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Abstract

Deriving reliable empirical results from a single experiment is an un-
likely event. Hence to progress multiple experiments must be undertaken
per hypothesis and the subsequent results effectively combined to produce
a single reliable conclusion. Since results are quantitative in nature, a
quantitative conclusion would be the optimal solution. Other disciplines
use meta-analytic techniques to achieve this result. The treatise of this
paper 1s: can meta-analysis be successfully applied to current Software
Engineering experiments? The question is investigated by examining a se-
ries of experiments, which themselves investigate — which defect detection
technique is best? Applying meta-analysis techniques to the Software En-
gineering data is relatively straightforward, but unfortunately the results
are highly unstable, as the meta-analysis shows that the results are highly
disparate and don’t lead to a single reliable conclusion. The reason for
this deficiency is the excessive variation within various components of the
experiments. The paper outlines various ideas from other disciplines for
controlling this variation and describes a number of recommendations for
controlling and reporting empirical work to advance the discipline towards
a position where meta-analysis can be profitably employed.

1 Introduction

Single experiments or studies in Software Engineering rarely provide definitive
answers. Hence if scientific investigation is to progress in Software Engineering,
it must be through the discovery of trends and ideas derived from a large number
of studies. This has given rise to calls in many papers for ”further work on this
topic” or "replications of this study are required” while these are necessary,
they are not the end of the story. For success the material from these studies
must be accumulated, summarised and a clear description of the current ‘state
of the art’ must be produced. Traditional reviews suffer from their dependence
on subjective judgements, preferences, and biases of the reviewers and from
ill-defined procedures for undertaking the process.

Hence many disciplines have turned to more quantitative methods of pro-
ducing such essential summaries, and in particular have adopted a meta-analytic



approach to producing unbiased statements. The main purpose of this paper
is to pose the question: ”Is Software Engineering ready for meta-analysis?”.
This question will be answered by analysing a well-known set of experiments
on defect detection.

2 Meta-Analysis

Meta-analysis has existed for a long time, the first recorded use was by Pearson[30]
in 1904. Despite its application to various disciplines for nearly a century, its ap-
plication within Software Engineering! remains unexamined. Having said this,
several authors have produced work with some parallels to the meta-analytic
approach:

e Porter and Johnson[33] describe using ”meta-analysis” in their work.
They use a process they call "reconciliation” rather than traditional meta-
analysis.

e Hu[21] describes the use of the Davidson and MacKinnon method[10] to
analyse different software cost estimation models.

e Banker and Kemerer[1] reconcile two opposing views regarding the pres-
ence of economies or diseconomies of scale in software development by
informal vote counting[15]. This technique is not commonly used because
of its independence from the size (in subjects) of the studies.

e Also Brooks[4] gives a short discussion about the possibilities for applying
meta-analysis to Software Engineering projects.

A traditional meta-analysis starts with an exhaustive search of the literature to
find all the articles describing empirical evaluations of the concept under inves-
tigation. In conjunction with this the researcher should only identify the rele-
vant variables. The unit of analysis in a meta-analysis should be the impact of
Variable X on Variable Y. It should be noted that this is a tightly focussed inves-
tigation, the concept of exploring multi-variables and their inter-relationships
via a single meta-analysis is a topic of hot debate in many experimental disci-
plines. Many experts express the viewpoint that a less focussed meta-analysis
runs too great a risk of producing results, which suffer from inflated error rates
and increased conceptual confusion. For example, Kulik[25], Rosenthal[36] and
many others recommend performing separate meta-analyses on each type of
dependent variable; Gilbert et al.[12] go further and suggest that the number of
results, from a single study, be restricted to two when subsequently conducting
a meta-analysis. Since this topic is the scene of continuing open-debate about
which forms are valid and which are invalid, the author plans to adopt a conser-
vative approach in examining the case study, to ensure that the study conforms
to the model of currently accepted practice; see Smith and Glass[42] and Harris

'The author has recently become aware of an unpublished manuscript by Pickard et al.[32],
which discusses meta-analysis and its potential use in Software Engineering case-studies.



and Rosenthal[16] for two differing viewpoints on the validity of various types
of meta-analysis involving multiple variables and analyses.

Therefore, the study shall only focus on those variables that relate to our
specific question or hypothesis. Even given these restrictions sometimes it is
necessary to reformulate the answers of some experiments to ensure that we are
measuring the same effect — Porter and Johnson[33] provide a detailed account
of a possible procedure, and hence this paper will not repeat that discussion.

Once the researcher has completed these processes, they are ready to start
the meta-analysis process, if the analyst has more than two studies, as is the
case here, six options are open to them:

o Comparing Studies - Diffuse Tests: used to determine if two or more
studies produce significantly different results, but does not reveal if the
difference is based upon any systemic cause.

— Significance Testing: based upon the recorded p values from the
studies. Only used when information is not available for evaluation
of effect sizes.

— Effect-Size Estimation: based upon the recorded values of the
inferential statistics (F or t values, for example) along with the as-
sociated degrees of freedom?. Effect sizes are estimated from these
statistics. Strongly preferred over significance testing.

o Comparing Studies - Focused Tests: used to determine if two or more
studies produce significantly different results based upon a theoretically
predictable or systemically meaningful way.

— Significance Testing: similar to above.

— Effect-Size Estimation: similar to above.

o Combining Studies: used when you want to determine the potency of a
variable across studies.

— Significance Testing: can be used after comparing studies to arrive
at an overall estimate of the probability of obtaining the p values
under the null hypothesis (i.e. no casual relationship).

— Effect-Size Estimation: can be used after comparing studies to
evaluate the average impact across studies of an independent variable
on the dependent variable.

Once having decided upon their approach, (normally at least one compar-
ative study to check the homogeneity of the quantities under review, followed
by a combinational calculation) the meta-analyst examines their data for:

e Errors- As pointed out by Rosenthal and Rubin[37, 38], the meta-analyst
should expect errors in any large set of data. These range from the simple
arithmetic miscalculation to the misrecording of the raw data. For some

2This assumes that raw data is not available.



errors no correction is possible (often because they are undetectable),
but often they are easily corrected, by recalculation, or the data can be
reformulated to account for the problem. What is important, is for the
meta-analyst to undertake this duty seriously and diligently.

e Quality - One of the major criticisms of meta-analysis is that poor studies
are summarised as well as good studies. Hence, once all the studies have
been found the meta-analyst must make a decision about the quality of
each study, and hence, assign them a ‘weight’ for the meta-analysis. Ob-
viously this process can exhibit considerable bias, and the recommended
practice is to organise for an independent panel of experts to adjudicate
on the quality of the studies under review. See Walker and Lev[43] for
a discussion on the reliability of judgements of quality by independent
experts.

Finally the meta-analyst is ready to attempt the series of calculations that they
have decided upon. Unfortunately multiple sets of alternative calculations are
available to the meta-analyst, the chosen approach is dependent upon a number
of factors, but is most heavily influenced by the choice of effect size metric.
Effect size metrics can be derived by two different mechanisms: differences
between means or proportions, and product moment correlations and derived
functions. Rosenthal[36] provides a description of most common effect size
measures and supplies many useful formulae for converting between them. It has
been shown[19] that the performance of most effect size measures is equivalent
for experiments involving more than ten subjects. Note: although effect size
measures tend to be parametric, nonparametric forms do exist, see Wolf[44] for
some examples.

A full discussion of all the possible permutations of the approaches to cal-
culating the final meta-analytic result is outside the scope of this paper, hence
only one approach will be illustrated for the chosen case study. Again see
Rosenthal[36] (or Hedges[19]) for alternative approaches. Common wisdom
is that the choice of technique is relatively unimportant, as most techniques
produce similar results; in fact the meta-analyst is encouraged to use several
techniques to check the results’ sensitivity to the choice of the analysis tech-
nique. Sensitivity analysis of the results against the various options open to the
meta-analyst is an important part of the process.

3 Case Study Overview: Defect Detection Experi-
ments

This topic has seen a large number of experiments based upon similar hypoth-
esis. The basic premise investigated by these experiments is ”Which (if any)
defect detection technique is most effective at discovering faults?”. On review-
ing the literature five independent studies were found, which have investigated
this concept:

e The first experiment was performed by Hetzel[20] in 1976. He compared
code reading, functional testing and a combination of functional and struc-



Author(s) Code Reading (R) | Functional (F) | Structural (S)
Hetzel 37.3 47.7 46.7
Myers 38.0 30.0 36.0
Basili ... 54.1 54.6 41.2
Kamsties ... 43.9 44.2 35.0
Roper ... 43.4 55.1 57.9

Table 1: Average Percentage of defects found in each experiment

tural testing. His results implied that the two testing techniques were
equally effective, with code reading seeming to be inferior.

e The next study was undertaken by Myers[28]; he compared ‘informal’
versions of code reading, functional testing and structural testing; this
time within a team-oriented setting. He reported that all the techniques
were of similar effectiveness, but that effectiveness seems to be highly
dependent on defect ‘type’. He further demonstrated that the techniques
were complementary with regard to finding different sets of defects.

e The third experiment was by Basili and Selby[2]; they performed three ex-
periments comparing functional testing using equivalence partitioning and
boundary value analysis; structural testing using 100% statement coverage
as its stopping criteria and code reading by stepwise abstraction. They
reported ‘weak’ evidence that code reading was more effective. Again
they suggested that a combinational approach of defect finding strategies
seemed to offer advantages.

e More recently Kamsties and Lott[24] replicated the Basili and Selby ex-
periment twice. They reported no significant differences between the three
techniques.

e Finally, Roper et al.[35] replicated the Kamsties and Lott experiment.
Again, they reported no significant differences, but again, reported that
the different techniques were complimentary.

Table 1 summarises the results from the various experiments. Examining this
table informally yields little understanding of the relative merits of the various
techniques, hopefully meta-analysis will present a clearer picture.

4  Analysis of Defect Detection Experiments

The previous section describes all the evaluations comparing these three tech-
niques, and hence completes the review of the literature.

4.1 Evaluation of the Quality of the Studies

At this point in time, it is unlikely that the field is sufficiently mature and
sufficiently populated with relevant experts to accommodate the independent



assessment, from a meta-analytical viewpoint, of these studies. Hence, regret-
tably, the author has undertaken this process. In an attempt to limit the biases
this will undoubtedly introduce, the analysis was restricted to points, which are
(hopefully) non-controversial:

e In the study undertaken by Hetzel, the structured testing component has
been replaced by a functional and structural testing component, hence
we have given this study a weighting of zero, i.e. excluded it from the
meta-analysis.

e Kamsties and Lott state in their technical report[23] that the design of
the initial experiment (but not the subsequent replication) was ‘flawed’.
Hence, again, we have given the initial study a weighting of zero, but we
have given the subsequent replication a full weighting of one.

Other points could have been considered (such as the limited guidance provided
by Myers to the subjects on applying the techniques; other experiments show
that there is an interaction between the techniques and the programs used),
but there is no sound basis for deriving a quantitative weighting, and hence a
conservative approach is adopted - when in doubt, do nothing! Meta-analysis
is an aid to thought, not a substitute, it can never produce exact numerical
statements, which cannot be questioned or debated.

Alternatively, if we are still concerned after the analysis, we could run a sen-
sitivity analysis to estimate the impact of the data from the Myers experiment,
for example, on the overall results. Petitti[31] discusses the use of sensitivity
analysis in meta-analysis on epidemiological data.

4.2 Statistical Methods and Decisions

In line with the ‘standard’ conservative approach to meta-analysis, it was de-
cided to analyse the case study, as three independent meta-analyses. This
protects against inflating the error terms, causing conceptual confusion and,
on average, lowers the probability of failing (due to increased cohesiveness) the
test of homogeneity (comparative studies) between the studies.

The decision about which effect size metric to choose, is relatively unimpor-
tant. The normal choice is to select the one which fits the data best. Since our
data either supplies standard deviations and means, or supplies the raw data
allowing their calculation, we will use Cohen’s d[9]. To illustrate the unimpor-
tance of the point, Rosenthal[36] provides simple equations to transform d into
r (Pearson’s product moment correlation) and wice versa. The effect size esti-
mates for the four remaining studies are given in Table 2. The Basili and Selby
effect size estimate is derived from the combination of the three estimates from
sub-studies, all the sub-studies have independent subject bases®, but dependent
designs, materials, etc. When combining, or averaging, effect sizes a researcher
has three options: a traditional average; an average weighted by size (number
of subjects) — larger studies are more likely to be more reliable; an average

#This also implies that an average sample size measure has also been constructed.



Effect Size
Author(s) RVsF | FVsS|RVsS
Myers 0.31 -0.40 0.15
Basili ... 0.02 0.67 0.60
Kamsties ... -0.07 0.33 0.30
Roper ... -1.25 -0.13 -1.22

Table 2: Effect Sizes in each analysis — a negative effect size indicates that the
second technique in the pair possessed a greater mean than the first technique

Corrected for bias
Author(s) RVsF | FVsS|RVsS
Myers 0.30 -0.39 0.15
Basili ... 0.02 0.66 0.59
Kamsties ... -0.07 0.32 0.29
Roper ... -1.24 -0.13 -1.21

Table 3: Effect Sizes in each analysis — a negative effect size indicates that the
second technique in the pair possessed a greater mean than the first technique

weighted by variance: studies with smaller variance are likely to be more pre-
cise. Since this study is composed of three internal replications, and most of the
experimental design parameters except the sample size are constant, weighting
the estimates by size has been chosen as the most appropriate option. This
follows the procedure recommended by Kulik[25] and others.

Hedges[18] has derived the sampling distribution for d and has showed that
it is a biased estimate of effect size. In a further paper[17] he showed that a
weighted estimator of effect size estimate can be constructed, which is asymp-
totically efficient and accurate when the harmonic mean of the sample size is
greater than 10 and the effect sizes are less than about 1.5. Fortunately our
data conforms to these criteria and we can convert our data via a simple pro-
cedure, which is detailed in Rosenthal[39]. Table 3 shows our corrected effect
size estimates. This adjustment can be thought of as counteracting the finite
sample size of the experiments; further adjustments exist for countering the
restriction (or enhancement) of the range of variables involved[22] or the preci-
sion of the statistical tests applied in the individual studies[13]; it was decided
that neither of these additional adjustments was required for the above studies.
Further there is not universal acceptance that these further ‘corrections’ always
lead to superior estimates[36].

Comparing Studies: Diffuse Tests

Here we want to assess the statistical heterogeneity of our unbiased effect size
estimates. The ability to demonstrate the homogeneity, i.e. estimates only differ
due to subject variability, of the set of effect size measures is important as it



allows us to assume that we are measuring only one effect and that the studies
are representative samples of the general population. In meta-analysis this is
often known as a fixed-effects model or system. If we are unable to demonstrate
this then the system has become a random-effects model and inference is based
upon the assumption that the studies are a random sample of the population.
Although random-effects models are tolerant to variation, they are still not
effective in highly heterogeneous situations. Obviously the statistical methods
used to combine studies when fixed-effects are assumed differ from the methods
used when random effects are used.

Unfortunately no empirical basis for preferring either model exists. But
many experts agree that the choice of model is secondary to the examination
of the reasons for the lack of homogeneity. If the studies are homogeneous
then it has been shown that both models produce identical results[3]. Unfor-
tunately Software Engineering is currently in a weak position to ‘prove’ that
its studies are homogeneous, even if our studies pass the test, can we trust this
result? Given the small number of studies we can only produce a homogeneity
test with relatively low statistical power, and hence it has an increased risk of
inappropriately predicting that the studies are homogeneous.

Given the uncertainty of the above position, it is proposed to proceed by
using both models. If heterogeneity is discovered — stop, and investigate the
causes, if possible. If the studies seem relatively homogeneous again use both
models to derive estimates for the combination of the results from the studies.
Random-effects models are generally conservative compared to the fixed-effects
models, and its recommended use is to provide conservative estimates rather
than tackle heterogeneous situations. It is believed that it is important not to
use meta-analysis as a statistical method or test, but to consider it as a mul-
ticomponent approach to understanding information for independent sources,
hence the seemingly insoluble problems of choosing between the models can to
a certain extent be ignored.

For the fixed-effect and random-effect models we are going to use models
described in [19]*. Firstly, the test for homogeneity is equivalent to testing
if the variance of the effect sizes is zero. We can test for the homogeneity of
effect sizes in an analogous manner to testing for the homogeneity of statistical
tests, this generates a y? distribution (Q) with K — 1 d.f., where K is the
number of studies. Additionally the random-effect model partitions the variance
estimate into components representing the sampling error (S.F.) and variations
in the population parameters. This further illustrates the degree of homogeneity
within the data set. Obviously if one hundred percent of the observed variance
is explained by the sampling error, then the data is completely homogeneous;
but for figures less than one hundred, then the residual variance is due to
systematic factors, which should be explored before combining results from the
various studies. Table 4 describes the results of the homogeneity test for our
three sets of experiments.

As can be clearly seen, all three meta-analyses have serious homogeneity

*details of the fixed-effect model can be found in Chapter 6; and details for the random-
effect model in Chapter 9.



Type of test | Statistic | R Vs F | F Vs S | R Vs S

Fixed Q 18.72 7.30 30.13
p <<0.01 | 0.06 | <<0.01

Random Q 18.60 7.26 29.90
p <<0.01 | 0.06 | <<0.01
SE(%) | 2318 | 4129 | 16.67

Table 4: Homogeneity tests — all tests have 3 d.f.

problems, and further exploration is required: comparative studies - focussed.

Comparative Studies - Focussed

Unfortunately the distribution of effect sizes in the case studies are rather het-
erogeneous. The purpose of focussed testing is to attempt to derive an alter-
native hypothesis where one (or more) characteristics of the study significantly
contribute to the observed variation. If we can establish such a hypothesis we
can subdivide the studies, based upon this variable, and run a number of inde-
pendent meta-analyses based upon our new hypothesis. If homogeneous subsets
with different effect sizes emerge then the hypothesised study characteristics are
established as moderators, and the new hypothesis has been established.

Often the researcher may have little idea as to which characteristic may be
responsible for the remaining variation. Here an inductive approach may help,
and an informal inspection of the rank-ordered effect sizes to obtain an initial
impression of possible groupings is often a good starting place. In order to make
a sound judgement, the adoption of a multivariate statistics approach is rec-
ommended: such as factor analysis[40], multidimensional scaling[11] or cluster
analysis[34]. Alternatively artificial intelligence techniques, such as inductive
analysis[5], can be used, especially in situations where nominal or ordinal scale
data is present.

Of course, given the number of studies at hand the use of a formal technique
is not required, we can simply look at the data to try to discover obvious
patterns:

e Roper et al: results when using reading techniques are comparatively
lower (against both testing techniques) than within the other studies.

e Basili and Selby: results when using structural testing techniques are
comparatively lower (against both of the other techniques) than within
the other studies.

Can we find evidence in the studies to explain these potential differences? Con-
sidering the first potential partition, in their article Roper et al. statistically
show that the performance of the detection techniques is dependent on the ‘type’
of faults encountered. This type of interaction has also been noted by several of
the other studies, which report that the techniques tend to find different types



of defects, and hence benefit can be derived by combining the techniques. Al-
though some evidence exists to an important effect, further exploration would
be pointless, as we are not in a position to transform the outcome into a mod-
erator variable, due to the lack of definition of defect type. This inability to
transform moderator explanations into variables is a major problem within Soft-
ware Engineering, as we will be left in a position of being unable to partition
the population into homogeneous sub-populations. This deficiency is a major
obstacle to the path of the field producing reliable generalisable results, and
should be seen as a top priority for the discipline.

One point worth noting before leaving this topic is the relationship between
two of the studies. Roper et al. re-uses the experimental materials from Kam-
sisics and Lott; although from a simple replication point of view, this seems
attractive, from a meta-analytical point the practice is undesirable, as it creates
strong correlations between the two studies (with regard to variables involving
the material) and hence a potentially serious threat to the independence of the
studies. This point also creates a problem with respect to an earlier decision.
Are the Kamastics and Lott, and the Roper et al. experiments significantly
more independent than the three sub-experiments of Basili and Selby. The cor-
rect viewpoint at this juncture, is to admit that we don’t know and to produce a
sensitivity analysis by calculating all possible permutations. With homogeneous
data, the results should converge and the matter can be discarded; with het-
erogeneous data the results will tend to be unstable, and hence should decrease
our confidence in the final combined estimate.

Alternatively we could decide to discard or reduce the reliability rating of
Roper et al. to reflect our concerns with this issue. The ‘contribution’ of a
study to the calculations is attenuated by the square of its reliability estima-
tion in most meta-analytic models. But do we have enough proof to justify
this decision? Certainly Roper et al. show a significant interaction between de-
fect detection technique and program. Here program can be considered as the
list of defects and their context. But since Roper et al. re-used the materials
from Kamastics and Lott we would except the same situation to occur. Un-
fortunately Kamastics and Lott fail to provide any results about the potential
interaction. A retrospective examination of their data was unable to produce
a reliable statement about the interaction. The Kamatics and Lott experiment
suffered from a large subject attrition rate, leaving the blocked design highly
skewed, in fact some of the blocks have no subjects, this means that no reliable
estimate can be found. What about the other two experiments: Basili and
Selby show that one of their three sub-studies had a significant interaction, but
unfortunately don’t provide any details about the other two phases, both of
which use a subset of the materials from the phase showing the interaction;
the Myers experiment only has one program, but even here he shows that sig-
nificant differences, from the average behaviour, exist at the individual defect
level between the techniques. Hence it is believed that it is unsafe to alter the
reliability rating of Roper et al.. Recommended practice would be to run a
sensitivity analysis to estimate the impact of this decision.

Considering the second potential partitioning a case can be made that the
experiments are measuring a very different cognitive processes. In the latter
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Type of test | Statistic | R Vs F | F Vs S| R Vs S

Fixed d+ ~0.29 0.09 -0.49
d+Y 0.00 0.36 0.21
d+" -0.58 | -0.18 | -0.78
o2 0.02 0.02 0.02
p 0.02 0.25 | <<0.01

Random A -0.07 0.11 -0.30
AU 0.71 0.57 0.35
AL -0.85 -0.33 -0.96
o2 0.64 0.22 0.45
» 0.42 0.31 0.17

Table 5: Combining effect sizes from all the experiments

experiments, structural testing is undertaken using a tool to assist with the
calculation and monitoring of the coverage criteria. In the Basili and Selby
experiment, coverage calculation and monitoring was manual, this greatly alters
the intellectual ‘puzzle’ presented to the subjects®. Hence we could propose the
binary-valued variable of tool support? as a moderator variable®. Although we
should now proceed by testing the new proposed partitions via separate meta-
analyses, given that the largest partition has two” studies it was decided to stop
the process, for the sake of brevity.

Combining Studies

Unfortunately since we have not being able to resolve the heterogeneous nature
of the data set, we cannot safely continue and combine them. Hence the fol-
lowing figures and discussion are principally for illustration rather than further
serious analysis. To finally produce a combined effect size estimate we return to
the fixed-effect and random-effect models of the previous section. Again apply-
ing the procedures from Hedges[19], the meta-analyst can compute a combined
effect size estimation as illustrated in Table 6. The table uses the notation
from Hedges’ book; for both models: the combined effect size estimate, the
95% confidence levels, the variance and the probability of the combined effect
size estimate being significant are given. As we can see the two models are,
as expected, divergent. The fixed-effect model is extremely overly optimistic
about the combined effect size of the disparate studies; the random-effect model,
as expected in this situation, provides results which seem much more reason-
able, and as expected was more able to accommodate the large variance within
the studies. The confidence intervals provide another sensitivity check of the
results; these can easily be converted into probabilistic statements, and for a

5The experiment by Myers had no tool support and no coverage criteria.

6To be more accurate a second variable must be introduce of coverage criteria? to cover
the Myers experiment

Ttool support: Roper & Kamsties; Manual 4+ Coverage: Basili; Manual + No Coverage:
Myers
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significant result provides a statement about the proportion of the combined
effect size estimation’s distribution that would pass any significance test. Pro-
ducing sensitivity analyses from various viewpoints is essential to establish the
reliability of a significant result derived from meta-analytic procedures.

Where does this leave us? After analysing our case study we are unable to
provide a consistent picture of which detection technique is best. Further, and
of greater concern, we are unable to say that the empirical work undertaken
to date, on this topic, is additive and that we are on the ‘correct path’ to
providing a definitive answer. So what is the problem? In a word — variation!
Software Engineering experiments are subject to massive amounts of variation
from a large number of different sources; if we want to build a solid empirical
discipline for the subject the field must invest in techniques, existing and new,
which seek to reduce some of these sources.

5 Discussion

The defect detection case study has shown that the heterogeneity of current
empirical results is a major limitation in our ability to apply meta-analytic
procedures. Further, there is no reason to believe that our case study is unrep-
resentative of the current ‘state of the art’. The good news is that we are not
alone in this battle, other disciplines also struggle with this issue, they have
just been struggling longer, and hence have progressed beyond the point where
we currently find ourselves. Other disciplines traditionally attempt to reduce
the heterogeneity within a set of experiments by having:

e Common criteria for the inclusion or exclusion of studies, see[31].

e Standardised effect size measures and simple presentations, — this reduces
the error term and the conceptual confusion in comparing similar terms.
The binomial effect size display, displaying odds ratios, is a good example
of ‘state of the art’ in other disciplines[36].

o Well-defined ‘moderator’ variables, that transform our heterogeneous data
set into a group of homogeneous data sets, this area was touched upon in
the last section with the inability to define ‘defect type’.

Other disciplines have introduced various mechanisms in an attempt to ad-
vance these objectives:

e The Cochrane Collaboration — In the seventies, Archie Cochrane crit-
icised the medical profession for not having an established system for
producing ‘up to date’ summaries of research results[8]. The Cochrane
Collaboration was founded in 1993 to respond to this challenge.

The Cochrane Collaboration is an international organisation that aims to
help individuals make well-informed decisions about healthcare by prepar-
ing, maintaining and promoting the accessibility of systematic reviews of
the effects of healthcare treatments. The Collaboration’s work is based
upon eight key principles®:

http:/ /www.cochrane.co.uk
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— Collaboration, by internally and externally fostering good
communications, open decision-making and teamwork.

— Building on the enthusiasm of individuals, by involving and
supporting people of different skills and backgrounds.

— Avoiding duplication, by good management and co-ordination
to maximise economy of effort.

— Minimising bias, through a variety of approaches such as
scientific rigour, ensuring broad participation, and avoiding
conflicts of interest.

— Keeping up to date, by a commitment to ensure that Cochrane
Reviews? are maintained through identification and incor-
poration of new evidence.

— Striving for relevance, by promoting the assessment of health-
care interventions using outcomes that matter to people
making choices in healthcare.

— Promoting access, by wide dissemination of the outputs of
the Collaboration, taking advantage of strategic alliances,
and by promoting appropriate prices, content and media to
meet the needs of users world-wide.

— Ensuring quality, by being open and responsive to criticism,
applying advances in methodology, and developing systems
for quality improvement.

It is unlikely that the current amount of activity within empirical Soft-
ware Engineering is sufficient to currently require the formation of such
an organisation. Hence this should be seen as a long-term aim of the
discipline.

e Electronic recording of empirical results: e.g. MEDLINE is a database
for retrieving published studies of epidemiological data[31]. Unfortunately
this is still not sufficient as most ‘mature’ empirical disciplines suffer from
‘publication bias’. Publication bias is described as the greater likelihood
of research with statistically significant results being published compared
with research with nonsignificant and null results. Other disciplines have
developed quasi-statistical methods to attempt to estimate the possible
impact of publication bias[29]. Software Engineering has an advantage
here, if we start recording all the studies now, then the field can effectively
ignore publication bias. Recording this information in a database, with
say WWW access is trivial, and only requires willingness on behalf of the
funding bodies and the practitioners to realise this objective and avoid
this problem. Publication bias will also effect heterogeneity tests, as since
the published articles have significant results, the heterogeneity tests will
only see a skewed proportion of the population, and hence the test, in
general, will underestimate the potential problem.

®This is the main output of the collaboration, and the principal mechanism used in achiev-
ing their goal.
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e Eligibility Criteria: the presented case study only implemented a very
loose idea of eligibility (measuring similar effect), given the number of
studies available any tighter definition of eligibility would have probably
stopped the meta-analysis due to lack of studies. Other disciplines with
more studies at their disposal can enforce more exact eligibility criteria,
For example

— Study Design — In epidemiological trials, the average effect of a new
treatment has generally been found to be larger in nonrandomised
than in randomised studies[27]. Hence the meta-analysis should only
use either data set.

— Sample Size — Some of the statistical methods for meta-analysis are
asymptotic methods. Asymptotic methods will tend to overestimate
the precision of small studies[14]. When this occurs, the study will
over contribute to the meta-analytic results.

e Study Quality — As for eligibility criteria, other disciplines are developing
detailed criteria for accessing the quality of a study[7]. Information about
quality rating can be incorporated into the statistical procedures.

e Quality Standards for Meta-Analysis: other disciplines recommend the
adoption of a study protocol before starting your meta-analysis. This
protocol derived from a common framework ensures that each study is
undertaking the same tasks and should ensure repeatability and reliability
of the individual studies[41].

If we are to progress with the application of meta-analysis to Software Engi-
neering data, the above must be adapted and adopted. Unfortunately Software
Engineering is likely to require further methods and procedures to counteract
variation as the lack of well-defined terms means that the problems are probably
more acute than in many other disciplines.

6 Limitations of Meta-Analysis

Many of the concerns about meta-analysis are based upon philosophical ar-
guments about the nature of the undertaking. Further formal analysis of the
technique has not always been favourable. Finally despite its initial conception,
meta-analysis is now being applied to non-experimental studies, these studies
have additional requirements, which meta-analysis finds difficult to accommo-
date.

6.1 Philosophical Issues

These can be broadly classified as ”Garbage in, Garbage out” and ”meta-
analysis tries too compare Apples with Oranges?”. The first point is with
regard to the quality of the studies under investigation, and certainly holds
weight if all the meta-analysis has is poor quality studies. But if we don’t have
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confidence that an ‘additive process’ can be defined from a series of indepen-
dent high-quality studies, then what is the point in doing empirical research in
Software Engineering, this point strikes at the heart of the topic — if we believe
in empirical research in Software Engineering, then we should believe that the
results of independent studies can be combined. The question of distinguish-
ing the quality of studies is a key concept within meta-analysis, and certainly
requires further attention, especially within Software Engineering. The sec-
ond issue refers to the diversity ideas, subjects, study design, etc., that will be
pooled together in a single meta-analysis. Meta-analysis and statistical testing
have direct parallels here. Subjects behave differently within studies, but we
are happy to generalise with regard to them, then why not studies? Further, if
subjects behave very differently, when we blocked them on study characteristics
to help our understanding, again why not studies? Finally if we want to make
statements about ”Fruit”, what else can one do except talk about ” Apples” and
”Oranges” together.

6.2 Formal Evaluations of Meta-Analysis

Sacks et al.[41] and Chambers et al.[6] have evaluated the quality of a large num-
ber of meta-analyses of epidemiological data. Sacks et al. are critical that the
standard of the application of meta-analysis was insufficient to produce defini-
tive results, he recommended that further work was required on the specification
of both the frameworks for replication and meta-analysis reporting. Chalmers et
al. studied the replicability of meta-analysis. His results suggest some concern
as the results of meta-analysis estimation are regularly disparity with the single
‘definitive’ study, which represents the current understanding within medical
circles. Additionally he investigated the replicability between meta-analyses
and found that for a large number of (medical) studies the replicability was
good. The discrepancies between the meta-analyses and the ‘definitive’ studies
is obviously concerning, and obviously requires more work to present a clear
picture. The replicability of meta-analysis of non-experimental studies remains
unstudied.

6.3 Using meta-analysis with non-experimental studies

In experimental studies, randomisation (in theory) eliminates bias and con-
founding within the experimental results. Non-experimental studies will not
provide any safeguards with regard to these issues, and hence results from them
cannot be considered either unbiased or unconfounded. Currently no work ex-
ists, which attempts to validate the use of meta-analysis for non-experimental
results; unfortunately many disciplines have started to use meta-analysis in
this fashion, this paper strongly recommends that Software Engineering does
not follow this example until some research on the question of validity has been
carried out.

Further meta-analysis should not be employed to resolve differences between
conflicting results. Meta-analysis was designed to combine results from a series
of experiments, each of which had insufficient statistical power to reliably accept
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or reject the null hypothesis. It was not designed to pool disparate answers,
meta-analysis is at its weakest when dealing with heterogeneous studies, and
again this paper strongly recommends that Software Engineering avoids using
the technique in this manner.

7 Conclusions

The ability to reliably combine empirical results from independent experiments
is an essential building block in any discipline attempting to build a solid em-
pirical foundation. The standard technique used in most disciplines to achieve
this goal is meta-analysis. This paper attempts to introduce meta-analysis into
the Software Engineering context. Unfortunately the results are disappointing,
and if the case study is representative, indicates that the discipline must em-
bark upon a period of improvement to reduce the variability between replicated
experiments or experiments examining the same hypothesis.

The paper outlines various approaches both within the meta-analytic pro-
cedure and within its surrounding infrastructure, which have helped other dis-
ciplines advance their practice. In addition to these large-scale advances, there
are a number of alterations that we, the individual experimenters, can make
to our current practice to ready the field for the application of meta-analytical
techniques:

e Although the significance test is obviously an important result from the
experimental procedure, it is by no means the full story. The effect size
is equally important, without it other researchers are in a poor position
to estimate the importance of the results, even if they are significant.
Unfortunately few, if any, Software Engineering experiments report effect
size estimates, their incorporation into the results of empirical studies
would greatly aid other researchers.

e The inclusion of raw data is obviously the ideal scenario when reporting
an experiment. If this is not possible, because of space restrictions, it is
important to report the mean!® variance (or standard deviation), and
details about the normality of the data, quite often a simple histogram is
sufficient.

e As described above, randomisation is important to meta-analysis (and
experimentation, in general), it is important that these details are fully

described.

e Meta-analysis calculations require the number of subjects to be defined,
this is not always derivable from the degrees of freedom associated from
a test. The inclusion of both!! is required.

10This assumes that the experiment is comparative in nature and normally distributed
"1n fact, given the number of subjects, deriving the degrees of freedom is trivial, and hence
it could be omitted.
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e When reporting non-significant results it is important to give an estimate
of the statistical power of the experiment[26]. Without it subsequent
experimenters have no basis for accepting the null result at any effect
level.

e Drawing reliable conclusions from reading an article is a difficult task, this
can be made considerably easier if the author describes their search for
interactions between the variables, both significant and null interactions.
This information is also of great use to the meta-analyst, as it often pro-
vides a starting point for undertaking focussed comparative studies upon
encountering heterogeneous data.

e For meta-analysis, the independence of the studies is important, hence
although attractive from a timesaving point of view, the re-use of mate-
rials, etc. sets up potentially dangerous correlations. Hence it is better
for the author to describe the essential characteristics of the experiment
and use the current version of the experiment as an example rather than
simply describing the current version.

e ‘Recipe improving’ and changes to the experimental design, procedures,
materials, etc are seen in a positive light as they help to ensure indepen-
dence.

e Definitions of measurements — what are required here is not abstract
mathematical models describing the theory, but precise details in the
actual implementation.

e Simple experiments — Often Software Engineering experiments have asked
subjects to undertake a number of different intellectual activities, this is
believed to be a high-risk strategy. The Subject’s motivation, enthusiasm,
ability to comprehend the task, ability to learn (if the activity is new) the
task, etc. are all undermined every time they are asked to undertake
another activity. It is suggested that the minimum ‘two activities or con-
cepts’ subject-based experiments should be the norm. This obviously has
cost and time implications for the topic in the short-term, but it is be-
lieved that the gain in producing more reliable results will outweigh this
restriction. Additionally ‘two concept’ experiments lead to easier formu-
lations of effect sizes and run, on average, less risk of creating conceptual
confusion amongst subsequent reviewers.

This may all sound like a very negative view of the field, but remember
— "Rome was not built in a day!”. The field is still very young, and requires
time and effort to mature, this maturity will bring enormous benefits currently
enjoyed by mature empirical disciplines such as the medical sciences and social

psychology.
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