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 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.State in HaskellJOHN LAUNCHBURY jl@cse.ogi.eduOregon Graduate Institute, PO Box 91000, Portland, OR 97291-1000SIMON L PEYTON JONES simonpj@dcs.glasgow.ac.ukUniversity of Glasgow, G12 8QQ, ScotlandAbstract. Some algorithms make critical internal use of updatable state, even though theirexternal speci�cation is purely functional. Based on earlier work on monads, we present a way ofsecurely encapsulating stateful computations that manipulate multiple, named, mutable objects,in the context of a non-strict, purely-functional language. The security of the encapsulation isassured by the type system, using parametricity. The same framework is also used to handleinput/output operations (state changes on the external world) and calls to C.1. IntroductionPurely functional programming languages allow many algorithms to be expressedvery concisely, but there are a few algorithms in which in-place updatable stateseems to play a crucial role. For these algorithms, purely-functional languages,which lack updatable state, appear to be inherently ine�cient (Ponder, McGeer &Ng [1988]). Examples of such algorithms include:� Algorithms based on the use of incrementally-modi�ed hash tables, where lookupsare interleaved with the insertion of new items.� The union/�nd algorithm, which relies for its e�ciency on the set representa-tions being simpli�ed each time the structure is examined.� Many graph algorithms, which require a dynamically changing structure inwhich sharing is explicit, so that changes are visible non-locally.There is, furthermore, one absolutely unavoidable use of state in every functionalprogram: input/output. The plain fact of the matter is that the whole purpose ofrunning a program, functional or otherwise, is to make some change to the world| an update-in-place, if you please. In many programs these I/O e�ects are rathercomplex, involving interleaved reads from and writes to the world state.We use the term \stateful" to describe computations or algorithms in which theprogrammer really does want to manipulate (updatable) state. What has beenlacking until now is a clean way of describing such algorithms in a functional lan-guage | especially a non-strict one | without throwing away the main virtuesof functional languages: independence of order of evaluation (the Church-Rosserproperty), referential transparency, non-strict semantics, and so on.



2 In this paper we describe a way to express stateful algorithms in non-strict, purely-functional languages. The approach is a development of our earlier work on monadicI/O and state encapsulation (Launchbury [1993]; Peyton Jones & Wadler [1993]),but with an important technical innovation: we use parametric polymorphism toachieve safe encapsulation of state. It turns out that this allows mutable objectsto be named without losing safety, and it also allows input/output to be smoothlyintegrated with other state manipulation.The other important feature of this paper is that it describes a complete system,and one that is implemented in the Glasgow Haskell compiler and freely available1.The system has the following properties:� Complete referential transparency is maintained. At �rst it is not clear whatthis statement means: how can a stateful computation be said to be referentiallytransparent?To be more precise, a stateful computation is a state transformer, that is, afunction from an initial state to a �nal state. It is like a \script", detailing theactions to be performed on its input state. Like any other function, it is quitepossible to apply a single stateful computation to more than one input stateand, of course, its behaviour may depend on that state.But in addition, we guarantee that the state is used in a single-threaded way.Consequently, the �nal state can be constructed by modifying the input statein-place. This e�cient implementation respects the purely-functional seman-tics of the state-transformer function, so all the usual techniques for reasoningabout functional programs continue to work. Similarly, stateful programs canbe exposed to the full range of program transformations applied by a compiler,with no special cases or side conditions.� The programmer has complete control over where in-place updates are used andwhere they are not. For example, there is no complex analysis to determinewhen an array is used in a single-threaded way. Since the viability of the entireprogram may be predicated on the use of in-place updates, the programmermust be con�dent in, and be able to reason about, the outcome.� Mutable objects can be named. This ability sounds innocuous enough, but oncean object can be named its use cannot be controlled as readily. Yet naming isimportant. For example, it gives us the ability to manipulate multiple mutableobjects simultaneously.� Input/output takes its place as a specialised form of stateful computation. In-deed, the type of I/O-performing computations is an instance of the (morepolymorphic) type of stateful computations. Along with I/O comes the abilityto call imperative procedures written in other languages.� It is possible to encapsulate stateful computations so that they appear to therest of the program as pure (stateless) functions which are guaranteed by the



3type system to have no interactions whatever with other computations, whetherstateful or otherwise (except via the values of arguments and results, of course).Complete safety is maintained by this encapsulation. A program may containan arbitrary number of stateful sub-computations, each simultaneously active,without concern that a mutable object from one might be mutated by another.� Stateful computations can even be performed lazily without losing safety. Forexample, suppose that stateful depth-�rst search of a graph returns a list ofvertices in depth-�rst order. If the consumer of this list only evaluates the�rst few elements of the list, then only enough of the stateful computation isexecuted to produce those elements.2. OverviewThis section introduces the key ideas of our approach to stateful computation. Webegin with the programmer's-eye-view.2.1. State transformersA state transformer of type (ST s a) is a computation which transforms a stateindexed by type s, and delivers a value of type a. You can think of it as a purefunction, taking a state as its argument, and delivering a state and a value as itsresult. We depict a state transformer like this:
State outState in

ResultFrom a semantic point of view, this is a purely-functional account of state. Forexample, being a pure function, a state transformer is a �rst-class value: it can bepassed to a function, returned as a result, stored in a data structure, duplicatedfreely, and so on. (Of course, it is our intention that the new state will actuallybe constructed by modifying the old one in place, a matter to which we return inSection 9.) From now on, we take the term \state transformer" to be synonymouswith \stateful computation": the computation is seen as transforming one stateinto another.A state transformer can have other inputs besides the state; if so, it will have afunctional type. It can also have many results, by returning them in a tuple. Forexample, a state transformer with two inputs of type Int, and two results of typeInt and Bool, would have the type:



4 Int -> Int -> ST s (Int,Bool)Its picture might look like this:
State outState in

Inputs ResultsThe simplest state transformer, returnST, simply delivers a value without a�ectingthe state at all:returnST :: a -> ST s aThe picture for returnST is like this:
State outState in2.2. Mutable variablesNext, we need to provide some primitive state transformers which operate on thestate. The simplest thing to provide is the ability to allocate, read, and writemutable variables:newVar :: a -> ST s (MutVar s a)readVar :: MutVar s a -> ST s awriteVar :: MutVar s a -> a -> ST s ()The type MutVar s a is the type of references allocated from a state indexed bys, and containing a value of type a. A reference can be thought of as the name of(or address of) a variable, an updatable location in the state capable of holding avalue. The state contains a �nite mapping of references to values.Notice that, unlike SML's ref types, for example, MutVars are parameterised overthe type of the state as well as over the type of the value to which the referenceis mapped by the state, a decision whose importance will become apparent inSection 2.5. (We use the name MutVar for the type of references, rather than Ref,speci�cally to avoid confusion with SML.)Returning to the primitives, the function newVar takes an initial value, of typea, say, and delivers a state transformer of type ST s (MutVar s a). When this



5state transformer is applied to a state, it allocates a fresh reference | that is, onecurrently not used in the state | augments the state to map the new reference tothe supplied value, and returns the reference along with the modi�ed state.Given a reference v, readVar v is a state transformer which leaves the stateunchanged, but uses the state to map the reference to its value.The function writeVar transforms the state so that it maps the given reference toa new value. Notice that the reference itself does not change; it is the state which ismodi�ed. writeVar delivers a result of the unit type (), a type which only has onevalue (apart from bottom), also written (). A state transformer of type ST s ()is useful only for its e�ect on the state.2.3. Composing state transformersState transformers can be composed in sequence, to form a larger state transformer,using thenST, which has typethenST :: ST s a -> (a -> ST s b) -> ST s bThe picture for (s1 `thenST` s2) is like this2:
State in

s1 s2

State outNotice that the two computations must manipulate state indexed by the same type,s. Notice also that thenST is inherently sequential, because the state consumed bythe second computation is that produced by the �rst. Indeed, we often refer to astate transformer as a thread, invoking the picture of a series of primitive statefuloperations \threaded together" by a state passed from one to the next.Putting together what we have so far, here is a \procedure" which swaps thecontents of two variables:swap :: MutVar s a -> MutVar s a -> ST s ()swap v w = readVar v `thenST` (\a ->readVar w `thenST` (\b ->writeVar v b `thenST` (\_ ->writeVar w a)))When swap v w is executed in a state thread (that is, when applied to a state),v is dereferenced, returning a value which is bound to a. Similarly the value of wis bound to b. New values are then written into the state at these locations, thesevalues being b and a respectively.The syntax needs a little explanation. The form \\a->e" is Haskell's syntax fora lambda abstraction. The body of the lambda abstraction, e, extends as far to



6the right as possible. So in the code for swap, the second argument of the �rstthenST extends all the way from the \a to the end of the function. That is justas you would expect: the second argument of a thenST is meant to be a function.Furthermore, the parentheses enclosing the lambda abstractions can be omitted,and we will do so from now on. They would only be required if we wanted thelambda abstraction to extend less far than the end of the expression. Lastly, the\_" in the second-last line is a wild-card pattern, which matches any value. We useit here because the writeVar does not return a value of interest.2.4. Other useful combinatorsTo avoid the frequent appearance of lambda abstractions with wild-card patterns,we provide a special form of thenST, called thenST_, with the following de�nition:thenST_ :: ST s () -> ST s b -> ST s bthenST_ st1 st2 = st1 `thenST` \ _ ->st2Unlike thenST, the second argument of thenST_ is not a function, so the lambdaisn't required. Using thenST_, and omitting parentheses, we can rewrite swapmoretidily as follows:swap :: MutVar s a -> MutVar s a -> ST s ()swap v w = readVar v `thenST` \a ->readVar w `thenST` \b ->writeVar v b `thenST_`writeVar w aFour other useful combinators, de�nable in terms of thenST and returnST, arelistST, listST_, mapST, and mapST_:listST :: [ST s a] -> ST s [a]listST sts = foldr consST nilST stswherenilST = returnST []consST m ms = m `thenST` \ r ->ms `thenST` \ rs ->returnST (r:rs)listST_ : [ST s a] -> ST s ()listST_ sts = foldr thenST_ (returnST ()) stsmapST :: (a -> ST s b) -> [a] -> ST s [b]mapST f xs = listST (map f xs)



7mapST_ :: (a -> ST s ()) -> [a] -> ST s ()mapST_ f xs = listST_ (map f xs)The �rst, listST takes a list of state transformers, each indexed by the samestate type and returning a value of the same type. It glues them together into asingle state transformer, which composes its components together in sequence, andcollects their results into a list. The other three are useful variants. mapST, forexample, is rather like the normal map function | it applies a function repeatedlyto the elements of a list, but then it also feeds the state through the resulting statetransformers.2.5. EncapsulationSo far we have been able to combine state transformers to make larger state trans-formers, but how can we make a state transformer part of a larger program whichdoes not manipulate state at all? What we need is a function, runST, with a typesomething like the following:runST :: ST s a -> aThe idea is that runST takes a state transformer as its argument, conjures upan initial empty state, applies the state transformer to it, and returns the resultwhile discarding the �nal state. The initial state is \empty" in the sense that noreferences have been allocated in it by newVar; it is the empty mapping. Here is atiny example of runST in action:three :: Intthree = runST (newVar 0 `thenST` \ v ->writeVar v 3 `thenST_`readVar v)This de�nition of the value three, runs a state thread which allocates a new vari-able, writes 3 into it, reads the variable, and returns the value thus read. (Sections 5and 7 gives some more convincing uses of runST.)2.5.1. A 
awBut there seems to be a terrible 
aw: what is to prevent a reference from one threadbeing used in another? For example:let v = runST (newVar True)inrunST (readVar v)



8 Here, the reference allocated in the �rst runST's thread is used inside the secondrunST. Doing so would be a great mistake, because reads in one thread are notsequenced with respect to writes in the other, and hence the result of the programwould depend on the evaluation order used to execute it. It seems at �rst that aruntime check might be required to ensure that references are only dereferenced inthe thread which allocated them. Unfortunately this would be expensive.Even worse, our experience suggests that it is surprisingly tricky to implementsuch a runtime check. The obvious idea is to allocate a unique state-thread identi�erwith each call to runST, which is carried along in the state. Every reference wouldinclude the identi�er of the thread in which it was created, and whenever a referencewas used for reading or writing, a runtime check is made to ensure that the identi�erin the reference matches that in the state.This sounds easy enough, albeit perhaps ine�cient. The trouble is that it doesnot work! Consider the following (recursive) de�nitionfoo = runST (newVar 7 `thenST` \ v ->writeVar foo 3 `thenST_`returnST v)Does this give a runtime error? No, the write is in the same thread as the allo-cate. However, the following pair of mutually-recursive de�nitions ought to behaveidentically:foo1 = runST (newVar 7 `thenST` \ v ->writeVar foo2 3 `thenST_`returnST v)foo2 = runST (newVar 7 `thenST` \ v ->writeVar foo1 3 `thenST_`returnST v)All that we have done is to unfold the de�nition of foo once, which certainly shouldnot change the semantics of the program. But alas, each write sees a variablefrom the \other" thread, so the runtime check will fail. A perfectly respectableprogram transformation has changed the behaviour of the runtime check, which isunacceptable.2.5.2. The solution: parametricityThis problem brings us to the main technical contribution of the paper: the dif-�culties with runST can all be solved by giving it a more speci�c type. The typegiven for runST above is implicitly universally quanti�ed over both s and a. If weput in the quanti�cation explicitly, the type might be written:runST :: 8s,a. (ST s a -> a)A runST with this type could legally be applied to any state transformer, regardlessof the types to which s and a are instantiated. However, we can be more precise:



9what we really want to say is that runST should only be applied to a state trans-former which uses newVar to create any references which are used in that thread.To put it another way, the argument of runST should not make any assumptionsabout what has already been allocated in the initial state. That is, runST shouldwork regardless of what initial state it is given. So the type of runST should be:runST :: 8a. (8s. ST s a) -> aThis is not a Hindley-Milner type, because the quanti�ers are not all at the toplevel; it is an example of rank-2 polymorphism (McCracken [1984]).Why does this type prevent the \capture" of references from one thread intoanother? Consider our example againlet v = runST (newVar True)inrunST (readVar v)In the last line a reference v is used in a stateful thread (readVar v), even thoughthe latter is supposedly encapsulated by runST. This is where the type checkercomes into its own. During typechecking, the type of readVar v will depend onthe type of v so, for example, the type derivation will contain a judgement of theform: f: : : ; v : MutVar s Boolg ` readVar v : ST s BoolNow in order to apply runST we have to be able to generalise the type of readVar vwith respect to s, but we cannot as s is free in the type environment: readVar vsimply does not have type 8s.ST s Bool.What about the other way round? Let's check that the type of runST preventsthe \escape" of references from a thread. Consider the de�nition of v above:v = runST (newVar True)Here, v is a reference that is allocated within the thread, but then released to theoutside world. Again, consider what happens during typechecking. The expression(newVar True) has type ST s (MutVar s Bool), which will generalise nicely to8s.ST s (MutVar s Bool). However, this still does not match the type of runST.To see this, consider the instance of runST with a instantiated to MutVar s Bool:runST :: (8s'. ST s' (MutVar s Bool)) -> MutVar s BoolWe have had to rename the bound variable s in the type of runST to avoid iterroneously capturing the s in the type MutVar s Bool. The argument type nowdoesn't match the type of (newVar True). Indeed there is no instance of runSTwhich can be applied to (newVar True).Just to demonstrate that the type of runST does nevertheless permit one threadto manipulate references belonging to another thread, here is a perfectly legitimate(albeit arti�cial) example:



10
runST

runST

runST

Figure 1. An informal picture of a program with state threadsf :: MutVar s a -> MutVar s af v = runST (newVar v `thenST` \w->readVar w)where v is a reference from some (other) arbitrary state thread. Because v is notaccessed, its state type does not a�ect the local state type of the short thread(which is in fact totally polymorphic in v). Thus it is �ne for an encapsulated statethread to manipulate references from other threads so long as no attempt is madeto dereference them.In short, by the expedient of giving runST a rank-2 polymorphic type we canenforce the safe encapsulation of state transformers. More details on this are givenin Sections 6 and 9.2, where we show that runST's type can be accommodated withonly a minor enhancement to the type checker.2.6. SummaryWe have described a small collection of:� Primitive state transformers, namely returnST, newVar, readVar, and writeVar;� \Plumbing" combinators, which compose state transformers together, namelythenST and its derivatives, thenST_, listST, mapST, and so on.� An encapsulator, runST, which runs a state transformer on the empty state,discards the resulting state, and returns the result delivered by the state trans-former.Figure 1 gives an informal picture of a program with a number of calls to runST.Each call to runST gives rise to an independent thread, depicted as a large oval.



11The plumbing combinators ensure that the state is single-threaded, so that thenet e�ect is to plumb the state through a chain of primitive operations (newVar,readVar and writeVar), each of which is depicted as a small square box. Therelative interleaving of the primitive operations in each thread is unde�ned but,since the threads share no state, di�erent interleavings cannot give rise to di�erentresults.Notice that it is only the state that is single-threaded. Both references and statetransformers, in contrast, are �rst-class values which can be duplicated, discarded,stored in data structures, passed to functions, returned as results, and so on. Areference can only be used, however, by bringing it back together with \its" statein a readVar or writeVar operation.The crucial idea is that of \indexing" state transformers, states, and mutablevariables, with a type. It is usual for a value of type Tree t, say, to containsub-components of type t. That is not the case for mutable variables and statetransformers! In the type ST s a, the \s" is used to label the state transformer,and force compatibility between state transformers which are composed together.Similarly, the \s" in MutVar s a simply ensures that a reference can only be deref-erenced in \its" state thread. It is for this reason that we speak of a state \beingindexed by" a type, rather than \having" that type.The type constructor ST together with the functions returnST and thenST form aso-called monad (Moggi [1989]), and have a nice algebra. For a detailed discussionof monads see Wadler [1992a].3. Array referencesSo far we have introduced the idea of references (Section 2.2), which can be thoughtof as a single mutable \box". Sometimes, though we want to update an array whichshould be thought of as many \boxes", each independently mutable. For that weprovide operations to allocate, read and write elements of arrays. They have thefollowing types3:newArr :: Ix i => (i,i) -> v -> ST s (MutArr s i v)readArr :: Ix i => MutArr s i v -> i -> ST s vwriteArr :: Ix i => MutArr s i v -> i -> v -> ST s ()Like references, newArr allocates a new array whose bounds are given by its �rstargument. The second argument is a value to which each location is initialised. Thestate transformer returns a reference to the array of type MutArr s i v, which wecall an array reference. The functions readArr and writeArr do what their namessuggest. The result is unde�ned if the index is out of bounds.The three operations can be implemented using the mutable variables alreadyintroduced, by representing an array reference as an (immutable) array of references,thus:



12type MutArr s i v = Array i (MutVar s v)This de�nition makes use of the standard Haskell type Array i v, the type ofarrays indexed by values of type i, with elements of type v. Haskell arrays areconstructed by the function array, and indexed with the in�x operator (!), whosetypes are as follows:array :: Ix i => (i,i) -> [(i,v)] -> Array i v(!) :: Ix i => Array i v -> i -> vThe array-construction function array takes the bounds of the array and list ofindex-value pairs, and returns an array constructed by �lling in the array in theway speci�ed by the list of index-value pairs4.The implementation of newArr, readArr, and writeArr is then straightforward:newArr bds init = mapST newVar indices `thenST` \ vs ->returnST (array bds (indices `zip` vs))where-- indices :: [(i,v)]indices = range bdsreadArr arr i = readVar (arr!i)writeArr arr i v = writeVar (arr!i) vThe only interesting de�nition is that for newArr, which uses mapST (Section 2.4) toapply newVar to each index. The standard function range is applied to the boundsof the array | that is, a pair of values in class Ix | to deliver a list of all theindices of the array5.In practice, we do not implement mutable arrays in this way for two reasons:� Implementing arrays in terms of variables is rather ine�cient. A single mutablearray of 100 elements would require an immutable array of 100 elements, plus100 separately-allocated mutable variables. Each read or write would requiretwo memory references, one to the array, and a second to the variable. It wouldobviously be more sensible to allocate one mutable array of 100 elements, andhave writeArr mutate the elements directly.� Implementing arrays in terms of variables depends on the existence of standardHaskell arrays. How are the latter to be implemented? Presumably, in a se-quential system, the implementation of array will involve allocating a suitableblock of memory, and running down the list of index-value pairs, �lling in thespeci�ed elements of the array as we go. Looked at like this, we need mutablearrays to implement immutable arrays! (We return to this topic in Section 7.)Because of these considerations we actually provide newArray, readArr and writeArras primitives, and de�ne newVar, readVar, and writeVar in terms of them, by rep-resenting variables as arrays of size one.



134. Input/outputNow that we have the state-transformer framework in place, we can give a new ac-count of input/output. An I/O-performing computation is of type ST RealWorld a;that is, it is a state transformer transforming a state of type RealWorld, and de-livering a value of type a. The only thing which makes it special is the type of thestate it transforms, namely RealWorld, an abstract type whose values represent thereal world. It is convenient to use a type synonym to express this specialisation:type IO a = ST RealWorld aSince IO a is an instance of ST s a, it follows that all the state-transformerprimitives concerning references and arrays work equally well when mixed with I/Ooperations. More than that, the same \plumbing" combinators, thenST, returnSTand so on, work for I/O as for other state transformers. In addition, however, weprovide a variety of I/O operations that work only on the IO instance of state (thatis, they are not polymorphic in the state), such as:putChar :: Char -> IO ()getChar :: IO CharIt is easy to build more sophisticated I/O operations on top of these. For example:putString :: [Char] -> IO ()putString [] = returnST ()putString (c:cs) = putChar c `thenST_`putString csor, equivalently,putString cs = mapST_ putChar cs4.1. System callsIt would be possible to provide putChar and getChar as primitives | that is, func-tions which are not de�nable in Haskell. The di�culty is that there are potentiallya very large collection of such \primitive" I/O operations, and it is very likely thatprogrammers will want to add new ones of their own. To meet this concern, weprovide just one primitive I/O operation, called ccall, which allows the Haskellprogrammer to call any C procedure. Using ccall we can de�ne all the other I/Ooperations; for example, putChar is de�ned like this:putChar :: Char -> IO ()



14putChar c = ccall putchar cThat is, the state transformer (putChar c) transforms the real world by callingthe C function putchar, passing it the character c. The value returned by thecall is ignored, as indicated by the result type of putChar. Similarly, getChar isimplemented like this:getChar :: IO ChargetChar = ccall getcharWe implement ccall as a new language construct, rather than as an ordinaryfunction, because we want it to work regardless of the number and type of itsarguments. (An ordinary function, possessing only one type, would take a �xednumber of arguments of �xed type.) The restrictions placed on its use are:� All the arguments, and the result, must be types which C understands: Int,Float, Double, Bool, String, or Array. There is no automatic conversion ofmore complex structured types, such as lists (apart from lists of characters,which are treated specially as strings) or trees. Furthermore, the types involvedmust be statically deducible by the compiler from the surrounding context; thatis, ccall cannot be used in a polymorphic context. The programmer can easilysupply any missing type information with a type signature.� The �rst \argument" of ccall, which is the name of the C function to be called,must appear literally. It is part of the language construct.4.2. Running I/OThe IO type is a particular instance of state transformers so, in particular, I/Ooperations are not polymorphic in the state. An immediate consequence of this isthat I/O operations cannot be encapsulated using runST. Why not? Again, becauseof runST's type. It demands that its state transformer argument be universallyquanti�ed over the state, but that is exactly what IO is not!Fortunately, this is exactly what we want. If I/O operations could be encapsulatedthen it would be possible to write apparently pure functions, but whose behaviourdepended on external factors, the contents of a �le, user input, a shared C variableetc. The language would no longer exhibit referential transparency.How, then, are I/O operations executed at all? The meaning of the whole programis given by the value of the top-level identi�er mainIO:mainIO :: IO ()mainIO is an I/O state transformer, which is applied to the external world state bythe operating system. Semantically speaking, it returns a new world state, and the



15changes embodied therein are applied to the real world. Of course, as in the case ofmutable variables, our intention is that the program will actually mutate the realworld \in place".By this means it is possible to give a full de�nition of Haskell's standard in-put/output behaviour (involving lists of requests and responses) as well as muchmore. Indeed, the Glasgow implementation of the Haskell I/O system is itself nowwritten entirely in Haskell, using ccall to invoke Unix I/O primitives directly.The same techniques have been used to write libraries of routines for calling the Xwindow system, an image-processing library, and so on.5. Some applicationsIn this section we give three applications of the state transformer framework, andassess its usefulness.5.1. A functional moreOur �rst example concerns input/output. The Unix more utility allows the userto view the contents of a �le, a screenful at a time. A status line is displayed togive positional information, and commands are provided to allow scrolling in eitherdirection.However, more can only be used to display ASCII text. A completely di�erentprogram would be needed to scroll through a �le of pictures, or to scroll and rendera �le of PostScript. We can improve on this situation by separating the processinto two:� A representation-speci�c function, which converts the ASCII �le, description ofpictures, PostScript, or whatever, to a list of I/O actions, each of which paintsa single screenful:asciiPages :: String -> [IO ()]picturePages :: PictureDescriptions -> [IO ()]postscriptPages :: String -> [IO ()]� A representation-independent function, which takes a list of I/O actions (onefor each screenful), and interacts with the user to navigate through them:more :: [IO ()] -> IO ()Now the three viewers can be built by composition:moreAscii = more . asciiPagesmorePictures = more . picturePagesmorePostscript = more . postscriptPages



16Notice the complete separation of concerns. The asciiPages function is concernedonly with displaying ASCII text on the screen, and not at all with user interaction.The more function is concerned only with interaction with the user, and not atall with the nature of the material being displayed. This separation of concernsis achieved by passing a list of I/O actions from one function to another. Noticetoo that some of these actions may be performed more than once if, for example,the user scrolls back to a previously-displayed page. None of this is possible in anyimperative language we know of.Our solution has its shortcomings. The Unix more allows the user to scroll a singleline at a time, whereas ours only allows scrolling in units of pages. It is a commondiscovery that good abstractions sometimes con
ict with arbitrary functionality!5.2. Depth �rst searchDepth-�rst search is a key component of many graph algorithms. It is one of thevery few algorithms for which an e�cient algorithm is most lucidly expressed usingmutable state, so it makes a good application of the ideas presented in this paper.Our depth-�rst search function, dfs, is given in Figure 2. It takes a graph g anda list of vertices vs, and returns a list of trees | or forest | which, collectively,span g. Furthermore, the forest has the \depth-�rst" property; that is, no edge inthe original graph traverses the forest from left to right. The list of vertices vs givesan initial ordering for searching the vertices, which is used to resume the searchwhenever one is completed. Clearly the head of vs will be the root of the very �rsttree.The graph is represented by an array, indexed by vertices, in which each elementcontains a list of the vertices reachable directly from that vertex. The dfs functionbegins by introducing a fresh state thread, allocating an array of marks initialisedto False, and then calling the locally de�ned function search. The whole thing isencapsulated by runST.When searching a list of vertices, the mark associated with the �rst vertex isexamined, and if True the vertex is discarded and the rest are searched. If howeverthe mark is False indicating that the vertex has not been examined previously,then it is marked True, and two recursive calls of search are performed, each ofwhich returns a list of trees. The �rst call, namely, search marks (g!v), is giventhe edges leading from v, and it produces a forest ts which is built into a treewith v at the root|all these nodes are reachable from v. The second recursive call(search marks vs) produces a forest of those vertices not reachable from v andnot previously visited. The tree rooted at v is added to the front of this forestgiving the complete depth-�rst forest.In a non-strict language, an expression is evaluated in response to demands fromthe consumer of the expression's value. This property extends to values producedby stateful computations. In the case of depth-�rst search, if only part of the forestreturned by dfs is evaluated then only part of the stateful computation will becarried out. This is quite a remarkable property: we know of no other system



17type Graph = Array Vertex [Vertex]data Tree a = Node a [Tree a]dfs :: Graph -> [Vertex] -> [Tree Vertex]dfs g vs = runST (newArr (bounds g) False `thenST` \ marks ->search marks vs)where search :: MutArr s Vertex Bool -> [Vertex]-> ST s [Tree Vertex]search marks [] = returnST []search marks (v:vs) = readArr marks v `thenST` \ visited ->if visited thensearch marks vselsewriteArr marks v True `thenST_`search marks (g!v) `thenST` \ ts ->search marks vs `thenST` \ us ->returnST ((Node v ts): us)Figure 2. Lazy depth-�rst searchwhich can execute a sequential, imperative algorithm, incrementally in response todemands on its result value.This algorithm, and many others derivable from it, or de�nable in terms of it arediscussed in detail in King & Launchbury [1993].5.3. An interpreterWe conclude this section with a larger example of array references in use (Figure3). It de�nes an interpreter for a simple imperative language, whose input is theprogram together with a list of input values, and whose output is the list of valueswritten by the program. The interpreter naturally involves a value representing thestate of the store. The idea is, of course, that the store should be implemented asan in-place-updated array, and that is precisely what is achieved6.The resulting program has the same laziness property as our depth-�rst search.As successive elements of the result of a call to interpret are evaluated, the in-terpreter will incrementally execute the program just far enough to get to the nextWrite command, when the returnST delivers a new element of the result list, andno further. If only the �rst few elements of the result are needed, much of theimperative program being interpreted will never be executed at all.



18data Com = Assign Var Exp | Read Var | Write Exp | While Exp [Com]type Var = Chardata Exp = ....interpret :: [Com] -> [Int] -> [Int]interpret cs input = runST (newArr ('A','Z') 0 `thenST` \store ->newVar input `thenST` \inp->command cs store inp)command :: [Com] -> MutArray s Int -> MutVar s [Int] -> ST s [Int]command cs store inp = obey cswhere-- obey :: [Com] -> ST s [Int]obey [] = returnST []obey (Assign v e:cs) = eval e `thenST` \val->writeArr store v val `thenST_`obey csobey (Read v:cs) = readVar inp `thenST` \(x:xs) ->writeArr store v x `thenST_`writeVar inp xs `thenST_`obey csobey (Write e:cs) = eval e `thenST` \out->obey cs `thenST` \outs->returnST (out:outs)obey (While e bs:cs) = eval e `thenST` \val->if val==0 thenobey cselseobey (bs ++ While e bs : cs) inp-- eval :: Exp -> ST s Inteval e = ....Figure 3. An interpreter with lazy stream output



19This example has long been a classic test case for systems which infer single-threadedness (Schmidt [1985]), and is also used by Wadler in his paper on monads(Wadler [1992a]). The only unsatisfactory feature of the solution is that eval hasto be written as a fully-
edged state transformer, while one might perhaps like totake advantage of its \read-only" nature.5.4. SummaryAn obvious question arises when looking at monadic code: it appears to di�er onlysuper�cially from an ordinary imperative program. Have we done any more thandiscover a way to mimic C in Haskell?We believe that, on the contrary, there are very signi�cant di�erences betweenwriting programs in C and writing in Haskell with monadic state transformers andI/O:� Usually, most of the program is neither stateful nor directly concerned withI/O. The monadic approach allows the graceful co-existence of a small amountof \imperative" code and the large purely functional part of the program.� The \imperative" component of the program still enjoys all the bene�ts of higherorder functions, polymorphic typing, and automatically-managed storage.� A state transformer corresponds, more or less, to a statement in C or Pascal7.However, a state transformer is a �rst-class value, which can be stored in adata structure, passed to a function, returned as a result, and so on, whilea C statement enjoys none of these properties. This expressive power wasused in the more example above (Section 5.1), where complete I/O actionsare constructed by one function, stored in a list, and subsequently performed,perhaps repeatedly, under the control of an entirely separate function.� Imperative languages provide a �xed repetoire of control structures (conditionalstatements, while loops, for loops, and so on). Because state transformers are�rst class values, the programmer can de�ne functions which play the role ofapplication-speci�c control structures. For example, here is a function whichperforms its argument a speci�ed number of times:repeatST :: Int -> ST s () -> ST s ()repeatST n st = listST_ [st | i <- [1..n]]If we need a for loop, where the loop index is used in the \body", it is easilyprovided:forST :: Int -> (Int -> ST s ()) -> ST s ()forST n stf = mapST_ stf [1..n]



20 And so on. The point is not that these particular choices are the \right" ones,but rather that it is very easy to de�ne new ways to compose together smallstate transformers to make larger ones.� The usual co-routining behaviour of lazy evaluation, in which the consumer ofa data structure co-routines with its producer, extends to stateful computationas well. As Hughes argues (Hughes [1989]), the ability to separate what iscomputed from how much of it is computed is a powerful aid to writing modularprograms.6. FormalismHaving given the programmer's eye view, it is time now to be more formal and tode�ne precisely the ideas we have discussed. We have presented state transformersin the context of the full-sized programming language Haskell, since that is where wehave implemented the ideas. In order to give semantics to the constructs, however,it is convenient to restrict ourselves to the essentials. In particular, we choose toomit the special semantics of IO operations with their calls to C. Instead, we focuson providing a semantics for encapsulated state together with a proof demonstratingthe security of encapsulation.6.1. A LanguageWe focus on lambda calculus extended with the state transformer operations. Thesyntax of the language is given by:e ::= x j k j e1 e2 j �x:e jlet x = e1 in e2 j runST ek ::= thenST j returnST jnewVar j readVar j writeVar j: : :6.2. Type rulesThe type rules are given in Figure 4, and are the usual Hindley-Milner rules, exceptthat runST also requires a judgment of its own. Treating it as a language constructavoids the need to go beyond Hindley-Milner types. So rather than actually giverunST the type runST :: 8a.(8s.ST s a) -> aas suggested in the introduction, we provide a typing judgement which has thesame e�ect.
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APP � ` e1 : T1 ! T2 � ` e2 : T1� ` (e1 e2) : T2LAM �; x : T1 ` e : T2� ` �x:e : T1 ! T2LET � ` e1 : S �; x : S ` e2 : T� ` (let x = e1 in e2) : TV AR �; x : S ` x : SSPEC � ` e : 8t:S� ` e : S[T=t] t 62 FV (T )GEN � ` e : S� ` e : 8t:S t 62 FV (�)RUN � ` e : 8t:ST t T� ` (runST e) : T t 62 FV (T )Figure 4. Type rules



22 E [[Expr ]] : Env ! ValE [[ k ]] � = B[[ k ]]E [[x ]] � = � xE [[ e1 e2 ]] = (E [[ e1 ]] �) (E [[ e2 ]] �)E [[ \x->e ]] � = �v:(E [[ e ]] (� � fx 7! vg))E [[ let x=e1 in e2 ]] � = E [[ e2 ]] (fix(��0:(� � fx 7! E [[ e1 ]]�0g)))B[[ runST ]] = runSTB[[ thenST ]] = thenST:Figure 5. Semantics of TermsAs usual, we talk both of types and type schemes (that is, types possibly withuniversal quanti�ers on the outside). We use T for types, S for type schemes, andK for type constants such as Int and Bool.T ::= t j K j T1 ! T2 jST T1 T2 jMutVar T1 T2S ::= T j 8t:SIn addition, � ranges over type environments (that is, partial functions from termvariables to types), and we write FV (T ) for the free variables of type T and likewisefor type environments.6.3. Denotational SemanticsIn Figure 5, we extend a standard denotational semantics for a non-strict lambdacalculus to include the semantics of state operations by providing de�nitions forthe new constants.The valuation function E [[ ]] takes an expression and an environment and returnsa value. We use Env for the domain of environments, and Val for the domain ofvalues, de�ned as follows: Env = Q� (var� !D� )Val = S� D�The environment maps a variable of type � to a value in the domain D� , andthe domain of values is the union of all the D� , where � ranges over monotypes(polymorphic values lie in the intersection of their monomorphic instances).



23(returnST v) � = (v; �)(thenST m k) � = k x �0 where (x; �0) = m �newV ar v � = � (?; ?); if � = ?(p; �[p 7! v]); otherwisewhere p 62 dom(�)readV ar p � = � (?; ?); p 62 dom(�)(� p; �); otherwisewriteV ar p v � = � (?; ?); p 62 dom(�)((); �[p 7! v]); otherwiserunST m = x where (x; �) = m ;Figure 6. Semantics of State Combinators and PrimitivesFrom the point of view of the language, the type constructors ST and MutVar areopaque. To give them meaning, however, the semantics must provide them withsome structure. DST s a = State ! (Da � State)State = (N ,! V al)?DMutVar s a = N?A state transformer is a function which, given a state, produces a pair of results: avalue and a new state. The least de�ned state transformer is the function which,given any state, returns the pair containing the bottom value and the bottom state.A state is a lifted �nite partial function from locations (represented by naturalnumbers) to values. The bottom state is totally unde�ned. This is the state thatresults after an in�nite loop. We cannot tell even which variables exist, let alonewhat their values are. Non-bottom states are partial functions with well-de�neddomains which specify which variables exist. These variables may be mapped toany value, including bottom.References are denoted simply by natural numbers, except that it is possible tohave an unde�ned reference also, denoted by ?. The number represents a \location"in the state.It is worth noting in passing that the state parameter s is ignored in providingsemantic meaning. It is purely a technical device which shows up in the proofs ofsafety.The de�nitions of the state constants are given in Figure 6. Neither returnST northenST are strict in the state, but both are single threaded. Thus they sequentialisestate operations, and guarantee that only one copy of the state is required, withoutthemselves forcing operations to be performed.



24 newV arS v � = � (?; ?); if � = ?(�S(p); �[p 7! v]); otherwisewhere p 62 dom(�)readV arS q � = � (?; ?); p 62 dom(�)(� (��1S (q)); �); otherwisewriteV arS q v � = � (?; ?); p 62 dom(�)((); �[��1S (q); 7! v]); otherwisef�� : N ! N j � 2 Type; �� 1� to� 1gDMutVar s a = (ran (�S ))?Figure 7. Semantics of Indexed State PrimitivesIn contrast, the primitive operations are strict in the state. In order to allocatea new variable, for example, we need to know which locations are free. Similarly,with the other operations (in the semantics, we take p 62 dom(�) to be true if eitherp or � are bottom). This all has a direct operational reading which we discuss inSection 9.3.3.Finally, the meaning of runST is given by applying its state-transforming argu-ment to the empty state, and extracting the �rst component of the result. Notethat runST is not strict in the �nal state|it is simply discarded.6.4. SafetyIn any program there may be lots of concurrently active state threads which mustnot be allowed to interfere with one another. That is state changes performed byone thread must not a�ect the result of any other.We achieve this by using the type scheme for runST. We use the parametric natureof polymorphism to show that values within a state thread (including the �nalvalue) cannot depend on references generated by other state threads. Section 6.4.2contains the proof of the key lemma. Here, we will focus on the overall reasoningprocess, assuming that the lemma holds.6.4.1. Independence of threadsFigure 7 contains a more complex version of the semantics of the state primitivesin which the references are respectively coded and decoded. We assume an indexed



25family of injections � from the naturals to themselves to act as codings. This familyis indexed by types to allow the di�erent instances of the primitives to use di�erentencodings for the variables (because the coding function is selected on the basis ofthe particular instance type).When newV ar allocates a new location, rather than return the address of thelocation, it codes it using a particular coding function �. When readV ar andwriteV ar come to dereference the variable, they �rst apply the inverse of the codingfunction to �nd the true location, and then act as before.All the component parts of the state thread are eventually joined together usingthenST whose type forces these various parts to have the same state instance, andhence use the same coding function. Similarly, the fact that references carry thetype of their creator forces any dereferencer to be in the same instance, and alsouse the same coding function. Intuitively, therefore, the behaviour of a state threadshould be independent of the choice of coding function. Only if references managedto cross state boundaries, or if the state information could somehow become lost inthe process of typechecking, could something go wrong.The essence of the proof is that nothing does go wrong. The key lemma statesthat a state transformer which is polymorphic in the state is indeed independentof the coding function used. This means that state references do not cross stateboundaries, that is, no reference is dereferenced in any thread other than its creator.If the converse were so, then we could construct a state thread whose behaviourwas dependent in the particular coding function used (change the coding function,so e�ectively changing what the external reference points to), contradicting thelemma.Finally, as the choice of � is irrelevant, we are free to use the identity function,and dispense with codings completely. This gives the original semantics of Figure 6.6.4.2. Key LemmaThe development here relies on parametric polymorphism in the style of Mitchell& Meyer [1985], who detail what e�ect the addition of polymorphic constants hason parametricity. In general, we cannot hope that adding new polymorphic con-stants willy-nilly will leave parametricity intact. In particular, the addition of a\polymorphic equality" will have a disastrous e�ect on the level of parametricityimplied by a polymorphic type.Mitchell and Meyer show that parametricity is preserved so long as (1) each newtype constructor comes equipped with a corresponding operation on relations, and(2) the new polymorphic constants all satisfy the relevant logical relations impliedby their types.In our setting, this means that we have to give an account of what State andMutVar do to relations, and show that newVar, readVar and writeVar satisfy thelogical relations corresponding to their types.Because we are here concerned purely with the issue of separating distinct statethreads, we only focus on the polymorphism with repect to the state parameter.



26Consequently, we will assume that we only store values of some �xed type, X say, inthe state, and we completely sidestep the issue of proving that the retrieved valuesare of the same type as the MutVar reference which pointed to the location.We de�ne V ar s = MutV ar a XThus Var is a unary type constructor which we now use instead of MutVar.Let R and S be types, and let r : R $ S be a relation8 between R and S. LetqR be a reference of type V ar R and qS be type V ar S. We de�neqR(V ar r)qS � ��1R (qR) = ��1S (qS)�R(State r)�S � �R = �STwo variables are related if they point to the same location, and two states arerelated if they are equal.LemmanewVar, readVar and writeVar are all logical relations.ProofWe do the proof in the case of newVar. The others are just as easy. From the typeof newVar, we have to show that for all r : R$ S,newV arR a �(V ar r � State)newV arS a �Expanding out the de�nition gives,��1R (�R(p)) = ��1S (�S(p)) ^ �[p 7! v] = �[p 7! v]which is clearly true. 2As the constants are parametric, so are terms built from them (this is the forceof Mitchell and Meyer's result). Thus we deduce the key lemma as a corollary:LemmaIf m : 8s:ST s T (where s 62 FV (T )) then for any types R and S, and any state �we have, mR� = mS�As it is the instance of m which selects its coding for variables, the theorem statesthat the result of a polymorphic state transformer is independent of its internalcoding. This is exactly what we needed to show for our earlier reasoning to besupported.7. Haskell ArraysNext, we turn our attention to the implementation of immutable Haskell arrays.We will show that the provision of mutable arrays (Section 3) provides an elegantroute to an e�cient implementation of immutable arrays.



277.1. Implementing arrayAs we have already indicated, Haskell's immutable arrays are constructed by ap-plying the function array to a list of index-value pairs. For example, here is anarray in which each element is the square of its index:array (1,n) [(i,i*i) | i <- [1..n]]This expression makes use of a list comprehension [(i,i*i) | i <- [1..n]],which should be read \the list of all pairs (i,i*i) such that i is drawn fromthe list [1..n]. Now, it is obviously a big waste to construct the intermediatelist of index value pairs! It would be much better to compile this expression intoa simple loop which appropriately initialises each element of the array. Unfortu-nately, it is much less obvious how to achieve optimisation, at least in a way whichis not \brittle". For example, it would be a pity if the optimisation was lost if theexpression was instead written in this equivalent form:array (1,n) (map (\i -> (i,i*i)) [1..n])An obvious idea is to try to make use of deforestation. Deforestation is the genericname used for transformations which aim to eliminate intermediate lists | that is,lists used simply as \glue" between two parts of a functional program. For example,in the expressionmap f (map g xs)there is an intermediate list (map g xs) which can usefully be eliminated. Quite abit of work has been done on deforestation (Chin [1990]; Marlow & Wadler [1993];Wadler [1990]), and our compiler includes deforestation as a standard transforma-tion (Gill, Launchbury & Peyton Jones [1993]).The di�culty with applying deforestation to the construction of arrays is this: solong as array is a primitive, opaque operation, there is nothing deforestation cando, because deforestation inherently consists of melding together part of the producerof a list with part of its consumer. The 
ip side is this: if we can express arrayin Haskell, then our standard deforestation technique may be able to eliminate theintermediate list.With this motivation in mind, we now give a de�nition of array using mutablearrays:array :: Ix i => (i,i) -> [(i,v)] -> Array i varray bds ivs= runST (newArr bds unInit `thenST` \ arr ->mapST_ (fill arr) ivs `thenST_`freezeArr arr)where



28 unInit = error "Uninitialised element"fill arr (i,v) = writeArr arr i vThe de�nition can be read thus:1. The call to newArr allocates a suitably-sized block of memory.2. The call to mapST_ performs in sequence the actions (fill arr (i,v)), foreach (i,v) in the index-value list. Each of these actions �lls in one element ofthe array.3. The function freezeArray is a new primitive which converts the mutable arrayinto an immutable array:freezeArr :: Ix i => MutArr s i v -> ST s (Array i v)Operationally speaking, freezeArr takes the name of an array as its argument,looks it up in the state, and returns a copy of what it �nds, along with theunaltered state. The copy is required in case a subsequent writeArr changesthe value of the array in the state, but it is sometimes possible to avoid theoverhead of making the copy (see Section 9.3.4).4. Finally, the whole sequence is encapsulated in a runST. Notice the use of encap-sulation here. The implementation (or internal details) of array is imperative,but its speci�cation (or external behaviour) is purely functional. Even the pres-ence of state cannot be detected outside array.The important thing is that the list of index-value pairs, ivs is now explicitly con-sumed by mapST_, which gives enough leverage for our deforestation transformationto eliminate the intermediate list. The details of the deforestation transformationare given in Gill, Launchbury & Peyton Jones [1993], and are not germane here. Thepoint is simply that exposing the implementation of array to the transformationsystem is the key step.7.2. Accumulating arraysOf course, we can also de�ne other Haskell array \primitives" in a similar fashion.For example, accumArray is a standard Haskell array operation with type:accumArray :: Ix i => (a->b->a) -> a -> (i,i)-> [(i,b)] -> Array i aThe result of a call (accumArray f x bnds ivs) is an array whose size is deter-mined by bnds, and whose values are de�ned by separating all the values in the listivs according to their index, and then performing a left-fold operation, using f, on



29each collection, starting with the value x. Typical uses of accumArray might be ahistogram, for example:hist :: Ix i => (i,i) -> [i] -> Array i Inthist bnds is = accumArray (+) 0 bnds [(i,1)|i<-is, inRange bnds i]which counts the occurrences of each element of the list is that falls within therange given by the bounds bnds. Another example is bin sort:binSort :: Ix i => (i,i) -> (a->i) -> [a] -> Array i abinSort bnds key vs = accumArray (flip(:)) [] bnds [(key v,v)|v<-vs]where the value in vs are placed in bins according to their key value as de�nedby the function key (whose results are assumed to lie in the range speci�ed by thebounds bnds). Each bin | that is, each element of the array | will contain a listof the values with the same key value. The lists start empty, and new elements areadded using a version of cons in which the order of arguments is reversed. In bothexamples, the array is built by a single pass along the input list.The implementation of accumArray simple, and very similar to that of array:accumArray bnds f z ivs= runST (newArr bnds z `thenST` \a ->mapST_ (update a) ivs `thenST_`freezeArr a)whereupdate a (i,v) = readArr a i `thenST` \x->writeArr a i (f x v)If array and accumArray were primitive then the programmer would have norecourse if he or she wanted some other array-construction operator. Mutablearrays allow the programmer to de�ne new array operations without modifying thecompiler or runtime system. We describe a more complex application of the sameidea in Section 10.3.8. Other useful combinatorsWe have found it useful to expand the range of combinators and primitives beyondthe minimal set presented so far. This section presents the ones we have foundmost useful.



308.1. EqualityThe references we have correspond very closely to \pointers to variables". Oneuseful additional operation on references is to determine whether two references arealiases for the same variable (so writes to the one will a�ect reads from the other).It turns out to be quite straightforward to add an additional constant, eqMutVar:eqMutVar :: MutVar s a -> MutVar s a -> BooleqMutArr :: Ix i => MutArr s i v -> MutArr s i v -> BoolNotice that the result does not depend on the state|it is simply a boolean. Noticealso that we only provide a test on references which exist in the same state thread.References from di�erent state threads cannot be aliases for one another.8.2. FixpointIn lazy functional programs it is often useful to write recursive de�nitions such as(newTree, min) = f tree minHere, part of the result of f is passed into f. A standard example is a functionwhich replaces all the leaves of a tree with the minimumof all the leaves, in a singlepass of the tree (hence our choice of names in the example) (Bird [1984]). The alertreader may have noticed that it is impossible to write programs in this way if f isa state transformer. We might try:f tree min `thenST` \ (newTree, min) -> ...but alas the min result is not in scope at the call. What is needed is a new combi-nator fixST, with type:fixST :: (a -> ST s a) -> ST s aand the usual knot-tying semantics, which we depict thus:
State outState in

sNow we can write our recursive state transformer:fixST (\ ~(newTree, min) -> f tree min)(The \~" in this example speci�es that the tuple should be matched lazily. If theargument to fixST is a strict function, then of course the result of the fixST callis bottom.)



319. ImplementationThe whole point of expressing stateful computations in the framework that wehave described is that operations which modify the state can update the statein place. The implementation is therefore crucial to the whole enterprise, ratherthan being a peripheral issue. This section focuses on implementation issues, andappeals to some intuitions about what will generate \good code" and what will not.Readers interested in a more substantial treatment of such intuitions are referredto Peyton Jones [1987], Peyton Jones [1992].We have in mind the following framework:� The state of each encapsulated state thread is represented by a collection ofobjects in heap-allocated storage.� A reference is represented by the address of an object in heap-allocated store.� A read operation returns the current contents of the object whose reference isgiven.� A write operation overwrites the contents of the speci�ed object or, in the caseof mutable arrays, part of the contents.As the previous section outlined, the correctness of this implementation relies to-tally on the type system. Such a reliance is quite familiar: for example, the im-plementation of addition makes no attempt to check that its arguments are indeedintegers, because the type system ensures it. In the same way, the implementationof state transformers makes no attempt to ensure, for example, that references areonly used in the same state thread in which they were created; the type systemensures that this is so.9.1. Update in placeThe most critical correctness issue concerns the update-in-place behaviour of writeoperations. Why is update-in-place safe? It is safe because all the combinators(thenST, returnST, fixST) use the state only in a single-threaded manner (Schmidt[1985]); that is, they neither duplicate nor discard it (Figure 5). Furthermore, allthe primitive operations are strict in the state.It follows that a write operation can modify the state in place, because (a) it hasthe only copy of the incoming state, and (b) since it is strict in the incoming state,and the preceding operation will not produce its result state until it has computedits result, there can be no other as-yet-unexecuted operations pending on that state.Can the programmer somehow duplicate the state? No: since the ST type isopaque, the only way the programmer can manipulate the state is via the com-binators thenST and returnST and fixST. The programmer certainly does haveaccess to named references into the state. However, it is perfectly OK for these to



32be duplicated, stored in data structures and so on. Variables are immutable; it isonly the state to which they refer that is altered by a write operation.We �nd these arguments convincing, but they are certainly not formal. A formalproof would necessarily involve some operational semantics, and a proof that noevaluation order could change the behaviour of the program. We have not yetundertaken such a proof.9.2. Typechecking runSTSince runST has a rank-2 type, we needed to modify the type checker to include theextra rule RUN in Figure 4. The modi�cation is quite straightforward, becausethe rule for RUN is so similar to that for LET . All that is required is to check thatthe type inferred for the argument of runST has a type of the form ST s � , where sis an un-constrained type variable, not appearing in � .The RUN rule describes how to type-checking applications of runST. What ofother occurrences of runST? For example, the RUN rule does not say how to typethe following expression, in which runST appears as an argument:map runST xsWe side-step this di�culty by insisting that runST only appears applied to anargument, as implied by the syntax in Section 6.1. It might be possible to allowgreater generality, but performing type inference in the presence of unrestrictedrank-2 types is a much harder proposition, and one which is not necessary for ourenterprise. Kfoury [1992] and Kfoury & Wells [1994] explore this territory in detail.9.3. E�ciency considerationsIt would be possible to implement state transformers by providing the combinators(thenST, returnST, etc) and operations (readVar, writeVar etc) as primitives.But this would impose a very heavy overhead on each operation and worse still oncomposition. For example, a use of thenST would entail the construction in theheap of two function-valued arguments, followed by a procedure call to thenST. Thiscompares very poorly with simple juxtaposition of code, which is how sequentialcomposition is implemented in conventional languages!We might attempt to recover some of this lost e�ciency by treating state-transformeroperations specially in the code generator, but that risks complicating an alreadycomplex part of the compiler. Instead we implement state transformers in a waywhich is both direct and e�cient: we simply give Haskell de�nitions for the statetransformer type and its combinators. These de�nitions are almost precise translit-erations of the semantics given for them in Figure 59.



339.3.1. The state transformer implementationA state transformer, of type ST s a, is represented by a function from State s toa pair of the result, of type a and the transformed state.type ST s a = State s -> (a, State s)(This representation of ST is not, of course, exposed to the programmer, lest he orshe write functions which duplicate or discard the state.) The one respect in whichthis implementation di�ers from the semantics in Figure 5 is in the result type ofST: the semantics used a simple product, whereas a Haskell pair is a lifted product.(That is, the value ? di�ers from (?,?).) As we shall see, this distinction has anunfortunate implication for e�ciency.The de�nitions of thenST, returnST, and fixST follow immediately:returnST x s = (x,s)thenST m k s = k x s' where (x,s') = m sfixST k s = (r,s') where (r,s') = k r sThe beauty of this approach is that all the combinators can then be in-linedat their call sites, thus largely removing the \plumbing" costs. For example, theexpressionm1 `thenST` \v1 ->m2 `thenST` \v2 ->returnST ebecomes, after in-lining thenST and returnST, the much more e�cient expression\s -> let (v1,s1) = m1 s(v2,s2) = m2 s1in (e,s3)We have not so far given the implementation of runST, which is intriguing:runST m = r where (r,s) = m dummyStateSince its argument, m, works regardless of what state is passed to it, we simplypass a value representing the current state of the world. As we will see shortly (Sec-tion 9.3.3), this value is never actually looked at, so a constant value, dummyState,will do. We need to take care here, though. Consider the following expression,which has two distinct state threads:...(runST (newVar 1 `thenST` \v -> e1))......(runST (newVar 1 `thenST` \v -> e2))...



34After inlining runST and thenST we transform to:...(let (v,s1) = newVar 1 dummyState in e1 s1)......(let (v,s1) = newVar 1 dummyState in e2 s1)...Now, it look as though it would legitimate to share newVar 1 dummyState as acommon sub-expression:let (v,s1) = newVar 1 dummyStatein...(e1 s1)......(e2 s1)...but of course this transformation is bogus. The two dummyStates are distinct values!There are two solutions to this problem: do not inline runST, or alternatively,when inlining runST create a new constant dummyState on each occasion, akin toskolemization of logic variables.This provides us with a second reason why runST should not be regarded as astandard value (its type provided the �rst). Rather, runST is an eliminable languageconstruct.The code generator must, of course, remain responsible for producing the appro-priate code for each primitive operation, such as readVar, ccall, and so on. In ourimplementation we actually provide a Haskell \wrapper" for each primitive whichmakes explicit the evaluation of their arguments, using so-called \unboxed values".Both the motivation for and the implementation of our approach to unboxed valuesis detailed in Peyton Jones & Launchbury [1991], and we do not rehearse it here.9.3.2. StrictnessIn the previous section we produced the following code from a composition of m1and m2:\s -> let (v1,s1) = m1 s(v2,s2) = m2 s1in (e,s3)This might be better than the original, in which function-valued arguments arepassed to thenST, but it is still not very good! In particular, heap-allocated thunksare created for m1 s and m2 s1, along with heap-allocated selectors to extractthe components (v1, s1 and v2, s2, respectively). However, the program is nowexposed to the full range of analyses and program transformations implemented bythe compiler. If the compiler can spot that the above code will be used in a contextwhich is strict in either component of the result tuple, it will be transformed to\s -> case m1 s of



35(v1,s2) -> case m2 s1 of(v2,s2) -> (e,s2)This is much more e�cient. First m1 is called, returning a pair which is takenapart; then m2 is called, and its result taken apart before returning the �nal result.In our implementation, no heap allocation is performed at all. If m1 and m2 areprimitive operations, then the code implementing m2 simply follows that for m2,just as it would in C.It turns out that even relatively simple strictness analysis can often successfullyenable this transformation, provided that Haskell is extended in a modest butimportant regard. Consider the functionf :: MutVar s Int -> ST s ()f x = writeVar y 0 `thenST_`returnST ()Is f strict in its input state? Intuitively, it must be: its only useful result is itsresult state, which depends on its input state. This argument holds for any valueof type ST s (). Does the strictness analyser spot this strictness? Alas, it doesnot. After inlining, f becomes:f x s = let (_,s1) = writeVar y 0 sin((),s1)This de�nition is manifestly not strict in either argument: it will return a pairregardless of the values of its arguments. There are two problems, with a commoncause:� Haskell pairs are lifted, so that (?,?) is distinct from ?. The semantics inFigure 5 used an ordinary, unlifted product, so the lifting is not certainly notrequired by semantics.� The unit type, (), is also a lifted domain, with two values: () and ?. When wechose () as the result type of state transfomers which had no result we certainlydid not have in mind that two distinct values could be returned. Again, thelifting of the Haskell type () is not required.If neither pairs nor the unit type were lifted then it is easy to see that f is strict ins. Suppose s were ?: then because the primitive writeVar is strict, s1 would alsobe ?, so the result of f would be the pair ((),?). But if () were unlifted too, thisis the same as (?,?), which, if pairs are unlifted, is the same as ?.In short, in order to give the strictness analyser a real chance, a state transformermust return an unlifted pair, and the result type of a state transformer which isused only for its e�ect on the state should be an unlifted, one-point type. Thoughthis is an important e�ect, it is far from obvious; indeed, it only became clear tous as we were working on the �nal version of this paper.



36It is also regrettable that an occasionally-substantial performance e�ect shoulddepend on something as complex as strictness analysis. Indeed, we provide a variantof returnST, called returnStrictlyST, which is strict in the state, precisely toallow a programmer to enforce strictness, and hence ensure greater e�ciency. Ofcourse, if returnStrictlyST is used indiscriminately then the incremental lazinessof stateful computations (discussed in Section 5) is lost.In the special (but common) case of I/O state transformers, we can guaranteeto compile e�cient code, because the �nal state of the I/O thread will certainlybe demanded. Why? Because the whole point in running the program in the �rstplace is to cause some change to the real world! It is easy to use this strictnessproperty (which cannot, of course, be inferred by the strictness analyser) to ensurethat every I/O state transformer is compiled e�ciently.9.3.3. Passing the state aroundThe implementation of the ST type, given above, passes around an explicit state.Yet, we said earlier that state-manipulating operations are implemented by per-forming state changes in the common, global heap. What, then, is the role ofthe explicit state value which is passed around by the above code? It plays twoimportant roles.Firstly, the compiler \shakes the code around" quite considerably: is it possiblethat it might somehow end up changing the order in which the primitive opera-tions are performed? No, it is not. The input state of each primitive operation isproduced by the preceding operation, so the ordering between them is maintainedby simple data dependencies of the explicit state, which are certainly preserved byevery correct program transformation.Secondly, the explicit state allows us to express to the compiler the strictness ofthe primitive operations in the state. The State type is de�ned like this:data State s = MkState (State# s)That is, a state is represented by a single-constructor algebraic data type, whoseonly contents is a value of type State# s, the (�nally!) primitive type of states.The lifting implied by the MkState constructor corresponds exactly to the liftingin the semantics. Using this de�nition of State we can now de�ne newVar, forexample, like this:newVar init (MkState s#) = case newVar# init s# of(v,t#) -> (v, MkState t#)This de�nition makes absolutely explicit the evaluation of the strictness of newVarin its state argument, �nally calling the truly primitive newVar# to perform theallocation.



37We think of a primitive state | that is, a value of type State# s, for some types | as a \token" which stands for the state of the heap and (in the case of theI/O thread) the real world. The implementation never actually inspects a primitivestate value, but it is faithfully passed to, and returned from every primitive state-transformer operation. By the time the program reaches the code generator, therole of these state values is over, and the code generator arranges to generate nocode at all to move around values of type State#.9.3.4. ArraysThe implementation of arrays is straightforward. The only complication lies withfreezeArray, which takes a mutable array and returns a frozen, immutable copy.Often, though, we want to construct an array incrementally, and then freeze it,performing no further mutation on the mutable array. In this case it seems rathera waste to copy the entire array, only to discard the mutable version immediatelythereafter.The right solution is to do a good enough job in the compiler to spot this specialcase. What we actually do at the moment is to provide a highly dangerous operationunsafeFreezeArray, whose type is the same as freezeArray, but which workswithout copying the mutable array. Frankly this is a hack, but since we onlyexpect to use it in one or two critical pieces of the standard library, we couldn'twork up enough steam to do the job properly just to handle these few occasions.We do not provide general access to unsafeFreezeArray.10. Interleaved state transformersThe state-transformer composition combinator de�ned so far, thenST, is completelysequential: the state is passed from the �rst state transformer on to the second.But sometimes that is not what is wanted. Consider, for example, the operationof reading a �le. We may not want to specify the precise relative ordering ofthe individual character-by-character reads from the �le and other I/O operations.Rather, we may want the �le to be read lazily, as its contents is demanded.We can provide this ability with a new combinator, interleaveST:interleaveST :: ST s a -> ST s ainterleaveST m s = (r,s) where (r,s') = m sUnlike every other state transformer so far, interleaveST actually duplicates thestate! The \plumbing diagram" for (interleaveST s) is like this:
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State outState in

Result

sThe semantics of interleaveST are much less easy to de�ne and reason about thanthe semantics of our other combinators, given that our intended implementationremains that of update in place. The purpose of this section is to provide severalmotivating examples for interleaveST, while leaving open the question of how toreason about whether it is being used \safely". In this context, we regard a use ofinterleaveST as \safe" if the resulting program can still be evaluated in any orderthat respects data dependencies.10.1. Lazy �le readOne way for interleaveST to be safe is to regard it as splitting the state into twodisjoint parts. In the lazy-�le-read example, the state of the �le is passed into onebranch, and the rest of the state of the world is passed into the other. Since thesestates are disjoint, an arbitrary interleaving of operations in each branch of the forkis legitimate.Here is an implementation of lazy �le read, using interleaveST:readFile :: String -> IO [Char]readFile filename = openFile filename `thenST` \f ->interleaveST (readCts f)readCts :: FileDescriptor -> IO [Char]readCts f = readCh f `thenST` \c ->if c == eofCharthen returnST []else readCts f `thenST` \cs ->returnST (c:cs))Notice that the recursive call to readCts does not immediately read the rest of the�le. Because thenST and the following returnST are non-strict, the list c:cs willbe returned without further ado. If cs is ever evaluated, the recursive readCts willthen (and only then) be performed. This is a good example of laziness in action.Even though operations are being rigidly sequenced | in this case the reads ofsuccessive characters of the �le | the rate at which this sequence is performed isdriven entirely by lazy evaluation. The single call to interleaveST simply allowsthese operations to occur asynchronously with respect to other I/O operations onthe main \trunk".



3910.2. Unique-supply treesIn the lazy �le-read example, the use of interleaveST could be regarded as split-ting the state into two disjoint parts. However, we have found some compellingsituations in which the forked-o� thread quite deliberately shares state with the\trunk". This section explores the �rst such example.A common problem in functional programs is to distribute a supply of uniquenames around a program. For example, a compiler may want to give a uniquename to each identi�er in the program being compiled. In an imperative programone might simply call GenSym() for each identi�er, to allocate a unique name froma global supply, and to side-e�ect the supply so that subsequent calls to GenSym()will deliver a new value.In a functional program matters are not so simple; indeed, several papers havediscussed the problem (Augustsson, Rittri & Synek [1994]; Hancock [1987]; Wadler[1992a]). The rest of this section shows a rather elegant implementation of the bestapproach, that of Augustsson, Rittri & Synek [1994]. The idea is to implement apair of abstract data types, UniqueSupply and Unique, with the following signature:newUniqueSupply :: IO UniqueSupplysplitUniqueSupply :: UniqueSupply -> (UniqueSupply, UniqueSupply)getUnique :: UniqueSupply -> Uniqueinstance Eq Uniqueinstance Ord Uniqueinstance Text UniqueThe three instance declarations say that the Unique type has de�ned on it equalityand ordering operations, and mappings to and from strings. Naturally, the idea isthat the two UniqueSupplys returned by splitUniqueSupply are forever separate,and can never deliver the same Unique. The implementation is given some extrafreedom by making newUniqueSupply into an I/O operation. Di�erent runs of thesame program are therefore permitted to allocate uniques in a di�erent order | allthat matters about Uniques is that they are distinct from each other.One possible implementation would represent a UniqueSupply and a Unique by a(potentially very long) bit-string. The splitUnique function would split a supplyinto two by appending a zero and a one to it respectively. The trouble is, of course,that the name supply is used very sparsely.The idea suggested by Augustsson, Rittri & Synek [1994] is to represent a UniqueSupplyby an in�nite tree, which has a Unique at every node, and two child UniqueSupplys:data UniqueSupply = US Unique UniqueSupply UniqueSupplyNow the implementation of splitUniqueSupply and getUnique are trivial, and allthe excitement is in newUniqueSupply. Here is its de�nition, assuming for the sakeof simplicity that a Unique is represented by an Int:



40type Unique = IntnewUniqueSupply :: IO UniqueSupplynewUniqueSupply= newVar 0 `thenST` \ uvar ->letnext :: IO Uniquenext = interleaveST (readVar uvar `thenST` \ u ->writeVar uvar (u+1) `thenST_`returnStrictlyST u)supply :: IO UniqueSupplysupply = interleaveST (next `thenST` \ u ->supply `thenST` \ s1 ->supply `thenST` \ s2 ->returnST (US u s1 s2))insupplyThe two uses of interleaveST specify that the relative ordering of the state changesin next, and in the two uses of supply, is deliberately left to the implementation.The only side e�ects are in next, which allocates a new Unique, so what thisamounts to is that the uniques are allocated in the order in which the Uniques areevaluated, which is just what we wanted!If the program was recompiled with, say, a di�erent analysis technique whichmeant that the evaluation order changed, then indeed di�erent uniques would begenerated. But since the whole mkUniqueSupply operation is typed as an I/Ooperation there is no reason to suppose that the same uniques will be generated, anice touch.There is one important subtlety in the code, namely the use of returnStrictlySTin the de�nition of next. The trap (into which we fell headlong) is this: sinceinterleaveST discards the �nal state, and the result of the writeVar is also dis-carded, if returnST is used instead there is nothing to force the writeVar to takeplace at all ! Indeed, if we used the standard returnST, no writeVars would beperformed, and each readVar would see the same, undisturbed value. Of course,what we want to happen is that once the thread in next's right-hand-side is started,then it must run to completion. That is exactly what returnStrictlyST achieves.The di�erence between returnST and returnStrictlyST is simply that the lat-ter is strict in the state. Operationally, it will not deliver a result at all until ithas evaluated its input state. We can picture it like this (compare the picture forreturnST in Section 2.1):
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State outState inIn this picture, the result is held up by the \valve" until the state is available.Despite this subtlety, this code is a distinct improvement on that given in Au-gustsson, Rittri & Synek [1994], which has comments such as \The gensym functionmust be coded in assembler" and \A too-clever compiler might recognise the re-peated calls to gen x and [generate] code which creates sharing...if such compileroptimisations cannot be turned o� or fooled, one must generate code for gen [aswell as gensym] by hand.".10.3. Lazy arraysA second example of the use of interleaveST where the forked-o� thread sharesstate with the trunk concerns so-called lazy arrays. Haskell arrays are strict in thelist of index-value pairs, and in the indices in this list (though not in the values).An alternative, and more powerful, array constructor would have the same type asarray, but be non-strict in the index-value pairs:lazyArray :: Ix i => (i,i) -> [(i,v)] -> Array i vWhat does it mean for lazyArray to be non-strict in the index-value pairs? Pre-sumably, it must return an array immediately, and search the list only when thearray is indexed. Since checking for duplicate indices would entail searching thewhole list, lazyArray simply returns the value in the �rst index-value pair in thelist with the speci�ed index. In short, the semantics of indexing a lazy array isprecisely that of searching an association list | except that, of course, we hopethat it will be more e�cient. Figure 8 gives a (rather amazing) program which useslazy arrays to compute prime numbers using the sieve of Eratosthenes.The basis of the algorithm is an array minFactorwhich, for each index, stores theminimumfactor (>1) of that index. A number is prime, therefore, if the value storedat its index in minFactor is equal to the number itself. The function multiplesgenerates one or more multiples of its argument (each paired with its argument)by �rst returning its argument, and then, if the argument is prime, returning moremultiples. Note that multiple always returns its argument as a multiple beforechecking its primality so guaranteeing that minFactor will have been initialised (ifnot by this call of multiples, then by a previous). This prevents the program fromentering a black hole (deadlock).How can we implement lazyArray? The e�ect we want to achieve is:� lazyArray allocates and initialises a suitable array, and returns it immediatelywithout looking at the index-value pairs.



42primesUpTo :: Int -> [Int]primesUpTo n = filter isPrime [2..n]whereminFactor :: Array Int IntminFactor = lazyArray (2,n) (concat (map multiples [2..n]))isPrime p :: Int -> BoolisPrime p = minFactor!p == pmultiples :: Int -> [(Int,Int)]multiples k = (k,k) : if isPrime kthen [(m,k) | m <- [2*k,3*k..n]]else []Figure 8. Computing primes using the Sieve of Eratosthenes, using a lazy array� When this array is indexed, with the standard (!) operator, the index-value listis searched for the speci�ed index. As a side e�ect of this search, the array is�lled in with all the index-value pairs encountered, up to and including the indexsought. When this index is found the search terminates, and the correspondingvalue is returned.� If the array is subsequently indexed at the same index, the value is returnedimmediately.This behaviour is not easy to achieve in Haskell! It relies inherently on imperativeactions. The fact that the results are independent of the order in which arrayelements are accessed is a deep property of the process. Nevertheless, we canexpress it all with the help of interleaveST; the code is given in Figure 9.Referring �rst to Figure 9, lazyArray allocates the following mutable values:� A variable, feederVar, to hold the \feeder-list" of index-value pairs.� A mutable array, valArr, in which the result of the whole call to lazyArray isaccumulated.� A mutable array of booleans, doneArr, whose purpose is to record when the cor-responding slot of valArr has been assigned with its �nal value. Each elementof the doneArr is initialise to False.Next, lazyArray initialises each slot in valArr by calling initVal, de�ned inthe let. Finally, lazyArray freezes the array and returns the frozen value. Here,we must use unsafeFreezeArray because the whole idea is that valArr is go-ing to be mutated as a side e�ect of the evaluation of its elements. (Recall that



43lazyArray :: Ix i => (i,i) -> [(i,val)] -> Array i vallazyArray bounds feederList= runST (newVar feederList `thenST` \ feederVar ->newArray bounds False `thenST` \ doneArr ->newArray bounds initial `thenST` \ valArr ->letinitVal k = interleaveST (readVar feederVar `thenST` \ ivs ->writeVar feederVar badVal `thenST_`fillUntil k ivs `thenST` \ ivs' ->writeVar feederVar ivs' `thenST_`readArray valArr ix) `thenST` \ delayedVal ->writeArray valArr k delayedValfillUntil k [] = noValue kfillUntil k ((i,v) : ivs)= readArray doneArr i `thenST` \ done ->(if not done thenwriteArray doneArr i True `thenST_`writeArray valArr i velsereturnST () ) `thenST_`if i == k thenreturnST ivselsefillUntil k ivsinmapST initVal (range bounds) `thenST_`unsafeFreezeArr valArr )whereinitial = error "lazyArray: uninitialised element"badVal = error "lazyArray: an index depends on a later value"noValue k = error ("lazyArray: no value for: " ++ show (index bounds k))Figure 9. An implementation of lazy arrays



44
done_arr

val_arr

1 2 3 4 5

True False True False True

6 1810

(4,7)(2,10)

initVal 2 initVal 4

f_list_varFigure 10. Lazy array constructionunsafeFreezeArray converts a mutable array to a value of the immutable-arraytype, without copying the array; further mutations of the mutable array will there-fore also a�ect the \immutable" value.)Referring now to the local functions: the function initVal initialises the slot ofvalArr with an interleaved state transformer which, when its result is demanded,will:� read feederVar to get the current list of as-yet-unconsumed index-value pairs;� call fillUntil, to consume the list of index-value pairs, writing each value tothe appropriate slot of valArr (the array done records whether that elementhas already been written), until the sought-for index is found;� write the depleted list of index-value pairs back to feederVar;� read the array to deliver the desired value.Further accesses to the same array slot will now �nd the �nal value, rather thanthe interleaved state transformer. All of this is illustrated by Figure 10, whichillustrates an intermediate state of a lazy-array value. The array has �ve slots, ofwhich three have already been �lled in. The remaining two are speci�ed by thedepleted portion of the list of index-value pairs, contained in feederVar.



4510.4. Parallel state transformersA careful reading of newUniqueSupply or lazyArray reveals an important respectin which both are unsafe (in the sense of independence of evaluation order). Bothrely on reading a variable and writing back a modi�ed value | in the case ofnewUniqueSupply the variable is called uvar, while in lazyArray it is feederVar.Implicitly, we have assumed that if the read takes place then so will the write,and so they will in any sequential normal-order implementation. However, if two\threads" are executed simultaneously (which is one legitimate execution order)then this assumption might not hold, and the programs would fail.This is not just a purist's objection, because an obvious development is a variantinterleaveST which starts a concurrent process to execute the forked-o� thread.Such a variant, which we call forkST, is very useful. For example, in a graphicalI/O system it might be used to start a concurrent process to handle I/O in a newpop-up window, independent of, and concurrent with, other I/O operations.In e�ect, interleaveST forces us to address the usual textbook problems ofmutual exclusion and synchronisation that must be solved by any system supportingboth concurrency and shared state. We are by no means the �rst to meet theseissues in a functional setting. Concurrent ML (Reppy [1991]), and the I-structures(Arvind, Nikhil & Pingali [1989]) and M-structures (Barth, Nikhil & Arvind [1991])of Id (Nikhil [1988]) are obvious examples. We are currently studying how toincorporate some of these now-standard solutions in our framework.10.5. SummaryIt should be clear by now that interleaveST has very undesirable properties. Itduplicates and discards the state, which gives rise to a very subtle class of pro-gramming errors. We have so far failed to develop good techniques for reasoningabout its correctness. At �rst we wondered about ways to ensure that the twostate threads use di�erent variables, but two of our most interesting applications,lazyArray and newUniqueSupply, deliberately perform side e�ects on shared state.Their correctness depends on (relatively) deep meta-reasoning, and a certain sortof atomicity (for example, the read and write of uvar must take place atomicallyin next in newUniquesupply).Should we outlaw interleaveST on the grounds that it is insu�ciently well be-haved? Not necessarily. Outlawing interleaveST would simply drive its function-alitly underground rather than prevent it happening. For example, we want tohave lazy �le reading. If it cannot be implemented in Haskell then it will have tobe implemented \underground" as a primitive operation written in C or machinecode. The same goes for unique-supply trees and lazy arrays.Implementing such operations in C does not make them more hygienic or easyto reason about. On the contrary, it is much easier to understand, modify andconstruct variants of them if they are implemented in a Haskell library modulethan if they are embedded in the runtime system.



46The need for special care to be taken is 
agged by the use of interleaveST,which identi�es a proof obligation for the programmer to show that the results ofthe program are nevertheless independent of evaluation order. We fear that theremay be no absolutely secure system | that is, one which guarantees the Church-Rosser property | which is also expressive enough to describe the programs whichsystems programmers (at least) want to write, such as those above. We do, however,regard interleaveST as useful primarily for systems programmers.11. Related workMonads were introduced to computer science by Moggi in the context of writingmodular language semantics (Moggi [1989]). He noticed that denotational seman-tics of languages could be factored into two parts: what happens to values, and theunderlying computational model. Furthermore, all the usual computational mod-els satis�ed the categorical de�nition of monads (often called triples in categorytheory) including state, exceptions, jumps, and so on. Wadler subsequently wroteseveral highly accessible papers showing how monads could be similarly used asa programming style in conventional functional programming languages (Wadler[1992a]; Wadler [1992b]; Wadler [1990]).Based on this work, we developed a monadic approach to I/O (Peyton Jones &Wadler [1993]) and state (Launchbury [1993]) in the context of non-strict purely-functional languages. The approach taken by these papers has two major short-comings:� State and input/output existed in separate frameworks. The same general ap-proach can handle both but, for example, di�erent combinators were requiredto compose stateful computations from those required for I/O-performing com-putation.� State could only safely be handled if it was anonymous. Consequently, it wasdi�cult to write programs which manipulate more than one piece of stateat once. Hence, programs became rather \brittle": an apparently innocuouschange (adding an extra updatable array) became di�cult or impossible.Both these shortcomings are solved in this paper, the core of which appeared earlier(Launchbury & Peyton Jones [1994]).Several other languages from the functional stable provide some kind of state. Forexample, Standard ML provides reference types, which may be updated (Milner &Tofte [1990]). The resulting system has serious shortcomings, though. The meaningof programs which use references depends on a complete speci�cation of the orderof evaluation of the program. Since SML is strict this is an acceptable price to pay,but it would become unworkable in a non-strict language where the exact orderof evaluation is hard to �gure out. What is worse, however, is that referentialtransparency is lost. Because an arbitrary function may rely on state accesses, itsresult need not depend purely on the values of its arguments. This has additional



47implications for polymorphism, leading to a weakened form in order to maintaintype safety (Tofte [1990]). We have none of these problems here.The data
ow language Id provides I-structures and M-structures as mutabledatatypes (Nikhil [1988]). Within a stateful program referential transparency islost. For I-structures, the result is independent of evaluation order, provided thatall sub-expressions are eventually evaluated (in case they side-e�ect an I-structure).For M-structures, the result of a program can depend on evaluation order. Com-pared with I-structures and M-structures, our approach permits lazy evaluation(where values are evaluated on demand, and may never be evaluated if they arenot required), and supports a much stronger notion of encapsulation. The big ad-vantage of I-structures and M-structures is that they are better suited to parallelprogramming than is our method.The Clean language takes a di�erent approach (Barendsen & Smetsers [1993]).The Clean type system supports a form of linear types, called \unique types". Avalue whose type is unique can safely be updated in place, because the type systemensures that the updating operation has the sole reference to the value. The contrastwith our work is interesting. We separate references from the state to which theyrefer, and do not permit explicit manipulation of the state. Clean identi�es thetwo, and in consequence requires state to be manipulated explicitly. We allowreferences to be duplicated, stored in data structures and so on, while Clean doesnot. Clean requires a new type system to be explained to the programmer, while oursystem does not. On the other hand, the separation between references and stateis sometimes tiresome. For example, while both systems can express the idea of amutable list, Clean does so more neatly because there is less explicit de-referencing.The tradeo� between implicit and explicit state in purely-functional languages isfar from clear.There are signi�cant similarities with Gi�ord and Lucassen's e�ect system whichuses types to record side e�ects performed by a program (Gi�ord & Lucassen[1986]). However, the e�ects system is designed to delimit the e�ect of side ef-fects which may occur as a result of evaluation. Thus the semantic setting is stillone which relies on a predictable order of evaluation. In another way, though, e�ectsystems are much more expressive than ours, because they provide a simple way todescribe combinations of local bits of state. For example, one might havef :: a!region1 bg :: c!region2 dh :: e!region1[region2 fwhere h is de�ned using f and g. The side e�ects of f and g cannot interfere witheach other (since they modify di�erent regions) so they can proceed asynchronouslywith respect to each other.Our work also has strong similarities with Odersky, Rabin and Hudak's �var(Odersky, Rabin & Hudak [1993]), which itself was in
uenced by the ImperativeLambda Calculus (ILC) of Swarup, Reddy & Ireland [1991]. ILC imposed a rigidstrati�cation of applicative, state reading, and imperative operations. The type of
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