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1 IntroductionWe consider the problem of reconstructing the shape of a 2-D object using multiple partial images.We assume that some portions of each image can be identi�ed as de�nitely belong to the object,other portions as de�nitely belonging to the background, and the remainder which are ambiguousdue to occlusions or other uncertainty. In order to solve this problem we must account for thefact that unknown transformations relate the images to each other, because the object or cameraundergoes unknown motions between frames. We also do not assume it is possible to identify anyspeci�c local features that could be matched between frames and thus used to recover the unknownmotion. Therefore we must make use of a relatively weak constraint, namely that we can rule outmotions which would assign the same scene position to be �gure in one frame and background inanother. We show how to determine the set of possible objects and motions consistent with thisconstraint.One main motivation of our work has been to generalize and improve upon the results ofLindenbaum and Bruckstein[12](L&B), who have previously raised the problem of determining theshape of a 2-D object from sparse measurements. They considered the case of an unknown objectthat translates over a set of small visual sensors. In their problem, every sensor reports wheneverthe boundary of the object passes within the sensor's receptive �eld, providing a thin slice of theunknown shape. L&B sought an algorithm to combine measurements obtained from the set ofsensors during di�erent translations of the same object in order to recover its full 2-D shape. Theirprimary motivations for considering this problem were to model insect vision systems and to solveindustrial problems.We view this situation as a special case of the problem of shape recovery in the presence ofocclusion. The problem de�ned by L&B corresponds to a situation in which an object is viewedthrough a grating of narrow slits in a sequence of images related by translation. In this case slicesof the shape of the object at the positions of the slits are seen perfectly, but between the slits theobject is occluded. Moreover, the slits are too narrow to allow for extracting any features thatremain invariant under di�erent translations of the object, since any local feature identi�ed in oneview of the object is likely to be occluded in other views. Consequently, combining information frommeasurements obtained under di�erent translations of the same object cannot rely on matchinglocalized features. In this, L&B's problem is related to an approach to recognition in which therelative pose of a model and image are determined, given a correspondence between regions of themodel and image but with no speci�c correspondence between local geometric features ([4, 11]).We generalize their problem by allowing for more arbitrary types of occlusions. In our formulation,1



the scene need not be viewed through 1-D slits; any portions of the object and background may bevisible. And we will allow for scale changes, in addition to translations, that may relate di�erentimages. We will also indicate how one of our algorithms may be extended to a wider range ofpossible image transformations. Figure 1 illustrates the input to our and L&B's algorithms.In our more general setting, the problem posed by Lindenbaum and Bruckstein is also closelyrelated to that of tracking and building up a model of an unknown object in the presence ofocclusion. Imagine, for example, that one has several pictures of a bird in 
ight, as seen throughthe branches of a tree, against the background of the sky. Portions of each image are known tocome from the bird. Where the sky appears, we know that the bird's shape is not present. Butwhere one sees branches, there may be either bird or sky behind. By allowing for general patternsof �gure/background/occlusion we will account for this type of viewing situation.In addition to generalizing L&B's problem, we also provide insight into the computational com-plexity of the problem. L&B developed an algorithm that requires computation that is exponentialin both the number of images and the complexity of the description of each image. We providean algorithm for our more general problem that requires computation that grows as a polynomialfunction of the image complexity (but still exponential in the number of images); this algorithmis practical when the number of images used is small. We then show that it is apparently notpossible to produce a general algorithm that is polynomial in the number of images. Speci�cally,we show that even L&B's more constrained version of the problem is NP-hard. We then providean algorithm that is polynomial in the number of images for a special case of the problem. Themain restriction is that the sensed object must be known to be convex. This algorithm �nds ashape consistent with the images by running a linear program. The number of variables in theprogram is linear in the number of images. The number of linear constraints derived is either linearor quadratic in the complexity and number of images, for two di�erent variations of the problem.In general, the algorithm is practical in many situations of interest.The paper is divided as follows. In Section 2 we formulate our problem and discuss past work.Then, in Section 3 we introduce a solution with complexity that is polynomial in the size of theindividual image representations, but remains exponential in the number of images. In Section 4we show that the problem is NP-hard in the number of images. Next, in Section 5 we introduce ane�cient solution for convex shapes. Finally, we present the results of experiments in Section 6.2



= Occluder (uncolored)

Figure 1: Our algorithms assume that a series of images like the ones on the top must be related byscaled translations. Here, arbitrary subsets of the �gure are seen, some of the background is known,and occluders hide portions of the scene, which may be �gure or background. L&B's algorithmassumes that the images have the form shown on the bottom, in which the scene is only sensedalong lines, where line segments of the �gure (along with the tangent direction at boundaries) areknown. No scaling is allowed in their formulation.3



2 Problem formulation and backgroundWe now formulate our problem more precisely, and relate it to past work. First, we assume that weare given m images, each of which is divided into �gure, background, and occlusions that may beeither �gure or background. We think of the region due to the �gure as black, the background aswhite, and the boundary between black and white regions as grey. Occluded regions are uncolored.In order to make this problem discretely representable, we assume that all black and white imageregions are given as polygons, with a total of at most n sides and vertices. Each vertex and side maybe black, white, or grey. Note, for example, that it is perfectly possible for all sides and vertices tobe grey, as when the entire image is divided into black and white, with no occluded regions.Next, we assume that the positions of the object in the images are related by translations andchanges in scale, while the pattern of occlusions may be arbitrarily di�erent between images. Ourgoal is to bound the set of feasible transformations relating the images, and the corresponding setof possible object shapes. A transformation will be feasible whenever it places two images in acommon reference frame in which white and black regions do not intersect. This will ensure thatthe same image point is not interpreted as both �gure and background. To rule out degeneratetransformations in which no portion of the object is seen more than once, we may also bound themagnitude of the allowed transformation, or equivalently, assume that �gure may only lie in orwithin some neighborhood of the image by assuming that it is centered inside a frame of white.Our proof of NP-hardness will apply even in the simpler case of translation alone, without changesin scale.This is identical to L&B's problem formulation, with two exceptions. First, they restrictedthemselves entirely to images related by translations. And secondly, they considered images inwhich �gure and background were visible along only narrow, parallel slits. That is, they assumedthat all of the image was occluded except for a set of parallel lines, which were completely coloredin black and white. They also assumed that the tangent to the shape could be computed at thegrey points separating white and black portions of these lines.L&B then solved this problem by considering all possible combinations of matches between twoblack or two white line segments belonging to lines in di�erent images. For each possible set ofmatches, they ran a linear program to �nd the feasible set of translations that match the lines inthis way. Unfortunately, the number of ways of matching these lines is exponential in both n (thenumber of line segments in each image) and m (the number of images), leading to an algorithmthat is both exponential in these values. 4



The L&B problem is also closely related to our own recent work on object recognition ([4, 11]).In this work we attempt to determine the pose of a known object from an image in which the objectmay be partially occluded. Both works share the assumption that no speci�c local features can beidenti�ed in an image and matched to a model, or to other images. Instead, one can identify subsetsof the object in images, and must determine pose without speci�c correspondences of local features.In the case of our recognition work the object shape is completely known, which is comparable tosupposing, in the current problem, that one of the images contains no occlusion. Our previouswork focuses on showing that with this assumption, object pose can in many cases be uniquelydetermined from a single image containing considerable occlusion [5]. We also show that pose canbe e�ciently determined if we divide the object shape into convex parts, and we will use this insightto provide an e�cient algorithm to solve the current problem when the sensed object is convex.The current problem contains the additional complication that shape and relative pose mustboth be determined, using only partially occluded images. It is simpli�ed in other ways, however,because it assumes that images are related by scaled translation only. In our previous recognitionwork, we allow for a wide range of transformations, including a�ne and perspective projectionsfrom a 3-D scene into a 2-D image.Of course, there has been a great deal of work on the general problem of determining structureand motion from a sequence of images (see [9] for a recent review). However, that work generallymakes quite di�erent assumptions. Typically, that work considers 3-D world structures, whichgive rise to a much more complex problem. At the same time, that past work typically assumeseither that motion and any occlusions that occur are small, or that local geometric features havebeen identi�ed and tracked. Perhaps most relevant to the problem considered here is the motiontracking work of Huttenlocher, Noh, and Rucklidge [10]. They allow for only 2-D translations, andfor signi�cant amounts of occlusion, by matching shapes using a variation on the Hausdor� metric.This work still attacks a problem considerably di�erent from ours in that it is still assumed thata signi�cant portion of the shape is seen in both adjacent images, so that a direct comparison ofshape can be made.3 A solution that is polynomial in the image complexityWe will now present an algorithm that determines whether a feasible set of transformations existthat are consistent with the set of images that we have gathered, and that delimits this set oftransformations and the object shapes that are consistent with them. A preliminary version of this5
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lFigure 2: Two qualitatively similar translations for a simple example of the L&B problem. Herethe \white" areas are only the remainder of the lines with black line segments. The remainder ofthe �gure is \uncolored". On the right, the vertical lines are shifted upward and to the right untill1 just touches l4 and l2 just touches l3. Additional translation in these directions will result in aqualitatively di�erent solution.algorithm, which applied only to the L&B problem, appeared in [3].We will describe the algorithm for the case where the images are related by a scaled translation.It is easily simpli�ed, with reduced complexity, for the case of translation alone, and we willindicate how it may be extended to handle more complex transformations, at the cost of additionalcomplexity. The algorithm runs in O(n2(d+1)(m�1)) time, where n is the maximum number ofpolygon sides in any single image, m is the number of images, and d is the number of degrees offreedom in the allowed transformations. Therefore this algorithm is polynomial when m (and d) is�xed, and practical when dm is small. In Section 4 we show that the problem is NP-hard when mis allowed to vary.The �rst step in describing our algorithm is to demonstrate that the number of qualitativelydi�erent transformations relating two images is a low-order polynomial. Having done this, we showthat one can enumerate these sets of transformations, and so discover which sets are feasible.The goal of our algorithm is to describe the set of transformations that superimpose the sets ofcolored images so that they intersect only in compatible colors, subject, perhaps, to some limits onthe range of allowable transformations. Consider �rst the case of only two images, in which we may6



assume without loss of generality that only the second image will be transformed. The relationshipbetween the polygons describing the two images may be expressed entirely in terms of the linesand vertices that bound them. We will divide the set of feasible transformations into qualitativelyidentical cells. These will be sets of transformations within which none of the relationships betweenthe lines or vertices bounding the polygons are altered. To form these cells, �rst imagine extendingall of the line segments bounding the polygons in the two images into lines. We will call twotransformations qualitatively identical when they both map the second image onto the �rst so thatevery vertex in each image is on the same side of every line in the other image. Now considera valid transformation of the second image, one which places each black or grey vertex and linesegment inside or on the boundary of a black polygon, and similarly places each white vertex orline segment inside a white polygon. Clearly any qualitatively identical transformation will placethe vertices and lines of each image inside the same polygons of the other image.A qualitatively identical cell in transformation space is delimited by the constraints that itstransformations must map points to the appropriate side of lines, and lines so that they separatethe same set of points. Let (x; y) denote a point in the �rst image, (x0; y0) a point in the secondimage, and let lines in the �rst and second image, respectively, be described by the equations:Ax+By + C = 0 (1)and A0x0 +B0y0 + C 0 = 0: (2)Further, we assume that the second image is transformed by a scaled translation in which we denotethe translation by (tx; ty), and use s for the scale factor. In that case, the constraints that bounda cell of qualitatively identical transformations have the forms:A(sx0 + tx) + B(sy0 + ty) + C > 0 (3)and A0(x� txs ) + B0(y � tys ) + C 0 > 0: (4)Since s > 0 this last equation can be replaced byA0x �A0tx + B0y � B0ty + sC 0 > 0: (5)Note that these constraints are linear in the unknowns, tx; ty; s. This means that a cell is theintersection of a set of half-spaces in the 3-D transformation space.7



L&B made use of a similar decomposition of the possible transformations into qualitativelyidentical sets; Figure 2 gives an example. Recall that L&B restricted the allowable transformationsto translations only. They pointed out that when two lines are constrained to intersect in two speci�cline segments of the same color, this places four linear constraints on the range of qualitativelyidentical translations, which are the translations that place the end point of each line segmenton the appropriate side of the intersecting line. It follows that, in L&B's setting, every set oftranslations that are qualitatively the same is bounded by a set of linear constraints, and so is aconvex subset of the space of all translations. Note that we can view L&B's case as that where the\polygons" are in fact just line segments: the boundary changes between white and black correspondto the vertices, and the edges are just the segments themselves. Using this interpretation, L&B'sobservations are included as a special case of our more general analysis.We have shown that, in general, any qualitatively identical set of scaled translations is de�ned bya set of linear constraints, and thus such a set is convex subset of the set of possible transformations.We will now show how to enumerate all the vertices of these convex sets of transformation space,that is, all of the extreme points of the feasible scaled translations. Every vertex of every cell in thetransformation space is formed by the intersection of three planes, that is, these vertices occur whenthree of the linear constraints on the transformations intersect. This occurs when transformationsmap three points (or lines) of the second image so that they lie on (or contain) corresponding lines(or points) in the �rst image. A match between three points and lines in the two images providesthree linear equations with three unknowns, which will generally have a unique solution. (If thesematches provide no or in�nite numbers of solutions they may respectively either be ignored, or anarbitrary satisfying transformation may be considered.) If we consider translation alone (so thatd = 2) then only two matches are needed. In general, there will be O(n2d) such sets of matches.Each set of matches determines a transformation that may be on the boundary of a set of feasibletransformations. To check this, we must see whether this transformation causes all lines and pointsto intersect like colors. We may check this in O(n2) time.When there are more than two images, we can determine the possible transformations of eachimage relative to the �rst image. All possibilities are enumerated by generating similar matchesbetween each additional image and the �rst, and then considering all possible combinations of thesematches. This leads to O(n2d(m�1)) combinations, each of which can be veri�ed in O(n2(m�1)) time.However, in practice we can gain greater e�ciency by evaluating matches based on only a partialset of the images, and then extending only those matches that lead to valid translations.We can contrast this algorithm with that proposed by L&B by noting that, instead of consid-8



ering pairs of matches between each image, they considered all combinations of matches betweenevery boundary point and every line in each image. Each combination was then checked for va-lidity with linear programming. This led to a number of possible matches that was exponentialin n. Our algorithm demonstrates that this search was unnecessarily redundant; most of theseexponential number of combinations are inconsistent with a single transformation, and need neverbe considered.Our algorithm is directly inspired by the work of Cass [6] (which is based on the work ofBaird [2]). Cass considers the problem of �nding a transformation that matches a maximumnumber of known model point features to a set of noisy image features known to lie inside convexpolygons. Cass shows in this case that the number of qualitatively di�erent transformations ispolynomial, and can be e�ciently explored. While we consider a di�erent problem, we also relyon the insight that we can partition the space of transformations into a polynomial number ofinteresting cells.Mount, Silverman and Wu [13] make use of a similar formulation of the combinatorial structureof the qualitatively di�erent sets of transformations. They consider the sets of qualitatively di�erentintersections possible between translating polygons to compute the possible areas of overlap betweentwo polygons. This is related to our approach, since we seek transformations in which the whiteand black regions of two images do not overlap at all. Their paper contains interesting additionalinsights into this combinatorial structure.4 The problem is NP-hard in the number of imagesOur algorithm's computational complexity is not polynomial in the number of images. Unfortu-nately this may be unavoidable because, as we now show, the problem is in fact NP-hard. This isthe case even for L&B's more constrained version of the problem:Theorem 1: The Lindenbaum-Bruckstein problem is NP-hard. The decision version of theproblem|I.e., given a collection of images (sets of lines), deciding if there exists any object withwhich these images are consistent|is NP-complete.Remark: The problem is NP-complete even for some constant number of lines per image andconstant number of distinct segments per line, so that only the number of images is variable.Note that the number of lines per image, times the number of segments per line (i.e., the numberof distinct black and white subsegments per slice, which is one plus the number of color changes9



between black and white), corresponds to the n parameter in the general case.The remainder of this section is devoted to a proof of this result. We begin by noting thatthe fact that the decision problem is in NP follows immediately from our earlier remarks. That is,if there is a consistent image, it is always possible to verify this by \guessing" the correspondingextreme translations and then checking consistency. Both the size of the guess and the time neededto check consistency are polynomial.We prove hardness by reduction to a variant of the well-known 3SAT problem [7, 8]. 3SAT isperhaps the canonical NP-complete problem. We de�ne this problem again here, as a reminder andto establish notation:De�nition 1: Let V = fv1; v2; : : : ; vV g be a set of variables. A literal is either vi or :vi for somevi 2 V ; let L be the set of literals. A truth assignment � is a mapping from L to ftrue; falseg suchthat �(:vi) = not �(vi) for all vi. A clause is a set of literals. A clause is satis�ed by a truthassignment � i� at least one literal in the clause is given value true by � . In a SAT problem one isgiven a collection of clauses, and asked if there is any truth assignment that satis�es all the clauses.In a 3SAT problem each clause has at most 3 literals. A 3-3SAT problem is a 3SAT problem suchthat each variable appears in at most 3 clauses.Only the last de�nition here is nonstandard. As well as restricting the number of literals perclause, we also limit the number of times any single variable appears. However, one can easily showthat 3-3SAT remains NP-complete, as follows. Consider any 3SAT problem, but suppose that somevariable vi is used k > 3 times. We can replace each occurrences of vi by one of k distinct newvariables, vi;1; vi;2; : : : ; vi;k: If we then add clauses saying that vi;1 is logically equivalent to vi;2 (thetwo clauses fvi;1;:vi;2g and f:vi;1; vi;2g su�ce), that vi;2 is equivalent to vi;3 (i.e., fvi;2;:vi;3g andf:vi;2; vi;3g), and so on, then we clearly obtain a 3-3SAT problem that is satis�able if and only ifthe original 3SAT problem has a solution.The body of our proof shows how, if one is given a 3-3SAT problem with C clauses and Vvariables, one can construct an instance of the Lindenbaum-Bruckstein problem that is consistentif and only if the given 3-3SAT problem has a satisfying assignment. From this, it follows that thedecision version of L&B's problem is also NP-complete.The proof uses a somewhat involved construction which makes heavy use of a \lock-and-key"principle. A lock is a local collection of color changes in one image, matched by one or morecorresponding keys in another. The two images can be consistently superimposed only when a key10



of the appropriate type is superimposed on the lock. Thus, by choosing the number and location ofthe keys, we can limit the possible intersections between two images to a discrete set of alternatives.This is the basic trick that allows us to reduce a combinatorial problem, such as 3-3SAT, to theLindenbaum-Bruckstein problem, which is very geometric. Note that the (somewhat messy) detailsof our lock-and-key construction are not relevant to the basic strategy of the proof, so we deferthese details until towards the end of this section.Given a 3-3SAT problem, we must construct an instance of the Lindenbaum-Bruckstein which isconsistent if and only if the given 3-3SAT problem has a solution. Note that a clause with 3 literalscan be satis�ed in one of seven possible ways. For instance, fvi; vj ;:vkg is satis�ed if vi; vj; vk aretrue, or if vi is false and vj ; vk are true, etc.; in fact by any combination other than vi and vj beingfalse and vk being true. Thus any given 3SAT problem is consistent i� we can choose (1) for eachvariable, either true or false, and (2) for each clause, one of the seven ways of making the clausetrue, such that all of the choices we make are consistent with each other. This may seem like asomewhat redundant reformulation of 3SAT, but it turns out to be well-suited to our problem.The main idea of the proof is to have one (horizontal) selector image for each variable, andone (vertical) selector image for each clause. We also use two guides: a vertical guide for variablesand a horizontal guide for clauses. These guides are arranged as in Figure 3. Note that there isa (distinct) lock corresponding to each clause and variable on the appropriate guide; in each casethese locks are distance 2 apart. A central lock L0 on the vertical guide, and corresponding keyK0 on the horizontal guide, ensures that the two guides will have a �xed position relative to eachother. We defer details of the guides' construction until the end, after we have shown how to de�nelocks and keys. However we note here that, although the guides are rather complex combinationsof images, each selector will be a single image consisting of a single line.
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Each variable selector will have two identical keys, distance 2C+2 apart (where C is the numberof clauses), each matching the corresponding lock on the variable guide. (I.e., in the notation ofFigure 3, the selector for variable i will have two keys matching the lock Lvi.) It follows that thevariable selector can be in one of two possible locations; intuitively, these will correspond to trueand false. Similarly, each clause selector has seven copies of its key, spaced distance 2V + 2 apart,and so can be in one of seven distinct positions (intuitively, each corresponds to one of the sevenways the clause might be made true). See Figure 3 where two selectors are displayed.The �nal step is to ensure that the selectors' locations are consistent if and only the original3-3SAT problem has a solution. We do this by inserting black segments between the selectors' keysat appropriate points. Consider �rst a variable selector. After the second key (i.e., in Figure 3, therightmost key), the line is uniformly white. But between the �rst key and the second the line iswhite except in locations corresponding to clauses in which the variable appears, at which pointswe insert a black segment of length 1. So, for instance, if vi appears in the j'th clause, there is ablack segment centered 2j to the right of the �rst key on vi's selector. The variable selector shownin Figure 3 shows that variable 2 appears (possibly negated) in clauses 3 and 4.Next we consider the clause selectors. Recall that each key on a clause selector is supposed tocorrespond to one way of making the clause true. Thus, it speci�es a particular value (either trueor false) for each of the three variables appearing in the clause. This assignment is re
ected in thepattern on the selector between this key and the next: this gap should be uniformly white exceptthat there are black segment(s) of length 1 at positions corresponding to any variable which both(1) appears in the clause being considered, and (2) is assigned true by the particular key beingconsidered. For example, consider the clause fvi; vj;:vkg, and suppose the �rst key correspondsto vi being false and vj ; vk being true. Thus, between the �rst key and the second should be solidwhite except at distances 2j and 2k (corresponding to vj and vk), at which points will be centeredtwo black segments. The clause selector shown in Figure 3 shows that one way of making clause 3true is to make both variables 2 and 4 true.It is now easy to verify that the construction works. If the given 3-3SAT problem is satis�able,then the corresponding alignment of selectors will be consistent and, conversely, if we can align theselectors consistently we can read o� a satisfying assignment by looking at the variable selectors.That is, if a variable selector has its �rst key matching the corresponding lock we should regard thatvariable as being true, otherwise it is false. Consider any given arrangement of the variable selectors.A clause selector will be consistently translated if and only if all variables which the clause selectorthinks should be true overlap black segments on the corresponding variables' selectors, implying12



that the variable selector agrees that the variable is true.We complete the proof by discussing one way in which the \lock-and-key" pairs and the guidescan be constructed. For reasons noted below, this is also a rather involved construction. A keywill be any black segment in an image of length strictly less that 1; di�erent length keys will �tdi�erent locks. Notice that our construction never uses segments of length < 1 in any other role, sonothing can be used as a key \by accident". It is also necessary to suppose that no two keys everappear on a line within distance 1 or less of each other; our construction also clearly satis�es this.To be concrete, we consider the case of a horizontal lock and a vertical key. A horizontal lock ispart of an image consisting of 6 lines; see Figure 4. The 1st (i.e., the top) and 5th lines are distance1 apart and are solid white, while the second line (distance � below the top) is solid black. Here � isa very small width that determines the precision with which the lock and the key must match. (Inour construction, it su�ces to take � = 0:25=(C + V ).) Lines 3 and 4 are a distance b and b+ 3�,respectively, below line 2, where b < 1� 4� is a parameter de�ning the lock (see below). Both lines3 and 4 are white to the left, and black to the right, but line 4 becomes black slightly (in fact, �)to the right of line 3. Let x denote the point where line 3 becomes black, and y the point whereline 4 becomes black. Line 6, which is white except for a short black segment of length 0:5, shouldbe ignored for the moment.
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if all keys have width greater than b + �, then it must cross the lock at a point to the right of x,because there is no way that it can cross line 2 without also crossing line 3. It follows that a keyof length b + 2� must cross the lock between positions x and y. Thus, when the vertical imagehas a b+ 2� sized key (and no other key), we can �x the relative position of the images to withinprecision � (which we can make as small as we wish). We can either �x the position completely or,if the vertical line contains several keys of length b + 2�, we can limit their relative position to adiscrete set of alternatives.Note that the construction so far provides a six-line image with a single lock on it. Let us callsuch a lock a simple b-lock. (I.e., we obtain di�erent locks by varying the value of b.) However,the two guides in our construction appear to require many di�erent locks, at di�ering positions.However, this is easy to arrange. Consider, for instance, the horizontal guide line, which requiresC + 1 locks (i.e., L0 and a lock for each clause). For this, we consider a collection of separatesimple i=(C + 2)-locks, for i = 1 : : :C + 1. Our guide lines can be constructed by appropriatelysuperimposing all these locks. That is, we need the top and bottom lines of all these simple locks tobe (almost) on top of each other and furthermore that the \position" of the i'th lock be 2 units tothe right of the i� 1'st lock. (Note, though, that we don't want exact superposition|the variouslocks would be inconsistent with each other|but rather just that they be very close to each other.)Of course, we can arrange the appropriate superposition with yet another lock! This is the purposeof the 6th line in simple locks; recall that this is always just a horizontal key of length 0.5. Butputting this key in the appropriate positions in each horizontal lock, then adding a single verticalsimple 0:5-lock, we can align all the horizontal locks as necessary for our construction. (We notethat the construction of this vertical lock must be slightly di�erent from that discussed so far, sinceit must not interfere with the �rst 5 lines of the horizontal locks that will cross it. The details ofthis easy variation are omitted.) The vertical guide line is, of course, constructed analogously.Our discussion of locks-and-keys may seem somewhat complex than necessary. Although thereare simpler constructions, ours has an important advantage: Each lock only uses a constant numberof lines (i.e., 6), and only a constant number of color changes per line (never more than 2). Fur-thermore, our locks work even when appropriately superimposed, so we can construct our guidesusing many smaller images. In contrast, if we were to make each guide a single image, we wouldneed the number of lines and/or the number of color changes to grow with C and V ; consequently,the result would be much weaker. Aside from the images used in de�ning the guides, the only otherimages we use are the clause and variable selectors, and each of these only consists of a single line.Furthermore, the clause selectors clearly have only a �nite number of color changes (although, as14



we have presented the construction here, clause selectors can have as many as 56). Note that eachvariable selector also has a constant number of color changes (in fact at most 10), but only becausewe considered the 3-3SAT problem in which any one variable appears in only a few clauses. Thisconcludes the proof. Q.E.D.5 E�cient solution for convex shapesIn the previous sections we introduced an algorithm for shape recovery that is polynomial in thecomplexity of the image, but then showed that even the simpler problem originally de�ned by L&Bis NP-complete in the number of images. The latter result's proof required us to consider fairly oddshapes, so it therefore makes sense to consider placing some restrictions on shape in order to obtaine�cient algorithms. In this section we consider the class of convex shapes. Convexity, togetherwith another assumption about the con�guration of the occlusions (explained below), allows us tosolve the problem e�ciently. Speci�cally, we can solve the problem by running a linear programwith a set of constraints whose number is quadratic in both n and m. With the aid of a strongerassumption about the occlusions, we can reduce the number of constraints to be linear in n and m.We note that, given convexity of the image, this stronger assumption about the con�gurations ofthe occlusions will always hold in L&B's version of the problem.Consider any single image, image i for instance, and let Ni denote the convex hull of all blackregions in the image. Given the assumption that the unknown object is convex, the object clearlymust include Ni. Furthermore, the points in Ni are the only points in image i that, on the basis ofthis image alone, can be deduced to de�nitely come from the image. Just as Ni includes all pointsthat must be included in the object, we can also construct another region, which we call Xi, thatincludes all points thatmight be part of the object. One can �nd Xi as follows. Recall that the blackregions in the image will be bounded by lines that are either black or grey, where grey correspondsto a boundary between black and white. Then consider the largest convex region which includes allof the grey lines as part of its boundary (see Figure 5). Xi is simply all non-white portions of thisregion. It follows that the shape of the unknown object must be \sandwiched" between Ni and Xi.The second assumption we make in this section, in addition to the object's convexity, is thatXi is also convex. This will be the case when the grey lines delimit a fairly small region where theobject may lie, and the occluder is large enough to cover this region. This occurs in Figure 5, forexample. It is also the case whenever the white region is the union of a set of half-planes, whichis always true for the L&B problem when the shape is convex (see Figure 6). To see this, note15
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iFigure 5: On the left, a scene with some occlusion. The middle �gure shows the minimum regionthat may belong to a convex object in this �gure. The right shows the maximum convex region.that in this case each image consists of a set of lines that are white except for a single black linesegment, together with (perhaps) some 
anking lines on either side that are all white. Each blackline segment is bounded by two points at which the tangent of the object shape is known. Each ofthese points, with its tangent, de�nes a line that bounds the largest possible region containing theshape. (Note that without some restriction, such as convexity, on the object's shape, the tangentinformation is essentially useless. This is why we did not consider this information in the precedingsections.) Additionally, the shape must lie entirely on a known side of any all-white line in theimage.1 Therefore, Xi in this case is simply the intersection of a set of half-planes, and so is convex(see Figure 6, right).Given our assumptions, it is easy to see that all the images are consistent with each other ifand only if we can transform them into a common reference frame, in which every Ni is containedin every Xj . This is because the intersection of the Xj contain no white, and so if every Ni iscontained in this intersection, so is their collective convex hull, and so no known parts of the shapecan overlap white.To formalize this, let the vertices of Ni be pi1; :::; pin (1 � i � m), and let pik = (xik; yik). Fornotational convenience we assume that there are exactly n of these points in each image, although1This is because if at least some portion of the shape is not visible in an image, that image may be ignored.16



Figure 6: An example of the L&B problem, with a convex shape (top). Background is shown ingrey, to make white lines visible. Ni (shown in middle) is the convex hull of the vertices. Everytangent or purely white line delimits a half-plane that must be all white. Together, all constraintsdelimit a convex Xi (bottom). 17



in fact there may be fewer. Next, we express all the lines bounding Xi using equations of the formAikx+Biky+Cik = 0 and assume, without loss of generality, that the shape lies in the positive halfplane de�ned by the line. (I.e., that every point (x; y) in Xi satis�es Aikx+Biky +Cik � 0.) Again,we simplify the presentation by assuming that each Xi is determined by exactly n lines.Now consider �rst just two images, Ii and Ij . Denote the relative translation between theimages by (uij ; vij), and the scaling by sij . Then, for every point in image i and every line in imagej, we may write two linear constraints of the form:Ajl (sijxik + uij) + Bjl (sijyik + vij) + Cjl � 0Aik(xjl � uij) +Bik(yjl � vij) + sijCik � 0: (6)Constraints of the �rst sort ensure that T (Ni) � Xj , where T indicates the transformation, whileconstraints of the second form require that Nj � T (Xi) � T�1(Nj) � Xi. These constraints ensurethat the convex hull of all transformed black points are transformed to a position where they containno white points. The point positions and the line equations are known in these constraints, whilethe scale and translation magnitudes, sij ; uij ; vij are unknown. It is possible to write all of theseconstraints as linear inequalities because both T and its inverse can be written as transformationsthat are linear in the same set of parameters.These constraints can be written for every pairing of a point and line in two images, resultingin at most 2n2 constraints for the two images. We can �nd the scaling and translation parametersbetween Ii and Ij by solving this system of 2n2 linear inequalities using, e.g., linear programming.If we use Seidel's randomized algorithm ([14]) this linear program can be solved in expected timethat is of the order of the number of constraints, which is O(n2).The number of constraints can be further reduced for the special case where every vertex of Niis grey, and we know its tangent. This is true in L&B's problem, where the endpoint of every linesegment is the dividing point between the white and black parts of the line, and where it is assumedthat the tangent of the shape is known at these points. Note that the angle of every line is invariantunder scaled translation. Therefore, we can infer the order of these vertices on the boundary ofthe shape. The position of each vertex is only constrained by its neighbors. Therefore, the numberof useful constraints between two images is twice the number of points in the two images, that is,only 2n. Consequently, if the tangent directions in every image are given in order then we obtainan algorithm that is linear in the number of points in the two images. (Of course if the tangentdirections are given unordered we will have to add to this the O(n logn) cost of sorting the angles.)When considering more images, it must be true that all translations and scalings are consistent,18



i.e., 8i; j : 1 � i < j � m(uij ; vij) = j�1Xk=i(uk;k+1; vk;k+1); si;j = j�1Yk=i sk;k+1 (7)Thus, with m images we have only 3m � 3 unknowns. We now have O(nm) points and lines, allpairs of which yield a linear constraint, for a total of O(n2m2) constraints. Seidel's algorithm is nolonger suitable, since it is practical only for linear programs with few variables. However, it is wellknown that linear programs can be solved in time that is polynomial in the number of constraints.In practice, the Simplex method typically takes time proportional to c2d to solve a problem withc linear constraints in a d-dimensional space (see, e.g., [15]), which gives an overall run time ofO(n4m5). This will be practical when n and m are not too large.For the L&B problem and related special cases where the vertices have known tangent di-rections, the number of constraints will be O(nm). (O(nm) vertices may need to be sorted inproducing these constraints.) This leads to a total run time of O(n2m3).This algorithm is related to our own work on object recognition [4] and to Amenta's workon shape matching under the Hausdor� metric [1]. In our work we aligned 2-D models to 2-Dimages using correspondences between convex regions with no explicit correspondences betweenlocal features inside the regions. In that work we assumed that the shape of the object is givenby the model, and that the image may be partly occluded. In our present terminology, this isequivalent to assuming that in the �rst image, X1 = N1, and in the second image, X2 is unbounded.Given these assumptions, we need only enforce the constraint T (N2) � X1, since the constraintthat T�1(N1) � X2 is always true. This allows us to linearize our problem for a wider class oftransformations, including similarity, a�ne and projective transformations. In that work we alsoshow that constraints of the form T (N2) � N1 and of the form T�1(N1) � N2 together cannotbe linearized for these transformations; our argument in that paper also shows that our currentproblem of constraints of the forms T (Ni) � Xj and T�1(Nj) � Xi cannot be simultaneouslylinearized for these more complex transformations.Also, Amenta has shown how to e�ciently �nd the scaled translation that minimizes the one-way Hausdor� distance between two polytopes. Amenta[1] shows that this problem can be solvedusing convex programming, a generalization of linear programming. In this problem, one polytopeis translated and scaled so that it is placed inside another which has been dilated by a distance �.This problem is easier than ours in that only one polytope is constrained to lie inside the other,so that constraints are formulated on the transformation, but not on its inverse. However, it is19



more di�cult than our problem, in that the minimum dilation distance must be found for whichthe problem is still solvable.6 ExperimentsTo illustrate our algorithms we have implemented and run them on three arti�cially generatedshapes. In the �rst two sets of experiments we used two non-convex shapes, and so we applied thealgorithm described in Section 3. In the �rst experiment images of a head-like shape were producedin the form allowed by L&B. Figure 7 shows three passes obtained for the head (the original shapeis dotted). Five sensors at known positions were used to detect object and background segmentsalong �ve lines. This resulted in 30, 20, and 14 boundary points in the three passes. Matchingthe lines in passes 1 and 2, for example, gave rise to 15000 translation cells (30*20*5*5=15000), ofwhich only 12 were feasible. Similarly, matching passes 1 and 3 gave rise to 10500 cells, 13 of whichwere feasible, and matching passes 2 and 3 gave rise to 16500 cells, 5 of which were feasible. The�gure also shows an overlay of the three passes obtained after matching all three passes. It can beseen that a good reproduction of the shape was obtained.Next, we applied the same algorithm to a second, non-convex shape allowing for more generaltypes of occlusions. Figure 8 shows three images of the shape with di�erent occlusions and theshape recovered by aligning these three images. In this case too a good reproduction of the shapewas obtained.Finally, we tested our method with a convex, cupcake-like shape. As in the �rst experiment,the input in this case was provided in the form allowed by L&B. Figure 9 shows six passes obtainedfor this shape. This shape is convex, and so we used the algorithm described in Section 5. Again,�ve sensors at known positions detected object and background segments along �ve lines. Eachsensor (denoted by tiny circles) reported the positions of two boundary points and their tangentdirection, resulting in ten boundary points in each pass. Using a single linear program we alignedthe six passes. The �gure also shows an overlay of the six passes. Again, a good reproduction ofthe shape was obtained.7 ConclusionsWe consider the problem of recovering the shape of a heavily occluded object from a sequence ofimages. Lindenbaum and Bruckstein have proposed a speci�c example of this problem, in which the20



Figure 7: Three passes of a \head" shape (dotted lines) across a �eld of �ve sensors (top row).Solid lines show each sensor's output, and the result of aligning all measurements (bottom).object is sensed through small apertures that model the receptive �elds of insect sensors. We haveshown that this problem is not tractable in general (assuming P 6= NP). However, we can e�cientlysolve the Lindenbaum and Bruckstein problem when either the number of images combined at onceis small, or if we know that the shape is convex. In fact, our algorithms apply to a signi�cantgeneralization of the original problem, including cases where the 2-D images containing generalpatterns of �gure, background and occlusion.References[1] Amenta, N., 1994, \Bounded boxes, Hausdor� distance, and a new proof of an interestingHelly-type theorem", Proceedings of the 10th Annual ACM Symposium on Computational Ge-ometry: 340{347.[2] Baird, H., 1985, Model-Based Image Matching Using Location, MIT Press, Cambridge.[3] R. Basri, A. Grove, and D. Jacobs, 1996, \E�cient determination of shape from multipleimages containing partial information," 13th International Conference on Pattern Recognition,A:268{274.[4] R. Basri and D. Jacobs, 1995, \Recognition using region correspondences," International Con-ference on Computer Vision:8{15.[5] R. Basri, D. Jacobs, and O. Menadeva, \Pose estimation by matching regions: uniqueness andsensitivity to occlusion," Forthcoming. 21



Figure 8: Three instances of a non-convex shape (solid lines) which are partly occluded (the oc-clusions are denoted by the gray regions, top row) and the recovered shape (bottom). The dashedline represents portions of the boundaries that are not determined by the three images.
22



Figure 9: Six passes of a \cupcake" (top two rows), and the result of aligning all measurements,using the convex solution (bottom).
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