A General Formulation
of Simultaneous Inductive-Recursive Definitions
in Type Theory

Peter Dybjer
Department of Computing Science
Chalmers University of Technology

S-412 96 Goteborg, Sweden
peterd@cs.chalmers.se

May 12, 1998

Abstract

The first example of a simultaneous inductive-recursive definition in intuitionistic type theory is
Martin-Lof’s universe a la Tarski. A set Up of codes for small sets is generated inductively at the
same time as a function Ty, which maps a code to the corresponding small set, is defined by recursion
on the way the elements of Uy are generated.

In this paper we argue that there is an underlying general notion of simultaneous inductive-
recursive definition which is implicit in Martin-Lo6f’s intuitionistic type theory. We extend previously
given schematic formulations of inductive definitions in type theory to encompass a general notion of
simultaneous induction-recursion. This enables us to give a unified treatment of several interesting
constructions including various universe constructions by Palmgren, Griffor, Rathjen, and Setzer and
a constructive version of Aczel’s Frege structures. Consistency of a restricted version of the extension
is shown by constructing a realisability model in the style of Allen.

1 Introduction

Martin-Lof type theory is a foundational framework in which induction is the principal notion. It is, to
quote Martin-Lof [27, p73], “intended to be a full scale system for formalising intuitionistic mathematics
as developed, for example, in the book by Bishop [10]”.

It is also a typed functional programming language not unlike ML [33] or Miranda [9]. A “set” in
the theory is defined inductively by listing its constructors with their types in much the same way as
one defines a recursive datatype in ML or Miranda. But whereas MLL and Miranda are based on the
simply typed A-calculus, Martin-Lo6f type theory also has dependent types. The other key difference is
that only well-founded elements of datatypes (sets) and terminating programs (total functions) may be
constructed. To ensure well-foundedness datatype definitions have to satisfy a kind of “strict positivity”
criterion. Moreover, to ensure termination recursive function definitions are restricted to “structural”
recursion, that is, recursion on the way the elements of the domain of definition are inductively generated.

For simple types we can use the following notion of strict positivity. Let

mtro oy — - > a, - P

(n > 0) be a constructor for the datatype P. Then «; either does not contain any occurrences of P or
has the form & — -+ — &, — P (m > 0), where ¢; does not have any occurrences of P. It is also clear
what the appropriate notion of structural recursion is for such a recursive datatype. Note that we allow
generalised inductive definitions since a constructor can have functional arguments (m > 0). Therefore,
the informal semantic notions of well-founded element and terminating function depend on each other.

The introduction of dependent types dramatically increases the expressiveness of the language. In
particular, we can interpret intuitionistic predicate logic by following Curry, Howard, and de Bruijn and
identify propositions and sets. In addition to the ordinary non-dependent set formers 0, 1, 4+, X, and —,
which can be used for interpreting the logical connectives 1, T, V, A, and D, we now also have ¥ and
IT, the disjoint union and Cartesian product of a family of sets, which can be used for interpreting the
quantifiers 3 and V.

However, the appropriate notion corresponding to “strict positivity” becomes more complex in the
context of dependent types. Instead of formulating such a general condition for inductive definitions of
sets Martin-Lof [31, 27, 28, 29] gave rules for a collection of specific set formers. However, this collection
may be extended when there is a need for it provided the informal semantic principles of the theory are
respected.

The possibility of formulating a general schema was however mentioned in Martin-Lo6f 1972 [31]:

The type N is just the prime example of a type introduced by an ordinary inductive definition.
However, it seems preferable to treat this special case rather than to give a necessarily much
more complicated general formulation which would include (¥ € 4)B(z), A+ B, N,, and N
as special cases. See Martin-Lo6f 1971 [26] for a general formulation of inductive definitions
in the language of ordinary first order predicate logic.

The first such general schema was formulated by Backhouse [7] and covered the case of inductively defined
sets (possibly depending on parameters). This schema was generalised to the case of inductively defined
families of sets by Dybjer [19, 20]. Inductively defined families subsume inductively defined predicates,
and this schema can be viewed as the type-theoretic generalisation of the natural deduction schema for
inductively defined predicates in predicate logic given by Martin-Lof [26].

In this paper we introduce a further generalization of the schema in Dybjer [20]. It covers simultaneous
inductive-recursive definitions including definitions of a variety of universes which were not accounted
for by the old schema. It also gives rise to other interesting notions including a constructive version of
Aczel’s Frege structures.

Universes in type theory are analogous to Grothendieck universes in set theory: they are sets of
“small” sets and can be used for example for the formalisation of constructive category theory. Another
interesting application of universes (here in conjunction with generalised inductive definitions) is Aczel’s
universe of iterative sets, in which a constructive version of Zermelo-Fraenkel set theory CZF can be
interpreted [3]. But in the standard formulations of type theory universes are needed also for the more
basic purpose of defining families of sets by structural recursion. For example, the predicate Z (as used

in the type-theoretic proof that 0 # s(n) [29, 43]) with the recursion equations

Z(0) = T,
Z(s(n)) = 1

is defined in terms of universes and the rule of N-elimination.

Martin-Lof [27] introduced an infinite tower of universes Uy : Uy : U : - - -. These were formulated “a
la Russell” [29], which means that there is no syntactic distinction between a small set considered as an
element of a universe A : U; and considered as a set A. In contrast, the formulation “a la Tarski” [29]
maintains such a distinction: a : U; is a code for the set T;(a). A universe & la Tarski should therefore
be understood as a pair (U;, T;) consisting of a set U; of codes and a decoding function T;.

Further universes were introduced by Palmgren [35]. Firstly, he defined a universe operator, that
is, an operator on families of sets which when applied to a universe (U;,T;) returns the next universe
(Uit1,Tiv1). In this way the external sequence of universes a la Tarski (U, To), (U1, T1), (U2, T3), . . . was
internalised. Secondly, Palmgren introduced a super-universe closed under the universe operator as well
as under all the usual set formers in type theory. Recently, even larger universes and universe operators
have been proposed by Rathjen, Griffor, and Palmgren [39], Palmgren [36], and Setzer [42].

Martin-Lof type theory with generalised inductive definitions and universes have great proof-theoretic
strength, see Griffor and Rathjen [23], Setzer [41], and Rathjen, Griffor, and Palmgren [39].

We conclude this introduction with a few words about the notation. We employ the “logical frame-
work” formulation of Martin-Lof type theory [30, 34]. The core of this theory is a typed ABn-calculus
with dependent types. There is a base type set, the type of sets, and for each object A : set, there is
the type El(A) (often written just A) of the elements of A. We write (z : «)f for the type of functions
which map an object a : a to an object f(a) : Bla/z]. If 8 does not depend on z : @ we may write ()83
(rather than o — () instead of (z : @)B. Abstraction is written ()b and application f(a), rather than
the usual notation Az.b and f a from A-calculus. We also write (z1,...,2,)b = (x1) - - (z,)b for multiple
abstraction, and f(a1,...,a,) = f(a1) - (ay) for multiple application.

In this type system (set)(set)set is for example the type of binary logical connectives; (A : set)(B :
(A)set)set is the type of quantifiers; and (N)set is the type of unary predicates on N and also the type
of N-indexed families of sets.

The formulation of the schema for simultaneous induction-recursion in section 3 will use two auxiliary
notions. Firstly, we will write (a :: &) as an abbreviation of (a1 : a1) - -+ (ay, : @) and call a a sequence
of types. (This abbreviation could be avoided by adding -types to the A-calculus with dependent types.)
Secondly, we will say that a type is small if it contains no occurrences of set. (Small types are called
s-types in [19].) Small types are almost like sets. But the logical framework formulation we use maintains
a distinction between the set II(A, B) and the small type (z : A)B(z). Since we want our schema to
cover the rules for I as well we need to refer to small types when formulating the requirements on the
rules.

Plan of the paper. In section 2 we introduce simultaneous induction-recursion by two examples: the
first universe & la Tarski and the fresh-lists (lists where all elements are distinct). In section 3 we give
the general schema for simultaneous inductive-recursive definitions in type theory. We also show how
to recover the first universe a la Tarski and the fresh-lists by instantiating the schema. In section 4 we
discuss further universe constructions which are instances of the schema. In section 5 we show how the
construction of Frege structures in type theory is yet another instance of the schema. In section 6 we
build a classical Frege structure model of a restricted version of the schema using monotone inductive
definitions. In section 7 we conclude.

2 Two examples of simultaneous induction-recursion

The prototypical example of simultaneous induction-recursion is Martin-L6f’s definition of the first uni-
verse & la Tarski [29]. It consists of the simultaneous inductive definition of the set Ug of codes for small
sets and the recursive definition of the decoding function Ty : (Up)set. Ug has one introduction rule (and
one equality rule) for each set former which is reflected in the universe. We here give two examples:

II-formation is reflected by the following rule of Up-introduction:

ot (u: Up)(u' 2 (z : To(u))Uo)Uo,
and we have the following equality rule:

To(mo(u, u')) = (T (u), (x)To (v (x)))-
Eq-formation is reflected by the following rule of Up-introduction:
eqo (u: Ug) (b,b' < To(u)) U,

and we have the following equality rule:

To(eqq(u,b,b")) = Eq(To(u),b,b').

This definition does not fit the schema for strictly positive inductive definitions in Dybjer [19], since
To appears (even negatively) in the introduction rules for Uy. In spite of this one can justify that it is
a predicative definition in Martin-Lof’s sense [27]. Allen [5] has suggested calling this kind of definition
half-positive.

For example, the rules for 7 stipulate the following way of constructing new elements of Uy. At
a certain stage we may have constructed an element u. Since T is defined by Ujp-recursion, we can
compute the set Ty(u). Hence we can construct a function u’ with domain Ty (u) and range (the presently
constructed elements of) Up. Hence we can construct an element mo(u, u'). Moreover, the computation
of Ty(mo(u,u')) will terminate since we already know that the computation of Ty(u) and of Ty(u'(z)) for
z : To(u) will terminate and that the Ty(u'(x))’s will only be called a finite number of times.

A more down-to-earth example (due to Catarina Coquand) is the following inductive definition of the
set of lists Dlist with distinct elements and the simultaneous definition of the freshness relation Fresh.

Let A be the set from which the elements of the list are drawn, and let a#b mean that a and b are
different elements of A, for some difference relation # : (A)(A)set. We have the following formation rules

Dlist : set,
Fresh : (Dlist)(A)set

and introduction rules

nil : Dlist,
cons : (b:A)(u: Dlist)(b' : Fresh(u,b))Dlist.

Fresh has the equality rules

Fresh(nil,a) = T,
Fresh(cons(b,u,b'),a) = b#aA Fresh(u,a).

Note that cons has an extra argument b', which is a proof that the new element b is fresh with respect
to w. Hence the introduction rules for Dlist refer to Fresh. But as for the case of the first universe we
shall argue that it is a good predicative definition.

For example, the rules for cons stipulate the following way of constructing new elements of Dlist. At
a certain stage we may have constructed w : Dlist. Since Fresh is defined by Dlist-recursion, we already
know what it means for an element b : A to be fresh with respect to u, that is, we know what a proof
b’ : Fresh(u,b) is. Hence it makes sense to construct an element cons(b,u,b'). Moreover, we can define
Fresh(cons(b,u,b')) in terms of the already constructed proposition Fresh(u).

There are of course a number of alternative ways to define Dlist and Fresh using ordinary inductive
definitions, but the inductive-recursive one seems natural and may be preferred for some purposes.

In both examples we simultaneously build a function and its domain of definition. This intuition can
be captured using a classical notion of monotone inductive definition and thus yield a consistency proof.
This is the idea behind the realisability model in section 5.

A set former in Martin-Lof type theory is specified by its formation and introduction rules. Moreover,
in the standard formulation [28, 29] it has an elimination rule which expresses a general principle of
definition of a function by structural recursion. A particular function defined by structural recursion (for
example the addition function on natural numbers) is then obtained by instantiating the elimination rule
in question. Its recursion equations are then derived by instantiating the equality rules. But it is also
possible to formulate definition by structural recursion by an external schema (so that for example the
addition function is obtained as an instance) as in Martin-Lof [27], Coquand [14], and Dybjer [19].

When considering simultaneous inductive-recursive definitions it is essential to adopt the latter ap-
proach (using an external schema). The reason is that the elimination rule expresses only definition by
structural recursion on a previously (and not simultaneously) defined set. For example, the definition
of Ty is an instance of a recursive schema. It cannot be formulated in terms of Uy-elimination, because
already the formulation of Uy-elimination refers to Tj.

Moreover, we want the schema for simultaneous induction-recursion to specialise to universe construc-
tions. It is therefore essential that we do not require that the value of a function defined by recursion
necessarily is an element of a set (as in the traditional elimination rules). Instead the value can be an
object of an arbitrary type (as in the “large” elimination rules [44, 45]. For example, the value may be
a set (an object of the type set), so we have recursively defined families of sets.

Note that we have reversed the priority of the following concepts as compared to the standard
formulations of Martin-Lof type theory [28, 29, 34]:

e Elimination and equality rules are special instances of the recursive schemata, whereas in the
standard formulation the recursive schemata are derived from the elimination and equality rules.

e Universes are special kinds of simultaneous inductive-recursive definitions employing set-valued
recursion, whereas in the standard formulation set-valued recursion is obtained from the elimination
and equality rules in conjunction with universes.

3 Formalising the notion of a simultaneous inductive-recursive
definition

We use the schematic style of Martin-Lof’s intuitionistic theory of iterated inductive definitions in pred-
icate logic [26] for presenting the theory of simultaneous inductive-recursive definitions in type theory.
As already mentioned the present schema is a generalisation of the schema in Dybjer [19, 20]. The main
difference is that the extended schema for an introduction rule may refer to a function defined simulta-
neously by recursion. To highlight the similarity between the extended schema and the old schema we
use the same notation here as in Dybjer [20].

The present description could form the basis for an implementation in the same way as the old schema
[20] is the basis of Giménez’ [22] implementation of inductive definitions in a proof editor for Martin-Lof
type theory, and as Coquand and Paulin’s formulation of inductive types in the calculus of constructions
[16, 38] is the basis for the Cog-system [18].

To illustrate the schema, we show how the rules for the first universe and the fresh-lists can be derived
by instantiation. Later sections contain further examples. It might be helpful to study these examples
before studying the general formulation given in this section.

I present the case with one inductive and one recursive definition. Clearly, the schema can be gen-
eralised to the case with several simultaneous inductive and several (possibly zero) recursive definitions,
but we will not spell out the details.

To begin with (in 3.1-3.4) we assume that there are no parameters. In 3.5 it is shown how to extend
the schema to simultaneous inductive-recursive definitions with parameters.

A definition is always relative to a theory containing the rules for previously defined concepts. Thus
the requirements on the different parts of the definitions («a,), 3,&, p, ¢ below) are always judgements
with respect to that theory.

3.1 Formation rules

Schema. Let a be a sequence of small types. A simultaneous inductive-recursive definition of an a-

indexed family of sets P and an a-indexed family of functions f defined by P-recursion has formation
rules of the form

Here we also require that 1[a] is a type under the assumptions a :: a.

Examples. The formation rules for the first universe

Up : set,
To : (c:Up)set

are obtained by letting P be Uy, f be T, a be the empty sequence, and ¥[c] be set.
The formation rules for fresh-lists

Dlist : set,
Fresh : (c: Dlist)(a: A)set

are obtained by letting P be Dlist, f be Fresh, a be empty and ¢[c] be (a : A)set (the type of predicates
on A).

For an example where a is a non-empty sequence, see section 5 on Frege structures, where the
properties of internal propositionality and internal truth are defined.

3.2 Introduction rules
Schema. A premise of an introduction rule is either non-recursive or recursive.

e A non-recursive premise has the form
b: 0,

where (3 is a small type depending on the previous premises of the rule (see below).

e A recursive premise has the form

u: (x &) P(plx]),

where £ is a sequence of small types, and p[z] :: a assuming z :: £ and the previous premises of
the rule (see below). If £ is empty the premise is called ordinary and otherwise generalised (as in
ordinary and generalised induction).

The type of the conclusion of the introduction rule has the form

P(q),

where ¢ :: @ depending on the premises of the rule (see below).

We shall now spell out the typing criteria for 8 in the schema above. (The criteria for £, p, and ¢ are
analogous.) These criteria may seem complex at a first glance, but are nothing but what results from
spelling out the obvious possible dependencies that can occur.

We write 8 = p[...,b,...,u',...], etc., to explicitly indicate the dependence on typical previous
non-recursive b’ : 8’ and recursive v’ : (z' :: £')P(p'[2']) premises. (Non-recursive and recursive premises
may appear in any order). The dependence on a previous recursive premise can occur only through an
application of the simultaneously defined function f. Formally, this means that we require that

Bl... b, o,] =816 (@) F], (1), .,

where B[b v 0] is a small type in the context (...,b0 : 8/, ... 0" : (' = €)Y[p'[«']],...). Note
that this context is obtained from the context of 8 by replacing each recursive premise of the form

u' (zh 2 E)P(p'[']) by vz (2" 2 E)Ylp'[2'])-

In the sequel we will write

intro:---(b:B8)--(u: (z:: §)P(plz]))--- Plq)

for the general form of an introduction rule. It indicates that a typical constructor intro may have
non-recursive premises (arguments) b : § and recursive premises u : (x :: £)P(p[z]). There may be zero
or more premises of either kind and they may appear in arbitrary order.

If we remove the possibility that 3, &, p, and ¢ depend on previous recursive premises, then we essen-
tially recover the schema in Dybjer [20], because then f cannot appear in the introduction rules for P.
Moreover, since a non-recursive premise then cannot depend on a recursive one, we can without loss of
generality assume that all non-recursive premises precede the recursive premises.

Examples. The introduction rule for Uy which reflects TI-formation
mo : (u: Uo)(u' : (x: To(u))Ug)Us

is obtained in the following way. The first premise u : Uy is recursive and ordinary, that is, £ in the

schema is empty. The second premise u' : (x : To(u)) is recursive and generalised and depends on the first

recursive premise. It is obtained from the schema by letting £[u] = £[Tp(u)] = Ty(u), that is, [v] = v.
The introduction rule reflecting Eg-formation is

eqo : (u:Ug) (b, b : To(u))Up.

The first premise u : Uy is recursive and ordinary. The second and and third premises b, b’ : To(u) are non-

recursive and depend on the first recursive premise. They are obtained by letting S[u] = B[To(u)] = To(u),
that is, B[v] = v.
The second introduction rule for Dlist is

cons : (b:A)(u: Dlist)(b' : Fresh(u,b))Dlist.

It has a first non-recursive premise with 3 = A. The second premise is recursive and ordinary (¢ is
empty). The third premise is non-recursive with B[b, u] = S[b, Fresh(u)] = Fresh(u,b) so 8[b,v] = v(b).

3.3 Equality rules for the simultaneously defined function

Schema. Let intro be a constructor and let as above b : f and u : (z :: £)P(p[z]) be typical non-recursive
and recursive premises respectively of the corresponding introduction rule. The form of the equality rule
for f and intro is:

flg,intro(...,b,...,u,...)) =e(...,b,...,(z) f(p|z],u(z)),...) : ¥[q]

in the context
where

in the context

Examples. The equality rules for T

To(mo(u,u')) (To (u), (2)To (u'(x))),
To(eqy(u,b,8")) = Eq(To(u),b,b")

are obtained by letting e(v,v’) = II(v,v") and e(v,b,b") = Eq(v,b,b") respectively.
The equality rules for Fresh

Fresh(nil) = (a)T,
Fresh(cons(b,u,b')) = (a)(b#a A Fresh(u,a))

are obtained by letting e = (a)T and e(b,v,b’) = (a)(b#a A v(a)) respectively.

3.4 A generalisation of universe elimination

Schema. Universe elimination (as described in Nordstrém, Petersson, and Smith [34]) expresses defini-
tion by Up-recursion after Uy and T are defined. Here we express the corresponding notion schematically.
We also show that ordinary universe elimination is a special case of this schema.

In general, after the simultaneous inductive-recursive definition of P and f has been completed, we
may define a new function

F'i(as a)(e: Pla)y'fa,d,

by P-recursion. Here we require that ¢[a, c] is a type in the context (a :: a, ¢ : P(a)).
The equality rule has the form

fllag,intro(... b, .. ou,..)) =€ (L..,b, ... u, (2) f (p[z], u(x)),...)

in the context

where
e...b...,uyv,...) g, intro(..)b, .. u,)]

in the context
(.o,b: By uc (T P(plz]),v: (x: OY'[plx], u(z)],...)

Note that the criteria are identical for a simultaneously defined function f and a function f’ defined
afterwards, except that the target type ¢’ of f' (in contrast to ¢ of f) may depend on ¢ as well as on a,
and that the RHS of a recursion equation e’ for f' (in contrast the RHS of a recursion equation e for f)
may depend on u as well as on v. This is simply because these new dependencies can occur only after P
has been defined.

Examples. Ordinary Up-elimination

Ugrec : (C: (Uy)set)
(e:(u:Up)(v: Clu)(u': (z: To(u)Uo)(v" : (z : To(u))C(u'(2)))C(mo (u,u')))
(€ :(u:Ug)(v:C(u))(b,b" : T(u))C(eqo(u,b,b")))

(c:Up)C(c)

with
Ugrec(C,e e’ ,mo(u,u')) = e(u,Uprec(C,e, e u),u', (2)Uprec(C, e, e, u'(z))),
Uorec(C,e, €', eqo(u,b,b')) = e'(u,Uprec(C,e,e',u),b,b'),
is obtained from the general schema by letting C, e, €', . .. be parameters (see section 3.5) and ¢'[¢] = C(c).

Another example is the function
length : (¢ : Dlist)N

which computes the length of a Dlist by Dlist-recursion. The typing rule of length is obtained by letting
¥'[¢] = N in the general schema. It has the equality rules

length(nil) = 0,
length(cons(b,u,b")) = s(length(u)).

These are obtained by letting ¢’ = 0 and e'(b, u,v,b’) = s(v) respectively in the general schema.

3.5 Parameters

The simultaneous inductive-recursive definition of Dlist and Fresh depends on the parameters A : set
and # : (A)(A)set. If we make these dependencies explicit in the formation rules for Dlist and Fresh
they become

Dlist : (A: set)(# : (A)(A)set)set,
Fresh : (A:set)(# : (A)(A)set)(c: Dlist(A,#))(a : A)set.

We also need to modify the introduction rules accordingly:

nil : (A: set)(# : (A)(A)set)Dlist(A, #),
cons : (A:set)(# : (A)(A)set)(b: A)(u: Dlist(A,#))(b' : Fresh(A, #,u,b))Dlist(A,).

We can extend the schema to account for parameters in general. The rule is simple: there can be
zero or more parameters and they can have arbitrary types. The modified schema for formation rules is
therefore

P : (A:o)(a:: alA])set,
f o+ (Azo)a:alA])(c: P(A a))YlA, .

where ¢ is an arbitrary sequence of types, where a[A] is a sequence of small types under the assumptions
Ao and ¥[A,a] is a type under the assumptions A4 :: 0,a :: @. The modified schema for an introduction
rule is

intro: (Azo)---(b:B[A]) -+ (u: (z:: ([A])P(A,p[A,z]))--- P(A,q)

where o is the same as for the formation rules, and where the requirements on 3, £, p, and ¢ depend on
Ao as well.

A recursive definition of a function f' (defined by recursion on P after the simultaneous inductive-
recursive definition of P and f) may also depend on parameters. This was used above when showing
that ordinary universe elimination is an instance of the schema in section 2.4. Again, there may be zero
or more parameters, and these parameters may have arbitrary types. Note however that the parameters
of f' need not coincide with the parameters for the inductive-recursive definition of P and f.

4 Universe hierarchies and super-universes

In this section we review the universe hierarchies and super-universes of Palmgren [35]. Palmgren pre-
sented these constructions in a one-off fashion with informal motivations for the rules. Here we use our
notion of a simultaneous inductive-recursive definition to give a unified formal treatment of all these
constructions: as for the rules for Uy we can recover them by instantiating the appropriate part of the
general schema above.

4.1 External universe hierarchies

The second universe has formation rules

U, : set,
Ty : (Up)set,

and analogous rules for the constructors m; and eq; to those for my and eg,. There is also an introduction
and equality rule reflecting Up-formation:

upr U,
Tl(U(]l) = U(].

We also wish to reflect Ty as a function into the second universe:

to1 = (Uo)Ux,

and therefore we let g1 be a constructor for U;. (Palmgren also mentions the possibility of defining %o
by recursion on Uy.) The equality rule for T} is:

T (to1(b)) = To(b).
We can continue in an analogous way and define Us and T5, Uz and T3, etc. and thus get an external

universe hierarchy.

4.2 An internal universe hierarchy and a super-universe

The construction of U,41 and T,41 from U, and T, can be internalised. We give a simultaneous
inductive-recursive definition of the set formers

Neztu : (U : set)(T : (U)set)set,
Neztt . (U : set)(T : (U)set)(Nextu(U,T))set,

and let U,41 = Nextu(U,,T,) and Tp,41 = Nextt(Uy,,Ty).
U and T are parameters of this definition. For simplicity, we suppress these parameters in the rules
for Nextu and Nextt and write

Nextu : set,
Neztt : (Nextu)set.

Introduction and equality rules correspond to those of the first universe, but we also need to reflect
the code set U and the decoding function T

* 1 Nextu,

Neztt(x) = U,

t: (b:U)Nextu,

Neztt(t(b)) = T'(b).

A super-universe is obtained by also reflecting the next-universe construction inside a set U.
The formation rules are

U : set,
T : (Ux)set.

Introduction and equality rules correspond to those for the first universe, but we also need to reflect the
first universe Uy and the next-universe construction Neztu

ug : U,

Too(ug) = Up,
nextu : (u: Us)(t' i (Too (1)) Uso)Uno,
Too(nextu(u,u')) = Nextu(Too (u), (z)Too (u'(x)))-

It is straightforward to check that also these rules follow the general schema.

10

4.3 A parameterised super-universe

The construction of the super-universe Uy, can be generalised. Instead of starting with the next-universe
operator, we can start with an arbitrary operator given by a pair

F : (U:set)(T: (U)set)set,
G : (U:set)(T:(U)set)(F(U,T))set,

which maps a family of sets (U,T) into another family of sets (F(U,T), (#)G(U,T,x)). Then we can
construct a super-universe (Up,Tp) closed under this operator by a simultaneous inductive-recursive
definition. The definition of (Up,Tp) is analogous to the definiton of (U, Tw); the only difference is
that we replace Nextu by the parameter F. If we make the dependence on the parameters F' and G
explicit in the types of Up and Tp we get

Up : (F:(U:set)(T: (U)set)set)
(G : (U :set)(T : (U)set)(F(U,T))set)

Tp

I learned about this generalization and its connection to Mahlo cardinals in set theory from Anton
Setzer. For a complete account and more discussion, see Setzer [42]. (The reader should note that there
are some differences between Setzer’s formalisation and the one suggested here.)

Several more examples of simultaneous inductive-recursive definitions of large universes and universe
operators can be found in the recent papers by Palmgren [36] and Rathjen, Griffor, and Palmgren [39].

5 Frege structures

The notion of a Frege structure was introduced by Peter Aczel [4]. One purpose was to provide an
appropriate setting for A-calculus (or abstract realisability) interpretations of Martin-Lof type theory.
Another was to provide a model for a foundational framework where the notions of “proposition” and
“truth” are primitive.

We shall here show how to construct a Frege structure in Martin-Lof type theory by using a simulta-
neous inductive-recursive definition. Thus we show a way to reduce this foundational framework to the
foundational framework of type theory. This type-theoretic construction can be contrasted to Aczel’s
construction of Frege structures in classical set theory.

The notion of a Frege structure is an enrichment of the notion of a A-structure. This is essentially
the same as a A-model in Barendregt [8] but is expressed in terms of an ezplicitly closed family F. Here
Fo is the set of objects of the Frege structure and F,, is a set of n-ary functions on Fq, which is used for
interpreting expressions with at most n free variables. A Frege structure comes with projection functions
71'}"1 : Fpn and F-functionals A, : Fpy1 — Fp, and App, : F,, x F,, — F, satisfying appropriate equations.

The objects of a Frege structure are used both for encoding propositions and other mathematical
objects. Given a A-structure we can encode the logical constants: a binary connective can be encoded
as a binary function on Fy, and a quantifier can be encoded as a function from F; to Fy.

A Frege structure is a A-structure with encodings of logical constants together with a set of objects
called propositions and a subset, of these called truths. These collections have to satisty logical schemata,
such as [4, page 37]:

Implication: If a is a proposition and the object b is a proposition provided that a true,
then a D b is a proposition, such that a D b is true iff a is true implies b is true.

11

Universal quantification: If f is a propositional function in F;, then Vz f(z) is a proposi-
tion, such that Va f(x) is true iff f(a) is true for all objects a.

Note that a D b is a non-standard notion of implication, since b is required to be a proposition only when
a is true.

A A-structure with an encoding of the logical constants can be obtained by a standard construction
in the A-calculus [4]. To get a Frege structure we need to construct the collections of propositions and
truths. The basic idea is to view the logical schemata as inductively defining these collections. But a
direct interpretation as a positive inductive definition is not possible, since the notion of truth appears
negatively in the logical schema for implication. Instead, Aczel [4] showed that one can interpret the
logical schemata as an operator on pairs of sets of objects, which is monotone with respect to the following
“conservative extension” ordering:

(P, TSP, TYif PCP and T=T'NP.

Intuitively, when constructing new propositions, the notion of truth on old propositions should remain
the same. Since this ordering is complete it follows by a standard argument that the operator has a least
fixed point when working in classical set theory.

However, Aczel also made the following remark [4, page 55] which has provided motivation for the
present work:

Nevertheless I believe this result to be constructively valid. A rigorous elaboration of this
point would require an explicit discussion of the role of inductive definitions in constructive
mathematics. It will have to suffice here if I simply assert that the logical schemata form
the clauses of an inductive definition that generate the propositions and simultaneously give
conditions for their truth.

The standard construction of a A-structure with set of objects Fy and an explicit equivalence relation
on objects ~jq, together with an encoding of the logical constants can be carried out in type theory (see
for example Hedberg [24] for a formal development of constructive domain theory inside type theory).

It remains to turn the logical schemata into a simultaneous inductive definition of the property P : (a :
Fo)set of propositionality and a recursive definition of the truth of a proposition T : (a : Fo)(c : P(a))set.
Note that these formation rules are obtained by instantiating the schema with P = P, f = T, «a the
singleton sequence Fy, and ¢[a] = set. It is essential that 7 has a second argument, the proof that an
object is a proposition, since it is defined by recursion on that proof.

We also show the introduction rules corresponding to the logical schemata for implication and uni-
versal quantification. We first extract from the A-structure a function ev : (F1)(Fo)Fo which applies
a unary function to an object, and codes D: (Fo)(Fo)Fo and V : (F1)Fo for implication and universal
quantification. The rules are:

D-intro: (a: Fo)(p: P(a))(b: Fo)(qg: (T (a,p))P(b))(c: Fo)(z: c~p(a D b))P(c),

T (¢, D-intro(a,p,b,q,c,z)) =11t : T (a,p).T (b, q(t)),

Y-intro: (f : F1)(p: (x : Fo)Plev(f,x)))(c: Fo)(z : e~oVY(f))P(c),

T (e,V-intro(f,p,c,2)) = Nz : Fo. T (ev(f,x), p(x)).

Note that these definitions ensure that ~q is preserved by P and 7. This can be shown formally by
using the analogue of universe elimination.

The main point is that the logical schemata directly can be interpreted as a basic kind of definition,
specifically, as a simultaneous inductive-recursive definition which is an instance of our schema. We also
note the similarity between this understanding and the intuitive reading of Aczel’s construction as a
conservative extension ordering: since 7T is a function, the truth of a proposition cannot change once it
is defined.

We therefore argue that we have shown a way to make Aczel’s claim, that his result is constructively
valid, precise. Essential is our use of explicit proof-objects and the fundamental difference between an
inductive and a recursive definition in type theory.

12

6 Realisability model

To prove the consistency we shall construct a realisability model. We first show how to interpret an
arbitrary instance of the schema in 3.1-3.4. This interpretation also applies to definitions with parameters
as specified in 3.5 provided these parameters satisfies a particular positivity criterion, see section 6.4.4.

We follow Aczel [2, 4] and interpret types as collections of objects of a Frege structure. But instead
of first building collections of propositions and truths as in Aczel’s work, we shall directly construct the
collections of sets Set and elements £I[A] (for each A € Set) in a manner similar to Allen [5]. These
collections will be inductively defined using Aczel’s rule sets [1].

Like Aczel, we use ‘object’ to refer to an element of a A-structure and ‘collection’ to refer to a subset
of the elements of a A-structure. Furthermore, since substitution in the A-calculus is interpreted as
set-theoretic application in the A-structure, we will use the notation f[z] for set-theoretic application in
general.

We begin by reviewing Aczel’s rule sets in 6.1. Then we review the interpretation of the logical
framework in 6.2. The interpretation of sets is overviewed in 6.3. In 6.4 we then give the interpretation
of the general schema for inductive-recursive definitions. Finally, we give an example theory in 6.5 and
show how to instantiate the schematic interpretation in 6.4 to give an interpretation of this example
theory. It is probably better to study the example interpretation in 6.5 before reading the interpretation
of the general schema in 6.4.

6.1 Rule sets

We use Aczel’s [1] set-theoretic notion of rule set for defining these collections. It is defined as follows.
A rule on a base set V' in Aczel’s sense is a pair of sets (u,v), often written
U
v’
such that u CV and v € V.
Let @ be a set of rules on V. A set w is ®-closed if

U
—€dAuCwdDvEw.
v

There is a least ®-closed set
Z(®) = ﬂ{w C Vi|w ®-closed},

the set inductively defined by ®.
Each rule set ® on V generates a monotone operator

p(X)={ve V|3% €duC X}

on Pow(V), such that Z(®) is the least fixed point of ¢.
We use rule sets rather than monotone operators here, since they allow a more direct encoding of
type-theoretic inductive definitions expressed in terms of introduction rules.

6.2 Interpretation of the logical framework

We first briefly review the interpretation of the logical framework in a A-structure satisfying the - and
the n-rule.

The open terms of the logical framework are interpreted as follows. Abstraction and application are
interpreted in terms of the F-functionals A, and App, in the A-structure. Variables are interpreted as
projections 7. For reasons of presentation we shall in the sequel use the same notation for a term and
its interpretation in the A-structure: (z)b for [(x)b], c(a) for [¢(a)] and z for [z].

Using this notation we interpret the judgements of type theory relative to an environment p as follows:

[type], is [a], € Fo,
[a = ﬂ]]p is [[O‘]]p = [[ﬁ]]p:
[a:a], is ap, € [a],,
[a=b:a], is a=b.

13

Fo is the set of objects of the A-structure (as in the section on Frege structures) and a, is the result of
applying the denotation a € F,, to the sequence of n objects given by p. If the judgement in question is
made under the assumptions (in the context)

L1 :Q1y...,Tp I Ay
then p assigns objects to variables as follows:

T =a; € IIal]]pgz s, Ty = ap € IIan]]m:m,...7z,,,,1:a,,,,];

where pg is the empty environment.
The interpretation of a function type is

(@ :)8, = {c € FolVa € [l -c(a) € [Blpura}-

One can verify that all rules of the logical framework hold under this interpretation.

6.3 Overview of the interpretation of inductive and recursive definitions

We shall now show how to interpret sets and functions introduced by (possibly simultaneous) inductive
and recursive definitions.

We call a specific sequence of definitions a theory. Recall from section 3 that the correctness of a given
simultaneous inductive-recursive definition is always given relative to the sequence of prior definitions.
Also recall the following:

e An inductive definition is given by a sequence of typings of constants for a set constructor and its
element constructors.

e A recursive definition is given by a typing of a function constant together with its recursion equa-
tions.

e A simultaneous inductive-recursive definition is given by a sequence of typings of constants for
a set constructor, a function constant, and the element constructors together with the recursion
equations for the function constant.

The interpretation of an arbitrary theory following the schema has two parts.

1. Each constant of the theory is interpreted as an object of the A-structure in such a way that all
recursion equations (equality rules) are satisfied. (Given an interpretation of the constants we can
construct the interpretation of an arbitrary term and it is thus clear what it means that an equation
is satisfied in the model.)

2. The base types set and El(A) are then interpreted as inductively defined collections Set and £1[A].

Set and E£I[A] are built up in stages. Assuming that the theory contains m inductive definitions
(counting also the inductive parts of the inductive-recursive definitions), we construct a sequence
of interpretations

0=CElp C-- CE&ly =&l C Fy x Pow(Fo)

Each £I1; is defined inductively. It will be the case that each £I; is a functional relation, and we
define Set; as the domain of £1;. Thus we get a sequence

= Sety C --- C Sety, = Set C Fq

Therefore each type a which is definable at stage i in the theory can be interpreted as a collection
[a]: by interpreting each occurrence of Set as Set; and each occurrence of El(A) as E1;[[A]4].

These two parts correspond to the following parts in Aczel [4].

1. The formation of an independent family of F-functionals for the logical constants, and the use of
fixed points to interpret recursion equations.

2. The construction of the collections of propositions and truths.

14

6.4 Interpretation of the general schema for simultaneous inductive-recursive
definitions

6.4.1 Interpretation of constants

We assume that no definition has parameters. The interpretation of these are discussed in 6.4.4.

First we form the list of set constructors with associated arities, and for each inductively defined set
we form its list of element constructors with associated arities. For each of these lists we interpret the
constructors as objects of the A-structure in such a way that there is another object case satisfying the
recursion equations for case analysis. These have the form

case(dy,. .., dp,introj(ar,...,ap)) = di(ar,. .., ap),

where intro; by abuse of notation is an object interpreting a constructor intro; of arity p on the list in
question. It follows that (the interpretation of) constructors are injective,

!

y — 9 - / / f— ! . o
introi(ay,...,ap) =introj(ay,...,a,) Day =ay A---Nay, = a,

3

and non-overlapping,
i #14' D introj(ay,. .., a,) # introy(ay, ... a,).

We call this interpretation an independent family of objects for a list of constructors.

Independent families of objects can always be found, but the definability of case forces us to use
“recursive” rather than “iterative” encodings, see the discussion by Parigot [37] and Altenkirch [6].

Secondly, for each recursively defined function constant, we construct an element satisfying the re-
cursion equations in question. This can be done in a standard way using fixed points and case analysis.
This construction is also used by Aczel [4].

6.4.2 Interpretation of base types

Assume that we have constructed §) = £lg C --- C £I; and that the ¢ + 1-st definition is a simultaneous
inductive definition of a family of sets
P:(a: a)set,
and recursive function
f:(a:=a)(c: Pla))yal.
A typical constructor is
intro:---(b:B)---(u: (z:: §)P(plz])) - P(q)

and a typical recursion equation (equality rule) is

flg,intro(... b, ... u,...)) =e(...,b,..., (z)f(p[z],u(x)),...).

(The case of a simple inductive definition or of a simple recursive definition are easily obtained as
degenerate versions.)
Eliy1 is now defined by a rule set obtained by adding the rules
—
(P(a),Pla))
to the rule set for £1;. Here P is the interpretation of P as a family of collections indexed by a € [a];
defined by

|a € [ali}

P[(l] = {C S .7:(]|(1Rp{3},

where Rp C [a]; x Fo is an auxiliary relation between indices and objects. This relation is inductively
defined by a rule set which is the union of the rule sets corresponding to each of the constructors. For
example, to intro we associate the rule set

(Y {(plz], u(z))|z € [€]:i} U ---

(g,intro(...,b,...,u,...))
on [a]; x Fo. This rule set is well-defined, since [a];, ..., [8]i, ..., [€]: are all well-defined. (We have not
spelled out their dependencies however.)

|....b e [Bli,...,Vz € [¢iu(z) € Fo,...}

15

6.4.3 Verification of the rules

The main point is that EI[A] = £I;[A] for A € Set;, and hence for any small type « in the previous
theory (with i inductively defined families of sets), we have [a] = [a];.
As before, the formation rule is interpreted as

a € [a] D P(a) € Set

which can be shown to hold by inspecting the rule set for £1.
The typical introduction rule is interpreted as

-Dbe[f]li DD (Vx e [€]i-(pz])Rp(u(z))) D--- D gRp(intro(...,b,...,u,...),

which follows directly by inspecting the rule set for Rp.
The typing rule for f is interpreted as

a € [a] D aRpe D f(a,c) € [¢a]]

This is proved by induction on Rp using the recursion equations for f. For example, we need to prove
that

q € [o] D gRp(intro(...,b,...,u,...)) D f(g,intro(...,b,...,u,...)) € [¥[q]]

from the induction hypotheses

pla] € [a] > - 5 (Va € [€ls-plalRpue)) S - > f(ple], ul)) € [¥[plall]

But this follows directly by using the recursion equations for f.
Finally, the interpretation of the constants in 6.4.1 was specifically constructed to ensure that the
equality rules for f are satisfied.

6.4.4 The interpretation of parameters

So far we have discussed the interpretation of set formers without parameters. Recall from subsection
3.5 that a set former can be parameterised with respect to an arbitrary sequence of types. It is easy to
extend the interpretation to account for parameters as long as these parameters contain no occurrences
of set in the a-part of a (z : @)8. Because then we see that £I can be given by a monotone inductive
definition using rule sets.

For an example of the interpretation of a set former with parameters, the reader is referred to the
interpretation of II in subsection 6.5.

When the preliminary version of this paper was written I was not aware of any interesting examples
with such negative occurrences. But recently I learned that there indeed are several examples of such
definitions of sets which are interesting as type-theoretic analogues of large cardinals. An example is the
parameterised super-universe in 4.3.

It is therefore an interesting open problem to construct a classical set-theoretic model of the entire
schema for simultaneous induction-recursion. The belief that the entire schema is consistent relies at
present on an informal semantic analysis of the rules which shows that only well-founded elements and
terminating functions can be constructed under the schema.

6.4.5 Consistency

The interpretation of L is the empty set. Hence we have shown that any theory obtainable by successive
instantiations of the schema (satisfying the restriction on parameters) is consistent relative to classical
set theory.

One can also argue from an informal semantical analysis that there can be no element a : L. Because
when a is evaluated it would terminate with a value of the form intro(a,...,a,) where intro is a
constructor for L. But L has no constructor. This is called “simple-minded consistency” in Martin-Lof
[29].

16

6.5 Interpretation of an example theory

We now show how to interpret an example theory. This theory is chosen to illustrate different aspects of
the general situation and consists of the following parts: (i) the inductive definition of the set N of natural
numbers; (ii) the recursive definition of the addition function add; (iii) the inductive definition of the
family N'(n) of finite sets indexed by the number n of elements of the set; (iv) the inductive definition of
the cartesian product TI(A, B) of a family of sets; and (v) the simultaneous inductive-recursive definition
of a universe reflecting N, N', and II.

The reader should check that the interpretation given here is indeed obtainable from the schematic
interpretation given in 6.4.

6.5.1 The example theory

We list the rules of the theory. Note that we write FEl(A) rather than just A (as before) for the type
of elements of the set A. This is because the interpretation of El is the crucial part of the realisability
model.

N : set,
0 : EI(N),
s : (u:EI(N))EI(N),
add : (EI(N))(EI(N))EI(N),
add(m,0) = m,
add(m, s(u)) = s(add(m,u)),
N' : (EI(N))set,
0" : (b:EI(N))EI(N'(s(b))),
'+ (b:EI(N))(u:EI(N'(b))EI(N'(s(b))),
Im : (A:set)(B: (El(A))set)set,
A (A:set)(B:(El(A))set)(b: (z: EI(A))ElNB(z)))EI(I(A, B)),
Uy : set,
To : (El(Uyg))set,
no : EI(U(])I
ng : (b:EI(N))EL(Uy),
w0 (u:El(U))(W : (z: El(Ty(uw)))EL(Us))EL(Uy),
(nO = N7

)
) = Nl(b)a
) = I(To(u), (2)To(u'(x))).

6.5.2 Interpretation of the constants

The list of set constructors with arities is N 1L 0, N’ 1L 1,11 1. 2,Uqy L 0, and we construct an independent
family of objects interpreting them.
The lists of element constructors with arities are

e 0 L0,sL1forN.

e 0 L 1,8 12for N

17

e A1 1 for II. (The first two arguments of A\ are parameters, which are dropped under the interpre-
tation: [A(A4, B,b)] = \.[[0]].)

[nOLO,nBLl,WOLQfor UO:

and for each of these we construct an independent family of objects interpreting them.
The recursively defined functions are add and T,. By definition of independent family of objects there
are elements casey and caseyy,, such that

casen(di,d2,0) = di,
casen(dy,ds, s(u)) = da(u),
caseyy, (dy,do,ds,ng) = di,
casey, (dy,ds,ds3,ny(b)) = da(b),
casey, (dy,ds, d3, mo(u,u')) = dz(u,u’).

Hence we can interpret add and T by solving the fixed point equations

add(m,n) = casen(m,(x)s(add(m,z)),n),
To(c) = casey, (N, (b)N'(b), (u, ')(Ty(u), (z)To(u'(x))), c).

This completes the interpretation of the constants.

6.5.3 Interpretation of the base types
We construct a sequence of functional relations
@:((:lo gEh c--- §514 =&l g]:O XPO'LU(]:(])

since there are 4 inductively defined sets.
Natural numbers. £l is defined by the singleton rule set

0
{<N,N> }7

where N is the collection inductively defined by the rule set

0 {a}
{6} U {@\a € Fo}
on Fy.
The family of finite sets. &I, is obtained by adding the rules
{Lln €N}
(N'(n), N'[n])

to the rule set for £1;. Here

N'[n] = {i € Fo|lnRni}
where Ry' C N x Fy is an auxiliary relation between indices and objects inductively defined by the rule
set

{<s(n),0:(n)>\ GN}U{<S(n)7s,(n7i)>\ eENANi€F}

on N X fg.
Cartesian product of a family of sets. £l3 is obtained by adding

{{(A , AV} U{(B(2), Blz])|z € A}
(IL(4, B), TT[A, B])

1A, B € Fo, A€ Pow(Fy),B € A— Pow(Fy)}

18

to the rule set for £l,. Here [[[A,B] C Fy for A C Fy and Blz] C Fy for x € A is the collection
inductively defined by the rule set

0
— |V .b B
{557 ¥ € Ab(@) € Blal)
on .7:[).
The first universe. £l, is inductively defined by the rule set obtained by adding
0
{ ==~
<U07 Z/IO)

to the rule set for £13. Here Uy is the collection inductively defined by the rule set

Lot

no ng(n)

on Fy. (Note that this definition refers to £l3 and that it follows that Ty(a) € Sets for all a € Uy.)

(z)|z € El3[Th(a)]

}
To(a,b) |(l,b€ .7:0}

e AUl uid

6.5.4 Verification of the rules
General rules. First we verify the rule set type, that is,
Set g .7:0

which is immediate. Then both rules Fl(A) type if A : set and El(A) = EI(A") if A = A’ : set hold,
since it is easy to prove that £ is functional:

&l € Set = Pow(Fy).

This proof relies on the interpretation of set constructors as an independent family of objects.
Natural numbers. N-formation is interpreted as

N € Set,

which can be shown by inspecting the rule set for £I.
Since £I[N] = N, the rules of N-introduction are interpreted as

0OeN

and

a€N Ds(a) eN.

Both follow directly by inspecting the rule set defining N.
Addition. The typing rule for add is interpreted as

méeNDneN Dadd(m,n) € N.

This can be shown by induction on n € N using the recursion equations for add.

The equality rules for add follow directly from the recursion equations. Moreover, we can check that
the typings in the equality rules are satisfied.

The family of finite sets. N'-formation is interpreted as

n €N D N'(n) € Set,

which can be shown by inspecting the rule set for £I.
Since i € EI[N'(n)] iff nR i, the rules of N'-introduction are interpreted as

n €N D (s(n))Rn(0'(n))

19

and
ne€N DnRniD (s(n)Rn (s (n,i)).

Both follow directly by inspecting the rule set defining Ry-.
Cartesian product of a family of sets. II-formation is interpreted as

A € Set D (Vz € El[A].B(x) € Set) D II(A, B) € Set.

which can be shown by inspecting the rule set for £I.
TI-introduction is interpreted as

(Vo € Ab(x) € Bla]) D A() € [][A. B]

which can be shown to hold by inspecting the rule set for [[[A, B].
The first universe. Uy-formation is interpreted as

Up € Set,

which can be shown by inspecting the rule set for £I.
Since El[Up] = Up, Tp-typing is interpreted as

a € Uy D Typ(a) € Set.

This is proved by proving the stronger property that a € Uy D Tp(a) € Sets by induction on Uy. For
example, we need to show that my(a,b) € Uy D To(me(a,b)) € Sets from a € Uy D To(a) € Sets and
b(z) € Uy D To(b(z)) € Sets for all x € El3[Ty(a)]. But this follows from the facts that To(mo(a,b)) =
II(To(a), (£)To(b(x))) and that Sets is closed under II.

The rules of Up-introduction are interpreted as

ng € Uy,

n €N D N'(n) € U,
a € Uy D (Vx € El[Ty(a)].b(z) € Uy) D mo(a,b) € Up.

They follow directly by inspecting the rule set defining Uy using that El[Ty(a)] = El3[To(a)].
The equality rules for T, follow directly, since Ty € Fy was constructed to satisfy the corresponding
untyped equalities. Moreover, we easily check that the typings in the equality rules are satisfied.

7 Concluding remarks

The formulation of simultaneous inductive-recursive definitions is obtained by a minor syntactic modi-
fication of the schema in Dybjer [20]. This adds evidence to the fundamental nature of the schematic
natural deduction formulation of inductive definitions in type theory.

The idea to consider this generalisation was inspired by Nax Mendler’s paper [32] on the category-
theoretic semantics of universes in type theory. Our analysis improves fundamentally on Mendler’s,
since the category-theoretic machinery can be applied only if the rules for Uy and T already have been
represented as an endofunctor on a category of families of sets. This representation is not itself analysed
and also loses the Up-recursive nature of Ty. It is not clear how to use category-theoretic ideas for
obtaining a formal system for simultaneous induction-recursion.

The idea to enrich Frege structures with proof objects can also be found in Sato [40]. However, Sato
works in a type-free constructive theory and not in type theory. Working in the same framework as Sato,
Kameyama [25] has developed an approach to half-positive inductive definitions. His aims are similar to
ours: to formulate a general notion which subsumes the construction of Frege structures and enables the
interpretation of Martin-Lo6f type theory. In his type-free context the distinction between inductively and
recursively defined sets (that our approach is based on) does not exist. Instead he considers simultaneous
inductive definitions which give rise to operators which are monotone in the sense of an ordering which
generalises Aczel’s ordering for Frege structures described above.

20

As further examples of simultaneous induction-recursion, we would like to mention in particular the
computability predicates used by Martin-Lof [31, 27] and C. Coquand [12] for proving normalisation
of type theory, and the logical relations introduced by T. Coquand [13] for proving soundness and
completeness of an algorithm for testing conversion in type theory. These constructions are similar in
nature to the collections of propositions and truths in a Frege structure, and can be given a classical
explanation in an analogous way. By defining constructions of these kinds by simultaneous induction-
recursion we have paved the way for “internal type theory” [21], that is, to locally reflect the metatheory
of type theory in itself. In particular, we hope to extend the technique of reduction-free normalization
[15, 11, 17] developed for the simply typed case to dependent types.

References

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical
Logic, pages 739 782. North-Holland, 1977.

[2] P. Aczel. The strength of Martin-Lof’s type theory with one universe. In S. Miettinen and J.
Véadnanen, editors, Proceedings of the Symposium on Mathematical Logic (Oulu 1974), pages 1 32,
1977. Report No 2 of Dept. Philosophy, University of Helsinki.

[3] P. Aczel. The type theoretic interpretation of constructive set theory. In A. MacIntyre, L. Pacholski,
and J. Paris, editors, Logic Colloquium ’77, pages 55—66. North-Holland, 1978.

[4] P. Aczel. Frege Structures and the Notions of Proposition, Truth, and Set, pages 31-59. North-
Holland, 1980.

[5] S. Allen. A Non-Type-Theoretic Semantics for Type- Theoretic Language. PhD thesis, Department
of Computer Science, Cornell University, 1987.

[6] T. Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD thesis, The University
of Edinburgh, Department of Computer Science, November 1993.

[7] R. Backhouse. On the meaning and construction of the rules in Martin-Lof’s theory of types. In
Proceedings of the Workshop on General Logic, Edinburgh, February 1987. Laboratory for Foun-
dations of Computer Science, Department of Computer Science, University of Edinburgh, 1988.
ECS-LF(CS-88-52.

[8] H. P. Barendregt. The Lambda Calculus. North-Holland, 1984. Revised edition.
[9] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall, 1988.
[10] E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.

[11] C. Coquand. From semantics to rules: a machine assisted analysis. In E. Borger, Y. Gurevich, and
K. Meinke, editors, Proceedings of CSL ’93, LNCS 832, 1993.

[12] C. Coquand. A realizability interpretation of Martin-Lo6f’s type theory. In G. Sambin and J. Smith,
editors, Twenty-Five Years of Constructive Type Theory. Oxford University Press, 1998. To appear.

[13] T. Coquand. An algorithm for testing conversion in type theory. In Logical Frameworks, pages
255 279. Cambridge University Press, 1991.

[14] T. Coquand. Pattern matching with dependent types. In Proceedings of The 1992 Workshop on
Types for Proofs and Programs, June 1992.

[15] T. Coquand and P. Dybjer. Intuitionistic model constructions and normalization proofs. Mathe-
matical Structures in Computer Science, 7:75-94, 1997.

[16] T. Coquand and C. Paulin. Inductively defined types, preliminary version. In LNCS 417, COLOG
’88, International Conference on Computer Logic. Springer-Verlag, 1990.

21

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

D. Cubri¢, P. Dybjer, and P. Scott. Normalization and the Yoneda embedding. Mathematical
Structures in Computer Science, 1998. To appear.

G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin, and B. Werner. The Coq proof assistant
version 5.6, user’s guide. Technical report, INRIA Rocquencourt - CNRS ENS Lyon, 1991.

P. Dybjer. Inductive sets and families in Martin-L6f’s type theory and their set-theoretic semantics.
In Logical Frameworks, pages 280 306. Cambridge University Press, 1991.

P. Dybjer. Inductive families. Formal Aspects of Computing, pages 440 465, 1994.

P. Dybjer. Internal type theory. In TYPES ’95, Types for Proofs and Programs, number 1158 in
Lecture Notes in Computer Science, pages 120 134. Springer, 1996.

E. Giménez. A command for inductive sets in ILF. Master Thesis, Universidad de la Repiblica,
Montevideo, 1992.

E. Griffor and M. Rathjen. The strength of some Martin-Lof type theories. Archive of Mathematical
Logic, 33:337-385, 1994.

M. Hedberg. Type Theory and the External Logic of Programs. PhD thesis, Chalmers University of
Technology and University of Goéteborg, 1994.

Y. Kameyama. A type-free theory of half-monotone inductive definitions. International Journal of
Foundations of Computer Science, 6(3):203 234, 1995.

P. Martin-Lof. Hauptsatz for the intuitionistic theory of iterated inductive definitions. In J. E.
Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages 179 216. North-
Holland, 1971.

P. Martin-L6f. An intuitionistic theory of types: Predicative part. In Logic Colloquium ‘73, pages
73-118. North-Holland, 1975.

P. Martin-L&f. Constructive mathematics and computer programming. In Logic, Methodology and
Philosophy of Science, VI, 1979, pages 153-175. North-Holland, 1982.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

P. Martin-L6f. Amendment to intuitionistic type theory. Notes from a lecture given in Géteborg,
March 1986.

P. Martin-Lo6f. An intuitionistic theory of types. In G. Sambin and J. Smith, editors, Twenty-Five
Years of Constructive Type Theory. Oxford University Press, 1998. To appear. Reprinted version of
an unpublished report from 1972.

P. F. Mendler. Predicative type universes and primitive recursion. In Proceedings Sizth Annual

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Lof’s Type Theory: an Intro-
duction. Oxford University Press, 1990.

E. Palmgren. On Fized Point Operators, Inductive Definitions and Universes in Martin-Ldf’s Type
Theory. PhD thesis, Uppsala University, 1991.

E. Palmgren. On universes in type theory. In G. Sambin and J. Smith, editors, Twenty-Five Years
of Constructive Type Theory. Oxford University Press, 1998. Preprint. To appear.

M. Parigot. Programming with proofs: a second order type theory. In H. Ganzinger, editor,
ESOP’88, 2nd European Symposium on Programming, Nancy, LNCS 300, pages 145 159, March
1988.

22

[38]

[39]

[40]

C. Paulin-Mohring. Inductive definitions in the system Coq - rules and properties. In Proceedings
Typed A-Calculus and Applications, pages 328—-245. Springer-Verlag, LNCS, March 1993.

M. Rathjen, E. R. Griffor, and E. Palmgren. Inaccessibility in constructive set theory and type
theory. Annals of Pure and Applied Logic, 1998. To appear.

M. Sato. Adding proof objects and inductive definition mechanism to Frege structures. In T. Ito
and A. Meyer, editors, Proc. International Conference on Theoretical Aspects of Computer Science,

number 526 in LNCS, pages 53 87. Springer Verlag, 1991.

A. Setzer. Proof theoretical strength of Martin-Lif Type Theory with W-type and one universe. PhD
thesis, Fakultat flir Mathematik der Ludwig-Maximilians-Universitat Miinchen, 1993.

A. Setzer. Extending Martin-Lof Type Theory by one Mahlo-universe. Preprint, 1996.

J. Smith. The independence of Peano’s fourth axiom from Martin-Lof’s type theory without uni-
verses. Journal of Symbolic Logic, 49(3), 1988.

J. Smith. Propositional functions and families of types. Notre Dame Journal of Formal Logic,
30(3):442-458, 19809.

B. Werner. A normalization proof for an impredicative type system with large elimination over
integers. In B. Nordstrom, K. Petersson, and G. Plotkin, editors, Proceedings of the 1992 Workshop
on Proofs and Programs, pages 361 377. Department of Computer Sciences, Chalmers University of
Technology, June 1992.

23

