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Abstract

Tracking, classification and visual analysis of articulated motion is challenging due to the difficulties

involved in separating noise and variabilities caused by appearance, size and view point fluctuations

from task-relevant variations. By incorporating powerful domain knowledge, model based approaches

are able to overcome these problem to a great extent and are actively explored by many researchers.

However, model acquisition, initialization and adaptation are still relatively under-investigated prob-

lems, especially for the case of single camera systems.

In this paper, we address the problem of automatic acquisition and initialization of articulated

models from monocular video without any prior knowledge of shape and kinematic structure. The

framework is applied in a human computer interaction context where articulated shape models have

to be acquired from unknown users for subsequent limb tracking. Bayesian motion segmentation is

used to extract and initialize articulated models from visual data from the ground up. Image sequences

are decomposed into rigid components that can undergo parametric motion. The relative motion of
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these components is used to obtain joint information. The resulting components are assembled into

an articulated kinematic model which is then used for visual tracking eliminating the need for manual

initialization or adaptation. The efficacy of the method is demonstrated on synthetic as well as natural

image sequences. The accuracy of the joint estimation stage is verified on ground truth data.

1. Introduction

Important capabilities of vision based human-computer interaction systems are the detection,

capture, analysis and synthesis of human motion. However, the processing of human-motion

is extremely challenging due to (i) non-rigid motion patterns caused by the inherent nature

of the articulated human body and clothes, (ii) self-occlusion and (iii) lack of visual texture.

Furthermore, the extraction of features that are suitable for view-invariant recognition and

classification (e.g., hand-gestures or human actions and activity in general) is challenging due

to the strong view-point dependent variabilities of the visual motion patterns. The use of

explicit articulated models is promising for overcoming these challenges because it allows to

directly encode much of the available domain knowledge and potentially offers a wider degree

of generality and task independence than existing approaches.

Remaining challenges that model based approaches face are model acquisition, initializa-

tion and adaptation [1]. Model acquisition is the process of constructing the articulated model

that encodes the information about the limbs and the interconnecting joints. Articulated mod-

els come in many different flavors with varying number of links and joints and are commonly

hand crafted. Since the size and shape of people varies across the population, it is usually

not possible to develop universal models. Models, especially the limb shape parameters, have

to be adapted to the dimensions and the appearance of the target. Finally, most model based

tracking approaches assume that the sequence. This problem of model initialization is com-

monly reported to be performed manually by the user. The use of model based motion capture

systems in many domains (e.g., surveillance, human-computer interaction, automatic video

indexing), will in general only become feasible, once the above challenges have been tackled.

This work is motivated by and aimed at the domain of human computer interaction and
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gesture recognition applications [2, 3, 4] where the goal is to robustly track a user over time

without any manual initialization. We propose to eliminate the need for initialization and adap-

tation by automatically building articulated models from visual data directly. Our approach

assembles articulated models from monocular video from the ground up assuming only the

“concept” of articulated motion as prior knowledge. We assume that the “world” consists of

rigid segments that are potentially connected by joints and leave it to the algorithm to ex-

tract segment and joint information automatically from an image sequence. More specifically,

we use a parametric motion segmentation approach [5, 6, 7] to simultaneously decompose a

set of images into rigid segments, together with their corresponding motion parameters. The

motion models of the layers are subsequently examined to infer joint locations. The com-

bination of the extracted segments, their motion parameters and joint locations constitutes

a complete articulated model with joints, links and appearance information. We show how

the acquired and initialized articulated models can be used for tracking and motion capture.

Furthermore, we quantitatively evaluate the accuracy of the approach based on models ex-

tracted from synthetic image sequences generated with professional character animation tools

for which precise knowledge about joint locations is available.

This paper is organized as follows: We review related work in Section 2. Following this,

we present our approach to extract the rigid components of the input sequence that form the

link candidates in Section 3. Section 4 describes the model extraction stage which is responsi-

ble for detecting and locating joints and for inferring which of the extracted motion segments

are part of the observed target. To evaluate the extracted model we implemented a model

based tracking algorithm, which is briefly described in Section 5. Experiments on real and

synthetic data are presented in Section 6 followed by a discussion of these results in Section

7. Finally, Section 8 concludes the paper.

2. Related Work
2.1. Analysis of Articulated Motion

With respect to the visual analysis of articulated motion, much research has been conducted on

the analysis of feature point models where the visual information is reduced to a set of points
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attached to the rigid body. This type of data can arise from Moving Light Displays (MLDs),

passive or active markers or extracted from image sequences using feature trackers.

Early work by Rashid [8] presented a comprehensive algorithm for analyzing MLDs. Point

features where clustered into objects using a minimum spanning tree (MST) approach together

with a cut criterion for splitting the resulting tree into clusters. The underlying skeletal struc-

ture of the MLD groups was obtained by calculating MST on each group. Rashid stressed the

importance of velocity information in obtaining robust estimates of skeletal structure.

Holt et. al [9] address the problem of recovering the 3D motion of articulated objects

from observed time varying 2D joint locations. Their approach constrained the allowable

observations such as the assumption of planar motion of the objects arms with respect to a

central torso.

Using magnetic motion capture data obtained with magnetic sensors, O’Brien et al. [10]

reconstructed the skeletal model of articulated objects and humans. Their approach is based

on available time varying 3D marker coordinate systems. These systems are examined for

joint constraints and a MST is employed to reconstruct the articulated structure. While their

method assumes knowledge about the 3D link coordinate systems, the basis of their approach

is also applicable to projected motion data.

A motion modeling approach not based on the articulated structure of the human body was

developed by Song et al. [11, 12]. The front view of the human body is modeled through a set

of point feature tracks whose locations are modeled through conditional probability densities.

The densities are learned from training data.

2.2. Human Shape Acquisition

The acquisition of precise human body shape models has so far mostly been investigated for

situation in which multiple camera views are available. In [13] human body models without

any prior structural assumptions are acquired using a large number of camera views in a cus-

tomized laboratory environment. Acquisition systems that require the views of at least three

cameras to perform the modeling process have been presented by [14] and [15]. The latter

work uses a generic body model onto which the appearance of a persons view is mapped.
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The work presented in [16] utilizes a stereo setup and uses a flexible human shape model to

adapt to the shape of a user in the view of the camera. A manual initialization of the shape

model is necessary for bootstrapping the procedure. In general all these efforts are not suitable

for environments where only a single camera view is available, which is especially the case

for low-cost HCI applications. Furthermore, a flexible acquisition procedure should not be

restricted to an a priori given articulated structure.

Ioffe et. al [17] uses tree structured probabilistic models for modeling human motion from

monocular video. While elegant and not based on any structural assumptions, the approach

is based on the ability extract candidate body parts from static images and only utilizes weak

motion models.

Similar to Ioffe’s goals, the work presented in this paper allows to acquire articulated

models consisting of planar image patches connected by joints and thus falls neither into the

category of MLDs nor into the class of algorithms that acquire “inflated” three dimensional

models. The obtained models resemble the cardboard type articulated models that have been

shown to provide utility in many applications [18, 19].

2.3. Motion Segmentation

One significant portion of this work deals with the motion segmentation of image sequences

for extracting the piecewise rigid components of the articulated objects. Recent years have

seen a great interest in layered motion segmentation algorithms [6, 5, 20, 21, 7]. These al-

gorithms address the problem of segmentation and flow estimation in a unified framework to

overcome some of the main problems of either method alone. While the early work of Wang

and Adelson [7] and subsequent improvements [20, 21] approached the problem using clus-

tering, the problem has since been formulated in an elegant Bayesian framework based on an

expectation-maximization (EM) [22].

2.4. Model Based Tracking

The approach of model based human tracking has been pioneered by O’Rourke and Badler

[23]. In the context of human (or general articulated) motion tracking, the target is modeled
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as a collection of segments connected by joints or springs. The number of links and joints and

associated parameters used for articulated models vary widely across the literature [24].

Ju et al. [18] approximate humans with cardboard models, which are basically 2D models

specialized at modeling humans seen from the side or front. Each segment of the model is de-

scribed by a planar patch that can undergo planar projective motion. The motion of the patches

is determined through an energy function that uses the brightness constancy constraint equa-

tion and spring like forces between connected patches. Tracking is achieved by minimizing

the energy function using gradient descent in a hierarchical framework. Improvements utilize

joints [25] and handle occlusion [26].

Pavlovic et al. [27] address the problem of learning dynamics from training data in a

Bayesian framework. They also employ a 2D model but use scaled prismatics [28] that are

able to handle 3D foreshortening effects and avoid singularities common in 3D kinematic

modeling approaches.

Gavrila and Davis [29] developed a four camera full-body tracking system using a 3D

model of tapered super-quadrics. The system was able to successfully track two people danc-

ing close together in the presence of strong occlusion. Pose estimation was performed using

search space decomposition and best-first search.

The model-based approach to arm tracking is particularly promising in HCI application

and has been addressed in [30, 31, 32, 33]. In all cases, two link models were used.

Instead of energy minimization or variational frameworks, the use of sequential monte

carlo methods [34] is gaining popularity. Sidenbladh et. al [35] perform 3D reconstruction

human motion observed with a single camera using models consisting of ten cylinders under

perspective projection connected by joints parameterized by 25 values. Tracking was per-

formed using a particle filtering approach [36]. Appearance information of the cylinders is

adapted incrementally from the image sequences. The authors encouraged the use of more

persistent appearance models. Furthermore, in a recent paper [37], Sidenbladh showed that

the performance of the approach could be improved further by learning the parameters for

the edge and ridge filters used in the likelihood model. These aspects encourage finely tuned
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models that are learned or acquired from data.

Deutscher et al. [38] also use a particle filtering approach to human motion tracking. They

point out that the high dimensionality of the articulated models are the main problem when

trying to recover articulated pose over time. Particle trackers in general need a number of

particles that is exponential in the dimensionality of the problem. The method presented by

the authors reduces this number by searching for the global maximum of a general weighting

function w(Zk, X) in an annealing type approach.

Bregler and Malik [39] developed a articulated motion capture framework that parame-

terizes the kinematic chain of the human body in an exponential twist formulation pioneered

in robotics [40]. In addition, the authors do not follow a synthesize and match approach but

rather developed a variational approach that relies on matching the appearance of limbs with

the image content. The differential formulation is ultimately based on the brightness constancy

assumption and linear approximations of the twists. Their results are remarkable as they were

able to report good tracking results on very noisy image sequences. We believe that most of

the performance of his approach stems from an explicit handling of depth information (i.e.,

occlusion) and the use of explicit shape and appearance information of the limbs, encouraging

to learn such models from data.

Covell et. al [41], presented extensions to the twist and exponential map tracking frame-

work of [39]. Other research that utilizes the twist-formulation was presented in [42].

Drummond and Cipolla [43] also use twists but performs human body tracking using kine-

matic trees with links defined as the contours (conics) of truncated quadrics. Link motions are

associated with probability densities through a simple Taylor expansion of the match function.

Articulated constraints between links are enforced by propagating likelihood densities along

the kinematic chain.

3. Link Extraction

The acquisition of articulated models from visual data involves three main steps: The detection

and extraction of the links that are assumed to give rise to piecewise rigid motion patterns in
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the video, the detection and localization of joint constraints and joint centers between the links

and the final assembly of the model.

3.1. Motion Segmentation

The link extraction is achieved by performing motion segmentation on a sequence of video

images. Motion segmentation algorithms take two images as input and perform a segmenta-

tion into non-overlapping regions that move according to independent parameterized motion

models. Every pixel in the reference image is assigned to one of K layers Li, i = 1, . . . , K or

designated as an outlier. For every layer, the motion parameters are estimated. The extraction

of layer segmentation and motion parameters is performed using the expectation maximization

(EM) algorithm [22].

In this approach, motion segmentation is performed iteratively in two stages until conver-

gence : In the expectation stage, the motion parameters are assumed to be known and the layer

assignments are estimated for every pixel. In the maximization stage, the assignments are as-

sumed known and the motion parameters are estimated. The EM approach maximizes the

overall likelihood of layer assignments and motion parameters and leads to very good results

if the algorithm starts with reasonable initial values (cf. Sect. 3.2).

Our approach to performing the motion segmentation is based the works of [5, 6] which

are both two-frame algorithms. In our domain, the following problem arises when performing

motion segmentation on two frames: in order to obtain a decomposition of the articulated tar-

get into segments that correspond to limbs based on motion information, it is necessary that

each segment undergoes motion that distinguishes itself from the motion of all other segments

as far as motion parameters are concerned. If two limbs perform the same motion, they cannot

be distinguished from each other and will be viewed as one part. Hence we augmented the

motion segmentation in multiple directions: First, to order to increase the chance of observing

distinguishable motion patterns for pairs of segments, our algorithm performs the motion seg-

mentation on one frame, while drawing motion information from several frames. Furthermore,

we incorporate appearance and shape information into the estimation procedure.

Since the result of the EM algorithm tends to be only as good as the initial estimate, the
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initialization approach is an important part of this work. For initialization we use a sparse

flow clustering method to obtain initial estimates of the motion parameters. Our method is

outlined as follows (see Figure 1): The motion segmentation is performed for a reference Fig. 1

frame I0 based on a set of NF previous and subsequent images INF
= I+

NF
∪ I−NF

with

I±NF
= {I±1, . . . , I±NF

}. The value of NF is usually chosen to be around 2 − 6. The al-

gorithm estimates motion parameters θif that map the ith layer Li from image If to I0 and

layer assignment probabilities λi(x) that denote the probability of pixel x in I0 belonging to

the ith layer Li. In order to handle effects caused by occlusion, the motion segmentation is

performed separately in forward and backward direction and the results combined in a final

stage. We will outline the forward case here.

With Bayes rule we have (cf. [5]):

λi(x) = P (x ∈ Li|I0(x), I
+
NF

,Θi,Ψi)

= cP (I0(x)|x ∈ Li, I
+
NF

,Θi,Ψi)P (x ∈ Li|I+
NF

,Θi), (1)

with Θi = {θif , f = 1, . . . , NF} and Ψi denoting additional shape and color parameters to

be specified shortly. The first term on the right hand side of Eq. (1) expresses the likelihood

of the observed image given the current segmentation and motion parameters. In our motion

segmentation implementation, this term draws its information from three sources

P (I0(x)|x ∈ Li, I
+
NF

Θi,Ψi) = Pr(I0(x)|x ∈ Li, I
+
NF

,Θi)

·Ps(x|x ∈ Li,Ψi)

·Pc(I0(x)|x ∈ Li,Ψi) (2)

where Pr(.) models the residuals arising from the match between I0 and the following images

given the motion parameters, Ps(.) expresses the conformance to the shape and Pc(.) to the

color model of the ith layer. The residual term Pr(.) on the right hand side of Eq. (2) is

assumed to be normally distributed in the residuals originating from the match of the layers at

their location in I0 and in the frames I+
NF

Pr(I0(x)|x ∈ Li, I
+
NF

Θi) =

NF∏

f=1

N (rif(x); σi), (3)
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with residuals

rif(x) = I0(x)− If(P(x; θif)). (4)

The function P(x; θ) denotes a warp function that maps pixels from images in I+
NF

to their

location in the reference frame. The matching residuals can be viewed as the errors associated

with a backward prediction of frame I0 by subsequent frames. The second term Ps(.) in (2)

assumes that the pixels in a layer are normally distributed around a center location µi with

empirical shape covariance matrix Σi

Ps(x|x ∈ Li, I
+
NF

Θi) =
1

2π|Σi|e
− 1

2
(x−µi)T Σ−1

i (x−µi). (5)

This effectively leads to a blob like clustering of pixels and helps to obtain compact layer

supports for the link shapes. It also helps to resolve ambiguous assignments such as pixels

from untextured regions for which any motion model would locally describe the visual data

correctly.

The third term Pc(.) in Eq. (2) expresses the conformance of a pixel in the ith layer to

other pixels in this layer. We assume that pixel values are normally distributed in RGB color

space according to

Pc(I0(x)|x ∈ Li, I
+
NF

Θi) =
1

(2π)
3
2 |ΣC

i |
e−

1
2
(I0(x)−µC

i )T ΣC
i
−1

(I0(x)−µC
i ). (6)

This term helps to improve the assignment of pixels to layers especially at the boundaries

of layer regions and in untextured areas. The parameters of these residual, shape and color

models,

Ψ = (Ψ1, . . . ,ΨK) with Ψi = (σi, µi,Σi, µ
C
i ,Σ

C
i ) (7)

are estimated after the maximization stage of the EM algorithm before the layer assignment

calculation.

For the motion model a six parameter affine 2D transform is used

P(x; θ) = Ax+ t, (8)
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with parameters

θ = (A11, A12, A21, A22, t1, t2). (9)

The second term in Eq. (1) is the assignment prior which can be chosen to be independent of

x (as in [6]) or used to impose smoothness on the layers (as in [5]). We follow the latter option

and use a MRF prior [5] that effectively enforces a spatial coherence in the layer assignments

and leads to smoother results .

At each E-step, the calculation of (1) and the MRF prior has to be iterated to obtain the

posterior layer assignment estimates:

The M-step assumes known λi(x) and minimizes the prediction error

h(Θ) =
∑

f,i,x

λi(x)
rif(x)

2

σ2
i

. (10)

This step can be interpreted as a simple simultaneous registration of image I0 to the NF frames

with the support restricted according to the layer assignments. Equation (10) separates into

a sum of independent terms. The gradient and Hessian of Eq. (10) can be calculated easily

[6] and we minimize h(Θ) using Gauss Newton optimization with line search [44]. The

EM iteration has to be repeated until convergence. For details about how to incorporate the

estimation of the prior parameters into the EM framework see ref. [5].

3.2. Initialization

The EM algorithm is guaranteed to maximize the likelihood of the solution but can get stuck

in local maxima. A good initialization of the motion parameters is hence crucial for the suc-

cess of the algorithm. We initialize the procedure by first performing sparse motion estimation

[45, 46] across a time interval of images with indices [N1, N2] that includes the images from

which the motion segmentation is performed (i.e., N1 ≤ −NF and N2 ≥ NF ). The sparse

motion estimation yields a set of NT feature tracks yt
i with i ∈ 1, . . . , NT and t ∈ [N1, N2].

Each feature track is assumed to move with one of the K regions in the image. Motion pa-

rameter estimates can thus be obtained from the motion of the feature tracks if the assignment

of features to regions is known. This assignment can be obtained through simple K-means
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feature track clustering with a track distance function defined as follows:

d(yi,yj) =

N2∑

t=N1

(∆(yt
i,y

t
j)− ∆̄ij)

2 + α

N2−1∑

t=N1

||vt
i − vt

j ||2 (11)

with∆(a,b) = ||a−b||, ∆̄ij the mean of ∆(yt
i,y

t
j) over all t and vt

i = yt+1
i −yt

i. This distance

function expresses the fact that two feature tracks are considered to move with the same layer

if their relative distance varies little across time and their velocity is similar. After the K-

means clustering, affine motion models are estimated from the grouped feature tracks using a

standard least squares method. These estimates are used to bootstrap the EM procedure for the

motion segmentation. In practice, the feature track initialization method leads to very good

initial estimates reducing the burden on the motion estimation step in the motion segmentation

stage considerably leading to a rapid convergence.

3.3. Refinement of Motion Estimates

Because the motion segmentation procedure does not utilize or estimate any depth ordering

of the regions, artifacts can occur in assignments at the layer boundaries where pixels in the

image become occluded in subsequent frames. The occurrence of these ambiguities increases

with the displacement of the layers and the number of frames used for the estimation but occurs

only in the direction of the layer movement. It can hence be canceled out by performing

motion segmentation in both forward and backward direction with respect to the reference

frame. The final layers are then given by the intersection between the forward and backward

estimated layers which improves the quality of the support regions substantially. Figure 1

summarizes the flow of information during the initialization and segmentation procedure.

The final link regions are obtained by labeling the connected components of the layer as-

signment mask and subsequent extraction of the largest connected component. This obtains a

single connected region of support for each link. A tight bounding box is calculated for each

resulting support regions and the image content extracted together with its alpha map. This im-

age information constitutes the size and appearance information for each link. With this infor-

mation, the motion estimation stage of the motion segmentation algorithm is restarted with the

layer assignments fixed according to the thus extracted link regions. The number of images for
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which the motion parameters of the layers are estimated is increased to an interval [1, . . . , NJ ]

in order to obtain extended estimates of the motion of the links in order to improve the extrac-

tion of joint information in the next stage. For time instances (NF+1, . . . ,min{NJ , N2}], the

motion estimates from the feature track initialization stage can again be used to initialize the

motion estimation procedure.

4. Model Extraction

The motion segmentation stage decomposes the reference image I0 into a set of connected

rigidly moving regions and yields the parameters of the transformations that maps these re-

gions to the images {I1, . . . , INJ
}. Each individual region may or may not be a link of the

target subject. The goal of the model extraction stage is to decide which regions in the image

are components of the model and to detect and locate joint connections between these com-

ponents. Each of the regions extracted in the motion segmentation stage is considered to be a

potential link of the articulated model.

In the following, we denote with Ti the transformation that maps a point xw from world

coordinates to the ith link coordinate system xi = Ti(xw) at time t = 0. With Pf
i we denote

the transformation that maps a world coordinate at time t = 0 to the world coordinate system

at time t under the assumption that it moved according to the motion of the ith link, xt
wi =

Pt
i(xw).

In general, if the relative pose of two coordinate systems Ci, Cj is constrained by the

existence of a rotational joint between them, there must exist two points x i ∈ C1 and xj ∈ C2

that always map to the same world coordinates, Pt
i(T

−1
i (xi)) = Pt

j(T
−1
j (xj)), for all t. The

points xi and xj are the link coordinates of the joint center. In a strict sense, the converse is not

true. The existence of two such points does not guarantee the existence of a joint, especially

if the motion of these objects is only observed in an image plane projection.

However, if two such points exist between two objects that do move non-uniformly with

respect to each other over extended periods of time, it is reasonable to assume that this indi-

13



cates the existence of a joint. More specifically, if the average link coincidence

d2
ij = min

(xi,xj)
d(xi,xj) = min

(xi,xj)

1

NJ

NJ∑

t=1

(xt
wi(xi)− xt

wj(xj))
2, (12)

with xt
wi(x) = Pt

i(T
−1
i (x)), is zero, then it is assumed that there exists a joint between i and

j with coordinates

(x∗
i ,x

∗
j ) = arg min

(xi,xj)
d(xi,xj). (13)

Of course, due to noise, this value will never truly be zero. The deviation from zero can be

incorporated into a confidence measure of the existence of a joint between links i and j.

As an alternative to determining the coordinates xi and xj one can assume that the joint

centers map to the same world coordinate location at t = 0 and solve for

x∗ = argmin
x

1

NJ

NJ∑

t=1

(Pt
i(x)− Pt

j(x))
2. (14)

Ideally one would use the Euclidean 3D world coordinate transforms P(x) = Rx + t and

determine joint locations in 3D (cf. [10]), however, we can only observe the projected motion

of body parts in the image plane. We hence use the general 2D affine transform as obtained

from the motion segmentation stage Pt
i(x) = At

ix + tt
i wi h At

i ∈ M(2, 2) and x, tt
i ∈ R2

and obtain

x∗
ij = argmin

x
dij(x) = argmin

x

1

NJ

NJ∑

t=1

(At
ix + tt

i − At
jx − tt

j)
2. (15)

The sum achieves its minimum at

x∗
ij = −(

∑

t

(At
ij)

TAt
ij)

−1
∑

t

(At
ij)

T (tt
ij), (16)

with At
ij = At

i −At
j and tt

ij = tt
i − tt

j. The average joint coincidence can be expressed as

d2
ij =

1

NJ

NJ∑

t=1

(At
ijx

∗ − tt
ij)

2. (17)

The values of x∗
ij and dij denote for pairs of possible links i and j, the location and average

coincidence of a possible joint. To obtain a reliable confidence measure cij for the existence of
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a joint between i and j we denote aij = 1 to be the event that there exists a joint between i and

j and correspondingly with aij = 0 that there is no joint. We assume that the joint coincidence

is a random variable with p(dij|aij = 1) exponentially decreasing in dij

p(dij|aij = 1) =
1

ad
e−addij . (18)

In addition, the distance of the joint location x∗
ij from the respective segments i and j is in-

corporated into the confidence measure where the distance is expressed in terms of the Maha-

lanobis distance from the respective segment masks in the reference frame. More specifically,

the distance of a joint center x from the ith link is given as

si(x) =
1

2
(x − µi)

TΣ−1
i (x − µi), (19)

with µi the center of weight and Σi the moment matrix of the pixel mask in the reference

frame that constitutes the ith segment. This distance is also assumed to be a random variable

that is distributed exponentially. We hence get

p(x∗
ij|aij = 1) =

1

a2
s

e−as(si(x∗
ij)+sj(x∗

ij )). (20)

The parameters ad and as from equations (18) and (20) should ideally be estimated from

training data. For convenience we chose these values manually to be ad = 1.5 pixel and

as = 1.5. The confidence measure cij hence relies on two factors: the average coincidence

of links, dij and the distance from the respective link segments in the image plane. Assuming

uniform priors we can use Bayes law to obtain

cij = p(aij = 1|x∗
ij , dij) ∼= p(dij|aij = 1)p(x∗

ij|aij = 1). (21)

The problem of determining the true joints between the visible links is now to select a subset

of edges of a fully connected undirected weighted graph G = (V,E), where V = {Ci} is the

set of all links and E the set of edges with weights cij .

If all segments that were extracted during the motion segmentation stage would constitute

links in one single model, the search for the true joints is solved by calculating the maximum

spanning tree of G [10]. However, spurious segments such as the background segment can be
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observed and have to be pruned from G. This problem is similar to the clustering of Moving

Light Displays in [8] where a cut threshold was used to remove spurious connections in MSTs.

We remove spurious links from the maximum spanning tree of the link connectivity graph G

by comparing the confidences of all edges of the tree with the median of all confidences of

the tree. However, if the number of observed candidate links is small, the median approach

becomes unreliable and we employ simple thresholding.

5. Model Design and Tracking

From the collected information a kinematic chain model is build as follows: For the sake of

simplicity we assume a two-link kinematic chain as depicted in Figure 2. A transformation

needs to be defined that maps points from each link coordinate system into the image plane.

A point x̂i is mapped from the coordinate system of the ith link into the image plane through

the transformation

p(x̂i, ϕ; ξ) = G0(ϕ0)G(ϕi; ξi)Tjix̂i, (22)

where Tji maps a point from the coordinate system of link i to the system of link j in its

initial configuration. The transformation G(ϕi, ξi) then performs the joint transformation in Fig. 2

the coordinate system of link j, where ϕi denotes the variable parameters of the transfor-

mation (e.g., joint angle) and ξi the invariant parameters (e.g., location of joint i in the link

j system). Additional links lead to added terms of the form G(ϕk; ξk)Tlk in equation (22).

The transformation G0(ϕ0) is the final transformation of the kinematic chain into the image

plane with parameters ϕ0. For this work we allowed translation, rotation and scaling of the

complete model and rotation around each joint and scaling in a single direction for each link.

The scaling direction of a link was chosen as the direction that connects the parent joint (i.e.,

the incoming joint) with the center of mass of the link. Hence in Figure 2, link i can rotate

around the joint that connects it with link j and scale along the indicated direction. The com-

bined system of link i and j can rotate, translate and scale with respect to the reference (image

plane) coordinate system. The allowed scaling along a given direction resembles the concept

of scaled prismatic link shapes [28].
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Equation (22) describes the full transformation of the kinematic model into the image plane

and allows to perform model based tracking. Other formulations are possible such as product

of exponentials [47] in which all links reside in a global body frames. Our approach resem-

bles more the Denavit-Hartenberg formulation [40] in that it defines relative transformations

between the link frames. This approach has the advantage of being able to define local link

coordinate systems that allign with the images encoding the link appearance information, al-

lowing a fast evaluation of the matching function. The points in the ith link coordinate system

x̂i are the actual pixel coordinates of the texture image Ji that encodes the link appearance.

The transformed coordinate p(x̂i, Φ;Ξ) on the other hand is now given as image plane pixel

coordinates which allows to efficiently obtain the image matching residuals

r̂i(x̂i, Φ;Ξ)) = Ji(x̂i)− It(p(x̂i, Φ;Ξ)), (23)

with Φ = {ϕi} and Ξ = {ξi} the set of all variant and invariant chain parameters. To test

the extracted model we implemented a particle filter that performs the model based motion

capture by iteratively propagating pose hypothesis over time. We use an intuitive weighting

function rather than constructing a true probabilistic likelihood function [38]. The weighting

function

w(It, ϕt) ∼ e
− 1

L

P
i

1
Zi

P
x̂∈Ji

λ̂i(x̂)(r̂i(x̂,It,ϕt))2 , (24)

with L the number of links in the model and with the normalization factor Z i =
∑

x̂∈Ji
λ̂i(x̂).

The λ̂i(x̂) denote the alpha mask information of the ith link at the (link) coordinate x̂

respectively. The weighting function simply measures the matching quality of the model in a

given configuration and location ϕt registered to the image It. To allow sub pixel accuracy,

values at non-integer locations in It are obtained through interpolation. Particle filters are

extremely good at avoiding local maxima during the tracking process, especially in situations

where link displacements of magnitude comparable to the link dimensions occur, which may

prove very difficult for standard registration methods based on image gradients. The tracking

approach we employed performs well for moderately long image sequences. The use of scaled

prismatic link transformations allows to even handle foreshortening effects to some degree but
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can fail in situation where, for example, the three dimensionality of the human body causes

severe changes in link shape appearance. However, the simple model employed above showed

to be sufficient for the purpose of this work of which the focus is the extraction of articulated

model from visual data. Many other alternative model based tracking approaches could be

implemented. One may consider including additional edge or silhouette information into the

tracking framework [38] or use multi-scale approaches to improve performance.

6. Experiments

We applied our method to a set of synthetic and real image sequences containing articulated

motion of various complexity. As a first experiment, a synthetic walking model was generated Fig. 3

with Poser 4.0 by Curious Labs Inc. All body parts but the left leg were removed from the

model in order to eliminate occlusion artifacts. The thus obtained walking leg was registered

with and inserted into actual video footage. This type of sequence allows to generate near-

realistic sequences with the added advantage of being able to control the size, walking style

and appearance of the target. Since the model walks away from the camera it undergoes

substantial changes in viewpoint and scale.

The motion segmentation stage extracts three layers including the background, with few

outliers (see Figure 3). Our procedure correctly estimates the location of the knee joint and

the resulting articulated model is used to successfully track the object until it leaves the field

of view after a total of 94 frames. Figure 4, shows two arm-modeling experiments. Arm Fig. 4

modeling is important in HCI applications that require to perform hand and arm tracking for

“hand as a mouse” interfaces or gesture recognition applications. For both sequence, we again

restricted the problem to extract a two-link, one-joint model from the scene which requires

segmentation of the sequence into three layers. In both cases, the resulting model is able

to track the arm in subsequent frames. Even substantial changes in zoom and viewpoint are

handled correctly by the tracker as can be seen in the Figure 4, bottom. Fig. 5

The correctness of the extracted models in terms of its kinematic structure depends both

on the correct detection of the joints and the precision of their locations. While the correct
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detection of the joints, and hence the correctness of the kinematic topology of the extracted

model, can be verified visually, the precision of the joint location estimates is hard to assess

for natural sequences. We therefore generated a near realistic synthetic upper body sequence

of a user moving both arms using a character animation tool [48] (see Figure 5). For this

sequence the precise image coordinates of the joints of the model are available which allows

to measure the accuracy of the estimated joint locations.

The model extraction algorithm was applied to the sequence with the reference frame set

to frame t = 10. The upper body of the synthetic model does not move with respect to the

background and hence the algorithm observes a five component articulated model with two

components for each arm. A comparison of the estimated joint locations with the available Fig. 6

ground truth data reveals that the precision is below five pixels for all four joints with the best

location estimate (the right shoulder) having sub pixel accuracy. The time varying location

errors of the joints are shown in Figure 6 and summarized in Table 1. The joint location error

averaged over all frames of the test sequence and all joints is Mean(∆) = 3.2 pixels with

a video resolution of 640 × 480 pixels. The final experiment was conducted in a realistic Tab. 1

HCI application environment where a person is standing in front of a large screen interactive

display that is equipped with a set-top camera. The goal is to model the complete upper body

of the user. The user is performing a short exercise of arm movements to allow the system

to acquire the articulated model. Figure 7 shows a person waiving both arms while moving

slightly sideways with respect to the camera. This type of motion lead to the detection and

extraction of a six link articulated model containing two segments for each arm and the torso.

A qualitative inspection of the extracted model and comparison with the joint locations of the

synthetic model indicates that the joint locations are reasonable. The error in the joint locations

are however larger than for the synthetic sequence since there is an observable asymmetric

vertical placement of the shoulder joints of approximately 10 pixel. The extracted model is

used successfully for tracking the arms and torso of the user through the entire image sequence.
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7. Discussion

For the development of the proposed model acquisition and initialization method, a number

of simplifying assumptions have been made that need to be addressed in future work. In

particular, the number of layers, and hence the maximum number of links that can be seen

by the system, is supplied by the user. Future systems need to estimate the number of layers

from the data. An approach to this can be found in [49]. Furthermore, the current system

extracts a cardboard type model in which rigid layers rotate around joints in a plane parallel

to the image plane. Such a model is able to correctly model a large number of situations,

especially if the amount of perspective effects (parallax, movement in z-direction) are small.

For situations in which these conditions do not hold, more powerful 3D models have to be

constructed or an initial simplified (e.g., cardboard) model has to be extended and adapted

on-line to accommodate perspective and three dimensional effects during the tracking stage.

We believe that three dimensional models can be acquired in a similar fashion without any

prior structural knowledge, especially if two or more simultaneous camera views are available.

Also, effects due to occlusion are not handled so far. As occlusions or uncoverings of layers

takes place, the system should infer a depth ordering of the extracted links. One important

next step will be to include contour information inro the model tracking framework. The

link segments yield nicely defined link boundaries that can be used to easily initialize contour

models for contour based tracking.

Since all parts of the target to be modeled might not be visible in the initial reference frame,

the model construction has to be performed over several frames such that all parts are “seen”.

Limbs that do not undergo any motion or move with the background remain unmodeled. For

example, consider the test sequence in Figure 4 (bottom) in which the subjects trunk does not

undergo any motion relative to the background. It hence remains unmodeled by the system.

Furthermore, two limbs that are connected by a joint might not move relative to each other at

every frame in which case a joint extraction is infeasible and has to be delayed until relative

motion occurs. The system might even decide on-line that previously assumed rigid links have

to be split up because a joint has been “discovered”. As an example, consider the test sequence
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in Figure 4 (top) in which the arm is modeled as a rigid segment. Finally, noise and estimation

errors can lead to imprecise joint locations which can lead to poor performance of the model.

The presented framework does not assume that the skeletal structure of the articulated model

stems from the precise minimum spanning tree of possible link connections and is able to

remove spurious links. Though not attempted, this allows in general to even model multiple

people simultaneously. However, since the connectivity is based on a graph without cycles,

no articulated models with closed loops can be handled, which does not occur much in nature,

anyway.

8. Conclusion

We have presented a method for acquiring articulated models from monocular video from

the ground up by performing a combination of multi-frame motion segmentation and joint

constraint detection. We have shown how the proposed system is able to determine both the

kinematic structure and shape of complex articulated objects and use the obtained informa-

tion to build corresponding articulated models. These models can subsequently be used for

visual tracking, thus showing how the general problem of model initialization and adaptation

can be solved for a wide variety of applications. Our approach can be viewed as giving the

system knowledge about the building blocks (limbs and joints) of articulated motion without

giving any assembly instructions. While this approach is currently not able to compete with

detailed hand crafted models, it offers the potential of gaining further insight into the domain

of articulated motion capture, analysis and synthesis.
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Figure 1: Summary of the initialization and motion segmentation procedure. The motion segmentation

that is performed after an initial feature tracking and track clustering stage for bootstrapping leads to

segmentation information for a central frame and motion information for each obtained segment and

each frame used for the motion segmentation.

Figure 2: Definition of the coordinate systems and transformation for the extracted kinematic chain.
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Figure 3: Sequence showing the leg portion of a synthetic walker registered into the world coordinates

of actual video footage. The top right image shows the extracted layers with. The bottom two images

show two frames from the resulting tracking sequence with the extracted articulated model.

Figure 4: Arm model acquisition and tracking. Top row: Subject moving with respect to the camera

exercising the shoulder joint. Bottom rows: Subject exercising elbow and shoulder joint while not

moving with respect to the camera. The latter example shows subsequent tracking while the camera

zooms and changes viewing direction.
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Figure 5: Synthetic image sequence of a person moving both arms. The sequence is modelled with

five motion segments shown in the top right image. White pixels denote outliers. The joint locations

that were estimated for this sequence are compared to the true locations in Table 1.

Figure 6: Precision of joint location estimates for the synthetic image sequence shown in Figure 5.
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Left Arm Right Arm

Shoulder Elbow Shoulder Elbow

∆x -0.97 -4.76 0.28 2.23

∆y 3.30 -1.08 0.35 -0.58

∆(t = 0) 3.44 4.88 0.44 2.30

Mean(∆) 3.43 6.17 0.56 2.67

Table 1: Precision of joint location estimates for the sequence shown in Fig. 5 compared to ground

truth data. The values ∆x and ∆y denote the deviation in x and y-direction respectively, while ∆

denotes the L2 norm of (∆x,∆y). All values are in units of pixels in a video of resolution 640 × 480.

Figure 7: Subject with waiving arms and swaying torso.
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