
Solving Mixed Integer Nonlinear Programs by OuterApproximationRoger Fletcher and Sven Ley�er�University of DundeeOctober 16, 1996AbstractA wide range of optimization problems arising from engineering applications canbe formulated as Mixed Integer NonLinear Programmming problems (MINLPs).Duran and Grossmann (1986) suggest an outer approximation scheme for solvinga class of MINLPs that are linear in the integer variables by a �nite sequence ofrelaxed MILP master programs and NLP subproblems.Their idea is generalized by treating nonlinearities in the integer variables di-rectly, which allows a much wider class of problem to be tackled, including the caseof pure INLPs. A new and more simple proof of �nite termination is given and arigorous treatment of infeasible NLP subproblems is presented which includes allthe common methods for resolving infeasibility in Phase I.The worst case performance of the outer approximation algorithm is investigatedand an example is given for which it visits all integer assignments. This behaviourleads us to include curvature information into the relaxed MILP master problem,giving rise to a new quadratic outer approximation algorithm.An alternative approach is considered to the di�culties caused by infeasibilityin outer approximation, in which exact penalty functions are used to solve the NLPsubproblems. It is possible to develop the theory in an elegant way for a largeclass of nonsmooth MINLPs based on the use of convex composite functions andsubdi�erentials, although an interpretation for the l1 norm is also given.Key words : Nonlinear integer programming, mixed integer nonlinear program-ming, decomposition, outer approximation.1 IntroductionMany optimization problems involve integer or discrete variables and can be modelledas Mixed Integer Nonlinear Programming problems (MINLPs). These variables can var-iously be integer variables modelling for example numbers of men, or zero{one variablesmodelling decisions, or discrete variables modelling, for example, equipment sizes. In ad-dition to these there may also exist continuous variables which for example may representpressures or temperatures. Nonlinearities come into the model either through physicalproperties such as enthalpy and vapour/liquid equilibrium, or may also involve the deci-sion variables through for example economies of scale. The function to be optimized inthis context usually involves costs and pro�ts from the design.�This work is supported by SERC grant no SERC GR/F 079721

Throughout the paper no distinction will be made between the di�erent types of integeror discrete variables referred to above. This does not constitute a great loss of generalityif it is assumed that the underlying MILP or MIQP solver is capable of handling any typeof discrete variable. It is also possible to replace a discrete variable by an integer variableor by a number of zero{one variables. In the rest of the paper the term integer variablesis taken to include the possibility of discrete but non{integer variables.The class of problem to be considered here isP8>><>>: minx;y f(x; y)subject to g(x; y) � 0x 2 X; y 2 Y integerand the following assumptions are madeA1 X is a nonempty compact convex set de�ned by a system of linear inequality con-straints and the functions f : IRn � IRp ! IRg : IRn � IRp ! IRmare convex.A2 f and g are once continuously di�erentiable.A3 A constraint quali�cation holds at the solution of every NLP subproblem which isobtained from P by �xing the integer variables y. This could be, for instance, theassumption that the set of feasible directions at the solution can be identi�ed withthe set of feasible directions for the constraint linearized at the solution (e. g. [3],p. 202), for which a su�cient condition is that the normal vectors of the activeconstraints are linearly independent.Assumptions A1 to A3 are not unreasonable in the sense that both Duran and Gross-mann's outer approximation algorithm [2] and the nonlinear branch and bound algorithmrequire equivalent assumptions to hold, to ensure that P and all subproblems or relax-ations of P are solved correctly.The most serious restriction is that of convexity of f and g, and often the convexityassumptions do not hold in practice. The proposed algorithm can be applied to nonconvexproblems, although no guarantee can be given that the solution obtained by the algorithmis a global solution. Kocis and Grossmann [6] give heuristics which aim to solve nonconvexMINLP and these are also applicable to the algorithms presented here. The model problemP is otherwise of general applicability and allows nonlinearities in the integer variables tobe treated directly, thus including the case of pure INLP problems in the class of treatableproblems. In [2] Duran and Grossmann proposed an outer approximation algorithm forsolving the subclass of P where f and g are linear in the integer variables. Their algorithmhas proved very successful in practice and its merits are examined in a more generalcontext in this paper.This outer approximation routine solves P by alternating �nitely between an NLPsubproblem (obtained from P by �xing the integer variables y) and relaxations of an MILPmaster program. Alternatively P may be solved using Generalized Benders Decompositionas proposed by Geo�rion in [5] and generalized to cover problems with nonlinear termsin the integer variables y by Flippo et. al. [4]. Like outer approximation GeneralizedBenders Decomposition solves P by alternating �nitely between an NLP subproblem andan MILP master problem. The di�erence lies in the derivation of the MILP masterprogram, and in Generalized Benders Decomposition nonlinear duality theory rather than2

outer approximation is employed to obtain the MILP master problem. As has beenpointed out in [2] the lower bounds produced by solving the master program relaxation ofouter approximation are tighter than the lower bounds produced by Generalized BendersDecomposition. However, since Generalized Benders Decomposition adds less constraintsto the master program at each iteration no conclusions as to the �nal e�ciency can bederived from this property. Finally there is the possibility to use an NLP based branch andbound algorithm, where at each node of the tree an NLP has to be solved and branchesare added in form of additional bounds on the integer variables.In the remainder of this section a brief outline of the paper is given. In Section 2a general Phase I feasibility problem is posed and it is described how this problem canbe used to generate cuts that exclude integer assignments y that give rise to infeasiblesubproblems. The section is self{contained and is applicable to various NLP solvers.Section 3 shows how P can be reformulated as an equivalent MILP problem using projec-tion onto the space of integer variables together with outer approximation by supportinghyperplanes. The result of Section 2 enables a rigorous treatment of infeasible NLP sub-problems to be given. In Section 4 a new outer approximation algorithm is developedbased on the reformulation of Section 3. The algorithm iterates �nitely between NLPsubproblems and MILP master problem relaxations. A new and more simple proof ofthe �nite convergence property is given. The worst case performance of the algorithm isstudied and an example is provided which shows that the algorithm can be very ine�-cient if nonlinearities are present. This motivates us to investigate algorithms which solveMIQP master problems in an attempt to to take second order information into account.In Section 5 an outer{approximation algorithm is developed for a class of nonsmoothMINLPs. An important example for a nonsmooth MINLP is given by an exact penaltyfunction formulation of P. This o�ers an alternative approach to the di�culties causedby infeasible subproblems. The theory is developed in a general setting based on the useof convex composite functions and subdi�erentials, although an interpretation for the l1norm is also given. Conditions under which the penalty function formulation is equiva-lent to P are given and the outer{approximations are compared with the correspondingBenders cuts.Throughout this paper the superscript i is used to indicate the iteration count, super-script j is used to index the feasible NLP subproblems de�ned in Section 3 and superscriptk to index infeasible subproblems. The following notation is adopted to distinguish be-tween function values and functions. f j = f(xj; yj) denotes the value of f evaluated atthe point (xj; yj), similarly rf j = rf(xj; yj) is the value of the gradient of f at (xj; yj).The same conventions apply for all other functions and higher derivatives.2 Infeasibility in NLP problemsNLP solvers detect infeasibility in an NLP problem in many ways. Consider the con-straints of an NLP problem.(gi(x) � 0; i = 1; 2; : : : ;mx 2 X � IRnwhere the set X might for example be simple upper and lower bounds on x. Two obviouspossibilities for �nding a feasible point are to attempt to minimize an l1 or l1 sum ofconstraint violations, that is minx mXi=1 g+i (x); x 2 X3

or minx maxi=1;:::;m g+i (x); x 2 Xwhere a+ = max(a; 0). Other methods aim to maintain feasibility in any constraintresidual once it has been established. For example an l1 problem of the form8>>><>>>: minx Xi2J? g+i (x)subject to gj(x) � 0; j 2 Jx 2 Xmight be solved, in which the set J is the set of constraints which are currently feasiblein the algorithm and J? is its complement. Alternatively constraints may be driven tofeasibility one at a time, whilst maintaining feasibility for constraints indexed by j 2 J .In this case a problem 8><>: minx g+i (x)subject to gj(x) � 0; j 2 Jx 2 Xis being solved at any one time.In all these cases, if the constraints are inconsistent, then the phase I approach termi-nates at a point, x0 say, with an indication that the problem is infeasible. At this stage itis possible to write down an equivalent feasibility problem F that has been solved, whoseweights depend on the type of phase I approach. The weights wi are nonnegative andare not all zero. Infeasibility in the NLP problem is then equivalent to having obtained asolution x0 of F for which the objective function is greater than zero.F8>>><>>>: minx Xi2J?wig+i (x)subject to gj(x) � 0; j 2 Jx 2 X:All of the above cases �t into this framework. (In the l1 case, there exist nonnegativeweights at the solution such that Pwi = 1 and wi = 0 if gi does not attain the maximumvalue.)In the context of the problem NLP(yk) introduced in Section 3, the general feasibilityproblem has the form F(yk)8>>><>>>: minx Xi2J?wki g+i (x; yk)subject to gj(x; yk) � 0; j 2 Jx 2 Xwhere yk is some �xed assignment of the integer variables y of problem P and the weightswki may di�er for di�erent yk. An important property of F(yk) is expressed in the followinglemma.Lemma 1 If NLP(yk) is infeasible, so that xk solves F(yk) withXi2J?wki (gki)+ > 0 (1)then y = yk is infeasible in the constraints0 � gki + (rgki)T x� xky � yk ! 8i 2 J?0 � gkj + (rgkj)T x� xky � yk ! 8j 2 J;4

for all x 2 X.Proof:Assume that yk is feasible in the above constraints, so that there exists an x̂ 2 X suchthat (x̂; yk) satis�es the following set of inequalities:0 � gki + (rgki)T x̂� xk0 !8i 2 J? (2)0 � gkj + (rgkj)T x̂� xk0 !8j 2 J: (3)It is convenient to handle the condition x̂ 2 X by introducing the normal cone @X(xk) atxk. The normal cone @X(xk) is de�ned as the set of vectors u that satisfy the inequalityuT (x� xk) � 0 8x 2 X: (4)The �rst order Kuhn{Tucker conditions for the feasibility problem F(yk) imply that thereexist multipliers �j � 0; j 2 J and a vector u 2 @X(xk) such that�jgkj = 0; 8j 2 J (5)Xi2J?wkirgki +Xj2J �jrgkj + u = 0: (6)After multiplying (2) by wki � 0 and (3) by �j � 0, summing, and adding to (4) thefollowing inequality is obtained.0 � Xi2J?wigki +Xj2J �jgkj + [Xi2J?wirgki +Xj2J �jrgkj + u0 !]T x̂� xk0 ! : (7)Substituting (5) and (6) the inequality (7) becomes0 � Xi2J?wki gkiwhich contradicts (1) and proves the lemma.2 We are grateful to an anonymous referee for observing that the lemma can be strength-ened. The proof shows that it su�ces to consider those inequalities (2) and (3) for whichwi > 0 and �j > 0 respectively. Or in other words it is su�cient to consider only thestrongly active inequalities.3 Reformulation of PIn this section it is shown how the model problem P can be reformulated using outerapproximation to obtain an equivalent MILP master program M, relaxations of whichwill be used in the algorithms in Section 4. This generalizes the outer approximationalgorithm of Duran and Grossmann [2] to functions that are nonlinear in the integervariables y, simplifying a similar attempt by Yuan et. al. [10]. Additionally the presentapproach corrects an inaccuracy which occurs in [2] and [10] when treating infeasiblesubproblems. Although Duran and Grossmann acknowledge the fact that their proposedalgorithm may cycle if infeasible subproblems are encountered, the solution they propose(eliminate integer assignments through the use of integer cuts) is only practical for binary5

variables. Moreover, it does not recognise the fact that this shortcoming is caused by awrong interpretation of the master program. This section shows how any common PhaseI approach to NLP, based on the feasibility problem of Section 2, can be used to provide amaster program which is correctly equivalent to P. Another possibility is to use an exactpenalty function and the bene�ts of this are explained in Section 5.Earlier attempts to deal with the di�culties arising from infeasible subproblems in-clude the work by Viswanathan and Grossmann in [9]. As far as we know, however,no proof has yet been given that these methods guarantee that no integer assignment isvisited twice. It is suggested in [9] that the problem P be reformulated as8>><>>: minx y � f(x; y) + ��subject to g(x; y) � �� � 0; x 2 X; y 2 Y integerwhere � is a large positive constant. It is shown in Section 5 that this can be included asa special case of a more widely applicable formulation.In reformulating P, the �rst step is to express P in terms of a projection on to the yvariables, that is proj(P)(minyj2VfNLP(yj)g:where V = fy 2 Y : 9 x 2 X with g(x; y) � 0gis the set of all integer assignments y that give rise to feasible subproblems. In thisprojection the subproblemNLP(yj)8><>: minx f(x; yj)subject to g(x; yj) � 0x 2 Xis de�ned in which the integer variables are �xed at the value y = yj. Let xj denote asolution of NLP(yj) for yj 2 V (existence of xj follows by the compactness of X). Becausea constraint quali�cation (assumption A3) holds at the solution of every subproblemNLP(yj) for every yj 2 V , it follows that proj(P) has the same solution as the problemminyj2V 8>>>>>>>><>>>>>>>>: minx f j + (rf j)T x� xj0 !subject to 0 � gj + [rgj]T x� xj0 !x 2 X 9>>>>>>>>=>>>>>>>>; :In fact it su�ces to include those linearizations of constraints about (xj; yj) which arestrongly active (constraints with nonzero multipliers) at the solution of the correspondingsubproblem. This is important since it implies that fewer constraints will have to beadded to the master program in Section 4.It is convenient to introduce a dummy variable � 2 IR into this problem, giving rise6

to the equivalent problemminyj2V 8>>>>>>>>>>>><>>>>>>>>>>>>: minx;� �subject to � � f j + (rf j)T x� xj0 !0 � gj +r[gj]T x� xj0 !x 2 X 9>>>>>>>>>>>>=>>>>>>>>>>>>; :The convexity assumption A1 implies that (xi; yi) is feasible in the inner optimizationproblem above for all i 2 T . Thus an equivalent MILP problemMV 8>>>>>>>>>>>><>>>>>>>>>>>>: minx;y;� �subject to � � f j + (rf j)T x� xjy � yj ! 8j 2 T0 � gj + [rgj]T x� xjy � yj !x 2 X; y 2 V integeris obtained, where T = fj : NLP(yj) is feasible and xj is an optimal solution to NLP(yj)g.It remains to �nd a suitable representation of the constraint y 2 V by means ofsupporting hyperplanes. The master problem given in [2] is obtained from problem MVby replacing y 2 V by y 2 Y . Duran and Grossmann justify this step by arguing that arepresentation of the constraints y 2 V is included in the linearizations in problem MV .This argument is erroneous as the following example indicates. Consider the problemP8>><>>: minx;y f(x; y) = �2y � xsubject to 0 � x2 + yy 2 f�1; 1gwith solution (x�; y�) = (1;�1) and f� = 1. The master program given in [2] can bewritten as MDG8>><>>: minx;y f(x; y) = �2y � xsubject to 0 � 1 + 2(x � 1) + yy 2 f�1; 1gand problem MDG has the solution (x�; y�) = (0; 1) and f� = �2, which is infeasible in P.Thus the value y = 1 is not excluded in MDG and hence MDG and P are not equivalentin this case.This small example clearly illustrates that it is necessary to include information frominfeasible subproblems. However care has to be taken when choosing the value of x aboutwhich to linearize the subproblem, as is illustrated by choosing x = 12 for the infeasiblesubproblem y = 1. This choice results in the constraint14 + (x� 12) + y � 0being added to MV , which does not exclude y = 1 from MV .7

It is necessary to ensure that integer assignments which produce infeasible subproblemsare also infeasible in the master program M. Let the integer assignment yk produce aninfeasible subproblem and denoteS = nk : NLP(yk) is infeasible and xk solves F(yk)o :It then follows directly from Lemma 1 of Section 2 that the constraints0 � gk + [rgk]T x� xky � yk ! 8k 2 Sexclude all integer assignments yk for which NLP(yk) is infeasible. Thus a general way tocorrectly represent the constraints y 2 V in MV is to add linearizations from F(yk) wheninfeasible subproblems are obtained, giving rise to the following MILP master problem.M8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
minx;y;� �subject to � � f j + (rf j)T x� xjy � yj ! 8j 2 T0 � gj + [rgj]T x� xjy � yj !0 � gk + [rgk]T x� xky � yk ! 8k 2 Sx 2 X; y 2 Y integer.In the above example a suitable form of feasibility problem F isminx (x2 + 1)+which is solved by x = 0. Thus the constrainty � 0is added to MDG which correctly excludes the infeasible integer assignment y = 1.The above development provides a proof of the following result:Theorem 1 If assumptions A1, A2 and A3 hold, then M is equivalent to P in the sensethat (x�; y�) solves P if and only if it solves M.Problem M is an MILP problem, but it is not practical to solve M directly, since thiswould require all subproblems NLP(yj) to be solved �rst. This would be a very ine�cientway of solving problem P. Another practical disadvantage of M is that it contains a verylarge number of constraints. For example if Y = f0; 1gp and P has m constraints thenM would contain 2p � (m + 1) constraints. Therefore, instead of attempting to solve Mdirectly, relaxations of M are used in an iterative process that is the subject of the nextsection.4 The AlgorithmsIn this section a new linear outer approximation algorithm is developed, based on solvingMILP relaxations of the master problem M of Section 3, and it is proved that the algo-rithm terminates �nitely. The algorithm owes much to the innovative work of Duran and8

Grossmann [2] in developing an outer approximation algorithm, but the new algorithmimproves on this work in a number of ways. The problem formulation allows the integervariables y to occur nonlinearly in f and g, and a new and more simple proof of termina-tion is given. The occurrence of infeasible solutions to NLP subproblems is treated in arigorous way which is generally applicable to many di�erent methods for solving Phase Iproblems. The resulting method is also suitable for pure INLP problems in which the xvariables in P are absent, which is not the case for the Duran and Grossmann formulation.The practical performance of the resulting algorithm has proved to be similar to thatof the Duran and Grossmann algorithm. However, the worst case performance of thealgorithm is studied and an example is provided which shows that the algorithm can bevery ine�cient. This subsequently motivates us to investigate a quadratic outer approxi-mation algorithms which solve MIQP master problems in an attempt to take second orderinformation into account.Each iteration of the linear outer approximation algorithm chooses a new integerassignment yi and attempts to solve NLP(yi). Either a feasible solution xi is obtainedor infeasibility is detected and xi is the solution of a feasibility problem F(yi) (otherpathological cases are eliminated by the assumption that the set X is compact). Thealgorithm replaces the sets T and S in M by the setsT i = fj j j � i : NLP(yj) is feasible and xj is an optimal solution to NLP(yj)gSi = nk j k � i : NLP(yk) is infeasible and xk solves F (yk)o :It is also necessary to prevent any yj; j 2 T i from becoming the solution of the relaxedmaster problem. This can be done by including a constraint� < UBDiwhere UBDi = minf j; j � i; j 2 T i:Thus the following master problem is de�nedM i8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
minx;y;� �subject to � < UBDi� � f j + (rf j)T x� xjy � yj ! 8j 2 T i0 � gj + [rgj]T x� xjy � yj !0 � gk + [rgk]T x� xky � yk ! 8k 2 Six 2 X; y 2 Y integer.The algorithm solves M i to obtain a new integer assignment yi+1, and the whole processis repeated iteratively. A detailed description of the algorithm is as follows.9

Algorithm 1: Linear Outer ApproximationInitialization: y0 is given; set i = 0, T�1 = ;, S�1 = ; and UBD =1.REPEAT1. Solve the subproblem NLP(yi), or the feasibility problem F(yi) if NLP(yi) is infea-sible, and let the solution be xi.2. Linearize the objective and (active) constraint functions about (xi; yi). Set T i =T i�1 [fig or Si = Si�1 [fig as appropriate.3. IF (NLP(yi) is feasible and f i < UBD) THENupdate current best point by setting x� = xi; y� = yi; UBD = f i.4. Solve the current relaxation M i of the master program M, giving a new integerassignment yi+1 to be tested in the algorithm. Set i = i+ 1.UNTIL (M i is infeasible).The algorithm also detects whether or not P is infeasible. If UBD= 1 on exit thenall integer assignments y 2 Y were visited by the algorithm and none was found to befeasible (i.e. the upper bound did not work as a cut o�). The use of upper bounds on �and the de�nition of the sets T i and Si ensure that no yi is replicated by the algorithm.This enables a proof to be given that the algorithm terminates after a �nite number ofsteps, provided that there is only a �nite number of integer assignments.Theorem 2 If assumptions A1, A2 and A3 hold, and jY j < 1, then Algorithm 1terminates in a �nite number of steps at an optimal solution of P or with an indicationthat P is infeasible.Proof:First it is shown that no integer assignment is generated twice by the algorithm. The�niteness of Algorithm 1 then follows from the �niteness of the set Y . Let l � i. If l 2 Siit follows from Lemma 1 of Section 2 that the cuts introduced from the solution of thefeasibility problem F(yl) exclude yl from any subsequent master program.If l 2 T i it is assumed that yl is feasible in M i and a contradiction is sought. Solving M igives the solution (�i+1; x̂i+1; yl), which must satisfy the following set of inequalities:�i+1 < UBDi � f l (8)�i+1 � f l + (rf l)T x̂i+1 � xl0 ! (9)0 � gl + [rgl]T x̂i+1 � xl0 ! : (10)Since xl is the optimal solution to NLP(yl) and a constraint quali�cation holds (A3), nofeasible descent direction exists at xl, that is0 � gl + [rgl]T x̂i+1 � xl0 !) (rf l)T x̂i+1 � xl0 ! � 0: (11)10

Substituting (11) into (9) gives �i+1 � f lwhich contradicts (8). Thus yl is infeasible for all l 2 Si and l 2 T i.Finally it is shown that Algorithm 1 always terminates at a solution of P or withan indication that P is infeasible. If P is feasible, then let an optimal solution to P begiven by (x�; y�) with optimal value f� (any other optimal solution has the same objectivevalue and the algorithm does not distinguish between them). Since M is a relaxation ofP, f� is an upper bound on the optimal value of M, which is attained at (x�; y�). Nowassume that the algorithm terminates with an indicated solution (x0; y0) with f 0 > f�(i.e. not optimal). Since UBD= f 0 > f� it follows that (x�; y�) must be feasible in theprevious relaxation of M, which contradicts the assumption that the algorithm terminatesat (x0; y0). If on the other hand P is infeasible then all NLP(yj){subproblem are infeasibleand the algorithm never updates the upper bound UBD, and hence exits with UBD=1indicating an infeasible problem.2 It can be observed from the proof that it is not necessary to solve M i for optimalityin Algorithm 1, as long as a new integer assignment is obtained from M i. However, if M iis solved for optimality then the upper bound on � can be supplemented by a weak lowerbound � � �iwhere �i is the solution value of M i�1. This lower bound can improve the e�ciency ofthe MILP solver by cutting out branches of the branch and bound tree that need not beexamined. It is worth remarking that the method of proof used here is much more simple(especially with respect to the derivation of the master problem M) than that of Duranand Grossmann which is based on integer polyhedra and linear programming theory.There are a number of practical considerations that arise when implementing the algo-rithm. It is mentioned in Section 3 that it is worthwhile to include only those constraintsthat are active at a solution of the subproblem NLP(yi) so that fewer linearizations areadded to the master program at each iteration. If this is done it might not be necessaryto include a constraint dropping procedure that scans the constraints of the master pro-gram to keep its size small. On the other hand, adding fewer constraints to the masterprogram implies that the master program relaxations are weaker which could result ina larger number of iterations. Currently we prefer to add only the linearizations of thestrongly active constraints to keep the size of the master program smaller. Preliminarycomputational experience shows that this results in better overall CPU times whilst notincurring many additional outer approximation iterations.In practice the constraint � < UBDwould not be used, but rather � � UBD� �where � is some small user supplied accuracy. The algorithm can then only be guaranteedto provide an �{optimal solution to P. As mentioned in Section 3 our reformulation includespure INLP problems and this makes Algorithm 1 applicable to pure INLP problems, inwhich case step 1 of the algorithm (the inner optimization over the continuous variables)becomes redundant.Practical experience with linear outer approximation given in [2] indicates that outerapproximation is superior both to nonlinear branch and bound and Generalized BendersDecomposition, although the test problems are limited to the case where f and g are11

1/21/8
1/4

1
y

f(y) = (y - 1/8) 2

Figure 1: Worst case example for Algorithm 1both linear functions in y. It is of interest to know whether this is always the case, orif there exist situations in which the outer approximation algorithm performs badly. Wehave been able to construct a worst case example for linear outer approximation in whichAlgorithm 1 visits all integer feasible points in the problem before �nding the solution,even though the initial assignment y0 is adjacent to the optimal assignment. The exampleis (miny f(y) = (y � �)2subject to y 2 f0; �; : : : ; 12 ; 1gin which � = 2�p for some p > 1.Starting with y0 = 0, which is the adjacent value to the solution y� = �, the nextiterate is y1 = 1, which is an extreme feasible point. Algorithm 1 then works its way backto the solution by visiting each remaining integer assignment yi = 2�i+1; i = 2; 3; : : : ; p+1in turn. Figure 1 illustrates the situation for p = 3 and the shaded boxes indicate thevarious supporting hyperplanes that are generated. This example is also a worst case12

example for Generalized Benders Decomposition but it is solved by nonlinear branch andbound in only one step. The problem could also be slightly perturbed to f(y) = (y � �)2with � < �2 . Then starting at the solution y0 = 0, linear outer approximation would againvisit all feasible points before verifying that y0 is the solution. Again Generalized BendersDecomposition also visits all feasible points, but nonlinear branch and bound solves theproblem after one branch.The example shows that both linear outer approximation and Generalized BendersDecomposition perform badly when the problem functions are not adequately representedby linear approximations. The initial step makes the next iterate remote from the solutionwhich is unsatisfactory in a nonlinear situation. The remedy lies in introducing curvatureinformation into the master programs. In the remainder of this section it is shown how thiscan be achieved for linear outer approximation by including a second order Lagrangianterm into the objective function of the MILP master programs. The resulting algorithmis referred to as quadratic outer approximation and is obtained by replacing the relaxedmaster problem M i by the problem(Qi)8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
minx;y;� � + 12 x� xiy � yi !T [r2Li] x� xiy � yi !subject to � < UBD� � f j + (rf j)T x� xjy � yj ! 8j 2 T i0 � gj + [rgj]T x� xjy � yj !0 � gk + [rgk]T x� xky � yk ! 8k 2 Six 2 X; y 2 Y integerin step 4 of Algorithm 1. In the de�nition of Qi the functionL(x; y; �) = f(x; y) + �T g(x; y)is the usual Lagrangian function.Including a curvature term in the objective function does not change the �nite conver-gence property expressed in Theorem 1, since the feasible region of M i is unchanged andthe constraints of Qi are still supporting hyperplanes. However, the possibility of usingthe lower bound � � �i is no longer conveniently available. A quadratic Taylor series doesnot provide a lower bound on a convex function as the linear Taylor series does. Thereforeit is not possible to use the optimal value of Qi as a lower bound. Moreover it cannot evenbe expected that the optimal value of the linear part of the objective function (�) of themaster problem relaxation provides a lower bound on P although � is only constrainedby the supporting hyperplanes on f . This is illustrated by the following example:(minx f(x) = � ln(x+ 1)subject to 0 � x � 2:For x = 0 the minimum of the quadratic approximation to f is at x = 12 and the value ofthe linear approximation about x = 0 at x = 12 is �12 which is greater than the minimumof the above problem (� ln(3)).The advantage of the quadratic outer approximation algorithm is that a possibly dif-ferent selection yi+1 is made by solving the master problem Qi, which takes into account13

nonlinear terms in P. This is well seen in the worst case example for linear outer approxi-mation, which is solved by the quadratic outer approximation algorithm in two iterations,independent of p. The price that has to be paid for this better performance is that insteadof solving an MILP at each iteration, an MIQP master program has to be solved. Un-fortunately there is little or no software available that is speci�cally tailored to an MIQPproblem. The authors are currently investigating ways to solve the resulting MIQP prob-lems by a branch and bound strategy that uses improved lower bounds for problemsgenerated by branching. A Generalized Benders Decomposition approach for solving theMIQP as suggested by Lazimy [8] seems inadequate, since Generalized Benders Decompo-sition can again be interpreted as a linear model, in which case the di�culties caused bynonlinearities in outer approximation will simply arise at the MIQP level. Other methodsthat have been suggested include the branching rule of K�orner [7] and a branching rulethat was suggested by Breu and Burdet [1] for linear 0{1 programming.In order to gain further insight into the proposed algorithms it is useful to considerthe case when they are applied to pure integer nonlinear problems. Both algorithms makelinear approximations to the feasible constraints at yi; the di�erence lies in the fact thatthe quadratic algorithm also includes a second order Lagrangian term in the next masterprogram. Therefore quadratic outer approximation can be interpreted as a SequentialQuadratic Programming method generalized to integer programming. Linearizations ofprevious steps are kept in the master program to avoid cycling between successive integerassignments, and the QP subproblem of an ordinary SQP method is replaced by an MIQPproblem to account for the discrete nature of the problem. The linear outer approximationalgorithm can be interpreted as a Sequential Linear Programming technique.This observation gives an indication as to when quadratic outer approximation shouldbe preferred. If y appear only linearly in the problem, then it is hardly worthwhile to solveMIQP master programs. There is also unlikely to be much advantage in using quadraticouter approximation when the integer variables are mostly zero{one variables. The mostfavourable case for quadratic outer approximation occurs when there are multiple discretevalues of each component of y, and there are nonlinear terms in y present. However, carehas to be taken, since nonlinearities can be hidden away by using linearization techniquesthat reformulate the original problem. Such a reformulation would indeed be necessary ifone wanted to use Duran and Grossmann's outer approximation algorithm. It is hopedto present results with the quadratic outer approximation algorithm in a later paper inconjunction with an improved branch{and{bound procedure for MIQP problems.5 Nonsmooth MINLP problemsIn this section the OA algorithms of Section 4 are generalized to cover an MINLP prob-lem applicable to nonsmooth functions. Similarly to Section 3, this problem can bereformulated using projection and �rst order conditions to obtain a (nonsmooth) masterproblem. This problem is equivalent to an MILP problem if extra variables are added.Relaxations of this master program are used in deriving an OA algorithm which iterates�nitely between nonsmooth NLP subproblems and MILP master program relaxations.Exact Penalty functions form a subclass of the type of optimization problems consideredhere and their use in OA is further examined. The main attraction of exact penaltyfunctions lies in the fact that they make a distinction between feasible and infeasible sub-problems unnecessary. Su�cient conditions are given under which the MINLP and itsexact penalty function formulation are equivalent. Particular attention is given to the l1exact penalty problem and it is shown in this case how extra variables can be used toconvert the nonsmooth master problem to an MILP problem. An alternative version of14

outer{approximation is developed, where only one cut is added to the master programrelaxations per iteration and it is shown that this cut can be equivalent to the correspond-ing Benders cut. Although only an MILP version of the algorithm is developed here, itis noted that the same observations as in Section 4 with respect to its performance arevalid here and it is indicated how a curvature term can be included in the MILP masterprogram relaxations.The class of problem considered here isPns (minx;y f(x; y) + h(g(x; y))subject to x 2 X ; y 2 Y integerwhere f and g are continuously di�erentiable and X is as in A1. It is assumed thath : IRm ! IR is convex but nonsmooth. This assumption alone does not imply convexityof Pns which is needed to enable its treatment by outer approximation. It is thereforeconvenient to assume that h is also a monotone function, that isa � b) h(a) � h(b):This class of problems includes a wide range of practical optimization problems suchas problems involving exact penalty functions which are studied in more detail towardsthe end of this section. In many cases h(g) is a polyhedral convex function such ash(g) = maxi gi, h(g) = kg+k1 or h(g) = kg+k1, but other functions are also possible.(Here a+ denotes the vector a+ = (a+1 ; : : : ; a+m)T where a+i = max(ai; 0).)To reformulate Pns similar techniques to those used in Section 3 are employed. Firsta projection onto the integer variablesproj(Pns)(minyj2Y fNSO(yj)g:is de�ned, where the nonsmooth subproblem NSO(yj) is obtained from Pns by �xing theinteger variables at y = yj, that isNSO(yj)(minx f(x; yj) + h(g(x; yj))subject to x 2 X:Let xj be an optimal solution of NSO(yj). As a consequence of the subgradient inequalityand the �rst order necessary conditions ([3], Theorem 14.6.1, p. 406 f.) NSO(yj) has thesame solution as the following linearized problem.8>>>><>>>>: minx;� �subject to � � f j + (rf j)T x� xj0 !+ h(gj + [rgj]T x� xj0 !)x 2 X 9>>>>=>>>>; :where a dummy variable � has been introduced. Let �j = f j + h(gj) denote the optimalvalue of �. Replacing NSO(yj) by its linearization implies that the projected problemproj(Pns) has the same solution asminyj2Y 8>>>><>>>>: minx;� �subject to � � f j + (rf j)T x� xj0 !+ h(gj + [rgj]T x� xj0 !)x 2 X 9>>>>=>>>>; :15

Next we de�ne the master programMns8>>>><>>>>: min�;x;y �subject to � � f j + (rf j)T x� xjy � yj !+ h(gj + [rgj]T x� xjy � yj !) j 2 Tx 2 X ; y 2 Y integerwhere T = fj : xj is an optimal solution to NSO(yj)g. It readily follows that (�i; xi; yi) isfeasible in Mns for any i 2 T . (Proof: use �i � f i + h(gi) and expand about (xi; yi) usingconvexity and monotonicity of h.) The above development shows that Mns is equivalentto Pns in the sense that (x�; y�) solves Pns if and only if (��; x�; y�) solves Mns.The master program Mns is not solved directly but instead a relaxation strategy similarto Algorithm 1 is applied. The relaxationM ins that is solved at iteration i of the algorithmis obtained asM ins8>>>>>>><>>>>>>>: min�;x;y �subject to � < UBD� � f j + (rf j)T x� xjy � yj !+ h(gj + [rgj]T x� xjy � yj !) j 2 T ix 2 X ; y 2 Y integer.where T i = fj � i : xj is an optimal solution to NSO(yj)g � T andUBD = minj�i ff j + h(gj)g:The program M ins can now be used in an outer approximation algorithm similar to Al-gorithm 1. The only unusual feature is the occurrence of the convex composition h(g).However, using standard linear programming techniques, h(g) can be expressed as a setof linear inequality constraints if h is a polyhedral function, and this is described belowfor the l1 norm. The new algorithm can now be described as follows.Algorithm 2: Nonsmooth Outer ApproximationInitialization: y0 is given; set i = 0, T�1 = ; and UBD =1.REPEAT1. Solve the subproblem NSO(yi) and let the solution be xi.2. Linearize the objective and (active) constraint functions about (xi; yi).Set T i = T i�1 [fig.3. IF (f i + h(gi) < UBD) THENupdate current best point by setting x� = xi; y� = yi; UBD = f i + h(gi).4. Solve the current relaxation M ins of the master program Mns, giving a new integerassignment yi+1 to be tested in the algorithm. Set i = i+ 1.UNTIL (M ins is infeasible).The following theorem establishes the �nite convergence of the algorithm.Theorem 3 If assumptions A1 and A2 are satis�ed and Y is �nite then Algorithm 2converges �nitely to a solution of Pns. 16

Proof:It is shown �rst that no integer assignment is generated twice by the algorithm. Its�niteness then follows from the �niteness of Y .It is assumed that at iteration i � j the integer assignment yj is feasible in themaster program M ins and a contradiction is sought. It follows that there exists an x0 2 Xsatisfying the inequality� � f j + (rf j)T x0 � xj0 !+ h(gj + [rgj]T x0 � xj0 !):Let �j 2 @h(gj) be the optimal multiplier of NSO(yj). It follows from the de�nition ofthe subdi�erential @h that� � f j + h(gj) + (rf j +rgj�j)T x0 � xj0 ! : (12)(Because h is monotonic it follows that h(g(x; y)) is convex and rgj�j is an element ofits subdi�erential.)In order to apply the optimality conditions of Theorem 14.6.1 ([3] p. 406 f.) it isconvenient to handle the constraint x0 2 X by introducing composite functions. Since Xcontains only linear functions like ri(x) = rTi x � bi � 0; i = 1; : : : ; q these constraintscan be �tted into the framework of the above optimality conditions through the singleconstraint t(r(x)) � 0involving the polyhedral function t(r(x)) = maxi ri(x):The optimality of xj implies the existence of multipliers �j � 0 and �j 2 @t(r(xj)).Premultiplying the linear constraint by �j�ji , summing over all i = 1; : : : ; q and adding to(12) gives the following valid inequality� � f j + h(gj) + t(rj)�j + (rf j +rgj�j +rrj�j)T x0 � xj0 ! :The �rst order necessary conditions for NSO(yj) (e.g. [3], Theorem 14.6.1, p. 406f.) implythat t(rj)�j = 0 complementarityrf j +rgj�j +rrj�j = 0 1st order condition.Thus the inequality � � f j + h(gj)can be derived for �. This contradicts the strict upper bound on � which is� < UBD � f j + h(gj):Now assume that Algorithm 2 terminates with an indicated solution for whichUBD = f 0 + h(g0) > f� + h(g�):The convexity assumption implies that y� must be feasible in the previous MILP mas-ter program relaxation which contradicts the termination assumption and concludes theproof.2 17

It is worth mentioning, that Algorithm 2 does not require a constraint quali�cation ong to hold in order to achieve �nite convergence. However, such an assumption is neededto show that the exact penalty function formulation of P and P itself are equivalent andwe now proceed to examine this situation.A class of nonsmooth MINLP which is of particular interest are exact penalty func-tions (EPFs). EPFs o�er an alternative approach to the di�culties caused by infeasiblesubproblems which makes a distinction between feasible and infeasible NLP subproblemsunnecessary. Instead of solving problem P an exact penalty function formulation of P isconsidered. E(minx;y �(x; y) = �f(x; y) + kg(x; y)+ksubject to x 2 X; y 2 Y integer.where k � k is a norm in IRm, and � is a su�ciently small penalty parameter. This is aspecial case of Pns and can be solved by Algorithm 2.It is of interest to know under which conditions E and P are equivalent. Theorem 4gives su�cient conditions under which the mixed integer exact penalty function problemE is equivalent to problem P, so that Algorithm 2 terminates at a solution to P. Oneof these conditions is that the penalty parameter has to be \su�ciently small". This isquali�ed by the following conditions on the penalty parameter, where k � kD denotes thedual norm to k � k.A4 Let the penalty parameter � satisfy� < 1=maxj k�jkD 8j : NLP(yj) is feasible� < k(gk)+kf��fk 8k : k(gk)+k > 0 and fk < f�:A5 Let a second order su�cient condition (e.g. [3], Theorem 9.3.2, p. 211) hold for all jsuch that NLP(yj) is feasible.Although additional assumptions have to be made A5 will usually hold. If the userschoice of the penalty parameter does not satisfy A4 then the optimal solution of E is notfeasible in P. The user can detect this fact and reduce the penalty parameter accordingly.The �rst condition in A4, together with A5 is needed to ensure that the solution ofthe feasible NLP{subproblems and the corresponding EPF{problems are equivalent, andthe second condition inA4 ensures that Algorithm 2 does not terminate with an infeasiblesolution. A simple conclusion of Theorem 4 is that Algorithm 2 terminates �nitely at asolution of P or, if P is infeasible, it �nds the \best" exact penalty solution to P. NowTheorem 4 can be statedTheorem 4 If assumptions A1 to A5 hold and if P has a feasible solution, then E andP are equivalent in the sense that (x�; y�) solves P if and only if it solves E.Proof:AssumptionsA3, A5 and the �rst part of assumptionA4 imply that any feasible NLP(yj)subproblem of P is equivalent to the corresponding NSO(yj) subproblem of E (c.f. [3],Theorem 14.3.1, p. 380). It remains, therefore, to show that the solution of E cannot be apoint (xk; yk) for which NLP(yk) is infeasible. Now let (xk; yk) be such that k(gk)+k > 0.The second part of assumption A4 implies that�k = �fk + k(gk)+k> �fk + �(f� � fk)= �f� 18

Therefore, �k > �� which concludes the proof.2 If h(g) is a polyhedral convex function, it is possible to reformulate the constraints inMns using a standard linear programming technique. If h(g) = kg+k1, then additionalvariables �l are introduced and the constraints are equivalent to� � f j + (rf j)T x� xjy � yj !+ mXl=1 �l�l � gjl + (rgjl)T x� xjy � yj ! l = 1; : : : ;m�l � 0 l = 1; : : : ;m 9>>>>>>>>>=>>>>>>>>>; (C1)In the case of h(g) = kg+k1 only a single additional variable is needed.An alternative way of deriving the constraints C1 is now explained in the context ofthe l1 EPF problem. It is possible to introduce variables �l directly into E so that it canbe reformulated asE18>>>><>>>>: minx;y;� �f(x; y) + mXl=1 �lsubject to �l � gl(x; y) l = 1; : : : ;m�l � 0; 8l; x 2 X; y 2 Y integer,Outer approximations of E1 can be derived using the methods of Section 4, giving rise tothe constraints C1 (with f replaced by �f). A similar formulation is again possible forthe l1 norm.The proof of Theorem 3 indicates that it is possible to derive a version of Algorithm2 in which only one constraint is added per iteration. This single cut is given by� � f j + h(gj) + (rf j + [rgj]�j)T x� xjy � yj !where �j 2 @h(gj) is the optimal multiplier vector of the NSO(yj) subproblem. It isinstructive to compare this cut to the Benders cut for the same problem. Flippo et. al.[4] show that the Benders cut can be written as� � f j + h(gj) + �j(yj � y)where �j is the optimal multiplier of the constraint y = yj inPns(yj)8>><>>: minx;y f(x; y) + h(g(x; y))subject to y = yjx 2 X ; y 2 YThe �rst order necessary conditions ([3], Theorem 14.6.1, p. 406 f.) enable an expressionof �j in terms of rf j, rgj, and �j 2 @h(gj) to be givenryf j + [rygj]�j + �j = 0so that the Benders cut can �nally be written as� � f j + h(gj) + (ryf j + [rygj]�j)T (y � yj):19

Clearly, if xj 2 X lies in the strict interior of X or if all corresponding multipliers arezero, then also rxf j + [rxgj]�j = 0 and both cuts are equivalent. This last statementindicates that it might not be advisable to use just the single cut, since GBD is usuallyinferior to OA.As explained in Section 4, outer{approximation forms a linear model of the problemP and does therefore not represent curvature information adequately. This motivates theintroduction of a second order Lagrangian term into the objective function of the relaxedmaster programs. A similar approach is suggested here and the corresponding curvatureterm is r2Li = r2f i + mXl=1 �ilr2gil :Finally it is possible to generalize problem Pns even further by including a compositeconstraint of the form t(r(x; y)) � 0:It is possible to derive an equivalent MILP master program using similar techniques tothose employed in this section. The inclusion of this additional constraint has, however,the disadvantage that it makes a separate treatment of infeasible subproblems necessary,whereas the main reason for introducing penalty functions is that this is avoided.AcknowledgementsWe would like to acknowledge the advice of the two referees whose comments enabled amuch improved version of the paper to be prepared.References[1] R. Breu and C.-A. Burdet, \Branch{and{bound experiments in zero{one program-ming", Mathematical Programming Study 2 (1974) 1{50.[2] M. Duran and I.E. Grossmann, \An outer-approximation algorithm for a class ofMixed Integer Nonlinear Programs", Mathematical Programming 36 (1986) 307-339.[3] R. Fletcher, Practical Methods of Optimization (John Wiley, Chichester, 1987).[4] O.E. Flippo et. al., \Duality and decomposition in general mathematical program-ming", Econometric Institute, Report 8747/B, University of Rotterdam (1987).[5] A.M. Geo�rion, \Generalized Benders Decomposition", Journal of Optimization The-ory and Applications 10 (1972) 237-262.[6] G.R. Kocis and I.E. Grossmann, \Global Optimization of Nonconvex MINLP in Pro-cess Synthesis", Industrial & Engineering Chemistry Research 27 (1988) 1407-1421.[7] F. K�orner, \A new branching rule for the branch{and{bound algorithm for solvingnonlinear integer programming problems", BIT 28 (1988) 701-708.[8] R. Lazimy, \Improved Algorithm for Mixed-Integer Quadratic Programs and a Com-putational Study", Mathematical Programming 32 (1985) 100-113.[9] J. Viswanathan and I.E. Grossmann, \A combined penalty function and outer{approximation method for MINLP optimization", Computers and chemical Engi-neering 14 (1990) 769-782. 20

[10] X. Yuan, S. Zhang L. Pibouleau and S. Domenech, \Une m�ethode d'optimization nonlin�eaire en variables mixtes pour la conception de proc�ed�es", Operations Research22/4 (1988) 331-346.

21

