
A General Formulationof Simultaneous Inductive-Recursive De�nitionsin Type TheoryPeter DybjerDepartment of Computing ScienceChalmers University of TechnologyS-412 96 G�oteborg, Swedenpeterd@cs.chalmers.seMay 12, 1998AbstractThe �rst example of a simultaneous inductive-recursive de�nition in intuitionistic type theory isMartin-L�of's universe �a la Tarski. A set U0 of codes for small sets is generated inductively at thesame time as a function T0, which maps a code to the corresponding small set, is de�ned by recursionon the way the elements of U0 are generated.In this paper we argue that there is an underlying general notion of simultaneous inductive-recursive de�nition which is implicit in Martin-L�of's intuitionistic type theory. We extend previouslygiven schematic formulations of inductive de�nitions in type theory to encompass a general notion ofsimultaneous induction-recursion. This enables us to give a uni�ed treatment of several interestingconstructions including various universe constructions by Palmgren, Gri�or, Rathjen, and Setzer anda constructive version of Aczel's Frege structures. Consistency of a restricted version of the extensionis shown by constructing a realisability model in the style of Allen.
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1 IntroductionMartin-L�of type theory is a foundational framework in which induction is the principal notion. It is, toquote Martin-L�of [27, p73], \intended to be a full scale system for formalising intuitionistic mathematicsas developed, for example, in the book by Bishop [10]".It is also a typed functional programming language not unlike ML [33] or Miranda [9]. A \set" inthe theory is de�ned inductively by listing its constructors with their types in much the same way asone de�nes a recursive datatype in ML or Miranda. But whereas ML and Miranda are based on thesimply typed �-calculus, Martin-L�of type theory also has dependent types. The other key di�erence isthat only well-founded elements of datatypes (sets) and terminating programs (total functions) may beconstructed. To ensure well-foundedness datatype de�nitions have to satisfy a kind of \strict positivity"criterion. Moreover, to ensure termination recursive function de�nitions are restricted to \structural"recursion, that is, recursion on the way the elements of the domain of de�nition are inductively generated.For simple types we can use the following notion of strict positivity. Letintro : �1 ! � � � ! �n ! P(n � 0) be a constructor for the datatype P . Then �i either does not contain any occurrences of P orhas the form �1 ! � � � ! �m ! P (m � 0), where �j does not have any occurrences of P . It is also clearwhat the appropriate notion of structural recursion is for such a recursive datatype. Note that we allowgeneralised inductive de�nitions since a constructor can have functional arguments (m > 0). Therefore,the informal semantic notions of well-founded element and terminating function depend on each other.The introduction of dependent types dramatically increases the expressiveness of the language. Inparticular, we can interpret intuitionistic predicate logic by following Curry, Howard, and de Bruijn andidentify propositions and sets. In addition to the ordinary non-dependent set formers 0; 1;+;�; and !,which can be used for interpreting the logical connectives ?, >, _, ^, and �, we now also have � and�, the disjoint union and Cartesian product of a family of sets, which can be used for interpreting thequanti�ers 9 and 8.However, the appropriate notion corresponding to \strict positivity" becomes more complex in thecontext of dependent types. Instead of formulating such a general condition for inductive de�nitions ofsets Martin-L�of [31, 27, 28, 29] gave rules for a collection of speci�c set formers. However, this collectionmay be extended when there is a need for it provided the informal semantic principles of the theory arerespected.The possibility of formulating a general schema was however mentioned in Martin-L�of 1972 [31]:The typeN is just the prime example of a type introduced by an ordinary inductive de�nition.However, it seems preferable to treat this special case rather than to give a necessarily muchmore complicated general formulation which would include (� 2 A)B(x), A+B, Nn and Nas special cases. See Martin-L�of 1971 [26] for a general formulation of inductive de�nitionsin the language of ordinary �rst order predicate logic.The �rst such general schema was formulated by Backhouse [7] and covered the case of inductively de�nedsets (possibly depending on parameters). This schema was generalised to the case of inductively de�nedfamilies of sets by Dybjer [19, 20]. Inductively de�ned families subsume inductively de�ned predicates,and this schema can be viewed as the type-theoretic generalisation of the natural deduction schema forinductively de�ned predicates in predicate logic given by Martin-L�of [26].In this paper we introduce a further generalization of the schema in Dybjer [20]. It covers simultaneousinductive-recursive de�nitions including de�nitions of a variety of universes which were not accountedfor by the old schema. It also gives rise to other interesting notions including a constructive version ofAczel's Frege structures.Universes in type theory are analogous to Grothendieck universes in set theory: they are sets of\small" sets and can be used for example for the formalisation of constructive category theory. Anotherinteresting application of universes (here in conjunction with generalised inductive de�nitions) is Aczel'suniverse of iterative sets, in which a constructive version of Zermelo-Fraenkel set theory CZF can beinterpreted [3]. But in the standard formulations of type theory universes are needed also for the morebasic purpose of de�ning families of sets by structural recursion. For example, the predicate Z (as used
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in the type-theoretic proof that 0 6= s(n) [29, 43]) with the recursion equationsZ(0) = >;Z(s(n)) = ?is de�ned in terms of universes and the rule of N -elimination.Martin-L�of [27] introduced an in�nite tower of universes U0 : U1 : U2 : � � �. These were formulated \�ala Russell" [29], which means that there is no syntactic distinction between a small set considered as anelement of a universe A : Ui and considered as a set A. In contrast, the formulation \�a la Tarski" [29]maintains such a distinction: a : Ui is a code for the set Ti(a). A universe �a la Tarski should thereforebe understood as a pair (Ui; Ti) consisting of a set Ui of codes and a decoding function Ti.Further universes were introduced by Palmgren [35]. Firstly, he de�ned a universe operator, thatis, an operator on families of sets which when applied to a universe (Ui; Ti) returns the next universe(Ui+1; Ti+1). In this way the external sequence of universes �a la Tarski (U0; T0); (U1; T1); (U2; T2); : : : wasinternalised. Secondly, Palmgren introduced a super-universe closed under the universe operator as wellas under all the usual set formers in type theory. Recently, even larger universes and universe operatorshave been proposed by Rathjen, Gri�or, and Palmgren [39], Palmgren [36], and Setzer [42].Martin-L�of type theory with generalised inductive de�nitions and universes have great proof-theoreticstrength, see Gri�or and Rathjen [23], Setzer [41], and Rathjen, Gri�or, and Palmgren [39].We conclude this introduction with a few words about the notation. We employ the \logical frame-work" formulation of Martin-L�of type theory [30, 34]. The core of this theory is a typed ���-calculuswith dependent types. There is a base type set, the type of sets, and for each object A : set, there isthe type El(A) (often written just A) of the elements of A. We write (x : �)� for the type of functionswhich map an object a : � to an object f(a) : �[a=x]. If � does not depend on x : � we may write (�)�(rather than � ! �) instead of (x : �)�. Abstraction is written (x)b and application f(a), rather thanthe usual notation �x:b and f a from �-calculus. We also write (x1; : : : ; xn)b = (x1) � � � (xn)b for multipleabstraction, and f(a1; : : : ; an) = f(a1) � � � (an) for multiple application.In this type system (set)(set)set is for example the type of binary logical connectives; (A : set)(B :(A)set)set is the type of quanti�ers; and (N)set is the type of unary predicates on N and also the typeof N -indexed families of sets.The formulation of the schema for simultaneous induction-recursion in section 3 will use two auxiliarynotions. Firstly, we will write (a :: �)� as an abbreviation of (a1 : �1) � � � (an : �n)� and call � a sequenceof types. (This abbreviation could be avoided by adding �-types to the �-calculus with dependent types.)Secondly, we will say that a type is small if it contains no occurrences of set . (Small types are calleds-types in [19].) Small types are almost like sets. But the logical framework formulation we use maintainsa distinction between the set �(A;B) and the small type (x : A)B(x). Since we want our schema tocover the rules for � as well we need to refer to small types when formulating the requirements on therules.Plan of the paper. In section 2 we introduce simultaneous induction-recursion by two examples: the�rst universe �a la Tarski and the fresh-lists (lists where all elements are distinct). In section 3 we givethe general schema for simultaneous inductive-recursive de�nitions in type theory. We also show howto recover the �rst universe �a la Tarski and the fresh-lists by instantiating the schema. In section 4 wediscuss further universe constructions which are instances of the schema. In section 5 we show how theconstruction of Frege structures in type theory is yet another instance of the schema. In section 6 webuild a classical Frege structure model of a restricted version of the schema using monotone inductivede�nitions. In section 7 we conclude.2 Two examples of simultaneous induction-recursionThe prototypical example of simultaneous induction-recursion is Martin-L�of's de�nition of the �rst uni-verse �a la Tarski [29]. It consists of the simultaneous inductive de�nition of the set U0 of codes for smallsets and the recursive de�nition of the decoding function T0 : (U0)set . U0 has one introduction rule (andone equality rule) for each set former which is reected in the universe. We here give two examples:
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�-formation is reected by the following rule of U0-introduction:�0 : (u : U0)(u0 : (x : T0(u))U0)U0;and we have the following equality rule:T0(�0(u; u0)) = �(T0(u); (x)T0(u0(x))):Eq-formation is reected by the following rule of U0-introduction:eq0 : (u : U0)(b; b0 : T0(u))U0;and we have the following equality rule:T0(eq0(u; b; b0)) = Eq(T0(u); b; b0):This de�nition does not �t the schema for strictly positive inductive de�nitions in Dybjer [19], sinceT0 appears (even negatively) in the introduction rules for U0. In spite of this one can justify that it isa predicative de�nition in Martin-L�of's sense [27]. Allen [5] has suggested calling this kind of de�nitionhalf-positive.For example, the rules for �0 stipulate the following way of constructing new elements of U0. Ata certain stage we may have constructed an element u. Since T0 is de�ned by U0-recursion, we cancompute the set T0(u). Hence we can construct a function u0 with domain T0(u) and range (the presentlyconstructed elements of) U0. Hence we can construct an element �0(u; u0). Moreover, the computationof T0(�0(u; u0)) will terminate since we already know that the computation of T0(u) and of T0(u0(x)) forx : T0(u) will terminate and that the T0(u0(x))'s will only be called a �nite number of times.A more down-to-earth example (due to Catarina Coquand) is the following inductive de�nition of theset of lists Dlist with distinct elements and the simultaneous de�nition of the freshness relation Fresh .Let A be the set from which the elements of the list are drawn, and let a#b mean that a and b aredi�erent elements of A, for some di�erence relation # : (A)(A)set . We have the following formation rulesDlist : set ;Fresh : (Dlist)(A)setand introduction rules nil : Dlist ;cons : (b : A)(u : Dlist)(b0 : Fresh(u; b))Dlist :Fresh has the equality rules Fresh(nil; a) = >;Fresh(cons(b; u; b0); a) = b#a ^ Fresh(u; a):Note that cons has an extra argument b0, which is a proof that the new element b is fresh with respectto u. Hence the introduction rules for Dlist refer to Fresh . But as for the case of the �rst universe weshall argue that it is a good predicative de�nition.For example, the rules for cons stipulate the following way of constructing new elements of Dlist . Ata certain stage we may have constructed u : Dlist . Since Fresh is de�ned by Dlist-recursion, we alreadyknow what it means for an element b : A to be fresh with respect to u, that is, we know what a proofb0 : Fresh(u; b) is. Hence it makes sense to construct an element cons(b; u; b0). Moreover, we can de�neFresh(cons(b; u; b0)) in terms of the already constructed proposition Fresh(u).There are of course a number of alternative ways to de�ne Dlist and Fresh using ordinary inductivede�nitions, but the inductive-recursive one seems natural and may be preferred for some purposes.In both examples we simultaneously build a function and its domain of de�nition. This intuition canbe captured using a classical notion of monotone inductive de�nition and thus yield a consistency proof.This is the idea behind the realisability model in section 5.4



A set former in Martin-L�of type theory is speci�ed by its formation and introduction rules. Moreover,in the standard formulation [28, 29] it has an elimination rule which expresses a general principle ofde�nition of a function by structural recursion. A particular function de�ned by structural recursion (forexample the addition function on natural numbers) is then obtained by instantiating the elimination rulein question. Its recursion equations are then derived by instantiating the equality rules. But it is alsopossible to formulate de�nition by structural recursion by an external schema (so that for example theaddition function is obtained as an instance) as in Martin-L�of [27], Coquand [14], and Dybjer [19].When considering simultaneous inductive-recursive de�nitions it is essential to adopt the latter ap-proach (using an external schema). The reason is that the elimination rule expresses only de�nition bystructural recursion on a previously (and not simultaneously) de�ned set. For example, the de�nitionof T0 is an instance of a recursive schema. It cannot be formulated in terms of U0-elimination, becausealready the formulation of U0-elimination refers to T0.Moreover, we want the schema for simultaneous induction-recursion to specialise to universe construc-tions. It is therefore essential that we do not require that the value of a function de�ned by recursionnecessarily is an element of a set (as in the traditional elimination rules). Instead the value can be anobject of an arbitrary type (as in the \large" elimination rules [44, 45]. For example, the value may bea set (an object of the type set), so we have recursively de�ned families of sets.Note that we have reversed the priority of the following concepts as compared to the standardformulations of Martin-L�of type theory [28, 29, 34]:� Elimination and equality rules are special instances of the recursive schemata, whereas in thestandard formulation the recursive schemata are derived from the elimination and equality rules.� Universes are special kinds of simultaneous inductive-recursive de�nitions employing set-valuedrecursion, whereas in the standard formulation set-valued recursion is obtained from the eliminationand equality rules in conjunction with universes.3 Formalising the notion of a simultaneous inductive-recursivede�nitionWe use the schematic style of Martin-L�of's intuitionistic theory of iterated inductive de�nitions in pred-icate logic [26] for presenting the theory of simultaneous inductive-recursive de�nitions in type theory.As already mentioned the present schema is a generalisation of the schema in Dybjer [19, 20]. The maindi�erence is that the extended schema for an introduction rule may refer to a function de�ned simulta-neously by recursion. To highlight the similarity between the extended schema and the old schema weuse the same notation here as in Dybjer [20].The present description could form the basis for an implementation in the same way as the old schema[20] is the basis of Gim�enez' [22] implementation of inductive de�nitions in a proof editor for Martin-L�oftype theory, and as Coquand and Paulin's formulation of inductive types in the calculus of constructions[16, 38] is the basis for the Coq-system [18].To illustrate the schema, we show how the rules for the �rst universe and the fresh-lists can be derivedby instantiation. Later sections contain further examples. It might be helpful to study these examplesbefore studying the general formulation given in this section.I present the case with one inductive and one recursive de�nition. Clearly, the schema can be gen-eralised to the case with several simultaneous inductive and several (possibly zero) recursive de�nitions,but we will not spell out the details.To begin with (in 3.1-3.4) we assume that there are no parameters. In 3.5 it is shown how to extendthe schema to simultaneous inductive-recursive de�nitions with parameters.A de�nition is always relative to a theory containing the rules for previously de�ned concepts. Thusthe requirements on the di�erent parts of the de�nitions (�;  ; �; �; p; q below) are always judgementswith respect to that theory.3.1 Formation rulesSchema. Let � be a sequence of small types. A simultaneous inductive-recursive de�nition of an �-
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indexed family of sets P and an �-indexed family of functions f de�ned by P -recursion has formationrules of the form P : (a :: �)set ;f : (a :: �)(c : P (a)) [a]:Here we also require that  [a] is a type under the assumptions a :: �.Examples. The formation rules for the �rst universeU0 : set ;T0 : (c : U0)setare obtained by letting P be U0, f be T0, � be the empty sequence, and  [c] be set .The formation rules for fresh-listsDlist : set ;Fresh : (c : Dlist)(a : A)setare obtained by letting P be Dlist , f be Fresh, � be empty and  [c] be (a : A)set (the type of predicateson A).For an example where � is a non-empty sequence, see section 5 on Frege structures, where theproperties of internal propositionality and internal truth are de�ned.3.2 Introduction rulesSchema. A premise of an introduction rule is either non-recursive or recursive.� A non-recursive premise has the form b : �;where � is a small type depending on the previous premises of the rule (see below).� A recursive premise has the form u : (x :: �)P (p[x]);where � is a sequence of small types, and p[x] :: � assuming x :: � and the previous premises ofthe rule (see below). If � is empty the premise is called ordinary and otherwise generalised (as inordinary and generalised induction).The type of the conclusion of the introduction rule has the formP (q);where q :: � depending on the premises of the rule (see below).We shall now spell out the typing criteria for � in the schema above. (The criteria for �, p, and q areanalogous.) These criteria may seem complex at a �rst glance, but are nothing but what results fromspelling out the obvious possible dependencies that can occur.We write � = �[: : : ; b0; : : : ; u0; : : :], etc., to explicitly indicate the dependence on typical previousnon-recursive b0 : �0 and recursive u0 : (x0 :: �0)P (p0[x0]) premises. (Non-recursive and recursive premisesmay appear in any order). The dependence on a previous recursive premise can occur only through anapplication of the simultaneously de�ned function f . Formally, this means that we require that�[: : : ; b0; : : : ; u0; : : :] = �̂[: : : ; b0; : : : ; (x0)f(p0[x0]; u0(x0)); : : :];where �̂[: : : ; b0; : : : ; v0; : : :] is a small type in the context (: : : ; b0 : �0; : : : ; v0 : (x0 :: �0) [p0[x0]]; : : :). Notethat this context is obtained from the context of � by replacing each recursive premise of the formu0 : (x0 :: �0)P (p0[x0]) by v0 : (x0 :: �0) [p0[x0]].
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In the sequel we will writeintro : � � � (b : �) � � � (u : (x :: �)P (p[x])) � � �P (q)for the general form of an introduction rule. It indicates that a typical constructor intro may havenon-recursive premises (arguments) b : � and recursive premises u : (x :: �)P (p[x]). There may be zeroor more premises of either kind and they may appear in arbitrary order.If we remove the possibility that �; �; p, and q depend on previous recursive premises, then we essen-tially recover the schema in Dybjer [20], because then f cannot appear in the introduction rules for P .Moreover, since a non-recursive premise then cannot depend on a recursive one, we can without loss ofgenerality assume that all non-recursive premises precede the recursive premises.Examples. The introduction rule for U0 which reects �-formation�0 : (u : U0)(u0 : (x : T0(u))U0)U0is obtained in the following way. The �rst premise u : U0 is recursive and ordinary, that is, � in theschema is empty. The second premise u0 : (x : T0(u)) is recursive and generalised and depends on the �rstrecursive premise. It is obtained from the schema by letting �[u] = �̂[T0(u)] = T0(u), that is, �̂[v] = v.The introduction rule reecting Eq-formation iseq0 : (u : U0)(b; b0 : T0(u))U0:The �rst premise u : U0 is recursive and ordinary. The second and and third premises b; b0 : T0(u) are non-recursive and depend on the �rst recursive premise. They are obtained by letting �[u] = �̂[T0(u)] = T0(u),that is, �̂[v] = v.The second introduction rule for Dlist iscons : (b : A)(u : Dlist)(b0 : Fresh(u; b))Dlist :It has a �rst non-recursive premise with � = A. The second premise is recursive and ordinary (� isempty). The third premise is non-recursive with �[b; u] = �̂[b;Fresh(u)] = Fresh(u; b) so �̂[b; v] = v(b).3.3 Equality rules for the simultaneously de�ned functionSchema. Let intro be a constructor and let as above b : � and u : (x :: �)P (p[x]) be typical non-recursiveand recursive premises respectively of the corresponding introduction rule. The form of the equality rulefor f and intro is:f(q; intro(: : : ; b; : : : ; u; : : :)) = e(: : : ; b; : : : ; (x)f(p[x]; u(x)); : : :) :  [q]in the context (: : : ; b : �; : : : ; u : (x :: �)P (p[x]); : : :)where e(: : : ; b; : : : ; v; : : :) :  [q]in the context (: : : ; b : �; : : : ; v : (x :: �) [p[x]]; : : :):Examples. The equality rules for T0T0(�0(u; u0)) = �(T0(u); (x)T0(u0(x)));T0(eq0(u; b; b0)) = Eq(T0(u); b; b0)are obtained by letting e(v; v0) = �(v; v0) and e(v; b; b0) = Eq(v; b; b0) respectively.The equality rules for Fresh Fresh(nil) = (a)>;Fresh(cons(b; u; b0)) = (a)(b#a ^ Fresh(u; a))are obtained by letting e = (a)> and e(b; v; b0) = (a)(b#a ^ v(a)) respectively.7



3.4 A generalisation of universe eliminationSchema. Universe elimination (as described in Nordstr�om, Petersson, and Smith [34]) expresses de�ni-tion by U0-recursion after U0 and T0 are de�ned. Here we express the corresponding notion schematically.We also show that ordinary universe elimination is a special case of this schema.In general, after the simultaneous inductive-recursive de�nition of P and f has been completed, wemay de�ne a new function f 0 : (a :: �)(c : P (a)) 0[a; c];by P -recursion. Here we require that  0[a; c] is a type in the context (a :: �; c : P (a)).The equality rule has the formf 0(q; intro(: : : ; b; : : : ; u; : : :)) = e0(: : : ; b; : : : ; u; (x)f 0(p[x]; u(x)); : : :)in the context (: : : ; b : �; : : : ; u : (x :: �)P (p[x]); : : :)where e0(: : : ; b; : : : ; u; v; : : :) :  0[q; intro(: : : ; b; : : : ; u; : : :)]in the context (: : : ; b : �; : : : ; u : (x :: �)P (p[x]); v : (x :: �) 0[p[x]; u(x)]; : : :)Note that the criteria are identical for a simultaneously de�ned function f and a function f 0 de�nedafterwards, except that the target type  0 of f 0 (in contrast to  of f) may depend on c as well as on a,and that the RHS of a recursion equation e0 for f 0 (in contrast the RHS of a recursion equation e for f)may depend on u as well as on v. This is simply because these new dependencies can occur only after Phas been de�ned.Examples. Ordinary U0-eliminationU0rec : (C : (U0)set)(e : (u : U0)(v : C(u))(u0 : (x : T0(u))U0)(v0 : (x : T0(u))C(u0(x)))C(�0(u; u0)))(e0 : (u : U0)(v : C(u))(b; b0 : T (u))C(eq0(u; b; b0)))...(c : U0)C(c)with U0rec(C; e; e0; �0(u; u0)) = e(u; U0rec(C; e; e0; u); u0; (x)U0rec(C; e; e0; u0(x)));U0rec(C; e; e0; eq0(u; b; b0)) = e0(u; U0rec(C; e; e0; u); b; b0);...is obtained from the general schema by letting C; e; e0; : : : be parameters (see section 3.5) and  0[c] = C(c).Another example is the function length : (c : Dlist)Nwhich computes the length of a Dlist by Dlist-recursion. The typing rule of length is obtained by letting 0[c] = N in the general schema. It has the equality ruleslength(nil) = 0;length(cons(b; u; b0)) = s(length(u)):These are obtained by letting e0 = 0 and e0(b; u; v; b0) = s(v) respectively in the general schema.
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3.5 ParametersThe simultaneous inductive-recursive de�nition of Dlist and Fresh depends on the parameters A : setand # : (A)(A)set . If we make these dependencies explicit in the formation rules for Dlist and Freshthey become Dlist : (A : set)(# : (A)(A)set)set ;Fresh : (A : set)(# : (A)(A)set)(c : Dlist(A;#))(a : A)set :We also need to modify the introduction rules accordingly:nil : (A : set)(# : (A)(A)set)Dlist(A;#);cons : (A : set)(# : (A)(A)set)(b : A)(u : Dlist(A;#))(b0 : Fresh(A;#; u; b))Dlist(A;#):We can extend the schema to account for parameters in general. The rule is simple: there can bezero or more parameters and they can have arbitrary types. The modi�ed schema for formation rules istherefore P : (A :: �)(a :: �[A])set ;f : (A :: �)(a :: �[A])(c : P (A; a)) [A; a]:where � is an arbitrary sequence of types, where �[A] is a sequence of small types under the assumptionsA :: � and  [A; a] is a type under the assumptions A :: �; a :: �. The modi�ed schema for an introductionrule is intro : (A :: �) � � � (b : �[A]) � � � (u : (x :: �[A])P (A; p[A; x])) � � � P (A; q)where � is the same as for the formation rules, and where the requirements on �, �, p, and q depend onA :: � as well.A recursive de�nition of a function f 0 (de�ned by recursion on P after the simultaneous inductive-recursive de�nition of P and f) may also depend on parameters. This was used above when showingthat ordinary universe elimination is an instance of the schema in section 2.4. Again, there may be zeroor more parameters, and these parameters may have arbitrary types. Note however that the parametersof f 0 need not coincide with the parameters for the inductive-recursive de�nition of P and f .4 Universe hierarchies and super-universesIn this section we review the universe hierarchies and super-universes of Palmgren [35]. Palmgren pre-sented these constructions in a one-o� fashion with informal motivations for the rules. Here we use ournotion of a simultaneous inductive-recursive de�nition to give a uni�ed formal treatment of all theseconstructions: as for the rules for U0 we can recover them by instantiating the appropriate part of thegeneral schema above.4.1 External universe hierarchiesThe second universe has formation rules U1 : set ;T1 : (U1)set ;and analogous rules for the constructors �1 and eq1 to those for �0 and eq0. There is also an introductionand equality rule reecting U0-formation: u01 : U1;T1(u01) = U0:We also wish to reect T0 as a function into the second universe:t01 : (U0)U1;9



and therefore we let t01 be a constructor for U1. (Palmgren also mentions the possibility of de�ning t01by recursion on U0.) The equality rule for T1 is:T1(t01(b)) = T0(b):We can continue in an analogous way and de�ne U2 and T2, U3 and T3, etc. and thus get an externaluniverse hierarchy.4.2 An internal universe hierarchy and a super-universeThe construction of Un+1 and Tn+1 from Un and Tn can be internalised. We give a simultaneousinductive-recursive de�nition of the set formersNextu : (U : set)(T : (U)set)set ;Nextt : (U : set)(T : (U)set)(Nextu(U; T ))set;and let Un+1 = Nextu(Un; Tn) and Tn+1 = Nextt(Un; Tn).U and T are parameters of this de�nition. For simplicity, we suppress these parameters in the rulesfor Nextu and Nextt and write Nextu : set ;Nextt : (Nextu)set :Introduction and equality rules correspond to those of the �rst universe, but we also need to reectthe code set U and the decoding function T : � : Nextu;Nextt(�) = U;t : (b : U)Nextu;Nextt(t(b)) = T (b):A super-universe is obtained by also reecting the next-universe construction inside a set U1.The formation rules are U1 : set;T1 : (U1)set:Introduction and equality rules correspond to those for the �rst universe, but we also need to reect the�rst universe U0 and the next-universe construction Nextuu0 : U1;T1(u0) = U0;nextu : (u : U1)(u0 : (T1(u))U1)U1;T1(nextu(u; u0)) = Nextu(T1(u); (x)T1(u0(x))):It is straightforward to check that also these rules follow the general schema.
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4.3 A parameterised super-universeThe construction of the super-universe U1 can be generalised. Instead of starting with the next-universeoperator, we can start with an arbitrary operator given by a pairF : (U : set)(T : (U)set)set ;G : (U : set)(T : (U)set)(F (U; T ))set ;which maps a family of sets (U; T ) into another family of sets (F (U; T ); (x)G(U; T; x)). Then we canconstruct a super-universe (UP ; TP ) closed under this operator by a simultaneous inductive-recursivede�nition. The de�nition of (UP ; TP ) is analogous to the de�niton of (U1; T1); the only di�erence isthat we replace Nextu by the parameter F . If we make the dependence on the parameters F and Gexplicit in the types of UP and TP we getUP : (F : (U : set)(T : (U)set)set)(G : (U : set)(T : (U)set)(F (U; T ))set)set ;TP : (F : (U : set)(T : (U)set)set)(G : (U : set)(T : (U)set)(F (U; T ))set)(c : UP (F;G))set :I learned about this generalization and its connection to Mahlo cardinals in set theory from AntonSetzer. For a complete account and more discussion, see Setzer [42]. (The reader should note that thereare some di�erences between Setzer's formalisation and the one suggested here.)Several more examples of simultaneous inductive-recursive de�nitions of large universes and universeoperators can be found in the recent papers by Palmgren [36] and Rathjen, Gri�or, and Palmgren [39].5 Frege structuresThe notion of a Frege structure was introduced by Peter Aczel [4]. One purpose was to provide anappropriate setting for �-calculus (or abstract realisability) interpretations of Martin-L�of type theory.Another was to provide a model for a foundational framework where the notions of \proposition" and\truth" are primitive.We shall here show how to construct a Frege structure in Martin-L�of type theory by using a simulta-neous inductive-recursive de�nition. Thus we show a way to reduce this foundational framework to thefoundational framework of type theory. This type-theoretic construction can be contrasted to Aczel'sconstruction of Frege structures in classical set theory.The notion of a Frege structure is an enrichment of the notion of a �-structure. This is essentiallythe same as a �-model in Barendregt [8] but is expressed in terms of an explicitly closed family F . HereF0 is the set of objects of the Frege structure and Fn is a set of n-ary functions on F0, which is used forinterpreting expressions with at most n free variables. A Frege structure comes with projection functions�in : Fn and F-functionals �n : Fn+1 ! Fn and Appn : Fn �Fn ! Fn satisfying appropriate equations.The objects of a Frege structure are used both for encoding propositions and other mathematicalobjects. Given a �-structure we can encode the logical constants: a binary connective can be encodedas a binary function on F0, and a quanti�er can be encoded as a function from F1 to F0.A Frege structure is a �-structure with encodings of logical constants together with a set of objectscalled propositions and a subset of these called truths. These collections have to satisfy logical schemata,such as [4, page 37]:Implication: If a is a proposition and the object b is a proposition provided that a true,then a � b is a proposition, such that a � b is true i� a is true implies b is true.
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Universal quanti�cation: If f is a propositional function in F1, then 8xf(x) is a proposi-tion, such that 8xf(x) is true i� f(a) is true for all objects a.Note that a � b is a non-standard notion of implication, since b is required to be a proposition only whena is true.A �-structure with an encoding of the logical constants can be obtained by a standard constructionin the �-calculus [4]. To get a Frege structure we need to construct the collections of propositions andtruths. The basic idea is to view the logical schemata as inductively de�ning these collections. But adirect interpretation as a positive inductive de�nition is not possible, since the notion of truth appearsnegatively in the logical schema for implication. Instead, Aczel [4] showed that one can interpret thelogical schemata as an operator on pairs of sets of objects, which is monotone with respect to the following\conservative extension" ordering:hP ; T i � hP 0; T 0i i� P � P 0 and T = T 0 \ P :Intuitively, when constructing new propositions, the notion of truth on old propositions should remainthe same. Since this ordering is complete it follows by a standard argument that the operator has a least�xed point when working in classical set theory.However, Aczel also made the following remark [4, page 55] which has provided motivation for thepresent work:Nevertheless I believe this result to be constructively valid. A rigorous elaboration of thispoint would require an explicit discussion of the role of inductive de�nitions in constructivemathematics. It will have to su�ce here if I simply assert that the logical schemata formthe clauses of an inductive de�nition that generate the propositions and simultaneously giveconditions for their truth.The standard construction of a �-structure with set of objects F0 and an explicit equivalence relationon objects �0, together with an encoding of the logical constants can be carried out in type theory (seefor example Hedberg [24] for a formal development of constructive domain theory inside type theory).It remains to turn the logical schemata into a simultaneous inductive de�nition of the property P : (a :F0)set of propositionality and a recursive de�nition of the truth of a proposition T : (a : F0)(c : P(a))set .Note that these formation rules are obtained by instantiating the schema with P = P ; f = T , � thesingleton sequence F0, and  [a] = set . It is essential that T has a second argument, the proof that anobject is a proposition, since it is de�ned by recursion on that proof.We also show the introduction rules corresponding to the logical schemata for implication and uni-versal quanti�cation. We �rst extract from the �-structure a function ev : (F1)(F0)F0 which appliesa unary function to an object, and codes �: (F0)(F0)F0 and 8 : (F1)F0 for implication and universalquanti�cation. The rules are:�-intro : (a : F0)(p : P(a))(b : F0)(q : (T (a; p))P(b))(c : F0)(z : c�0(a � b))P(c);T (c;�-intro(a; p; b; q; c; z)) = �t : T (a; p):T (b; q(t));8-intro : (f : F1)(p : (x : F0)P(ev(f; x)))(c : F0)(z : c�08(f))P(c);T (c;8-intro(f; p; c; z)) = �x : F0:T (ev(f; x); p(x)):Note that these de�nitions ensure that �0 is preserved by P and T . This can be shown formally byusing the analogue of universe elimination.The main point is that the logical schemata directly can be interpreted as a basic kind of de�nition,speci�cally, as a simultaneous inductive-recursive de�nition which is an instance of our schema. We alsonote the similarity between this understanding and the intuitive reading of Aczel's construction as aconservative extension ordering: since T is a function, the truth of a proposition cannot change once itis de�ned.We therefore argue that we have shown a way to make Aczel's claim, that his result is constructivelyvalid, precise. Essential is our use of explicit proof-objects and the fundamental di�erence between aninductive and a recursive de�nition in type theory.12



6 Realisability modelTo prove the consistency we shall construct a realisability model. We �rst show how to interpret anarbitrary instance of the schema in 3.1-3.4. This interpretation also applies to de�nitions with parametersas speci�ed in 3.5 provided these parameters satis�es a particular positivity criterion, see section 6.4.4.We follow Aczel [2, 4] and interpret types as collections of objects of a Frege structure. But insteadof �rst building collections of propositions and truths as in Aczel's work, we shall directly construct thecollections of sets Set and elements El[A] (for each A 2 Set) in a manner similar to Allen [5]. Thesecollections will be inductively de�ned using Aczel's rule sets [1].Like Aczel, we use `object' to refer to an element of a �-structure and `collection' to refer to a subsetof the elements of a �-structure. Furthermore, since substitution in the �-calculus is interpreted asset-theoretic application in the �-structure, we will use the notation f [x] for set-theoretic application ingeneral.We begin by reviewing Aczel's rule sets in 6.1. Then we review the interpretation of the logicalframework in 6.2. The interpretation of sets is overviewed in 6.3. In 6.4 we then give the interpretationof the general schema for inductive-recursive de�nitions. Finally, we give an example theory in 6.5 andshow how to instantiate the schematic interpretation in 6.4 to give an interpretation of this exampletheory. It is probably better to study the example interpretation in 6.5 before reading the interpretationof the general schema in 6.4.6.1 Rule setsWe use Aczel's [1] set-theoretic notion of rule set for de�ning these collections. It is de�ned as follows.A rule on a base set V in Aczel's sense is a pair of sets hu; vi, often writtenuv ;such that u � V and v 2 V .Let � be a set of rules on V . A set w is �-closed ifuv 2 � ^ u � w � v 2 w:There is a least �-closed set I(�) =\fw � V jw �-closedg;the set inductively de�ned by �.Each rule set � on V generates a monotone operator�(X) = fv 2 V j9uv 2 �:u � Xgon Pow(V ), such that I(�) is the least �xed point of �.We use rule sets rather than monotone operators here, since they allow a more direct encoding oftype-theoretic inductive de�nitions expressed in terms of introduction rules.6.2 Interpretation of the logical frameworkWe �rst briey review the interpretation of the logical framework in a �-structure satisfying the �- andthe �-rule.The open terms of the logical framework are interpreted as follows. Abstraction and application areinterpreted in terms of the F-functionals �n and Appn in the �-structure. Variables are interpreted asprojections �in. For reasons of presentation we shall in the sequel use the same notation for a term andits interpretation in the �-structure: (x)b for [[(x)b]], c(a) for [[c(a)]] and x for [[x]].Using this notation we interpret the judgements of type theory relative to an environment � as follows:[[� type]]� is [[�]]� � F0;[[� = �]]� is [[�]]� = [[�]]�;[[a : �]]� is a� 2 [[�]]�;[[a = b : �]]� is a = b:13



F0 is the set of objects of the �-structure (as in the section on Frege structures) and a� is the result ofapplying the denotation a 2 Fn to the sequence of n objects given by �. If the judgement in question ismade under the assumptions (in the context)x1 : �1; : : : ; xn : �nthen � assigns objects to variables as follows:x1 = a1 2 [[�1]]�0 ; : : : ; xn = an 2 [[�n]]x1=a1;:::;xn�1=an�1 ;where �0 is the empty environment.The interpretation of a function type is[[(x : �)�]]� = fc 2 F0j8a 2 [[�]]�:c(a) 2 [[�]]�;x=ag:One can verify that all rules of the logical framework hold under this interpretation.6.3 Overview of the interpretation of inductive and recursive de�nitionsWe shall now show how to interpret sets and functions introduced by (possibly simultaneous) inductiveand recursive de�nitions.We call a speci�c sequence of de�nitions a theory. Recall from section 3 that the correctness of a givensimultaneous inductive-recursive de�nition is always given relative to the sequence of prior de�nitions.Also recall the following:� An inductive de�nition is given by a sequence of typings of constants for a set constructor and itselement constructors.� A recursive de�nition is given by a typing of a function constant together with its recursion equa-tions.� A simultaneous inductive-recursive de�nition is given by a sequence of typings of constants fora set constructor, a function constant, and the element constructors together with the recursionequations for the function constant.The interpretation of an arbitrary theory following the schema has two parts.1. Each constant of the theory is interpreted as an object of the �-structure in such a way that allrecursion equations (equality rules) are satis�ed. (Given an interpretation of the constants we canconstruct the interpretation of an arbitrary term and it is thus clear what it means that an equationis satis�ed in the model.)2. The base types set and El(A) are then interpreted as inductively de�ned collections Set and El[A].Set and El[A] are built up in stages. Assuming that the theory contains m inductive de�nitions(counting also the inductive parts of the inductive-recursive de�nitions), we construct a sequenceof interpretations ; = El0 � � � � � Elm = El � F0 �Pow(F0)Each Eli is de�ned inductively. It will be the case that each Eli is a functional relation, and wede�ne Seti as the domain of Eli. Thus we get a sequence; = Set0 � � � � � Setm = Set � F0Therefore each type � which is de�nable at stage i in the theory can be interpreted as a collection[[�]]i by interpreting each occurrence of Set as Seti and each occurrence of El(A) as Eli[[[A]]i].These two parts correspond to the following parts in Aczel [4].1. The formation of an independent family of F-functionals for the logical constants, and the use of�xed points to interpret recursion equations.2. The construction of the collections of propositions and truths.14



6.4 Interpretation of the general schema for simultaneous inductive-recursivede�nitions6.4.1 Interpretation of constantsWe assume that no de�nition has parameters. The interpretation of these are discussed in 6.4.4.First we form the list of set constructors with associated arities, and for each inductively de�ned setwe form its list of element constructors with associated arities. For each of these lists we interpret theconstructors as objects of the �-structure in such a way that there is another object case satisfying therecursion equations for case analysis. These have the formcase(d1; : : : ; dn; introi(a1; : : : ; ap)) = di(a1; : : : ; ap);where introi by abuse of notation is an object interpreting a constructor introi of arity p on the list inquestion. It follows that (the interpretation of) constructors are injective,introi(a1; : : : ; ap) = introi(a01; : : : ; a0p) � a1 = a01 ^ � � � ^ ap = a0p;and non-overlapping, i 6= i0 � introi(a1; : : : ; ap) 6= introi0 (a01; : : : ; a0p0):We call this interpretation an independent family of objects for a list of constructors.Independent families of objects can always be found, but the de�nability of case forces us to use\recursive" rather than \iterative" encodings, see the discussion by Parigot [37] and Altenkirch [6].Secondly, for each recursively de�ned function constant, we construct an element satisfying the re-cursion equations in question. This can be done in a standard way using �xed points and case analysis.This construction is also used by Aczel [4].6.4.2 Interpretation of base typesAssume that we have constructed ; = El0 � � � � � Eli and that the i+ 1-st de�nition is a simultaneousinductive de�nition of a family of sets P : (a :: �)set ;and recursive function f : (a :: �)(c : P (a)) [a]:A typical constructor is intro : � � � (b : �) � � � (u : (x :: �)P (p[x])) � � �P (q)and a typical recursion equation (equality rule) isf(q; intro(: : : ; b; : : : ; u; : : :)) = e(: : : ; b; : : : ; (x)f(p[x]; u(x)); : : :):(The case of a simple inductive de�nition or of a simple recursive de�nition are easily obtained asdegenerate versions.)Eli+1 is now de�ned by a rule set obtained by adding the rulesf ;hP (a);P [a]i ja 2 [[�]]igto the rule set for Eli. Here P is the interpretation of P as a family of collections indexed by a 2 [[�]]ide�ned by P [a] = fc 2 F0jaRP cg;where RP � [[�]]i �F0 is an auxiliary relation between indices and objects. This relation is inductivelyde�ned by a rule set which is the union of the rule sets corresponding to each of the constructors. Forexample, to intro we associate the rule setf � � � [ fhp[x]; u(x)ijx 2 [[�]]ig [ � � �hq; intro(: : : ; b; : : : ; u; : : :)i j : : : ; b 2 [[�]]i; : : : ;8x 2 [[�]]i:u(x) 2 F0; : : :gon [[�]]i�F0. This rule set is well-de�ned, since [[�]]i; : : : ; [[�]]i; : : : ; [[�]]i are all well-de�ned. (We have notspelled out their dependencies however.) 15



6.4.3 Veri�cation of the rulesThe main point is that El[A] = Eli[A] for A 2 Seti, and hence for any small type � in the previoustheory (with i inductively de�ned families of sets), we have [[�]] = [[�]]i.As before, the formation rule is interpreted asa 2 [[�]] � P (a) 2 Setwhich can be shown to hold by inspecting the rule set for El.The typical introduction rule is interpreted as� � � � b 2 [[�]]i � � � � � (8x 2 [[�]]i:(p[x])RP (u(x))) � � � � � qRP (intro(: : : ; b; : : : ; u; : : :));which follows directly by inspecting the rule set for RP .The typing rule for f is interpreted asa 2 [[�]] � aRP c � f(a; c) 2 [[ [a]]]This is proved by induction on RP using the recursion equations for f . For example, we need to provethat q 2 [[�]] � qRP (intro(: : : ; b; : : : ; u; : : :)) � f(q; intro(: : : ; b; : : : ; u; : : :)) 2 [[ [q]]]from the induction hypothesesp[x] 2 [[�]] � � � � � (8x 2 [[�]]i:p[x]RPu(x)) � � � � � f(p[x]; u(x)) 2 [[ [p[x]]]]But this follows directly by using the recursion equations for f .Finally, the interpretation of the constants in 6.4.1 was speci�cally constructed to ensure that theequality rules for f are satis�ed.6.4.4 The interpretation of parametersSo far we have discussed the interpretation of set formers without parameters. Recall from subsection3.5 that a set former can be parameterised with respect to an arbitrary sequence of types. It is easy toextend the interpretation to account for parameters as long as these parameters contain no occurrencesof set in the �-part of a (x : �)�. Because then we see that El can be given by a monotone inductivede�nition using rule sets.For an example of the interpretation of a set former with parameters, the reader is referred to theinterpretation of � in subsection 6.5.When the preliminary version of this paper was written I was not aware of any interesting exampleswith such negative occurrences. But recently I learned that there indeed are several examples of suchde�nitions of sets which are interesting as type-theoretic analogues of large cardinals. An example is theparameterised super-universe in 4.3.It is therefore an interesting open problem to construct a classical set-theoretic model of the entireschema for simultaneous induction-recursion. The belief that the entire schema is consistent relies atpresent on an informal semantic analysis of the rules which shows that only well-founded elements andterminating functions can be constructed under the schema.6.4.5 ConsistencyThe interpretation of ? is the empty set. Hence we have shown that any theory obtainable by successiveinstantiations of the schema (satisfying the restriction on parameters) is consistent relative to classicalset theory.One can also argue from an informal semantical analysis that there can be no element a : ?. Becausewhen a is evaluated it would terminate with a value of the form intro(a1; : : : ; an) where intro is aconstructor for ?. But ? has no constructor. This is called \simple-minded consistency" in Martin-L�of[29].
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6.5 Interpretation of an example theoryWe now show how to interpret an example theory. This theory is chosen to illustrate di�erent aspects ofthe general situation and consists of the following parts: (i) the inductive de�nition of the set N of naturalnumbers; (ii) the recursive de�nition of the addition function add; (iii) the inductive de�nition of thefamily N 0(n) of �nite sets indexed by the number n of elements of the set; (iv) the inductive de�nition ofthe cartesian product �(A;B) of a family of sets; and (v) the simultaneous inductive-recursive de�nitionof a universe reecting N , N 0, and �.The reader should check that the interpretation given here is indeed obtainable from the schematicinterpretation given in 6.4.6.5.1 The example theoryWe list the rules of the theory. Note that we write El(A) rather than just A (as before) for the typeof elements of the set A. This is because the interpretation of El is the crucial part of the realisabilitymodel. N : set ;0 : El(N);s : (u : El(N))El(N);add : (El(N))(El(N))El(N);add(m; 0) = m;add(m; s(u)) = s(add(m;u));N 0 : (El(N))set ;00 : (b : El(N))El(N 0(s(b)));s0 : (b : El(N))(u : El(N 0(b)))El(N 0(s(b)));� : (A : set)(B : (El(A))set)set ;� : (A : set)(B : (El(A))set)(b : (x : El(A))El(B(x)))El(�(A;B));U0 : set ;T0 : (El(U0))set ;n0 : El(U0);n00 : (b : El(N))El(U0);�0 : (u : El(U0))(u0 : (x : El(T0(u)))El(U0))El(U0);T0(n0) = N;T0(n00(b)) = N 0(b);T0(�0(u; u0)) = �(T0(u); (x)T0(u0(x))):6.5.2 Interpretation of the constantsThe list of set constructors with arities is N � 0; N 0 � 1;�� 2; U0 � 0, and we construct an independentfamily of objects interpreting them.The lists of element constructors with arities are� 0� 0; s� 1 for N .� 00 � 1; s0 � 2 for N 0.
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� �� 1 for �. (The �rst two arguments of � are parameters, which are dropped under the interpre-tation: [[�(A;B; b)]] = �n[[[b]]].)� n0 � 0; n00 � 1; �0 � 2 for U0,and for each of these we construct an independent family of objects interpreting them.The recursively de�ned functions are add and T0. By de�nition of independent family of objects thereare elements caseN and caseU0 , such thatcaseN(d1; d2; 0) = d1;caseN (d1; d2; s(u)) = d2(u);caseU0(d1; d2; d3; n0) = d1;caseU0(d1; d2; d3; n00(b)) = d2(b);caseU0(d1; d2; d3; �0(u; u0)) = d3(u; u0):Hence we can interpret add and T by solving the �xed point equationsadd(m;n) = caseN (m; (x)s(add(m;x)); n);T0(c) = caseU0(N; (b)N 0(b); (u; u0)�(T0(u); (x)T0(u0(x))); c):This completes the interpretation of the constants.6.5.3 Interpretation of the base typesWe construct a sequence of functional relations; = El0 � El1 � � � � � El4 = El � F0 �Pow(F0)since there are 4 inductively de�ned sets.Natural numbers. El1 is de�ned by the singleton rule setf ;hN;Nig;where N is the collection inductively de�ned by the rule setf;0g [ f fags(a) ja 2 F0gon F0.The family of �nite sets. El2 is obtained by adding the rulesf ;hN 0(n);N 0[n]i jn 2 Ngto the rule set for El1. Here N 0[n] = fi 2 F0jnRN 0 igwhere RN 0 � N �F0 is an auxiliary relation between indices and objects inductively de�ned by the ruleset f ;hs(n); 00(n)i jn 2 Ng [ f fhn; iighs(n); s0(n; i)i jn 2 N ^ i 2 F0gon N �F0.Cartesian product of a family of sets. El3 is obtained by addingffhA;Aig [ fhB(x);B[x]ijx 2 Agh�(A;B);Q[A;B]i jA;B 2 F0;A 2 Pow(F0);B 2 A ! Pow(F0)g
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to the rule set for El2. Here Q[A;B] � F0 for A � F0 and B[x] � F0 for x 2 A is the collectioninductively de�ned by the rule set f ;�(b) j8x 2 A:b(x) 2 B[x]gon F0.The �rst universe. El4 is inductively de�ned by the rule set obtained by addingf ;hU0;U0igto the rule set for El3. Here U0 is the collection inductively de�ned by the rule setf ;n0 g [ f ;n00(n) jn 2 Ng [ ffag [ fb(x)jx 2 El3[T0(a)]g�0(a; b) ja; b 2 F0gon F0. (Note that this de�nition refers to El3 and that it follows that T0(a) 2 Set3 for all a 2 U0.)6.5.4 Veri�cation of the rulesGeneral rules. First we verify the rule set type, that is,Set � F0which is immediate. Then both rules El(A) type if A : set and El(A) = El(A0) if A = A0 : set hold,since it is easy to prove that El is functional:El 2 Set! Pow(F0):This proof relies on the interpretation of set constructors as an independent family of objects.Natural numbers. N -formation is interpreted asN 2 Set;which can be shown by inspecting the rule set for El.Since El[N ] = N , the rules of N -introduction are interpreted as0 2 Nand a 2 N � s(a) 2 N :Both follow directly by inspecting the rule set de�ning N .Addition. The typing rule for add is interpreted asm 2 N � n 2 N � add(m;n) 2 N :This can be shown by induction on n 2 N using the recursion equations for add.The equality rules for add follow directly from the recursion equations. Moreover, we can check thatthe typings in the equality rules are satis�ed.The family of �nite sets. N 0-formation is interpreted asn 2 N � N 0(n) 2 Set;which can be shown by inspecting the rule set for El.Since i 2 El[N 0(n)] i� nRN 0 i, the rules of N 0-introduction are interpreted asn 2 N � (s(n))RN 0 (00(n))
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and n 2 N � nRN 0 i � (s(n))RN 0 (s0(n; i)):Both follow directly by inspecting the rule set de�ning RN 0 .Cartesian product of a family of sets. �-formation is interpreted asA 2 Set � (8x 2 El[A]:B(x) 2 Set) � �(A;B) 2 Set:which can be shown by inspecting the rule set for El.�-introduction is interpreted as(8x 2 A:b(x) 2 B[x]) � �(b) 2Y[A;B]which can be shown to hold by inspecting the rule set for Q[A;B].The �rst universe. U0-formation is interpreted asU0 2 Set;which can be shown by inspecting the rule set for El.Since El[U0] = U0, T0-typing is interpreted asa 2 U0 � T0(a) 2 Set:This is proved by proving the stronger property that a 2 U0 � T0(a) 2 Set3 by induction on U0. Forexample, we need to show that �0(a; b) 2 U0 � T0(�0(a; b)) 2 Set3 from a 2 U0 � T0(a) 2 Set3 andb(x) 2 U0 � T0(b(x)) 2 Set3 for all x 2 El3[T0(a)]. But this follows from the facts that T0(�0(a; b)) =�(T0(a); (x)T0(b(x))) and that Set3 is closed under �.The rules of U0-introduction are interpreted asn0 2 U0;n 2 N � N 0(n) 2 U0;a 2 U0 � (8x 2 El[T0(a)]:b(x) 2 U0) � �0(a; b) 2 U0:They follow directly by inspecting the rule set de�ning U0 using that El[T0(a)] = El3[T0(a)].The equality rules for T0 follow directly, since T0 2 F0 was constructed to satisfy the correspondinguntyped equalities. Moreover, we easily check that the typings in the equality rules are satis�ed.7 Concluding remarksThe formulation of simultaneous inductive-recursive de�nitions is obtained by a minor syntactic modi-�cation of the schema in Dybjer [20]. This adds evidence to the fundamental nature of the schematicnatural deduction formulation of inductive de�nitions in type theory.The idea to consider this generalisation was inspired by Nax Mendler's paper [32] on the category-theoretic semantics of universes in type theory. Our analysis improves fundamentally on Mendler's,since the category-theoretic machinery can be applied only if the rules for U0 and T0 already have beenrepresented as an endofunctor on a category of families of sets. This representation is not itself analysedand also loses the U0-recursive nature of T0. It is not clear how to use category-theoretic ideas forobtaining a formal system for simultaneous induction-recursion.The idea to enrich Frege structures with proof objects can also be found in Sato [40]. However, Satoworks in a type-free constructive theory and not in type theory. Working in the same framework as Sato,Kameyama [25] has developed an approach to half-positive inductive de�nitions. His aims are similar toours: to formulate a general notion which subsumes the construction of Frege structures and enables theinterpretation of Martin-L�of type theory. In his type-free context the distinction between inductively andrecursively de�ned sets (that our approach is based on) does not exist. Instead he considers simultaneousinductive de�nitions which give rise to operators which are monotone in the sense of an ordering whichgeneralises Aczel's ordering for Frege structures described above.20
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