Solving Mixed Integer Nonlinear Programs by Outer
Approximation

*

Roger Fletcher and Sven Leyffer
Unwersity of Dundee

October 16, 1996

Abstract

A wide range of optimization problems arising from engineering applications can
be formulated as Mixed Integer NonLinear Programmming problems (MINLPs).
Duran and Grossmann (1986) suggest an outer approximation scheme for solving
a class of MINLPs that are linear in the integer variables by a finite sequence of
relaxed MILP master programs and NLP subproblems.

Their idea is generalized by treating nonlinearities in the integer variables di-
rectly, which allows a much wider class of problem to be tackled, including the case
of pure INLPs. A new and more simple proof of finite termination is given and a
rigorous treatment of infeasible NLP subproblems is presented which includes all
the common methods for resolving infeasibility in Phase I.

The worst case performance of the outer approximation algorithm is investigated
and an example is given for which it visits all integer assignments. This behaviour
leads us to include curvature information into the relaxed MILP master problem,
giving rise to a new quadratic outer approximation algorithm.

An alternative approach is considered to the difficulties caused by infeasibility
in outer approximation, in which exact penalty functions are used to solve the NLP
subproblems. It is possible to develop the theory in an elegant way for a large
class of nonsmooth MINLPs based on the use of convex composite functions and
subdifferentials, although an interpretation for the [y norm is also given.

Key words: Nonlinear integer programming, mixed integer nonlinear program-
ming, decomposition, outer approximation.

1 Introduction

Many optimization problems involve integer or discrete variables and can be modelled
as Mixed Integer Nonlinear Programming problems (MINLPs). These variables can var-
iously be integer variables modelling for example numbers of men, or zero—one variables
modelling decisions, or discrete variables modelling, for example, equipment sizes. In ad-
dition to these there may also exist continuous variables which for example may represent
pressures or temperatures. Nonlinearities come into the model either through physical
properties such as enthalpy and vapour/liquid equilibrium, or may also involve the deci-
sion variables through for example economies of scale. The function to be optimized in
this context usually involves costs and profits from the design.

*This work is supported by SERC grant no SERC GR/F 07972

Throughout the paper no distinction will be made between the different types of integer
or discrete variables referred to above. This does not constitute a great loss of generality
if it 1s assumed that the underlying MILP or MIQP solver is capable of handling any type
of discrete variable. It is also possible to replace a discrete variable by an integer variable
or by a number of zero—one variables. In the rest of the paper the term integer variables
is taken to include the possibility of discrete but non—integer variables.

The class of problem to be considered here is

min fla,y)
w7y
P ¢ subject to g(x,y) <0
r € X, y €Y integer

and the following assumptions are made

A1l X is a nonempty compact convex set defined by a system of linear inequality con-
straints and the functions

f:R"xIRF — R
g:R" xR — R™

are convex.
A2 f and ¢ are once continuously differentiable.

A3 A constraint qualification holds at the solution of every NLP subproblem which is
obtained from P by fixing the integer variables y. This could be, for instance, the
assumption that the set of feasible directions at the solution can be identified with
the set of feasible directions for the constraint linearized at the solution (e. g. [3],
p. 202), for which a sufficient condition is that the normal vectors of the active
constraints are linearly independent.

Assumptions A1 to A3 are not unreasonable in the sense that both Duran and Gross-
mann’s outer approximation algorithm [2] and the nonlinear branch and bound algorithm
require equivalent assumptions to hold, to ensure that P and all subproblems or relax-
ations of P are solved correctly.

The most serious restriction is that of convexity of f and ¢, and often the convexity
assumptions do not hold in practice. The proposed algorithm can be applied to nonconvex
problems, although no guarantee can be given that the solution obtained by the algorithm
is a global solution. Kocis and Grossmann [6] give heuristics which aim to solve nonconvex
MINLP and these are also applicable to the algorithms presented here. The model problem
P is otherwise of general applicability and allows nonlinearities in the integer variables to
be treated directly, thus including the case of pure INLP problems in the class of treatable
problems. In [2] Duran and Grossmann proposed an outer approximation algorithm for
solving the subclass of P where f and ¢ are linear in the integer variables. Their algorithm
has proved very successful in practice and its merits are examined in a more general
context in this paper.

This outer approximation routine solves P by alternating finitely between an NLP
subproblem (obtained from P by fixing the integer variables y) and relaxations of an MILP
master program. Alternatively P may be solved using Generalized Benders Decomposition
as proposed by Geoffrion in [5] and generalized to cover problems with nonlinear terms
in the integer variables y by Flippo et. al. [4]. Like outer approximation Generalized
Benders Decomposition solves P by alternating finitely between an NLP subproblem and
an MILP master problem. The difference lies in the derivation of the MILP master
program, and in Generalized Benders Decomposition nonlinear duality theory rather than

outer approximation is employed to obtain the MILP master problem. As has been
pointed out in [2] the lower bounds produced by solving the master program relaxation of
outer approximation are tighter than the lower bounds produced by Generalized Benders
Decomposition. However, since Generalized Benders Decomposition adds less constraints
to the master program at each iteration no conclusions as to the final efficiency can be
derived from this property. Finally there is the possibility to use an NLP based branch and
bound algorithm, where at each node of the tree an NLP has to be solved and branches
are added in form of additional bounds on the integer variables.

In the remainder of this section a brief outline of the paper is given. In Section 2
a general Phase [feasibility problem is posed and it is described how this problem can
be used to generate cuts that exclude integer assignments y that give rise to infeasible
subproblems. The section is self-contained and is applicable to various NLP solvers.
Section 3 shows how P can be reformulated as an equivalent MILP problem using projec-
tion onto the space of integer variables together with outer approximation by supporting
hyperplanes. The result of Section 2 enables a rigorous treatment of infeasible NLP sub-
problems to be given. In Section 4 a new outer approximation algorithm is developed
based on the reformulation of Section 3. The algorithm iterates finitely between NLP
subproblems and MILP master problem relaxations. A new and more simple proof of
the finite convergence property is given. The worst case performance of the algorithm is
studied and an example is provided which shows that the algorithm can be very ineffi-
cient if nonlinearities are present. This motivates us to investigate algorithms which solve
MIQP master problems in an attempt to to take second order information into account.
In Section 5 an outer—approximation algorithm is developed for a class of nonsmooth
MINLPs. An important example for a nonsmooth MINLP is given by an exact penalty
function formulation of P. This offers an alternative approach to the difficulties caused
by infeasible subproblems. The theory is developed in a general setting based on the use
of convex composite functions and subdifferentials, although an interpretation for the [y
norm is also given. Conditions under which the penalty function formulation is equiva-
lent to P are given and the outer—approximations are compared with the corresponding
Benders cuts.

Throughout this paper the superscript * is used to indicate the iteration count, super-
script 7 is used to index the feasible NLP subproblems defined in Section 3 and superscript
¥ to index infeasible subproblems. The following notation is adopted to distinguish be-
tween function values and functions. f/ = f(z7,y’) denotes the value of f evaluated at
the point (z7,y’), similarly Vf/ = V f(x/,y’) is the value of the gradient of f at (2/,y7).
The same conventions apply for all other functions and higher derivatives.

2 Infeasibility in NLP problems

NLP solvers detect infeasibility in an NLP problem in many ways. Consider the con-
straints of an NLP problem.

gi(x) <0, 1=1,2,....m
re X CIR"

where the set X might for example be simple upper and lower bounds on . Two obvious
possibilities for finding a feasible point are to attempt to minimize an l; or [, sum of
constraint violations, that is

min) gf(z), v € X
=1

or

min max ¢f(z), v € X
z =1,....,m

where a™ = max(a,0). Other methods aim to maintain feasibility in any constraint
residual once it has been established. For example an [; problem of the form
min > g (@)
eJ L
subject to g;(x) <0, j € J
re X

might be solved, in which the set J is the set of constraints which are currently feasible
in the algorithm and J*' is its complement. Alternatively constraints may be driven to
feasibility one at a time, whilst maintaining feasibility for constraints indexed by j € J.
In this case a problem

mn)
subject to g;(x) <0, j € J
re X

is being solved at any one time.

In all these cases, if the constraints are inconsistent, then the phase I approach termi-
nates at a point, 2’ say, with an indication that the problem is infeasible. At this stage it
is possible to write down an equivalent feasibility problem F that has been solved, whose
weights depend on the type of phase I approach. The weights w; are nonnegative and
are not all zero. Infeasibility in the NLP problem is then equivalent to having obtained a
solution z’ of F for which the objective function is greater than zero.
min Y wig(e)

eJ L
subject to ¢;(x) <0, j € J
r e X.

All of the above cases fit into this framework. (In the [, case, there exist nonnegative
weights at the solution such that Y~ w; = 1 and w; = 0 if ¢; does not attain the maximum
value.)

In the context of the problem NLP(y*) introduced in Section 3, the general feasibility
problem has the form

min 3 b ea)
k ieJt
Fy") subject to g;(z,y") <0, j€J
re X

where 4* is some fixed assignment of the integer variables y of problem P and the weights
w¥ may differ for different y*. An important property of F(y*) is expressed in the following
lemma.

Lemma 1 If NLP(y") is infeasible, so that z* solves F(y*) with
> wi(gh)t >0 (1)

ieJ+

then y = y* is infeasible in the constraints

Lk
02gf+(ng)T(§_§k) Vie Jt

$—$k .
Ozgf+(vg§)T(y_yk) Vi€ J,

forall z € X.
Proof:

Assume that y* is feasible in the above constraints, so that there exists an & € X such
that (#,y") satisfies the following set of inequalities:

£k

0295+(V95>T(x0$)WGJL (2)
£k

029f+(vgf>T(x0$)wei (3)

It is convenient to handle the condition & € X by introducing the normal cone 9.X (z¥) at
z¥. The normal cone X (z¥) is defined as the set of vectors u that satisfy the inequality

uT(l’—l‘k)SO Vo e X. (4)

The first order Kuhn-Tucker conditions for the feasibility problem F(y*) imply that there
exist multipliers A\; > 0, j € J and a vector u € 9 X (2¥) such that

Ngh=0,vjeJ (5)
S wiVel +> A\ Veh +u=0. (6)
eJt jed

After multiplying (2) by w? > 0 and (3) by A; > 0, summing, and adding to (4) the
following inequality is obtained.

u & —ak
02 X w4+ S e+ T wva = v+ (o) () @

eJt JE€J eJt JEJ

Substituting (5) and (6) the inequality (7) becomes

0> 3" whgk

ieJ+

which contradicts (1) and proves the lemma.
O

We are grateful to an anonymous referee for observing that the lemma can be strength-
ened. The proof shows that it suffices to consider those inequalities (2) and (3) for which
w; > 0 and A; > 0 respectively. Or in other words it is sufficient to consider only the
strongly active inequalities.

3 Reformulation of P

In this section it is shown how the model problem P can be reformulated using outer
approximation to obtain an equivalent MILP master program M, relaxations of which
will be used in the algorithms in Section 4. This generalizes the outer approximation
algorithm of Duran and Grossmann [2] to functions that are nonlinear in the integer
variables y, simplifying a similar attempt by Yuan et. al. [10]. Additionally the present
approach corrects an inaccuracy which occurs in [2] and [10] when treating infeasible
subproblems. Although Duran and Grossmann acknowledge the fact that their proposed
algorithm may cycle if infeasible subproblems are encountered, the solution they propose
(eliminate integer assignments through the use of integer cuts) is only practical for binary

5

variables. Moreover, it does not recognise the fact that this shortcoming is caused by a
wrong interpretation of the master program. This section shows how any common Phase
[approach to NLP, based on the feasibility problem of Section 2, can be used to provide a
master program which is correctly equivalent to P. Another possibility is to use an exact
penalty function and the benefits of this are explained in Section 5.

Earlier attempts to deal with the difficulties arising from infeasible subproblems in-
clude the work by Viswanathan and Grossmann in [9]. As far as we know, however,
no proof has yet been given that these methods guarantee that no integer assignment is
visited twice. It is suggested in [9] that the problem P be reformulated as

min flz,y)+oa

Ty Q
subject to g(z,y) < «
a>0, xe€ X, yeY integer

where o is a large positive constant. It is shown in Section 5 that this can be included as
a special case of a more widely applicable formulation.

In reformulating P, the first step is to express P in terms of a projection on to the y
variables, that is

proi(P) {. mip (NLP(y).

where

V={yeY:3IzeX with g(z,y) < 0}

is the set of all integer assignments y that give rise to feasible subproblems. In this
projection the subproblem

min f(xvy])
NLP(y") { subject to g(x,y7) <0
re X

is defined in which the integer variables are fixed at the value y = y’/. Let 2’ denote a
solution of NLP(y?) for y/ € V (existence of 27 follows by the compactness of X). Because
a constraint qualification (assumption A3) holds at the solution of every subproblem
NLP(y’) for every y/ € V, it follows that proj(P) has the same solution as the problem

min Fi 4 (VT (:1:—0;1;1)

min
yev

.) _ g
subject to 0> ¢/ + [Vg/]T (‘ 0:1;)
re X

In fact it suffices to include those linearizations of constraints about (27, y’) which are
strongly active (constraints with nonzero multipliers) at the solution of the corresponding
subproblem. This is important since it implies that fewer constraints will have to be
added to the master program in Section 4.

It is convenient to introduce a dummy variable n € IR into this problem, giving rise

to the equivalent problem

min
x777 77

. . _
subject to an]—l—(Vf])T(x 0:1;)
min
Wev ;
02¢+VWV(xBx)
re X

The convexity assumption A1 implies that (x%,y") is feasible in the inner optimization
problem above for all z € T'. Thus an equivalent MILP problem

min n
w7y777 3
) : R
subject to n > f7 4+ (Vf7) y —
My VieT

oy
0> gl + [Vl T [£
> g+ g](y_w

r € X, y € V integer

is obtained, where T = {j : NLP(y?) is feasible and 27 is an optimal solution to NLP(y/)}.
It remains to find a suitable representation of the constraint y € V by means of
supporting hyperplanes. The master problem given in [2] is obtained from problem My
by replacing y € V by y € Y. Duran and Grossmann justify this step by arguing that a
representation of the constraints y € V' is included in the linearizations in problem My-.
This argument is erroneous as the following example indicates. Consider the problem

min fley)= -2y —a
w7y
P { subject to 0> 2?4y
(IS {_17 1}
with solution (a*,y*) = (1,—1) and f* = 1. The master program given in [2] can be
written as
min fley)= -2y —a
w7y
Mpa { subject to 0> 1+ 2@ —1)+y
(IS {_17 1}

and problem Mp¢ has the solution (z*,y*) = (0,1) and f* = —2, which is infeasible in P.
Thus the value y = 1 is not excluded in Mps and hence Mpg and P are not equivalent
in this case.

This small example clearly illustrates that it is necessary to include information from
infeasible subproblems. However care has to be taken when choosing the value of = about
which to linearize the subproblem, as is illustrated by choosing = = % for the infeasible
subproblem y = 1. This choice results in the constraint

1+(5+ <0
;Hle—g)tys

being added to My, which does not exclude y = 1 from My.

It is necessary to ensure that integer assignments which produce infeasible subproblems
are also infeasible in the master program M. Let the integer assignment y* produce an
infeasible subproblem and denote

S = {k : NLP(y*) is infeasible and z* solves F(yk)}
It then follows directly from Lemma 1 of Section 2 that the constraints

r — aF
k

0> k_l_va(
> 9" +[Vyg'] y—y

) Vke S

exclude all integer assignments y* for which NLP(y*) is infeasible. Thus a general way to
correctly represent the constraints y € V in My is to add linearizations from F(y*) when
infeasible subproblems are obtained, giving rise to the following MILP master problem.

min n
T,Y,M ;
. . - J
subject to an]+(vf])T(§_§j)
VyeT
J
M 0> f+va(x_xl)
=49 [Vg’] y— 1y
ok
029k+[Vg’“]T(§_§k) vkes
r € X, y €Y integer.

In the above example a suitable form of feasibility problem F is
1(1%L’im(ac2 + 1)"'
which is solved by = = 0. Thus the constraint
y<0

is added to Mpg which correctly excludes the infeasible integer assignment y = 1.
The above development provides a proot of the following result:

Theorem 1 If assumptions A1, A2 and A3 hold, then M is equivalent to P in the sense
that («*,y*) solves P if and only if it solves M.

Problem M is an MILP problem, but it is not practical to solve M directly, since this
would require all subproblems NLP(y?) to be solved first. This would be a very inefficient
way of solving problem P. Another practical disadvantage of M is that it contains a very
large number of constraints. For example if Y = {0,1}” and P has m constraints then
M would contain 27 - (m + 1) constraints. Therefore, instead of attempting to solve M
directly, relaxations of M are used in an iterative process that is the subject of the next

section.

4 The Algorithms

In this section a new linear outer approximation algorithm is developed, based on solving
MILP relaxations of the master problem M of Section 3, and it is proved that the algo-
rithm terminates finitely. The algorithm owes much to the innovative work of Duran and

8

Grossmann [2] in developing an outer approximation algorithm, but the new algorithm
improves on this work in a number of ways. The problem formulation allows the integer
variables y to occur nonlinearly in f and ¢, and a new and more simple proof of termina-
tion is given. The occurrence of infeasible solutions to NLP subproblems is treated in a
rigorous way which is generally applicable to many different methods for solving Phase [
problems. The resulting method is also suitable for pure INLP problems in which the x
variables in P are absent, which is not the case for the Duran and Grossmann formulation.

The practical performance of the resulting algorithm has proved to be similar to that
of the Duran and Grossmann algorithm. However, the worst case performance of the
algorithm is studied and an example is provided which shows that the algorithm can be
very inefficient. This subsequently motivates us to investigate a quadratic outer approxi-
mation algorithms which solve MIQP master problems in an attempt to take second order
information into account.

Each iteration of the linear outer approximation algorithm chooses a new integer
assignment y* and attempts to solve NLP(y*). Either a feasible solution z° is obtained
or infeasibility is detected and ' is the solution of a feasibility problem F(y') (other
pathological cases are eliminated by the assumption that the set X is compact). The
algorithm replaces the sets T" and S in M by the sets

T ={j |7 <1i:NLP(y’) is feasible and 2/ is an optimal solution to NLP(y?)}
St = {k | k <1 :NLP(y*) is infeasible and z* solves F(yk)}

It is also necessary to prevent any y?, j € T from becoming the solution of the relaxed
master problem. This can be done by including a constraint

n < UBD'

where ' 4 '
UBD' = min f7, 5 <1, 5 € 1"

Thus the following master problem is defined

min
x7y777 77

subject to 5 < UBD'
anﬁHVﬁF(x_ﬂ)
y

029f+[ng]T(“'_x7)

xr — zF ’
Ong—l—[ng]T(y_yk) Vk e S
r € X, y €Y integer.

The algorithm solves M® to obtain a new integer assignment y**!, and the whole process
is repeated iteratively. A detailed description of the algorithm is as follows.

Algorithm 1: Linear Outer Approximation

Initialization: y° is given; set 1 = 0, T+ =), S1! =) and UBD = oc.
REPEAT
1. Solve the subproblem NLP(y'), or the feasibility problem F(y') if NLP(y') is infea-

sible, and let the solution be .

2. Linearize the objective and (active) constraint functions about (z',y'). Set T° =
T U {2} or ST = S U {i} as appropriate.

3. IF (NLP(y') is feasible and f' < UBD) THEN
update current best point by setting z* = l’i, Yy = yi, UBD = fZ

4. Solve the current relaxation M® of the master program M, giving a new integer
assignment y**! to be tested in the algorithm. Set ¢ =i 4 1.

UNTIL (]\4Z is infeasible).

The algorithm also detects whether or not P is infeasible. If UBD= oo on exit then
all integer assignments y € Y were visited by the algorithm and none was found to be
feasible (i.e. the upper bound did not work as a cut off). The use of upper bounds on n
and the definition of the sets 7" and S° ensure that no y° is replicated by the algorithm.
This enables a proof to be given that the algorithm terminates after a finite number of
steps, provided that there is only a finite number of integer assignments.

Theorem 2 [f assumptions A1, A2 and A3 hold, and |Y| < oo, then Algorithm 1
terminates in a finite number of steps at an optimal solution of P or with an indication
that P is infeasible.

Proof:

First it is shown that no integer assignment is generated twice by the algorithm. The
finiteness of Algorithm 1 then follows from the finiteness of the set Y. Let [<i. If [€ S°
it follows from Lemma 1 of Section 2 that the cuts introduced from the solution of the
feasibility problem F(y') exclude y' from any subsequent master program.

If [€ T" it is assumed that y' is feasible in M* and a contradiction is sought. Solving M*
gives the solution ("1, 271 »'), which must satisfy the following set of inequalities:

ni-l-l < UBDZ S fl (8)

ni-l—l > fl T (vfl)T (JA?H_IO— xl) (9)

X

l 0T Pt — g
0>g +[Vy 0 . (10)

Since @' is the optimal solution to NLP(y') and a constraint qualification holds (A3), no
feasible descent direction exists at ', that is

£2+1

l 0T — 2!
029+[V9](0)

= (VT (‘%mo_ o) > 0. (11)

10

Substituting (11) into (9) gives

which contradicts (8). Thus y' is infeasible for all [€ S* and [€ T*.

Finally it is shown that Algorithm 1 always terminates at a solution of P or with
an indication that P is infeasible. If P is feasible, then let an optimal solution to P be
given by (a*,y*) with optimal value f* (any other optimal solution has the same objective
value and the algorithm does not distinguish between them). Since M is a relaxation of
P, f* is an upper bound on the optimal value of M, which is attained at (z*,y*). Now
assume that the algorithm terminates with an indicated solution («',y’) with f > f*
(i.e. not optimal). Since UBD= f" > f* it follows that (x* y*) must be feasible in the
previous relaxation of M, which contradicts the assumption that the algorithm terminates
at (z’,y"). If on the other hand P is infeasible then all NLP(y’)-subproblem are infeasible
and the algorithm never updates the upper bound UBD, and hence exits with UBD= oo
indicating an infeasible problem.

O

It can be observed from the proof that it is not necessary to solve M for optimality
in Algorithm 1, as long as a new integer assignment is obtained from M*. However, if M*
is solved for optimality then the upper bound on 5 can be supplemented by a weak lower

bound
nzn

where 7' is the solution value of M*'. This lower bound can improve the efficiency of
the MILP solver by cutting out branches of the branch and bound tree that need not be
examined. It is worth remarking that the method of proof used here is much more simple
(especially with respect to the derivation of the master problem M) than that of Duran
and Grossmann which is based on integer polyhedra and linear programming theory.

There are a number of practical considerations that arise when implementing the algo-
rithm. It is mentioned in Section 3 that it is worthwhile to include only those constraints
that are active at a solution of the subproblem NLP(y‘) so that fewer linearizations are
added to the master program at each iteration. If this is done it might not be necessary
to include a constraint dropping procedure that scans the constraints of the master pro-
gram to keep its size small. On the other hand, adding fewer constraints to the master
program implies that the master program relaxations are weaker which could result in
a larger number of iterations. Currently we prefer to add only the linearizations of the
strongly active constraints to keep the size of the master program smaller. Preliminary
computational experience shows that this results in better overall CPU times whilst not
incurring many additional outer approximation iterations.

In practice the constraint

n < UBD

would not be used, but rather

n < UBD —¢

where € is some small user supplied accuracy. The algorithm can then only be guaranteed
to provide an e-optimal solution to P. As mentioned in Section 3 our reformulation includes
pure INLP problems and this makes Algorithm 1 applicable to pure INLP problems, in
which case step 1 of the algorithm (the inner optimization over the continuous variables)
becomes redundant.

Practical experience with linear outer approximation given in [2] indicates that outer
approximation is superior both to nonlinear branch and bound and Generalized Benders
Decomposition, although the test problems are limited to the case where f and ¢ are

11

fly)=(y-18)°

Figure 1: Worst case example for Algorithm 1

both linear functions in y. It is of interest to know whether this is always the case, or
if there exist situations in which the outer approximation algorithm performs badly. We
have been able to construct a worst case example for linear outer approximation in which
Algorithm 1 visits all integer feasible points in the problem before finding the solution,
even though the initial assignment 3 is adjacent to the optimal assignment. The example

min fly)=(y —¢)?
subject to y € {0,¢,..., %,

18

1}
in which € = 21 for some p > 1.

Starting with ° = 0, which is the adjacent value to the solution y* = ¢, the next
iterate is y! = 1, which is an extreme feasible point. Algorithm 1 then works its way back
to the solution by visiting each remaining integer assignment y' = 24!, ¢ =2.3,... p+1
in turn. Figure 1 illustrates the situation for p = 3 and the shaded boxes indicate the
various supporting hyperplanes that are generated. This example is also a worst case

12

example for Generalized Benders Decomposition but it is solved by nonlinear branch and
bound in only one step. The problem could also be slightly perturbed to f(y) = (y — §)?
with 6 < £. Then starting at the solution y° = 0, linear outer approximation would again
visit all feasible points before verifying that y° is the solution. Again Generalized Benders
Decomposition also visits all feasible points, but nonlinear branch and bound solves the
problem after one branch.

The example shows that both linear outer approximation and Generalized Benders
Decomposition perform badly when the problem functions are not adequately represented
by linear approximations. The initial step makes the next iterate remote from the solution
which is unsatisfactory in a nonlinear situation. The remedy lies in introducing curvature
information into the master programs. In the remainder of this section it is shown how this
can be achieved for linear outer approximation by including a second order Lagrangian
term into the objective function of the MILP master programs. The resulting algorithm
is referred to as quadratic outer approrximation and is obtained by replacing the relaxed
master problem M’ by the problem

N T .

x—a' G x—a

min +1 : AT .

i ! Q(y—y) |](y—y)
subject to n < UBD

4 4 r —

an“r(Vf])T(y_)

y]
(@) | VjeTs
e
0>¢ + [V | x)
> g’ +[Vy'] (y_y]
_ .k)
ozgk+[vgk]T(§_§k) VEk € S

r € X, y €Y integer

in step 4 of Algorithm 1. In the definition of ()* the function

Lz, y,) = fx,y) + M g(z,y)

is the usual Lagrangian function.

Including a curvature term in the objective function does not change the finite conver-
gence property expressed in Theorem 1, since the feasible region of M® is unchanged and
the constraints of)% are still supporting hyperplanes. However, the possibility of using
the lower bound 5 > n° is no longer conveniently available. A quadratic Taylor series does
not provide a lower bound on a convex function as the linear Taylor series does. Therefore
it is not possible to use the optimal value of Q' as a lower bound. Moreover it cannot even
be expected that the optimal value of the linear part of the objective function (1) of the
master problem relaxation provides a lower bound on P although 7 is only constrained
by the supporting hyperplanes on f. This is illustrated by the following example:

min flz)=—In(x 4+ 1)
{ subject to 0 < x < 2.
For x = 0 the minimum of the quadratic approximation to f is at « = % and the value of
the linear approximation about x = 0 at * = % is —% which is greater than the minimum
of the above problem (—In(3)).

The advantage of the quadratic outer approximation algorithm is that a possibly dif-

ferent selection y*' is made by solving the master problem)°, which takes into account

13

nonlinear terms in P. This is well seen in the worst case example for linear outer approxi-
mation, which is solved by the quadratic outer approximation algorithm in two iterations,
independent of p. The price that has to be paid for this better performance is that instead
of solving an MILP at each iteration, an MIQP master program has to be solved. Un-
fortunately there is little or no software available that is specifically tailored to an MIQP
problem. The authors are currently investigating ways to solve the resulting MIQP prob-
lems by a branch and bound strategy that uses improved lower bounds for problems
generated by branching. A Generalized Benders Decomposition approach for solving the
MIQP as suggested by Lazimy [8] seems inadequate, since Generalized Benders Decompo-
sition can again be interpreted as a linear model, in which case the difficulties caused by
nonlinearities in outer approximation will simply arise at the MIQP level. Other methods
that have been suggested include the branching rule of Kérner [7] and a branching rule
that was suggested by Breu and Burdet [1] for linear 0-1 programming.

In order to gain further insight into the proposed algorithms it is useful to consider
the case when they are applied to pure integer nonlinear problems. Both algorithms make
linear approximations to the feasible constraints at y*; the difference lies in the fact that
the quadratic algorithm also includes a second order Lagrangian term in the next master
program. Therefore quadratic outer approximation can be interpreted as a Sequential
Quadratic Programming method generalized to integer programming. Linearizations of
previous steps are kept in the master program to avoid cycling between successive integer
assignments, and the QP subproblem of an ordinary SQP method is replaced by an MIQP
problem to account for the discrete nature of the problem. The linear outer approximation
algorithm can be interpreted as a Sequential Linear Programming technique.

This observation gives an indication as to when quadratic outer approximation should
be preferred. If y appear only linearly in the problem, then it is hardly worthwhile to solve
MIQP master programs. There is also unlikely to be much advantage in using quadratic
outer approximation when the integer variables are mostly zero—one variables. The most
favourable case for quadratic outer approximation occurs when there are multiple discrete
values of each component of y, and there are nonlinear terms in y present. However, care
has to be taken, since nonlinearities can be hidden away by using linearization techniques
that reformulate the original problem. Such a reformulation would indeed be necessary if
one wanted to use Duran and Grossmann’s outer approximation algorithm. It is hoped
to present results with the quadratic outer approximation algorithm in a later paper in
conjunction with an improved branch-and-bound procedure for MIQP problems.

5 Nonsmooth MINLP problems

In this section the OA algorithms of Section 4 are generalized to cover an MINLP prob-
lem applicable to nonsmooth functions. Similarly to Section 3, this problem can be
reformulated using projection and first order conditions to obtain a (nonsmooth) master
problem. This problem is equivalent to an MILP problem if extra variables are added.
Relaxations of this master program are used in deriving an OA algorithm which iterates
finitely between nonsmooth NLP subproblems and MILP master program relaxations.
Exact Penalty functions form a subclass of the type of optimization problems considered
here and their use in OA is further examined. The main attraction of exact penalty
functions lies in the fact that they make a distinction between feasible and infeasible sub-
problems unnecessary. Sufficient conditions are given under which the MINLP and its
exact penalty function formulation are equivalent. Particular attention is given to the [y
exact penalty problem and it is shown in this case how extra variables can be used to
convert the nonsmooth master problem to an MILP problem. An alternative version of

14

outer—approximation is developed, where only one cut is added to the master program
relaxations per iteration and it is shown that this cut can be equivalent to the correspond-
ing Benders cut. Although only an MILP version of the algorithm is developed here, it
is noted that the same observations as in Section 4 with respect to its performance are
valid here and it is indicated how a curvature term can be included in the MILP master
program relaxations.

The class of problem considered here is

p [min f@,y) + h(g(z,y))
" | subjectto z€X,yeY integer

where f and ¢ are continuously differentiable and X is as in A1l. It is assumed that
h :IR™ — IR is convex but nonsmooth. This assumption alone does not imply convexity
of P,s which is needed to enable its treatment by outer approximation. It is therefore
convenient to assume that & is also a monotone function, that is

a<b = h(a) < h(b).

This class of problems includes a wide range of practical optimization problems such
as problems involving exact penalty functions which are studied in more detail towards
the end of this section. In many cases h(g) is a polyhedral convex function such as
h(g) = max; g;, h(g) = ||gF]|e or h(g) = |l¢gT|l1, but other functions are also possible.
(Here a™ denotes the vector a* = (af,...,a})T where af = max(a;,0).)

To reformulate P, similar techniques to those used in Section 3 are employed. First
a projection onto the integer variables

proj(P..s) { min{NSO(y’)}.

y ey

is defined, where the nonsmooth subproblem NSO(y’) is obtained from P, by fixing the
integer variables at y = ¢/, that is

min fla.y?) + hig(x.y7))
subject to = € X.

N80<yf‘>{

Let 2/ be an optimal solution of NSO(y7). As a consequence of the subgradient inequality
and the first order necessary conditions ([3], Theorem 14.6.1, p. 406 f.) NSO(y’) has the
same solution as the following linearized problem.

i !
4 4 g , , — 2’
subjectto an]—I'(vf])T(w Ol’)+h(g]+[Vg]]T($ Ox))
re X

where a dummy variable 5 has been introduced. Let 5/ = f/ 4+ h(g’) denote the optimal
value of 5. Replacing NSO(y?) by its linearization implies that the projected problem
proj(P,s) has the same solution as

rgglinn n
| | | g | 4 —a
i subject to nzf]_l_(va)T(l' 0:1;)—l—h(gJ—I—[VgJ]T(:z: 0:1:))
re X

15

Next we define the master program

my
, , gl , , _
Mys § subject to 5 > f7 + (V)T (;j_;;j) + kg’ + [Vg’]F (i_;)))T

r € X,y €Y integer

where T'= {j : 2/ is an optimal solution to NSO(y’)}. It readily follows that (, z%, y) is
feasible in M, for any 7 € T'. (Proof: use n° > f*+ h(g') and expand about (z*,y") using
convexity and monotonicity of h.) The above development shows that M, is equivalent
to P, in the sense that (z*,y*) solves P, if and only if (n*, 2*, y*) solves M,.

The master program M, is not solved directly but instead a relaxation strategy similar
to Algorithm 1 is applied. The relaxation M¢, that is solved at iteration 7 of the algorithm
is obtained as
ey L

' subject to n < UBD
M : : Tz —
n2 (VAT

r € X, yeY integer.

el : : x— : :
yj)+h(9]+[V9]]T(y_yj)) jer

where T* = {j <1 :27 is an optimal solution to NSO(y’)} C T and

UBD = min{f’ + h(g')}.

The program M!, can now be used in an outer approximation algorithm similar to Al-
gorithm 1. The only unusual feature is the occurrence of the convex composition h(g).
However, using standard linear programming techniques, h(g) can be expressed as a set
of linear inequality constraints if A is a polyhedral function, and this is described below
for the [; norm. The new algorithm can now be described as follows.

Algorithm 2: Nonsmooth Outer Approximation
Initialization: y° is given; set ¢ = 0, T =) and UBD = oo.
REPEAT

1. Solve the subproblem NSO(y‘) and let the solution be z°.

2. Linearize the objective and (active) constraint functions about (z*,y").

Set 7% = T U {4},

3. IF (f' + h(¢') < UBD) THEN
update current best point by setting z* = z*, y* =y, UBD = f' + h(g').

4. Solve the current relaxation M!, of the master program M,;, giving a new integer
assignment y**! to be tested in the algorithm. Set ¢ =i 4 1.

UNTIL (M, is infeasible).
The following theorem establishes the finite convergence of the algorithm.

Theorem 3 [f assumptions A1 and A2 are satisfied and Y is finite then Algorithm 2
converges finitely to a solution of P,;.

16

Proof:
It is shown first that no integer assignment is generated twice by the algorithm. Its
finiteness then follows from the finiteness of Y.

It is assumed that at iteration ¢ > j the integer assignment y’ is feasible in the
master program M!, and a contradiction is sought. It follows that there exists an 2’ € X
satisfying the inequality

an“r(ij)T(x/ij) +h(9j+[V9j]T(x/ij))-

Let M € 9h(g?) be the optimal multiplier of NSO(y’). It follows from the definition of
the subdifferential 0k that

anf+M¢vaﬂ+v¢vF(xﬁfﬁ)- (12)

(Because h is monotonic it follows that h(g(z,y)) is convex and Vg’M is an element of
its subdifferential.)

In order to apply the optimality conditions of Theorem 14.6.1 ([3] p. 406 f.) it is
convenient to handle the constraint ' € X by introducing composite functions. Since X
contains only linear functions like r;(z) = 7o —b; < 0, i = 1,...,q these constraints
can be fitted into the framework of the above optimality conditions through the single
constraint

t(r(x)) <0

involving the polyhedral function
t(r(x)) = maxr;(x).

The optimality of @/ implies the existence of multipliers 7/ > 0 and g’ € 9t(r(a’)).
Premultiplying the linear constraint by 77y, summing over all ¢ = 1,..., ¢ and adding to
(12) gives the following valid inequality

. . S . . o]
12 0 b)) (T S e ()

The first order necessary conditions for NSO(y’) (e.g. [3], Theorem 14.6.1, p. 406f.) imply

that o
tr!)x? =0 complementarity

VI +VgN+ Vrj,uj =0 1%t order condition.
Thus the inequality 4 4
n > f1+h(g’)
can be derived for . This contradicts the strict upper bound on 1 which is
n < UBD < f7 + h(g’).
Now assume that Algorithm 2 terminates with an indicated solution for which

UBD = f"+h(g") > [+ h(g").

The convexity assumption implies that y* must be feasible in the previous MILP mas-
ter program relaxation which contradicts the termination assumption and concludes the
proof.

O

17

It is worth mentioning, that Algorithm 2 does not require a constraint qualification on
g to hold in order to achieve finite convergence. However, such an assumption is needed
to show that the exact penalty function formulation of P and P itself are equivalent and
we now proceed to examine this situation.

A class of nonsmooth MINLP which is of particular interest are exact penalty func-
tions (EPFs). EPFs offer an alternative approach to the difficulties caused by infeasible
subproblems which makes a distinction between feasible and infeasible NLP subproblems
unnecessary. Instead of solving problem P an exact penalty function formulation of P is

considered. ‘
[min b(a,y) = vf(z,y) + llg(z,y)]
subject to = € X, y € Y integer.
where || - || is a norm in IR™, and v is a sufficiently small penalty parameter. This is a

special case of P, and can be solved by Algorithm 2.

It is of interest to know under which conditions E and P are equivalent. Theorem 4
gives sufficient conditions under which the mixed integer exact penalty function problem
E is equivalent to problem P, so that Algorithm 2 terminates at a solution to P. One
of these conditions is that the penalty parameter has to be “sufficiently small”. This is
qualified by the following conditions on the penalty parameter, where || - ||p denotes the
dual norm to || - ||

A4 Let the penalty parameter v satisty

v < 1/ max; | M||p Vj: NLP(y?) is feasible
v < Mi)f:” Vi |[(g")F|| > 0 and f* < f~.

A5 Let a second order sufficient condition (e.g. [3], Theorem 9.3.2, p. 211) hold for all j
such that NLP(y’) is feasible.

Although additional assumptions have to be made A5 will usually hold. If the users
choice of the penalty parameter does not satisfy A4 then the optimal solution of E is not
feasible in P. The user can detect this fact and reduce the penalty parameter accordingly.

The first condition in A4, together with A5 is needed to ensure that the solution of
the feasible NLP—subproblems and the corresponding EPF—problems are equivalent, and
the second condition in A4 ensures that Algorithm 2 does not terminate with an infeasible
solution. A simple conclusion of Theorem 4 is that Algorithm 2 terminates finitely at a
solution of P or, if P is infeasible, it finds the “best” exact penalty solution to P. Now
Theorem 4 can be stated

Theorem 4 If assumptions A1 to A5 hold and if P has a feasible solution, then E and
P are equivalent in the sense that (x*,y*) solves P if and only if it solves F.

Proof:

Assumptions A3, A5 and the first part of assumption A4 imply that any feasible NLP(y)
subproblem of P is equivalent to the corresponding NSO(y’) subproblem of E (c.f. [3],
Theorem 14.3.1, p. 380). It remains, therefore, to show that the solution of E cannot be a
point (2, y*) for which NLP(y*) is infeasible. Now let (z*, y*) be such that ||(¢*)*] > 0.
The second part of assumption A4 implies that

oF = v f" 4 |(g")T]
> vff (= f*)
— l/f*

18

Therefore, ®* > ®* which concludes the proof.
O

If h(g) is a polyhedral convex function, it is possible to reformulate the constraints in
M,,s using a standard linear programming technique. If h(g) = ||¢*||1, then additional
variables & are introduced and the constraints are equivalent to

j jyr = -
n >+ (Vf) (y_y])+§fl

In the case of h(g) = ||g*]||s only a single additional variable is needed.

An alternative way of deriving the constraints 'y is now explained in the context of
the [y EPF problem. It is possible to introduce variables ¢; directly into E so that it can
be reformulated as

x7y7g

min vy 436
=1

E
") subject to & > gi(z,y) I=1,...,m

& >0,V v e X, y €Y integer,

Outer approximations of E; can be derived using the methods of Section 4, giving rise to
the constraints Cy (with f replaced by vf). A similar formulation is again possible for
the /., norm.

The proof of Theorem 3 indicates that it is possible to derive a version of Algorithm
2 in which only one constraint is added per iteration. This single cut is given by

n2ﬂ+h@5+ﬁﬁﬁﬂvﬂyf(§:§)

where M € Oh(g’) is the optimal multiplier vector of the NSO(y’) subproblem. It is
instructive to compare this cut to the Benders cut for the same problem. Flippo et. al.
[4] show that the Benders cut can be written as

N> [+ h(g) + i (Y —y)

where y/ is the optimal multiplier of the constraint y = y in

| rguyn flz,y) + h(g(z,y))
P.s(y’) S subject to y =y
reX,yeY

The first order necessary conditions ([3], Theorem 14.6.1, p. 406 f.) enable an expression
of ¢/ in terms of V7, Vg7 and M € dh(g’) to be given

Vo /P + [V IV + 1/ =0
so that the Benders cut can finally be written as

n = fHh(g) + (Vo f + Vg IV (y — o).

19

Clearly, if 2/ € X lies in the strict interior of X or if all corresponding multipliers are
zero, then also V,f/ + [V,¢’]N = 0 and both cuts are equivalent. This last statement
indicates that it might not be advisable to use just the single cut, since GBD is usually
inferior to OA.

As explained in Section 4, outer—approximation forms a linear model of the problem
P and does therefore not represent curvature information adequately. This motivates the
introduction of a second order Lagrangian term into the objective function of the relaxed
master programs. A similar approach is suggested here and the corresponding curvature
term is .

VL = V24 Y ANV
I=1

Finally it is possible to generalize problem P, even further by including a composite

constraint of the form

t(r(z,y)) <0.
It is possible to derive an equivalent MILP master program using similar techniques to
those employed in this section. The inclusion of this additional constraint has, however,
the disadvantage that it makes a separate treatment of infeasible subproblems necessary,
whereas the main reason for introducing penalty functions is that this is avoided.

Acknowledgements

We would like to acknowledge the advice of the two referees whose comments enabled a
much improved version of the paper to be prepared.

References

[1] R. Breu and C.-A. Burdet, “Branch-and-bound experiments in zero-one program-
ming”, Mathematical Programming Study 2 (1974) 1-50.

[2] M. Duran and LE. Grossmann, “An outer-approximation algorithm for a class of
Mixed Integer Nonlinear Programs”, Mathematical Programming 36 (1986) 307-339.

[3] R. Fletcher, Practical Methods of Optimization (John Wiley, Chichester, 1987).

[4] O.E. Flippo et. al., “Duality and decomposition in general mathematical program-
ming”, Econometric Institute, Report 8747/B, University of Rotterdam (1987).

[5] A.M. Geoffrion, “Generalized Benders Decomposition”, Journal of Optimization The-
ory and Applications 10 (1972) 237-262.

6] G.R. Kocis and I.LE. Grossmann, “Global Optimization of Nonconvex MINLP in Pro-
cess Synthesis”, Industrial & Engineering Chemistry Research 27 (1988) 1407-1421.

[7] F. Korner, “A new branching rule for the branch-and-bound algorithm for solving
nonlinear integer programming problems”, BIT 28 (1988) 701-708.

[8] R. Lazimy, “Improved Algorithm for Mixed-Integer Quadratic Programs and a Com-
putational Study”, Mathematical Programming 32 (1985) 100-113.

[9] J. Viswanathan and LLE. Grossmann, “A combined penalty function and outer—
approximation method for MINLP optimization”, Computers and chemical Engi-

neering 14 (1990) 769-782.

20

[10] X. Yuan, S. Zhang L. Pibouleau and S. Domenech, “Une méthode d’optimization non
linéaire en variables mixtes pour la conception de procédés”, Operations Research

22/4 (1988) 331-346.

21

