
Higher-Order and Symbolic Computation, 12, 285–299 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Continuation-Based Multiprocessing

MITCHELL WAND ∗
Indiana University, Bloomington, IN 47405

Abstract. Any multiprocessing facility must include three features: elementary exclusion, data protection, and
process saving. While elementary exclusion must rest on some hardware facility (e.g., a test-and-set instruction),
the other two requirements are fulfilled by features already present in applicative languages. Data protection may
be obtained through the use of procedures (closures or funargs), and process saving may be obtained through the
use of thecatch operator. The use ofcatch, in particular, allows an elegant treatment of process saving.

We demonstrate these techniques by writing the kernel and some modules for a multiprocessing system. The
kernel is very small. Many functions which one would normally expect to find inside the kernel are completely
decentralized. We consider the implementation of other schedulers, interrupts, and the implications of these ideas
for language design.

Keywords: continuation, multiprocessing, scheme, operating systems, language design

1. Introduction

In the past few years, researchers have made progress in understanding the mechanisms
needed for a well-structured multi-processing facility. There seems to be universal agree-
ment that the following three features are needed:

1. Elementary exclusion
2. Process saving
3. Data protection

By elementary exclusion, we mean some device to prevent processors from interfering
with each other’s access to shared resources. Typically, such an elementary exclusion may
be programmed using a test and set instruction to create a critical region. Such critical
regions, however, are not by themselves adequate to describe the kinds of sharing which
one wants for controlling more complex resources such as disks or regions in highly struc-
tured data bases. In these cases, one uses an elementary exclusion to control access to a
resource manager (e.g., a monitor [11] or serializer [1]), which in turn regulates access to the
resource.

Unfortunately, access to the manager may then become a system bottleneck. The standard
way to alleviate this is to have the manager save the state of processes which it wishes to
delay. The manager then acts by taking a request, considering the state of the resource, and

∗Current address: College of Computer Science, Northeastern University, 360 Huntington Avenue, 161CN
Boston, MA 02115, USA.



286 WAND

either allowing the requesting program to continue or delaying it on some queue. In this
picture, the manager itself does very little computing, and so becomes less of a bottleneck.

To implement this kind of manager, one needs some kind of mechanism for saving the
state of the process making a request.

The basic observation of this paper is that such a mechanism already exists in the literature
of applicative languages: thecatch operator [14, 15, 21, 25]. This operator allows us to
write code for process-saving procedures with little or no fuss.

This leaves the third problem: protecting private data. It would do no good to write
complex monitors if a user could bypass the manager and blithely get to the resource. The
standard solution is to introduce a class mechanism to implement protected data. In an
applicative language, data may be protected by making it local to a procedure (closure).
This idea was exploited in [19], but has been unjustly neglected. We revive it and show
how it gives an elegant solution to this problem.

We will demonstrate our solution by writing the kernel and some modules for a multi-
processing system. The kernel is very small. Many functions which one would normally
expect to find inside the kernel, such as semaphore management [2], may be completely de-
centralized because of the use ofcatch. Our system thus answers one of the questions of [3]
by providing a way to drastically decrease the size of the kernel. We have implemented the
system presented here (in slightly different form) using the Indiana SCHEME 3.1 system
[26].

The remainder of this paper proceeds as follows: In Section 2, we discuss our assumptions
about the system under which our code will run. Sections 3 and 4 show how we implement
classes and process-saving, respectively. In Section 5 we bring these ideas together to write
the kernel of a multiprocessing system. In Sections 6 and 7 we utilize this kernel to write
some scheduling modules for our system. In Section 8, we show how to treat interrupts.
Last, in Section 9, we consider the implications of this work for applicative languages.

2. The model of computation

Our fundamental model is that of a multiprocessor, multiprocess system using shared mem-
ory. That is, we have many segments of code, calledprocesses, which reside in a single
shared random-access memory. The extent to which processes actually share memory is
to be controlled by software. We have several active units calledprocessorswhich can
execute processes. Several processors may be executing the same process simultaneously.
We make the usual assumption that memory access marks the finest grain of interleaving;
that is, two processors may not access (read or write) the same word in memory at the same
time. This elementary memory exclusion is enforced by the memory hardware.

At the interface between the processes and the processors is a distinguished process called
the kernel. The kernel’s job is to assign processes which are ready to run to processors
which are idle. In a conventional system, e.g., [22], this entails keeping track of many
things. We shall see that the kernel need only keep track of ready processes.

It may be worthwhile to discuss the author’s SCHEME 3.1 system, which provided the
context for this work. SCHEME is an applicative-order, lexically-scoped, full-funarg dialect
of LISP [25]. The SCHEME 3.1 system at Indiana University translates input Scheme code



CONTINUATION-BASED MULTIPROCESSING 287

into the code for a suitable multistack machine. The machine is implemented in LISP. Thus,
we were under the constraint that we could write no LISP code, since such an addition would
constitute a modification to the machine. The system simulates a multiprocessor system by
means of interrupts, using a protocol to be discussed in Section 8. However, all primitive
operations, including the application of LISP functions, are uninterruptible. This allows us
to write an uninterruptible test-and-set operation, such as

(de test-and-set-car (x)
(prog2 nil (car x) (rplaca x nil)))

which returns thecar of its argument and sets thecar to nil.
Two other features of SCHEME are worth mentioning. First, SCHEME uses call-by-

value to pass parameters. That means that after an actual parameter is evaluated, a new
cons-cell is allocated, and in this new cell a pointer to the evaluated actual parameter is
planted. (In the usual association list implementation, the pointer is in the cdr field; in the
rib-cage implementation [24], it is in the car.) This pointer may be changed by the use of
theasetq procedure. Thus, if we write

(define scheme-demo-1 (x)
(block ; block = PROGN

(asetq x 3)
((lambda (x) (asetq x 4)) x)
x))

any call toSCHEME-DEMO-1 always returns 3, since the second asetq changes a different cell
from the first one. (This feature of applicative languages has always been rather obscure.
See [17] Section 1.8.5 for an illuminating discussion.) The second property on which
we depend is that the “stack” is actually allocated from the LISP heap usingcons and
is reclaimed using the garbage collector. This allows us to be quite free in our coding
techniques. We shall have more to say about this assumption in our conclusions.

3. Implementing classes

For us, the primary purpose of the class construct is to provide a locus for the retention of
private information. In Simula [6], a class instance is an activation record which can survive
its caller. In an applicative language, such a record may be constructed in the environment
(association list) of a closure (funarg). This idea is stated clearly in [23]; we discuss it
briefly here for completeness.

For example, a simple cons-cell may be modelled by:

(define cons-cell (x y)
(lambda (msg)

(cond
((eq msg ’car) x)



288 WAND

((eq msg ’cdr) y)
((eq msg ’rplaca)
(lambda (val) (asetq x val)))
((eq msg ’rplacd)
(lambda (val) (asetq y val)))
(t (error ’bad-msg)))))

(define car (x) (x ’car))

(define cdr (x) (x ’cdr))

(define rplaca (x v) ((x ’rplaca) v))

(define rplacd (x v) ((x ’rplacd) v))

Here a cons cell is a function which expects a single argument; depending on the type of
argument received, the cell returns or changes either of its components. (We have arbitrarily
chosen one of the several ways to do this). Such behaviorally defined data structures are
discussed in [10, 20, 23]; at least one similar object was known to Church [5], cited in [24].

Another example, important for our purposes, is

(define busy-wait ()
(let ((x (cons t nil)))

(labels
((self (lambda (msg)

(cond
((eq msg ’P)
(if (test-and-set-car x)

t
(self ’P)))

((eq msg ’V)
(car (rplaca x t)))
(t (error ’bad-msg))))))

self)))

busy-wait is a function of no arguments, which, when called, creates a new locus of
busy-waiting. It does this by creating a function with a new private variablex. (Thisx is
guaranteed new because of the use of call-by-value). This returned function (here denoted
self) expects a single argument, eitherP or V. Calling it with P sends it into a test-and-set
loop, and calling it withV resets thecar of x to t, thus releasing the semaphore. There
is no way to access the variablex except through calls on this function. Note that we are
not advocating busy-waiting (except perhaps in certain very special circumstances). Any
use ofbusy-wait in the rest of this paper may be safely replaced with any hardware-
supported elementary exclusion device which the reader may prefer. Our concern is how to
build complex schedulers from these elementary exclusions. In particular, we shall consider
better ways to build a semaphore in Section 6.



CONTINUATION-BASED MULTIPROCESSING 289

4. Process saving withcatch

catch is an old addition to applicative languages. The oldest version known to the author
is Landin’s, who called it either “pp” (for “program point”) [15] or “J-lambda” [14].1

Reynolds [21] called it “escape.” A somewhat restricted form ofcatch exists in LISP 1.5,
aserrset [16]; another version is found in MACLISP, as the paircatch andthrow. The
form we have adopted is Steele and Sussman’s [25], which is similar to Reynolds’.

In SCHEME,catch is a binding operator. Evaluation of the expression(catch id
expr) causes the identifierid to be bound (using call-by-value) to a “continuation object”
which will be described shortly. The expressionexpr is then evaluated in this extended
environment.

The continuation object is a function of one argument which, when invoked, returns
control to the caller of the catch expression. Control then proceeds as if thecatchexpression
had returned with the supplied argument as its value. This corresponds to the notion of an
“expression continuation” in denotational semantics.

To understand the use ofcatch, we may consider some examples.

(catch m (cons (m 3) ’a))

returns 3; when the(m 3) is evaluated, it is as if the entirecatch expression returned 3.
The form in which we usually will usecatch is similar. In

(define foo (x) (catch m --body-- ))

evaluation of(m -junk-) causes the functionfoo to return to its caller with the value of
-junk-.

The power ofcatch arises when westorethe value ofm and invoke it from some other
point in the program. In that case, the caller offoo is restarted withm’s argument. The
portion of the program which calledm is lost, unless it has been preserved with a strategically
placedcatch. A small instance of this phenomenon happened even in our first example—
there,m’s caller was thecons which was abandoned. Calling a continuation function is
thus much like jumping into hyperspace—one loses track entirely of one’s current context,
only to re-emerge in the context that set the continuation.

There will actually be very few occurrences ofcatch in the code we write. For the
remainder of this section and the next, we shall consider what things we can do with
continuations which have already been created bycatch. When we get to Section 6, we
shall start to usecatch in our code.

We shall use continuations to represent processes. A process is a self-contained compu-
tation. We may represent a process as a pair consisting of a continuation and an argument
to be sent to that continuation. This corresponds to the notion of “command continuation”
in denotational semantics.

(define cons-process (cont arg)
(lambda (msg)

(cond
((eq msg ’run-it) (cont arg))
(t (error ’bad-msg)))))



290 WAND

Here we have defined a process as a class instance with two components, a continuation and
an argument, and a single operation,run-it, which causes the continuation to be applied to
the argument, thus starting the process. Becausecont is a continuation, applying it causes
control to revert to the place to which it refers, and the caller of(x ’run-it) is lost. This
is not so terrible, since the caller of(x ’run-it) may have been saved as a continuation
someplace else.

5. The kernel

We now have enough machinery to write the kernel of our operating system. The kernel’s
job is to keep track of those processes which are ready to run, and to assign a process to any
processor which asks for one. The kernel is therefore a class instance which keeps a queue
of processes and has two operations: one to add a process to the ready queue and one to
assign a process to a processor (thereby deleting it from the ready queue).

We shall need to do some queue manipulation. We therefore assume that we have a
function(create-queue) which creates an empty queue, a function(addq q x) which
has the side effect of adding the value ofx to the queueq, and the function(deleteq q),
which returns the top element of the queueq, with the side-effect of deleting it fromq.

We may now write the code for the kernel:

(define gen-kernel ()
(let ((ready-queue (create-queue))

(mutex (busy-wait)))
(lambda (msg)

(cond
((eq msg ’make-ready)
(lambda (cont arg)

(block
(mutex ’P)
(addq ready-queue (cons-process cont arg))
(mutex ’V))))

((eq msg ’dispatch)
(mutex ’P)
(let ((next-process (deleteq ready-queue)))

(block
(mutex ’V)
(next-process ’run-it))))))))

(asetq kernel (gen-kernel))

(define made-ready (cont arg)
((kernel ’make-ready) cont arg))

(define dispatch () (kernel ’dispatch))

We have now defined the two basic functions,make-ready anddispatch. The call
(make-ready cont arg) puts a process, built fromcont andarg, on the ready queue.
To do this, it must get past a short busy-wait. (This busy-wait is always short because the



CONTINUATION-BASED MULTIPROCESSING 291

kernel is never tied up for very long. This construction is also in keeping with the idea of
building complex exclusion mechanisms from very simple ones.) It then puts the process on
the queue, releases the kernel’s exclusion, and exits. (Given the code for busy-wait above,
it always returnst. The value returned must not be a pointer to any private data).
dispatch is subtler. A processor will execute(dispatch) whenever it decides it has

nothing better to do. Normally, a call todispatch would be preceded by a call tomake-
ready, but this need not be the case. After passing through the semaphore, the next waiting
process is deleted from the ready queue and assigned tonext-process. A (mutex ’V)
is executed, and thenext-process is started by sending it arun-it signal.

The subtlety is in the order of these last two operations. They cannot be reversed, since
oncenext-process is started, there would be no way to reset the semaphore. The given
order is safe however, because of the use of call-by-value. Every call on(dispatch)
uses a different memory word fornext-process. Therefore, the call(next-process
’run-it) uses no shared data and may be executed outside the critical region.

(A few explanatory words on the code itself are in order. First, note that(kernel
’make-ready) returns a function which takes two arguments and performs the required
actions. (kernel ’dispatch), however, performs its actions directly. We could have
made(kernel ’dispatch) return a function of no arguments, but we judged that to be
more confusing than the asymmetry. Second,block is SCHEME’s sequencing construct,
analogous toprogn. Also, cond uses the so-called “generalized cond,” with an implicit
block (or progn) on the right-hand-side of each alternative.)

6. Two better semaphores

Our functionbusy-wait would be an adequate implementation of a binary semaphore if
one was sure that the semaphore was never closed for very long. In this section, we shall
write code for two better implementations of semaphores.

For our first implementation, we use the kernel to provide an alternative to the test-and-set
loop. If the test-and-set fails, we throw the remainder of the current process on the ready
queue, and execute aDISPATCH. This is sometimes called a “spin lock.”

(define spin-lock-semaphore ()
(let ((x (cons t nil)))

(labels
((self (lambda (msg)

(cond
((eq msg ’P)
(cond

((test-and-set-car x) t)
(t

(give-up-and-try-later)
(self ’P))))

((eq msg ’V)
(car (rplaca x t)))
(t (error ’bad-msg))))))

self)))



292 WAND

(define give-up-and-try-later ()
(catch caller

(block
(make-ready caller t)
(dispatch) )))

Here, the key function isgive-up-and-try-later. It puts on the ready-queue a process
consisting of its caller and the argumentt. It then callsdispatch, which switches the
processor executing it to some ready process. When the enqueued process is restarted (by
some processor executing adispatch), it will appear thatgive-up-and-try-later has
quietly returnedt. The effect is to execute a delay of unknown duration, depending on the
state of the ready queue. Thus a process executing aP on this semaphore will knock on the
test-and-set cell once; if it is closed, the process will go to sleep for a while and try again
later.

While this example illustrates the use ofcatch andmake-ready, it is probably not a
very good implementation of a semaphore. A better implementation (closer to the standard
one) would maintain a queue of processes waiting on each semaphore. A process which
needs to be delayed when it tries aP will be stored on this queue. When aV is executed, a
waiting process may be restarted, or, more precisely, placed on the ready queue. We code
this as follows:

(define semaphore ()
(let ((q (create-queue)) ; a queue for waiting processes

(count 1) ; either 0 or 1
(mutex (busy-wait)))

(lambda (msg)
(cond

((eq msg ’P)
(mutex ’P)
(catch caller

(block
(cond

((greaterp count 0)
(asetq count (sub1 count))
(mutex ’V)
t)
(t (addq q caller)

(mutex ’V)
(dispatch))))))

((eq msg ’V)
(mutex ’P)
(if (emptyq q)

(asetq count (add1 count))
(make-ready (deleteq q) t))

(mutex ’V)
t)))))



CONTINUATION-BASED MULTIPROCESSING 293

Executing(semaphore) creates a class instance with a queueq, used to hold pro-
cesses waiting on this semaphore, an integercount, which is the traditional “value” of the
semaphore, and a busy-wait locusmutex. mutex is used to control access to the schedul-
ing code, and is always reopened after a process passes through the semaphore. As was
suggested in the introduction, this use of a small busy-wait to control entrance to a more
sophisticated scheduler is typical.

When aP is executed, the calling process first must get pastmutex into the critical region.
In the critical region, the count is checked. If it is greater than 0, it is decremented, the
mutex exclusion is released, and the semaphore returns a value ofT to its caller. If the
count is zero, the continuation corresponding to the caller of the semaphore is stored on
the queue.mutex is released, and the processor executes a(dispatch) to find some other
process to work on.

When aV is executed, the calling process first gets pastmutex into the semaphore’s
critical region. The queue is checked to see if there are any processes waiting on this
semaphore. If there are none, the count is incremented. If there is at least one, it is deleted
from the queue by(deleteq q), and put on the kernel’s ready queue with argumentt.
When it is restarted by the kernel, it will think it has just completed its call onP. (Since a
P always returnst, the second argument tomake-ready must likewise be at). After this
bookkeeping is accomplished,mutex is released and the call onV returnst.

All of this is just what a typical implementation of semaphores (e.g., [2]) does. The
difference is that our semaphore is an independent object which lies outside the kernel. It
is in no way privileged code.

We have also written code to implement more complex schedulers. The most complex
scheduler for which we have actually written code is for Brinch Hansen’s “process” [4].
We have written this as a SCHEME syntactic macro. The code is only about a page long.

7. Doing more than one thing at once

We now turn to the important issue of process creation. Although the semaphores in the
previous section usedcatch to save the state of the current process, they did not provide
any means to increase the number of processes in the system. We may do this with the
functioncreate-process. create-process takes one argument, which is a function of
no arguments, and creates a process which will execute this function in “parallel” with the
caller ofcreate-process.

(define create-process (fn)
(catch caller

(block
(catch process

(block
(make-ready process t)
(caller t)))

(fn)
(dispatch))))



294 WAND

Whencreate-process is called withfn, it first creates a continuation containing its
caller and calls itcaller. It enters theblock, and creates a continuation calledpro-
cess, which, when started, will continue execution of theblock with (fn). This contin-
uationprocess is then put on the kernel’s ready queue (with argumentt, which will be
ignored whenprocess is restarted). Then(caller t) is executed, which causescreate-
process to return to its caller with valuet.

Thus, the process which calledcreate-process continues in control of its processor,
butprocess is put onto the ready queue. When the kernel decides to runprocess, (fn)
will be executed. The processor which runsprocess will then do a(dispatch) to find
something else to do.

(The reader who finds this code tricky may take some comfort in our opinion that this
is the trickiest piece of code in this paper. The difficulty lies in the fact that its execution
sequence is almost exactly reversed from its lexical sequence [8].)

We can usecreate-process to implement a fork-join. The functionfork takes two
functions of no arguments. Its result is to be the cons of their values. The execution of the
two functions is to proceed as two independent processes, and the process which is called
fork is to be delayed until they both return.

(define fork (fn1 fn2)
(catch caller

(let ((one-done? nil)
(ans1 nil)
(ans2 nil)
(mutex (busy-wait)))

(let ((check-done
(lambda (dummy)

(block
(mutex ’P)
(if one-done?

(make-ready caller
(cons ans1 ans2))

(asetq one-done? t))
(mutex ’V) ))))

(block
(create-process

(lambda ()
(check-done (asetq ans1 (fn1)))))

(create-process
(lambda ()

(check-done (asetq ans2 (fn2)))))
(dispatch))))))

fork sets up four locals: one for each of the two answers, a flag calledone-done?, and
a semaphore to control access to the flag. It creates the two daughter processes and then
dispatches, having saved its caller in the continuationcaller. Each of the two processes
computes its answer, deposits it in the appropriate local variable, and callscheck-done.
check-done usesmutex to obtain access to the flagone-done?, which is initially nil.



CONTINUATION-BASED MULTIPROCESSING 295

If its value isnil, then it is set tot. If its value ist, signifying that the current call to
check-done is the second one, thencaller is moved to the ready queue with argument
(cons ans1 ans2).

8. Interrupts

What we have written so far is quite adequate for a non-preemptive scheduling system [2].
If we wish to use a pre-emptive scheduling system (as we must if we wish to use a single
processor), then we must consider the handling of interrupts.

We shall consider only the problem of pre-emption of processes through timing interrupts
as non-preempting interrupts can be handled through methods analogous to those in [3, 27].

We model a timing interrupt as follows: When a processor detects a timing interrupt,
the next identifier encountered in the course of its computation (sayX) will be executed as
if it had been replaced by(preempt X). preempt is the name of the interrupt-handling
routine. If we believe, with [23], that a function application is just aGO-TO with binding,
then this model is quite close to the conventional model, in which an interrupt causes control
to pass to a predefined value of the program counter. A very similar treatment of interrupts
was developed independently for use in the MIT/Xerox PARC SCHEME chip [12].

The simplest interrupt handler is:

(define preempt (x)
(catch caller

(block
(make-ready caller x)
(dispatch))))

With this interrupt handler, the process which the processor is executing is thrown back
on the ready queue, and the processor executes adispatch to find something else to do.

A complication that arises with pre-emptive scheduling is that interrupts must be inhibited
inside the kernel. This may be accomplished by changing thebusy-wait in the kernel to
kernel-exclusion:

(define kernel-exclusion ()
(let ((sem (busy-wait)))

(lambda (msg)
(cond

((eq msg ’P)
(sem ’P)
(disable-preemption))
((eq msg ’V)
(sem ’V)
(enable-preemption))))))

Note the order of the operations forV. The reverse order is wrong; an interrupt might
occur after theenable-preemption but before the(sem ’V), causing instant deadlock.
(We discovered this the hard way!)



296 WAND

Now, for the first time, we have introduced some operations which probably should
be privileged: disable-preemption and enable-preemption.2 We can make those
privileged without changing the architecture of the machine by introducing a read-loop
like:

(define user-read-loop ()
(let ((disable-preemption

(lambda () (error ’protection-error)))
(enable-preemption

(lambda () (error ’protection-error))))
(labels

((loop
(lambda (dummy)

(loop (print (eval (read)))))))
(loop nil))))

This is intended to suggest the user’s input is evaluated in an environment in which
disable-preemption andenable-preemption are bound to error-creating functions.
This is not actually the way the code is written in SCHEME, but we have written it in this
way to avoid dealing with the complications of SCHEME’s version ofeval.

9. Conclusions and issues

In this paper, we have shown how many of the most troublesome portions of the “back end”
of operating systems may be written simply using an applicative language withcatch. In
the course of doing so, we have drawn some conclusions in three categories: operating
system kernel design, applicative languages, and language design in general.

For operating systems, this work answers in part Brinch Hansen’s call to simplify the
kernel [3]. Because all of the scheduling apparatus except the ready queue has been moved
out of the kernel, the kernel becomes smaller, is called less often, and therefore becomes
less of a bottleneck. By passing messages to class instances (functions) instead of passing
them between processes, we avoid the need for individuation of processes, and thereby
avoid the need to maintain process tables, etc., further reducing the size of the kernel.

This is not meant to imply that we have solved all the problems associated with system
kernels. Problems of storage allocation and performance are not addressed. In the areas
of process saving and protection, however, the approach discussed here seems to offer
considerable advantages.

In the area of applicative languages, our work seems to address the issue of “state.” A
module is said to have “state” if different calls on that module with identical arguments
may give different results at different times in the computation. Another way of describing
this phenomenon is that the model is “history-dependent.” (This is not to be confused
with issues of non-determinism). If an object does not have state, then it should never
matter whether two processes are dealing with the same object or with two copies of it. For
processes to communicate, however, they must be talking to the same module, not just to
two copies of it. For instance, all modules must communicate with the same kernel, not



CONTINUATION-BASED MULTIPROCESSING 297

just with two or more modules produced by calls ongen-kernel. Therefore, the kernel
and similar modules must have state—they must have uses ofasetq in their code.

This seems to us to be an important observation. It means that we must come to grips with
the concept of the state if we are to deal with the semantics of parallelism. This observation
could not have been made in the context of imperative languages, where every module has
state. Only in an applicative context, where we can distinguish true state from binding (or
internal state), could we make this distinction.3

A related issue is the use of call-by-value. A detailed semantics of SCHEME, incorpo-
rating the Algol call-by-value mechanism, would give an unambiguous account of when
two modules were the “same,” and thus also give an account of when two modules share
the same state. Such an account is necessary to explain the use ofasetq in our programs
and to determine which data is private and which is shared (as in the last lines of(ker-
nel ’dispatch)). In such a description, we would find that restarting a continuation
restores the environment (which is a map from identifiers toL-values), but does not undo
changes in the global state (the map fromL-values toR-values) which is altered byasetq.
Nonetheless, we find this account unsatisfying, because its systematic introduction of a
global state at every procedure call seems quite at odds with the usual state-free picture of
an applicative program. We find it unpleasant to say that we pass parameters by worth (i.e.,
without copying), except when we need to think harder about the program.

In this regard, we commend to applicative meta-programmers a closer study of denota-
tional semantics. Descriptive denotational semantics, as expounded in Chapter 1 of [17]
or in [9], provides the tools to give an accurate description of what actually happens when
a parameter is passed. There are, however, some measures which would help alleviate the
confusion. For example, we could use a primitivecell operation in place of the unre-
stricted use ofasetq. Then all values could be passed by worth (R-value);L-values would
arise only as denotations of cells, and explicit dereferencing would be required. Such an
approach is taken, in various degrees, in PLASMA [10], FORTH [13], and BLISS [28].4

Also, John Reynolds and one of his students are investigating semantics which do not rely
on a single global state [personal communication].5

Last, we essay some ideas about the language design process. Our choice to work in the
area of applicative languages was motivated in part by Minsky’s call for the separation of
syntax from semantics in programming [18]. We have attempted to home in on the essential
semanticideas in multiprogramming. By “semantic” we do not simply mean those ideas
which are expressible in denotational semantics, though surely the use of denotational
semantics has exposed and simplified the basic ideas in programming in general. We add
to these ideas some basic operational knowledge about how one goes from semantics to
implementations (e.g., [21]) and some additional operational knowledge not expressed in
the “formal semantics” at all, e.g., our treatment of interrupts.

Only after we have a firm grasp on these informal semantic ideas should we begin
to consider syntax. Some syntax is for human engineering—replacing parentheses and
positional structure with grammars and keywords. Other syntax may be introduced to restrict
the class of run-time structures which are needed to support the language. The design of
RUSSELL [7] is a good example of this paradigm. One spectacular success which may be
claimed for this approach is that of PASCAL, which took the well-understood semantics of



298 WAND

ALGOL and introduced syntactic restrictions which considerably simplified the run-time
structure.

In our case, we should consider syntactic restrictions which will allow the use of sequential
structures to avoid spending all one’s time garbage-collecting the stack. Other clever data
structures for the run-time stack should also be considered. Another syntactic restriction
which might be desirable is one which would prevent a continuation from being restarted
more than once.

Any language or language proposal must embody a trade-off between generality (some-
times called “functionality”) and efficiency. By considering complete generality first, we
may more readily see where the trade-offs may occur, and what is lost thereby. Unfor-
tunately, the more typical approach to language design is to start with a given run-time
structure (or, worse yet, a syntactic proposal). When the authors realize that some func-
tionality is lacking, they add it by introducing a patch. By introducing the generality and
cleanness first, and then compromising for efficiency, one seems more likely to produce
clean, small, understandable, and even efficient languages.

Acknowledgments

Research reported herein was supported in part by the National Science Foundation under
grant numbers MCS75-06678A01 and MCS79-04183. This paper originally appeared in
R.E. Davis and J.R. Allen, editors,Conference Record of the 1980 LISP Conference, pages
19–28, Palo Alto, CA, 1980. The Lisp Company, Republished by ACM.

Notes

1. Thoughcatch andcall/cc are clearly interdefinable, J andcall/cc differ importantly in details; see Hayo
Thielecke, “An Introduction to Landin’s ‘A Generalization of Jumps and Labels’,”Higher-Order and Symbolic
Computation,11(2), pages 117–123, December 1998.

2. These were additional primitives that were added to the Scheme 3.1 interpreter.
3. This paragraph grew out of conversations I had had with Carl Hewitt over the nature of object identity. I had

objected that Hewitt’s notion of object identity in a distributed system required some notion of global state (C.
Hewitt and H. G. Baker, Actors and Continuous Functionals, in E. J. Neuhold (ed.)Formal Descriptions of
Programming Concepts, pages 367–390. North Holland, Amsterdam, 1978; at page 388). This is an issue that
remains of interest in the generation of globally-unique identifiers for use in large distributed systems such as
IP, DCOM or the World-Wide Web.

4. This approach was of course adopted in ML. At the time, changing Scheme in this way was at least conceivable,
and we seriously considered it for the Indiana Scheme 84 implementation. After the Revised3 Report in 1984,
such a radical change became impossible. Sussman and Steele now list this as among the mistakes in the
design of Scheme (G.J. Sussman and G.L. Steele Jr., The First Report on Scheme Revisited,Higher-Order and
Symbolic Computation11(2), pages 399–404, December, 1998).

5. I am not sure to what this refers. My best guess is that it refers to his work with Oles on stack semantics (J.
C. Reynolds, “The Essence of Algol,” in J. W. deBakker and J. C. van Vliet, eds.,Algorithmic Languages,
pages 345–372. North Holland, Amsterdam, 1981).

References

1. Atkinson, R. and Hewitt, C. Synchronization in actor systems. InConf. Rec. 4th ACM Symp. on Principles of
Programming Languages. 1977, pp. 267–280.



CONTINUATION-BASED MULTIPROCESSING 299

2. Brinch Hansen, P.Operating Systems Principles. Prentice-Hall, Englewood Cliffs, NJ, 1973.
3. Brinch Hansen, P.The Architecture of Concurrent Programs. Prentice-Hall, Englewood Cliffs, NJ, 1977.
4. Brinch Hansen, P. Distributed processes: A concurrent programming concept.Comm. ACM, 21:934–941,

1978.
5. Church, A. The calculi of lambda-conversion.Annals of Mathematics Studies. Princeton University Press,

Princeton, NJ, 1941.
6. Dahl, O.-J. and Hoare, C.A.R. Hierarchical program structures. InStructured Programming, O.-J. Dahl, E.W.

Dijkstra, and C.A.R. Hoare (Eds.). Academic Press, London, 1972, pp. 175–220.
7. Demers, A.J. and Donahue, J.E. Data types, parameters, and type checking. InConf. Rec. 7th Ann. ACM

Symp. on Principles of Programming Languages. 1980, pp. 12–23.
8. Dijkstra, E.W. Go to statement considered harmful.Comm. ACM, 11:147–148, 1968.
9. Gordon, M.J.C.The Denotational Description of Programming Languages. Springer, 1979.

10. Hewitt, C.E. Viewing control structures as patterns of passing messages.Artificial Intelligence, 8:323–364,
1977.

11. Hoare, C.A.R. Monitors: An operating system structuring concept.Comm. ACM, 17:549–557, 1974.
12. Holloway, J., Steele, G.L., Sussman, G.J., and Bell, A. The SCHEME-79 chip. AI Memo 559, MIT Artificial

Intelligence Laboratory, December 1979.
13. James, J.S. FORTH for microcomputers.SIGPLAN Notices, 13(10):33–39, 1978.
14. Landin, P.J. A correspondence between ALGOL 60 and Church’s lambda-notation: Part I.Comm. ACM,

8:89–101, 1965.
15. Landin, P.J. The next 700 programming languages.Comm. ACM, 9:157–166, 1966.
16. McCarthy, J. et al.LISP 1.5 Programmer’s Manual. MIT Press, Cambridge, MA, 1965.
17. Milne, R. and Strachey, C.A Theory of Programming Language Semantics. Chapman and Hall, London and

Wiley, New York, 1976.
18. Minsky, M. Form and content in computer science.J. ACM, 17:197–215, 1970.
19. Morris, J.H. Protection in programming languages.Comm. ACM, 16:15–21, 1973.
20. Reynolds, R.C. GEDANKEN—a simple typeless language based on the principle of completeness and the

reference concept.Comm. ACM, 13:308–319, 1970.
21. Reynolds, J.C. Definitional interpreters for higher-order programming languages. InProc. ACM National

Conf., 1972, pp. 717–740.
22. Shaw, A.C.The Logical Design of Operating Systems. Prentice-Hall, Englewood Cliffs, NJ, 1974.
23. Steele, G.L. LAMBDA: The ultimate declarative. AI Memo 379, MIT Artificial Intelligence Laboratory,

October 1976.
24. Steele, G.L. and Sussman, G.J. The art of the interpreter, or the modularity complex. AI Memo 453, MIT

Artificial Intelligence Laboratory, May 1978.
25. Steele, G.L. and Sussman, G.J. The revised report on SCHEME. AI Memo 452, MIT Artificial Intelligence

Laboratory, January 1978.
26. Wand, M. SCHEME version 3.1 reference manual. Technical Report No. 93, Indiana University Computer

Science Department, June 1980.
27. Wirth, N. Modula: A language for modular multiprogramming.Software-Practice and Experience, 7:3–35,

1977.
28. Wulf, W.A., Russell, D.B., and Habermann, A.N. BLISS: A language for systems programming.Comm.

ACM, 14:780–790, 1971.


