequent replication a full weighting of one.Other points could have been considered (such as the limited guidance providedby Myers to the subjects on applying the techniques; other experiments showthat there is an interaction between the techniques and the programs used),but there is no sound basis for deriving a quantitative weighting, and hence aconservative approach is adopted - when in doubt, do nothing! Meta-analysisis an aid to thought, not a substitute, it can never produce exact numericalstatements, which cannot be questioned or debated.Alternatively, if we are still concerned after the analysis, we could run a sen-sitivity analysis to estimate the impact of the data from the Myers experiment,for example, on the overall results. Petitti[31] discusses the use of sensitivityanalysis in meta-analysis on epidemiological data.4.2 Statistical Methods and DecisionsIn line with the `standard' conservative approach to meta-analysis, it was de-cided to analyse the case study, as three independent meta-analyses. Thisprotects against in
ating the error terms, causing conceptual confusion and,on average, lowers the probability of failing (due to increased cohesiveness) thetest of homogeneity (comparative studies) between the studies.The decision about which e�ect size metric to choose, is relatively unimpor-tant. The normal choice is to select the one which �ts the data best. Since ourdata either supplies standard deviations and means, or supplies the raw dataallowing their calculation, we will use Cohen's d[9]. To illustrate the unimpor-tance of the point, Rosenthal[36] provides simple equations to transform d intor (Pearson's product moment correlation) and vice versa. The e�ect size esti-mates for the four remaining studies are given in Table 2. The Basili and Selbye�ect size estimate is derived from the combination of the three estimates fromsub-studies, all the sub-studies have independent subject bases3, but dependentdesigns, materials, etc. When combining, or averaging, e�ect sizes a researcherhas three options: a traditional average; an average weighted by size (numberof subjects) | larger studies are more likely to be more reliable; an average3This also implies that an average sample size measure has also been constructed.6



E�ect SizeAuthor(s) R Vs F F Vs S R Vs SMyers 0.31 -0.40 0.15Basili . . . 0.02 0.67 0.60Kamsties . . . -0.07 0.33 0.30Roper . . . -1.25 -0.13 -1.22Table 2: E�ect Sizes in each analysis | a negative e�ect size indicates that thesecond technique in the pair possessed a greater mean than the �rst techniqueCorrected for biasAuthor(s) R Vs F F Vs S R Vs SMyers 0.30 -0.39 0.15Basili . . . 0.02 0.66 0.59Kamsties . . . -0.07 0.32 0.29Roper . . . -1.24 -0.13 -1.21Table 3: E�ect Sizes in each analysis | a negative e�ect size indicates that thesecond technique in the pair possessed a greater mean than the �rst techniqueweighted by variance: studies with smaller variance are likely to be more pre-cise. Since this study is composed of three internal replications, and most of theexperimental design parameters except the sample size are constant, weightingthe estimates by size has been chosen as the most appropriate option. Thisfollows the procedure recommended by Kulik[25] and others.Hedges[18] has derived the sampling distribution for d and has showed thatit is a biased estimate of e�ect size. In a further paper[17] he showed that aweighted estimator of e�ect size estimate can be constructed, which is asymp-totically e�cient and accurate when the harmonic mean of the sample size isgreater than 10 and the e�ect sizes are less than about 1.5. Fortunately ourdata conforms to these criteria and we can convert our data via a simple pro-cedure, which is detailed in Rosenthal[39]. Table 3 shows our corrected e�ectsize estimates. This adjustment can be thought of as counteracting the �nitesample size of the experiments; further adjustments exist for countering therestriction (or enhancement) of the range of variables involved[22] or the preci-sion of the statistical tests applied in the individual studies[13]; it was decidedthat neither of these additional adjustments was required for the above studies.Further there is not universal acceptance that these further `corrections' alwayslead to superior estimates[36].Comparing Studies: Di�use TestsHere we want to assess the statistical heterogeneity of our unbiased e�ect sizeestimates. The ability to demonstrate the homogeneity, i.e. estimates only di�erdue to subject variability, of the set of e�ect size measures is important as it7



allows us to assume that we are measuring only one e�ect and that the studiesare representative samples of the general population. In meta-analysis this isoften known as a �xed-e�ects model or system. If we are unable to demonstratethis then the system has become a random-e�ects model and inference is basedupon the assumption that the studies are a random sample of the population.Although random-e�ects models are tolerant to variation, they are still note�ective in highly heterogeneous situations. Obviously the statistical methodsused to combine studies when �xed-e�ects are assumed di�er from the methodsused when random e�ects are used.Unfortunately no empirical basis for preferring either model exists. Butmany experts agree that the choice of model is secondary to the examinationof the reasons for the lack of homogeneity. If the studies are homogeneousthen it has been shown that both models produce identical results[3]. Unfor-tunately Software Engineering is currently in a weak position to `prove' thatits studies are homogeneous, even if our studies pass the test, can we trust thisresult? Given the small number of studies we can only produce a homogeneitytest with relatively low statistical power, and hence it has an increased risk ofinappropriately predicting that the studies are homogeneous.Given the uncertainty of the above position, it is proposed to proceed byusing both models. If heterogeneity is discovered | stop, and investigate thecauses, if possible. If the studies seem relatively homogeneous again use bothmodels to derive estimates for the combination of the results from the studies.Random-e�ects models are generally conservative compared to the �xed-e�ectsmodels, and its recommended use is to provide conservative estimates ratherthan tackle heterogeneous situations. It is believed that it is important not touse meta-analysis as a statistical method or test, but to consider it as a mul-ticomponent approach to understanding information for independent sources,hence the seemingly insoluble problems of choosing between the models can toa certain extent be ignored.For the �xed-e�ect and random-e�ect models we are going to use modelsdescribed in [19]4. Firstly, the test for homogeneity is equivalent to testingif the variance of the e�ect sizes is zero. We can test for the homogeneity ofe�ect sizes in an analogous manner to testing for the homogeneity of statisticaltests, this generates a �2 distribution (Q) with K � 1 d:f:, where K is thenumber of studies. Additionally the random-e�ect model partitions the varianceestimate into components representing the sampling error (S:E:) and variationsin the population parameters. This further illustrates the degree of homogeneitywithin the data set. Obviously if one hundred percent of the observed varianceis explained by the sampling error, then the data is completely homogeneous;but for �gures less than one hundred, then the residual variance is due tosystematic factors, which should be explored before combining results from thevarious studies. Table 4 describes the results of the homogeneity test for ourthree sets of experiments.As can be clearly seen, all three meta-analyses have serious homogeneity4details of the �xed-e�ect model can be found in Chapter 6; and details for the random-e�ect model in Chapter 9. 8



Type of test Statistic R Vs F F Vs S R Vs SFixed Q 18.72 7.30 30.13p <<0.01 0.06 <<0.01Random Q 18.60 7.26 29.90p <<0.01 0.06 <<0.01S:E:(%) 23.18 41.29 16.67Table 4: Homogeneity tests | all tests have 3 d.f.problems, and further exploration is required: comparative studies - focussed.Comparative Studies - FocussedUnfortunately the distribution of e�ect sizes in the case studies are rather het-erogeneous. The purpose of focussed testing is to attempt to derive an alter-native hypothesis where one (or more) characteristics of the study signi�cantlycontribute to the observed variation. If we can establish such a hypothesis wecan subdivide the studies, based upon this variable, and run a number of inde-pendent meta-analyses based upon our new hypothesis. If homogeneous subsetswith di�erent e�ect sizes emerge then the hypothesised study characteristics areestablished as moderators, and the new hypothesis has been established.Often the researcher may have little idea as to which characteristic may beresponsible for the remaining variation. Here an inductive approach may help,and an informal inspection of the rank-ordered e�ect sizes to obtain an initialimpression of possible groupings is often a good starting place. In order to makea sound judgement, the adoption of a multivariate statistics approach is rec-ommended: such as factor analysis[40], multidimensional scaling[11] or clusteranalysis[34]. Alternatively arti�cial intelligence techniques, such as inductiveanalysis[5], can be used, especially in situations where nominal or ordinal scaledata is present.Of course, given the number of studies at hand the use of a formal techniqueis not required, we can simply look at the data to try to discover obviouspatterns:� Roper et al: results when using reading techniques are comparativelylower (against both testing techniques) than within the other studies.� Basili and Selby: results when using structural testing techniques arecomparatively lower (against both of the other techniques) than withinthe other studies.Can we �nd evidence in the studies to explain these potential di�erences? Con-sidering the �rst potential partition, in their article Roper et al. statisticallyshow that the performance of the detection techniques is dependent on the `type'of faults encountered. This type of interaction has also been noted by several ofthe other studies, which report that the techniques tend to �nd di�erent types9



of defects, and hence bene�t can be derived by combining the techniques. Al-though some evidence exists to an important e�ect, further exploration wouldbe pointless, as we are not in a position to transform the outcome into a mod-erator variable, due to the lack of de�nition of defect type. This inability totransformmoderator explanations into variables is a major problem within Soft-ware Engineering, as we will be left in a position of being unable to partitionthe population into homogeneous sub-populations. This de�ciency is a majorobstacle to the path of the �eld producing reliable generalisable results, andshould be seen as a top priority for the discipline.One point worth noting before leaving this topic is the relationship betweentwo of the studies. Roper et al. re-uses the experimental materials from Kam-sisics and Lott; although from a simple replication point of view, this seemsattractive, from a meta-analytical point the practice is undesirable, as it createsstrong correlations between the two studies (with regard to variables involvingthe material) and hence a potentially serious threat to the independence of thestudies. This point also creates a problem with respect to an earlier decision.Are the Kamastics and Lott, and the Roper et al. experiments signi�cantlymore independent than the three sub-experiments of Basili and Selby. The cor-rect viewpoint at this juncture, is to admit that we don't know and to produce asensitivity analysis by calculating all possible permutations. With homogeneousdata, the results should converge and the matter can be discarded; with het-erogeneous data the results will tend to be unstable, and hence should decreaseour con�dence in the �nal combined estimate.Alternatively we could decide to discard or reduce the reliability rating ofRoper et al. to re
ect our concerns with this issue. The `contribution' of astudy to the calculations is attenuated by the square of its reliability estima-tion in most meta-analytic models. But do we have enough proof to justifythis decision? Certainly Roper et al. show a signi�cant interaction between de-fect detection technique and program. Here program can be considered as thelist of defects and their context. But since Roper et al. re-used the materialsfrom Kamastics and Lott we would except the same situation to occur. Un-fortunately Kamastics and Lott fail to provide any results about the potentialinteraction. A retrospective examination of their data was unable to producea reliable statement about the interaction. The Kamatics and Lott experimentsu�ered from a large subject attrition rate, leaving the blocked design highlyskewed, in fact some of the blocks have no subjects, this means that no reliableestimate can be found. What about the other two experiments: Basili andSelby show that one of their three sub-studies had a signi�cant interaction, butunfortunately don't provide any details about the other two phases, both ofwhich use a subset of the materials from the phase showing the interaction;the Myers experiment only has one program, but even here he shows that sig-ni�cant di�erences, from the average behaviour, exist at the individual defectlevel between the techniques. Hence it is believed that it is unsafe to alter thereliability rating of Roper et al.. Recommended practice would be to run asensitivity analysis to estimate the impact of this decision.Considering the second potential partitioning a case can be made that theexperiments are measuring a very di�erent cognitive processes. In the latter10



Type of test Statistic R Vs F F Vs S R Vs SFixed d+ -0.29 0.09 -0.49d+U 0.00 0.36 -0.21d+L -0.58 -0.18 -0.78�2 0.02 0.02 0.02p 0.02 0.25 <<0.01Random � -0.07 0.11 -0.30�U 0.71 0.57 0.35�L -0.85 -0.33 -0.96�2 0.64 0.22 0.45p 0.42 0.31 0.17Table 5: Combining e�ect sizes from all the experimentsexperiments, structural testing is undertaken using a tool to assist with thecalculation and monitoring of the coverage criteria. In the Basili and Selbyexperiment, coverage calculation and monitoring was manual, this greatly altersthe intellectual `puzzle' presented to the subjects5. Hence we could propose thebinary-valued variable of tool support? as a moderator variable6. Although weshould now proceed by testing the new proposed partitions via separate meta-analyses, given that the largest partition has two7 studies it was decided to stopthe process, for the sake of brevity.Combining StudiesUnfortunately since we have not being able to resolve the heterogeneous natureof the data set, we cannot safely continue and combine them. Hence the fol-lowing �gures and discussion are principally for illustration rather than furtherserious analysis. To �nally produce a combined e�ect size estimate we return tothe �xed-e�ect and random-e�ect models of the previous section. Again apply-ing the procedures from Hedges[19], the meta-analyst can compute a combinede�ect size estimation as illustrated in Table 6. The table uses the notationfrom Hedges' book; for both models: the combined e�ect size estimate, the95% con�dence levels, the variance and the probability of the combined e�ectsize estimate being signi�cant are given. As we can see the two models are,as expected, divergent. The �xed-e�ect model is extremely overly optimisticabout the combined e�ect size of the disparate studies; the random-e�ect model,as expected in this situation, provides results which seem much more reason-able, and as expected was more able to accommodate the large variance withinthe studies. The con�dence intervals provide another sensitivity check of theresults; these can easily be converted into probabilistic statements, and for a5The experiment by Myers had no tool support and no coverage criteria.6To be more accurate a second variable must be introduce of coverage criteria? to coverthe Myers experiment7tool support: Roper & Kamsties; Manual + Coverage: Basili; Manual + No Coverage:Myers 11



signi�cant result provides a statement about the proportion of the combinede�ect size estimation's distribution that would pass any signi�cance test. Pro-ducing sensitivity analyses from various viewpoints is essential to establish thereliability of a signi�cant result derived from meta-analytic procedures.Where does this leave us? After analysing our case study we are unable toprovide a consistent picture of which detection technique is best. Further, andof greater concern, we are unable to say that the empirical work undertakento date, on this topic, is additive and that we are on the `correct path' toproviding a de�nitive answer. So what is the problem? In a word | variation!Software Engineering experiments are subject to massive amounts of variationfrom a large number of di�erent sources; if we want to build a solid empiricaldiscipline for the subject the �eld must invest in techniques, existing and new,which seek to reduce some of these sources.5 DiscussionThe defect detection case study has shown that the heterogeneity of currentempirical results is a major limitation in our ability to apply meta-analyticprocedures. Further, there is no reason to believe that our case study is unrep-resentative of the current `state of the art'. The good news is that we are notalone in this battle, other disciplines also struggle with this issue, they havejust been struggling longer, and hence have progressed beyond the point wherewe currently �nd ourselves. Other disciplines traditionally attempt to reducethe heterogeneity within a set of experiments by having:� Common criteria for the inclusion or exclusion of studies, see[31].� Standardised e�ect size measures and simple presentations, | this reducesthe error term and the conceptual confusion in comparing similar terms.The binomial e�ect size display, displaying odds ratios, is a good exampleof `state of the art' in other disciplines[36].� Well-de�ned `moderator' variables, that transform our heterogeneous dataset into a group of homogeneous data sets, this area was touched upon inthe last section with the inability to de�ne `defect type'.Other disciplines have introduced various mechanisms in an attempt to ad-vance these objectives:� The Cochrane Collaboration | In the seventies, Archie Cochrane crit-icised the medical profession for not having an established system forproducing `up to date' summaries of research results[8]. The CochraneCollaboration was founded in 1993 to respond to this challenge.The Cochrane Collaboration is an international organisation that aims tohelp individuals make well-informed decisions about healthcare by prepar-ing, maintaining and promoting the accessibility of systematic reviews ofthe e�ects of healthcare treatments. The Collaboration's work is basedupon eight key principles8 :8http://www.cochrane.co.uk 12



{ Collaboration, by internally and externally fostering goodcommunications, open decision-making and teamwork.{ Building on the enthusiasm of individuals, by involving andsupporting people of di�erent skills and backgrounds.{ Avoiding duplication, by good management and co-ordinationto maximise economy of e�ort.{ Minimising bias, through a variety of approaches such asscienti�c rigour, ensuring broad participation, and avoidingcon
icts of interest.{ Keeping up to date, by a commitment to ensure that CochraneReviews9 are maintained through identi�cation and incor-poration of new evidence.{ Striving for relevance, by promoting the assessment of health-care interventions using outcomes that matter to peoplemaking choices in healthcare.{ Promoting access, by wide dissemination of the outputs ofthe Collaboration, taking advantage of strategic alliances,and by promoting appropriate prices, content and media tomeet the needs of users world-wide.{ Ensuring quality, by being open and responsive to criticism,applying advances in methodology, and developing systemsfor quality improvement.It is unlikely that the current amount of activity within empirical Soft-ware Engineering is su�cient to currently require the formation of suchan organisation. Hence this should be seen as a long-term aim of thediscipline.� Electronic recording of empirical results: e.g. MEDLINE is a databasefor retrieving published studies of epidemiological data[31]. Unfortunatelythis is still not su�cient as most `mature' empirical disciplines su�er from`publication bias'. Publication bias is described as the greater likelihoodof research with statistically signi�cant results being published comparedwith research with nonsigni�cant and null results. Other disciplines havedeveloped quasi-statistical methods to attempt to estimate the possibleimpact of publication bias[29]. Software Engineering has an advantagehere, if we start recording all the studies now, then the �eld can e�ectivelyignore publication bias. Recording this information in a database, withsay WWW access is trivial, and only requires willingness on behalf of thefunding bodies and the practitioners to realise this objective and avoidthis problem. Publication bias will also e�ect heterogeneity tests, as sincethe published articles have signi�cant results, the heterogeneity tests willonly see a skewed proportion of the population, and hence the test, ingeneral, will underestimate the potential problem.9This is the main output of the collaboration, and the principal mechanism used in achiev-ing their goal. 13



� Eligibility Criteria: the presented case study only implemented a veryloose idea of eligibility (measuring similar e�ect), given the number ofstudies available any tighter de�nition of eligibility would have probablystopped the meta-analysis due to lack of studies. Other disciplines withmore studies at their disposal can enforce more exact eligibility criteria,For example{ Study Design | In epidemiological trials, the average e�ect of a newtreatment has generally been found to be larger in nonrandomisedthan in randomised studies[27]. Hence the meta-analysis should onlyuse either data set.{ Sample Size | Some of the statistical methods for meta-analysis areasymptotic methods. Asymptotic methods will tend to overestimatethe precision of small studies[14]. When this occurs, the study willover contribute to the meta-analytic results.� Study Quality | As for eligibility criteria, other disciplines are developingdetailed criteria for accessing the quality of a study[7]. Information aboutquality rating can be incorporated into the statistical procedures.� Quality Standards for Meta-Analysis: other disciplines recommend theadoption of a study protocol before starting your meta-analysis. Thisprotocol derived from a common framework ensures that each study isundertaking the same tasks and should ensure repeatability and reliabilityof the individual studies[41].If we are to progress with the application of meta-analysis to Software Engi-neering data, the above must be adapted and adopted. Unfortunately SoftwareEngineering is likely to require further methods and procedures to counteractvariation as the lack of well-de�ned terms means that the problems are probablymore acute than in many other disciplines.6 Limitations of Meta-AnalysisMany of the concerns about meta-analysis are based upon philosophical ar-guments about the nature of the undertaking. Further formal analysis of thetechnique has not always been favourable. Finally despite its initial conception,meta-analysis is now being applied to non-experimental studies, these studieshave additional requirements, which meta-analysis �nds di�cult to accommo-date.6.1 Philosophical IssuesThese can be broadly classi�ed as "Garbage in, Garbage out" and "meta-analysis tries too compare Apples with Oranges?". The �rst point is withregard to the quality of the studies under investigation, and certainly holdsweight if all the meta-analysis has is poor quality studies. But if we don't have14



con�dence that an `additive process' can be de�ned from a series of indepen-dent high-quality studies, then what is the point in doing empirical research inSoftware Engineering, this point strikes at the heart of the topic | if we believein empirical research in Software Engineering, then we should believe that theresults of independent studies can be combined. The question of distinguish-ing the quality of studies is a key concept within meta-analysis, and certainlyrequires further attention, especially within Software Engineering. The sec-ond issue refers to the diversity ideas, subjects, study design, etc., that will bepooled together in a single meta-analysis. Meta-analysis and statistical testinghave direct parallels here. Subjects behave di�erently within studies, but weare happy to generalise with regard to them, then why not studies? Further, ifsubjects behave very di�erently, when we blocked them on study characteristicsto help our understanding, again why not studies? Finally if we want to makestatements about "Fruit", what else can one do except talk about "Apples" and"Oranges" together.6.2 Formal Evaluations of Meta-AnalysisSacks et al.[41] and Chambers et al.[6] have evaluated the quality of a large num-ber of meta-analyses of epidemiological data. Sacks et al. are critical that thestandard of the application of meta-analysis was insu�cient to produce de�ni-tive results, he recommended that further work was required on the speci�cationof both the frameworks for replication and meta-analysis reporting. Chalmers etal. studied the replicability of meta-analysis. His results suggest some concernas the results of meta-analysis estimation are regularly disparity with the single`de�nitive' study, which represents the current understanding within medicalcircles. Additionally he investigated the replicability between meta-analysesand found that for a large number of (medical) studies the replicability wasgood. The discrepancies between the meta-analyses and the `de�nitive' studiesis obviously concerning, and obviously requires more work to present a clearpicture. The replicability of meta-analysis of non-experimental studies remainsunstudied.6.3 Using meta-analysis with non-experimental studiesIn experimental studies, randomisation (in theory) eliminates bias and con-founding within the experimental results. Non-experimental studies will notprovide any safeguards with regard to these issues, and hence results from themcannot be considered either unbiased or unconfounded. Currently no work ex-ists, which attempts to validate the use of meta-analysis for non-experimentalresults; unfortunately many disciplines have started to use meta-analysis inthis fashion, this paper strongly recommends that Software Engineering doesnot follow this example until some research on the question of validity has beencarried out.Further meta-analysis should not be employed to resolve di�erences betweencon
icting results. Meta-analysis was designed to combine results from a seriesof experiments, each of which had insu�cient statistical power to reliably accept15



or reject the null hypothesis. It was not designed to pool disparate answers,meta-analysis is at its weakest when dealing with heterogeneous studies, andagain this paper strongly recommends that Software Engineering avoids usingthe technique in this manner.7 ConclusionsThe ability to reliably combine empirical results from independent experimentsis an essential building block in any discipline attempting to build a solid em-pirical foundation. The standard technique used in most disciplines to achievethis goal is meta-analysis. This paper attempts to introduce meta-analysis intothe Software Engineering context. Unfortunately the results are disappointing,and if the case study is representative, indicates that the discipline must em-bark upon a period of improvement to reduce the variability between replicatedexperiments or experiments examining the same hypothesis.The paper outlines various approaches both within the meta-analytic pro-cedure and within its surrounding infrastructure, which have helped other dis-ciplines advance their practice. In addition to these large-scale advances, thereare a number of alterations that we, the individual experimenters, can maketo our current practice to ready the �eld for the application of meta-analyticaltechniques:� Although the signi�cance test is obviously an important result from theexperimental procedure, it is by no means the full story. The e�ect sizeis equally important, without it other researchers are in a poor positionto estimate the importance of the results, even if they are signi�cant.Unfortunately few, if any, Software Engineering experiments report e�ectsize estimates, their incorporation into the results of empirical studieswould greatly aid other researchers.� The inclusion of raw data is obviously the ideal scenario when reportingan experiment. If this is not possible, because of space restrictions, it isimportant to report the mean10, variance (or standard deviation), anddetails about the normality of the data, quite often a simple histogram issu�cient.� As described above, randomisation is important to meta-analysis (andexperimentation, in general), it is important that these details are fullydescribed.� Meta-analysis calculations require the number of subjects to be de�ned,this is not always derivable from the degrees of freedom associated froma test. The inclusion of both11 is required.10This assumes that the experiment is comparative in nature and normally distributed11In fact, given the number of subjects, deriving the degrees of freedom is trivial, and henceit could be omitted. 16



� When reporting non-signi�cant results it is important to give an estimateof the statistical power of the experiment[26]. Without it subsequentexperimenters have no basis for accepting the null result at any e�ectlevel.� Drawing reliable conclusions from reading an article is a di�cult task, thiscan be made considerably easier if the author describes their search forinteractions between the variables, both signi�cant and null interactions.This information is also of great use to the meta-analyst, as it often pro-vides a starting point for undertaking focussed comparative studies uponencountering heterogeneous data.� For meta-analysis, the independence of the studies is important, hencealthough attractive from a timesaving point of view, the re-use of mate-rials, etc. sets up potentially dangerous correlations. Hence it is betterfor the author to describe the essential characteristics of the experimentand use the current version of the experiment as an example rather thansimply describing the current version.� `Recipe improving' and changes to the experimental design, procedures,materials, etc are seen in a positive light as they help to ensure indepen-dence.� De�nitions of measurements | what are required here is not abstractmathematical models describing the theory, but precise details in theactual implementation.� Simple experiments |Often Software Engineering experiments have askedsubjects to undertake a number of di�erent intellectual activities, this isbelieved to be a high-risk strategy. The Subject's motivation, enthusiasm,ability to comprehend the task, ability to learn (if the activity is new) thetask, etc. are all undermined every time they are asked to undertakeanother activity. It is suggested that the minimum `two activities or con-cepts' subject-based experiments should be the norm. This obviously hascost and time implications for the topic in the short-term, but it is be-lieved that the gain in producing more reliable results will outweigh thisrestriction. Additionally `two concept' experiments lead to easier formu-lations of e�ect sizes and run, on average, less risk of creating conceptualconfusion amongst subsequent reviewers.This may all sound like a very negative view of the �eld, but remember| "Rome was not built in a day!". The �eld is still very young, and requirestime and e�ort to mature, this maturity will bring enormous bene�ts currentlyenjoyed by mature empirical disciplines such as the medical sciences and socialpsychology. 17
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