Lag in Multiprocessor Virtual Reality

Matthias M. Wloka*
Computer Science Department
Brown University

Providence, RI 02912

mmw@cs .brown.edu

Abstract

Lag in virtual reality (VR), i.e., the delay between performing an ac-
tion and seeing the result of that action, is critical when trying to achieve
immersion. While multiple, networked processors have been used to in-
crease through-put, we concentrate on using multiple processors to reduce
lag. To that end, we present a complete list of all possible lag sources in
VR applications, review available lag reduction techniques, and investi-
gate how these reduction techniques interrelate. We also introduce a new
process-synchronization scheme that reduces lag. We evaluate the effec-
tiveness of this synchronization scheme both by software simulation, as
well as by actual lag measurements in our sample application.

1 Introduction

Virtual reality (VR) applications strive to immerse users in artificial environ-
ments. To do this, common knowledge dictates a minimum frame rate of 10
frames per second. However, frame rate is only one of the important parame-
ters that determine immersion: lag is equally important (Liu, Tharp, French,
Lai, & Stark, 1993). Thus, instead of concentrating on frame rates (or through-
put rates in general), system developers should aim more, we believe, to reduce

lag (Bishop & Fuchs et al, 1992; Brooks, 1988).

1.1 What Is Lag?

Lagis the time between when a user performs an action and when the application
displays the result of that action. For example, when a user moves a 3D input

*This work was supported in part by an IBM graduate fellowship for the author, the
NSF/ARPA Science and Technology Center for Computer Graphics and Scientific Visual-
ization, ONR Contract N00014-91-J-4052, ARPA Order 8225, and also Sun Microsystems,
NASA, NCR, Hewlett Packard, and Digital Equipment Corporation.

device, various computation stages process and transform the 3D input data
to make it visible on-screen, so that the user’s movements are displayed with a
finite delay. The process is illustrated in Figure 1.

Lag 1s important because human beings are extremely sensitive to it. For
instance, depending on the task and surrounding environment, lag of as little
as 100ms (less than a tenth of a second) degrades human performance (Held
& Durlach, 1991; Liu, Tharp, French, Lai, & Stark, 1993). Even worse, if lag
exceeds 300ms, humans start to dissociate their movements from the displayed
effects, thus destroying any immersive effect (Held & Durlach, 1991).

This sensitivity to lag requires that we minimize lag for general applications
to increase interactivity. VR applications in particular demand lag times of
less than 300ms to uphold immersion. (We base this conclusion on the above
cited results.) The most critical are augmented reality applications: for virtual
objects in a see-through, head-mounted display to seem realistic, perceived lag
must be less than 30ms (Held & Durlach, 1991).

Throughput measurements cannot substitute for lag measurements in as-
sessing the interactivity of an application, since lag and throughput measure
different quantities: lag measures how long a computation process delays data,
and throughput measures how frequently a computation process delivers a re-
sult. However, the two quantities are related. Reducing lag in a computation
process (for example, by using a faster algorithm) proportionally increases the
throughput of that process (but only if one is able to sample new input data
quickly enough). Yet increasing throughput does not necessarily decrease lag.
For example, using multiple processors in a pipelined configuration increases
throughput yet maintains the same lag.

In this paper, we focus on the general problem of lag for non-trivial interac-
tions, i.e., responses to user input require substantial processing. Thus, tracking
of head-mounted displays is a subproblem that is only marginally addressed,
since 1t does not require substantial processing of the input.

We concentrate on lag, not throughput. First, we list and characterize all
the sources of lag in VR, applications. Second, we review techniques to reduce
lag, in particular multiprocessing. We complement the review by pointing out
the assumptions underlying each technique and how they interrelate. Third, we
construct theoretical models of average lag and lag distributions that are verified
by actual measurements; these models are crucial in quick evaluation of new lag
reduction techniques for multiprocessing. Fourth and last, we introduce a new
synchronization scheme that reduces total lag while maximizing throughput and
1s superior to previous schemes.

1.2 Single-CPU vs. Network-Parallel vs. MP-Workstation

Our discussion focuses on parallel VR applications. However, since all recent
state-of-the-art VR, systems take advantage of multiple processors, this is no
restriction. Furthermore, since multiprocessor (MP) workstations are becoming

increasingly available, we wish to take maximum advantage of their added com-
putational power. This is not trivial: for example, we have found that using
an MP workstation indiscriminately actually increases average end-to-end lag
as compared to a single-CPU workstation (see Section 6)!

We distinguish a multiprocessor (MP) architecture from the single-CPU ar-
chitecture and the network-parallel architecture as follows. A single-CPU ar-
chitecture uses exactly one CPU (while additional, specialized compute power
is usually available for rendering via a graphics card). This architecture con-
trasts with a network-parallel architecture, in which several CPUs are inter-
connected over a network and communicate via remote procedure calls or mes-
sage passing. Typically, the network delays communication between CPUs non-
deterministically by at least several milliseconds. Finally, a multiprocessor ar-
chitecture incorporates a small number of CPUs into a single workstation; in
this architecture the processes on the CPUs typically communicate via shared
memory without (measurable) delay.

The results we present here are not limited to the MP architecture. The
discussions of the sources of lag, lag reduction techniques; and theoretical lag
models are general enough to apply equally well to network-parallel applica-
tions and even single-CPU VR applications. Only the various synchronization
schemes, by their very nature, do not apply to single-CPU applications. Where
appropriate, we point out differences between MP and network-parallel archi-
tectures and how they influence corresponding conclusions.

1.3 Overview

We review previous work in Section 2, and we analyze and characterize all possi-
ble sources of lag in a typical VR application in Section 3. In Section 4, we review
lag reduction techniques, namely prediction, time-critical computing, and par-
allelism, and investigate what interrelating assumptions these techniques make.
Section b describes our implementation and theoretical models to measure and
compare lag. In Section 6, we introduce and discuss a new synchronization
scheme that minimizes lag. Finally, we draw conclusions from our experiments
and suggest possible future work in Section 7.

2 Previous Work

So far, most research in parallel VR systems aims at increasing throughput, not
decreasing lag. A report by Mark Mine (Mine, 1993) is an exception. However,
while Mine realizes the importance of lag in head-mounted display systems, his
description of its sources is insufficient. He omits synchronization delay as a
source of lag and fails to generalize his characterization of the other sources.
Most of his report concentrates on measuring user input device delays. And
while Adelstein et al (Adelstein, Johnston, & Ellis, 1992) also quantify delays of

user input devices, their results have only limited impact on total end-to-end lag
in VR applications, because they describe lag of user input devices in isolation.

Liang et al (Liang, Shaw, & Green, 1991) claim to measure user input device
delay, even though they actually measure end-to-end lag (albeit for an virtual
environment with very simple graphics). Nonetheless, due to the focus of their
work, the same criticism applies: they attempt to isolate lag of user input devices
and disregard other sources of lag.

Other researchers describe methods to reduce lag, such as prediction, time-
critical computing, and use of parallelism. In particular, Liang et al (Liang,
Shaw, & Green, 1991), Friedman et al (Friedmann, Starner, & Pentland, 1992),
and Deering (Deering, 1992) propose prediction of user input data as a way
to reduce and even eliminate perceived lag. Deering implements linear extrap-
olation, while the others apply a Kalman filter which provides the best least
squares predictor in the presence of Gaussian noise. However, the authors fail
to describe all the underlying constraints that restrict the use of prediction in
VR applications (see Section 4.1).

Time-critical computing (Funkhouser & Sequin, 1993; Gossweiler, 1993; Hol-
loway, 1991; Wloka, 1993) allows “computing to a budget.” In conventional
computing paradigms, we wait for the computer to finish its tasks, however
long it takes. Time-critical computing ensures that we have at least approxi-
mate results at certain time-deadlines. Thus, time-critical computing bounds
the maximum lag. We believe we are the first to explore the benefits of using
time-critical computing in connection with user input prediction to control lag.

The increased compute power of parallel processing is attractive to VR, sys-
tem designers, and thus several VR systems are network-parallel or MP-parallel
(Appino, Lewis, Koved, Ling, Rabenhorst, & Codella, 1992; Codella, Jalili,
Koved, & Lewis, 1993; Gobbetti, Balaguer, & Thalmann, 1993; Lewis, Koved,
& Ling, 1991; Shaw, Liang, Green, & Sun, 1992; Wang, Koved, & Dukach, 1990).
All these systems use asynchronous or other ad hoc process communication (ex-
cept for left- and right-eye view rendering). Yet asynchronous communication
maximizes throughput but is suboptimal for reducing lag. While Appino et al
(Appino, Lewis, Koved, Ling, Rabenhorst, & Codella, 1992) mention the possi-
bility of “just-in-time” synchronization schemes, they do not actually detail or
implement any such schemes. We are not aware of any work that analyzes and
optimizes synchronization schemes to reduce lag.

3 Lag Sources in VR Systems

3.1 User Input Device Lag

The user input device in a VR application reports 3D position and orientation
data. It is external to the host workstation and typically communicates data
via the serial port. Examples of such devices include the Logitech “Red Baron”

ultrasound sensor, the Polhemus Isotraks, and the Ascension Bird. Total user
input device lag includes signal generation and communication time.

Depending on the type of device and mode of operation (i.e., noise filter-
ing on/off, different orientation reporting modes, etc.), lag ranges from 10ms
to 120ms; throughput is between 30 and 50 samples per second (Adelstein,
Johnston, & Ellis, 1992; Mine, 1993),

As a specific example, the Logitech “Red Baron” sensor reporting position
and Euler angles in a small work-volume in streaming mode has a lag of 47.5ms.
Throughput for this device is b0 samples per second, i.e., one sample every
20ms. (We made these measurements using our setup (see Section 5); Logitech
independently confirmed them.)

3.2 Application-Dependent Processing Lag

Once the user input device data arrives at the host workstation, the application
processes it. Processing can be as simple as transforming the data from the
device format to the rendering format, i.e., the application echoes the user input
device position to the virtual environment. Other more complicated application
processes are common, for example, interactive streamline computations for
virtual wind-tunnels (Bryson & Levitt, 1991).

Processing lag is highly application-dependent and thus highly variable. The
simple echoing scheme above is the lower bound; today’s workstations perform
these data transformations in one millisecond or less. The upper bound 1is
harder to characterize. However, keeping in mind that the resulting VR sys-
tem is supposedly immersive, we assume that the lag introduced by application
processing does not exceed 500ms, since it is unlikely that applications with in-
put processing requirements beyond 500ms can be made immersive. Therefore,
application-dependent processing lag ranges from 1 to 500ms."

Throughput of the application depends on the number of processors avail-
able. In the single-CPU case, the same processor computes the application and
also feeds the renderer (see Section 3.3). Therefore, throughput is

1000
(application_lag + render_lag)

times per second,

with all lag times measured in milliseconds.

With at least two processors available, we assign one to feed the renderer.
Application throughput is thus at least (1000/application_lag) times per second,
which translates to at least twice per second.

If more than two processors are available, the application task should first
be parallelized so as to reduce lag. If thereafter application throughput is still

10Of course, application delays of 500ms are only permissible if head-tracking proceeds
asynchronously and independently with considerably less lag and higher frame rates; otherwise
immersion is not achievable.

worse than rendering throughput (see Section 3.3) and processors are idle, then
we recommend running several instances of the application on different user
input data until application throughput is equal to or better than rendering
throughput. Since rendering throughput is at most 72 times per second (see
Section 3.3), application throughput is thus 2 to 72 times per second.

3.3 Rendering Lag

Rendering lag is the time from sending data to the rendering hardware until the
same data is displayed on the monitor. We assume double-buffering rendering
hardware that does not use the CPU for rendering computations. Since double-
buffering synchronizes the rendering hardware with the display refresh, the finite
display refresh rate (typically 60-72Hz) causes a minimum rendering lag of 14ms.
The maximumrendering lag derives from the minimumrequirement of 10 frames
per second: 100ms. Rendering lag is highly scene- and viewpoint-dependent,
and thus 1s likely to vary during the run-time of an application.

The maximum rendering lag is longer if the rendering hardware is heavily
pipelined. For instance, the 1,000,000 polygons/sec Pixel-Planes 5 architecture
(Fuchs, Poulton, Eyles, Greer, Goldfeather, Ellsworth, Molnar, Turk, Tebbs,
& Tsrael, 1989) renders a single polygon in 54ms (Mine, 1993). (However,
Pixel-Planes 5 can be reconfigured to allow for shorter lag at the expense of
throughput.) Our measurements indicate that conventional graphics cards (in
particular, the Sun ZX graphics boards) do not exhibit this anomaly.

The scan-out of the display, since it occurs with a frequency of 60 to 72Hz,?
causes additional lag. Depending on where the rendered data appears on the
display and whether the display refreshes from top to bottom or vice versa, the
data image may remain invisible for a further 0 to 17ms.

As in the application case, rendering throughput depends on the number of
processors available. If only a single processor is available, rendering throughput
equals application throughput, i.e., 1000/ (applicationlag + render lag) times
per second, since the single CPU computes the application and also feeds the
renderer.

If at least two processors are available, assigning one of them exclusively to
feed the renderer yields a rendering throughput of 1000/render dag times per
second. Since we also assume that only a single graphics board renders into
the frame-buffer, the presence of additional processors cannot further influence
rendering throughput.

3.4 Synchronization Lag

Parallel VR applications process user input in several stages: the user input
device processing stage, the application-dependent processing stage, and the

2These values apply to CRT displays. LOD-type displays have different characteristics.

rendering stage.® Since these stages are independent, it is possible (and in
fact likely) that, for example, the user input device deposits a new sample on
the serial port shortly after the application reads the serial port. Thus, the
application is busy processing the previous input before it reads the serial port
again and starts to process the current input, so that user input data is delayed
because it is waiting to be processed by a currently busy stage.

We define synchronization lag as the total time data is waiting in-between
stages without being processed.?* Synchronization lag is thus inversely propor-
tional to the throughput rates of the various stages. It also varies during the
run-time of the application.

In the best case, synchronization lag is zero: each stage writes its output
just before the next stage reads the data. The worst case is equally likely: each
stage writes its output just after the next stage reads the data. Synchronization
lag thus varies from 0 to a maximum of the sum of the inverse throughput rates
of each stage. On average, synchronization lag is half that maximum, so that
average synchronization lag varies depending on the throughput rates of the
various stages, 1.e., it varies from

1000 n 1000 n 1000
max_throughput_UID = max_throughput_appl max_throughput_render

/2=

(20 4 15 + 15)/2 = 25ms

to

(1000 1000 1000

min_throughput_UID + min_throughput_appl + min_throughput_render

)/2 =

(33 + 500 + 100)/2 = 316.5ms.

While synchronization lag is easy to overlook, it contributes up to 50% of the
total lag in a VR system.

3.5 Frame-Rate-Induced Lag

Slow frame rate induces a sample-and-hold artifact that has characteristics sim-
ilar to lag. The moment we display a new frame, and thus new data, the data
on-screen is as up-to-date as possible. However, as time goes on and the display
is not updated, the data displayed becomes progressively out of date. We call
this phenomenon frame-rate-induced lag; it depends only on the frame rate and
thus its maximum ranges from 15 to 100ms.

We distinguish frame-rate-induced lag from all other lag sources. We de-
fine end-to-end lag as the delay between when the user moves the user input

3Even in the single-CPU case, the user input device is separate and independent from the
CPU computing the application and feeding the renderer. Thus, VR applications process user
input in two stages when running on a single-CPU architecture.

4In the network-parallel case, synchronization lag also includes the network delays.

device and the first display of that movement. End-to-end lag thus includes
user input device lag, application-dependent processing lag, rendering lag, and
synchronization lag, but specifically excludes frame-rate-induced lag.

Frame-rate-induced lag is one of the reasons that slow frame rates are unac-
ceptable for VR applications. It is therefore important to quantify frame-rate-
induced lag in correlation to end-to-end lag. Yet simply adding the maximum
frame-rate-induced lag to end-to-end lag, i.e., adding the time a frame is on-
screen to the end-to-end lag, is insufficient: such a model would imply that the
user first sees the data only when it is about to be replaced by newer data.
Instead, we model the human visual system as another processing stage that
interfaces the VR application display to the brain. This processing stage reads
the display immediately after a new frame is displayed. Let us call the time this
new frame is displayed ¢,,.,,. Thus, at time ¢,,.,, we register only the end-to-end
lag I.

Only after a finite time-interval ip.,. can the human eye receive new data,
i.e., the human visual system has limited bandwidth. Thus, at time ¢, cw + tpere
we register a total lag equal to the end-to-end lag plus the age of the on-screen
data: { + iper.. We repeat this process, recording lag times of I 4+ k - 4., for
k=0,1,..., until a new frame is displayed, i.e., until

k- ipeyo > time that the frame (data) is on-screen.

Since the human visual system perceives flicker on video monitors only up to
a rate of about 7T0Hz (Blaire-Benson, 1986), we conclude that the above time
interval ¢,.,. is roughly equal to 1000/70 = 14.3ms. To be safe we assume ipcr.
to be equal to bms.

This model successfully combines end-to-end lag and frame-rate-induced lag,
while also being consistent with the test results of others (Liu, Tharp, French,
Lai, & Stark, 1993). We rely on it when comparing different lag-reduction
techniques in Section 6, since some of these techniques influence both end-to-
end lag and frame rate and thus frame-rate-induced lag.

Figure 1 summarizes the findings of this section.

4 Techniques to Reduce Lag

4.1 Prediction

Prediction methods extrapolate past user input data to future time points, thus
reducing perceived lag (Deering, 1992; Friedmann, Starner, & Pentland, 1992;
Liang, Shaw, & Green, 1991). However, this extrapolation process introduces
spatial inaccuracies that increase under the following three conditions (Fried-
mann, Starner, & Pentland, 1992; Liang, Shaw, & Green, 1991): (1) the user
input device throughput is too low; (2) we predict too far into the future; (3)
the user input device acceleration is too high.

Yet prediction is the only available method that can drastically reduce total
perceived lag and in particular application-dependent processing lag (since we
are discussing the general problem of transforming the user input non-trivially
in the application-dependent processing stage). To minimize lag, the user in-
put device stage projects the user input data to the time this data reaches the
display. Thus, the user input device stage requires knowledge about the lag
experienced by the predicted data in future stages. Prediction thus demands
constant (or close to constant) application-dependent processing lag and render-
ing lag, as well as synchronization lag with as narrow a distribution as possible.
In general, even prediction cannot eliminate perceived lag, because of variations
in total end-to-end lag. We illustrate these requirements in Figure 2.

4.2 Time-Critical Computing

It is not advisable to use time-critical computing (Funkhouser & Sequin, 1993;
Gossweiler, 1993; Holloway, 1991; Wloka, 1993) directly to reduce lag. Since
time-critical computing trades computation time for computation accuracy, sav-
ing maximum time by computing with the least accuracy would produce gross
visual errors while still not fully eliminating lag. The benefit gained is question-
able.

We propose instead to use time-critical computing to assure constant or
nearly constant application-dependent processing lag and rendering lag. This
brings us one step closer to being able to use prediction, as shown in Figure 2.

4.3 Multiple Processors

Multiple processors reduce lag in a VR, application in several ways. If we par-
allelize the application process, we can reduce application-dependent process-
ing time directly. Pipelining the application or running several instances of it
increases the throughput of the application, and thus decreases the expected
average synchronization lag of data waiting to be processed by the application.
However, the most popular use of multiple processors is to assign at least one
to each computation stage.

Using at least one CPU for each computation stage in a VR application, even
in asynchronous communications mode (Appino, Lewis, Koved, Ling, Raben-
horst, & Codella, 1992; Codella, Jalili, Koved, & Lewis, 1993; Lewis, Koved, &
Ling, 1991; Shaw, Liang, Green, & Sun, 1992; Wang, Koved, & Dukach, 1990),
has four main advantages. First, the user input device is independent from all
other stages and thus runs with maximum throughput, allowing use of predic-
tion (see Figure 2). Second, rendering also proceeds at maximum throughput,
reducing frame-rate-induced lag (see Section 3). Third, the distribution of syn-
chronization lag is also narrower and thus better than in the single-CPU case.
Fourth and finally, by allowing the user-input processor to communicate user
input device data directly to the rendering stage, we can “short-circuit” the

application and display a low-lag cursor echoing the user input device position
directly in addition to the high-lag application-computed feedback.

In Section 6 we introduce better synchronization schemes that, while main-
taining all the above advantages of parallel processing, also reduce average syn-
chronization lag. Surprisingly, asynchronous communication actually increases
average synchronization lag over the single-CPU architecture.

5 Measuring Lag

5.1 Implementation and Measuring Lag in Practice

To evaluate lag-reduction techniques, we implemented a simple VR, application:
we pass a wand that emits several streamlines through a data-set representing
the airflow around the space shuttle. The interactively computed streamlines
let us visualize the flow.

The application reads the position and orientation of a user input device, pro-
cesses the data by computing streamlines of the flow field for that position and
orientation, and renders these streamlines. We also render a Gouraud-shaded
representation of the space shuttle consisting of approximately 9000 triangles.
A single Logitech “Red Baron” ultrasound device mediates user input to a four-
processor Sparc 10 workstation with a ZX graphics board. The Logitech device
runs in streaming mode, reporting Fuler angles in the small work-volume.

We use only three of the four processors available: the first processor con-
tinuously scans the serial port for new user input and extrapolates it to future
times, the second processor is responsible for computing the streamlines, and
the third feeds the rendering hardware. All processors run asynchronously (and
later synchronously, according to the synchronization scheme) and each stage
simply overwrites previous output, i.e., no buffering occurs. We leave the fourth
processor idle to handle spontaneously occurring operating system (SunSoft So-
laris) or other systems-related tasks. Thus, we ensure that the operating system
never swaps out any of our application tasks.®

We measure end-to-end lag of our implementation in a setup practically
identical to that described by Mine (Mine, 1993): we use an oscilloscope to
determine the time difference between when the Logitech tracker crosses a fixed
boundary and when the computer graphically acknowledges the crossing by
displaying a white triangle. Our measurements (see Figure 3) eliminate display
scan-out lag (see Section 3.3) since we display the triangle so that it is scanned
out first.

5The serial port causes additional systems-related lag. Standard Solaris only processes the
serial port every 30ms, unnecessarily introducing 0 to 30ms additional lag. We modified the
serial port routines to eliminate this lag.

10

5.2 Evaluating and Comparing Lag in Theory

Implementing a new synchronization scheme and measuring the resulting lag is
time-consuming and cumbersome. We have therefore developed theoretical lag
models that let us calculate the expected lag (and thus usefulness) of a given
scheme. The models below estimate average lag as well as lag distribution.

5.2.1 Orbit Model

In the orbit model, we simulate in software the behavior of our application.
FEuvents represent user input motion: every time the user moves the user input
device, a new event is generated. We assume the user moves every millisecond,®
and thus each millisecond we generate a new event. Our software simulation
tracks the creation time of each event.

We then simulate an event’s passage through the various processing stages.
The user input device stage, the application-dependent processing stage, and
the rendering stage each delay an event by a constant amount of time. An
event is further delayed if, upon arrival at one of these stages, the stage is busy
processing previous events, i.e., the event experiences synchronization lag. Each
event therefore influences the lag of successive events, since once a stage starts
to process an event, all successive events must wait until it becomes idle again.
When an event exits the last stage, 1.e., is displayed, we compare its exit time
to its creation time to determine its end-to-end lag.

Since we assume that processing time for the user input device stage, the
application-dependent processing stage, and the rendering stage is constant, the
synchronization lag before each stage fully characterizes the end-to-end lag of
an event. We thus notate an event as a tuple of numbers corresponding to the
synchronization lag experienced before each stage. In the single-CPU case, an
event is thus a pair, since there are only two stages; in general, there are three
stages and an event 1s a triple.

While this tuple-notation characterizes an event, 1t also describes the period
during which each stage is busy after the arrival of that event. Thus, it fully
determines the synchronization lag of the next event. Each event therefore
determines a string of successive event lag times.

Since each stage has finite and constant processing time, events can expe-
rience only a finite number of different synchronization lags before each stage.
Thus, the space of non-identical (in the tuple notation sense) events is finite.
Accordingly, each event-originated string must form a cycle after a finite number
of events — we call the generated circular structure of an event-string an orbit
(we exclude the appendages that lead into an orbit). Figure 4 shows examples.

6This assumption is not strictly correct: human motion is continuous. However, compared
to the much slower Logitech tracker sampling rate, a rate of 1kHz approximates the continuous
behavior well enough.

11

The orbit model records the end-to-end lag of the statistically relevant
events. We find these relevant events as follows. The model loops through
all possible synchronization lag combinations to generate all possible starting
events. FEach starting event computes its limit orbit. All the events that are
part of an orbit are relevant. (All events that are part of an appendage are not
relevant, however, since they rarely occur in practice.)

Since all the events in an orbit, as well as the events in the appendages
leading into that orbit, generate that same orbit, we record the end-to-end lag
of the events in that orbit as many times as the orbit was generated. The
more often an orbit is generated the more statistically relevant it is. Thus, the
end-to-end lag of the events in a long orbit with many appendages is recorded
many more times than the end-to-end lag of the events in a short orbit with no
appendages.

5.2.2 Combination Model

The orbit model estimates end-to-end lag as defined in Section 3. It does not
take into account frame-rate-induced lag. The combination model simulates and
measures frame-rate-induced lag via the model described in Section 3.5.

The combination model is an extension of the orbit model. Instead of iden-
tifying an event by its synchronization lag, the combination model identifies
events by their synchronization lag and the amount of time each is on-screen.
As before we generate all possible strings and count as relevant only the events
that are part of orbits. We then convert the on-screen time of each relevant
event into frame-rate-induced lag as described in Section 3.5. That is, each
relevant event with end-to-end lag [and on-screen time ¢ spawns a set of lag

times y
{4k ipere | k=0,1,..., - }.

Ipere

(The constant iye,. corresponds to the finite throughput of the human visual
system as explained in Section 3.5, and is set equal to 5ms.) We add all the lag
times in these sets to the lag distribution.

6 Minimizing Synchronization Lag

Synchronization lag is one of the largest sources of lag in a typical VR ap-
plication. We introduce a new synchronization scheme that reduces average
synchronization lag, narrows lag distribution, and maintains high user input
device and rendering throughput. Thus, this new synchronization scheme is at-
tractive for MP VR applications in general and predictive MP VR applications
in particular.

We compare this new synchronization scheme to the single-CPU case and the
asynchronous synchronization scheme, and evaluate these comparisons using the

12

orbit and the combination model (see Section 5.2). To validate the evaluations
we also show the actual, measured end-to-end lag of our implementation (see
Section 5.1) for each scheme.

6.1 Single-CPU Synchronization

We implement the single-CPU case on our four-processor workstation by using
only one computation thread. This single thread reads the serial port, computes
the application, and sends data to the rendering hardware. The average end-
to-end lag is better than the expected

20 + 104
48+(43+61)+%:214 ms,

because the rendering hardware computes partially in parallel with the CPU
(refer to Figure 3 for the sources of the various delays). Thus, we adjust ap-
plication and rendering throughput from the expected (1000/(43 4+ 61)) = 9.6
frames per second to the actually measured 11.0 frames per second. The results
are shown in Figure 5, Figure 9, and Table 1.

6.2 Asynchronous Synchronization

Asynchronous synchronization assigns one processor to read the serial port con-
tinuously, one to compute the application process, and one to feed the renderer.
Each processor runs independent of all others, and thus at maximum through-
put. The resulting lag times are shown in Figure 6, Figure 9, and Table 1.

6.3 Just-in-Time Synchronization

Just-in-time synchronization is a new synchronization scheme. Like asynchronous
synchronization, it assigns one processor to read the serial port continuously,
one to compute the application process, and one to feed the renderer. The
processor that reads the serial port runs as fast as possible, thus producing
maximum throughput for the user input device. Similarly, the processor that
feeds the renderer also runs as fast as possible to maintain maximum rendering
throughput.

Unlike asynchronous synchronization, however, the application process does
not run as often as possible. Instead, we start the application process so that
it finishes computing just before the rendering process starts to compute a new
frame. Thus, the rendering process always renders application data that is as
up-to-date as possible.

This synchronization scheme relies on two assumptions: first, that we know
the computation time the application process requires, and second, that we know
when the rendering process starts to read data. That is we assume knowledge
of the rendering time of the currently rendering frame.

13

Time-critical computing ensures that both assumptions are correct. In
particular, in our sample implementation we compute the streamlines time-
critically. This means that the application process computes for 43ms, and
upon reaching this limit returns and communicates the result to the renderer.
On the other hand, the renderer in our application has a fairly constant load,
thus obviating advanced time-critical rendering techniques: it is sufficient to
monitor rendering times for each frame and use a weighted average of these to
predict the rendering time of the current frame.

To make just-in-time synchronization robust against unpredicted delays, we
adjust it slightly. Our simulations show (and our measurements confirm) that
it is advantageous for the application stage to wait for fresh data from the
user input stage. Instead of accepting the user input data indiscriminately, the
application process examines the age of the currently available user input device
data, i.e., when it was written. If it is older than 10ms, the application process
waits for fresh data.” Since the user input device updates every 20ms, the
application process waits less than 10ms. Accordingly, the rendering process
checks the age of the application data. If the data is older than 10ms, the
rendering process waits for new data to arrive. Because the application delays
data by no more than 10ms, the maximum delay for the rendering stage is 10ms.

While this adjustment decreases rendering throughput slightly, the advan-
tage of always processing fresh data balances the lost time (see Figure 8). More
important, the synchronization scheme becomes robust against prediction errors
of the rendering times.®

Figure 7, Figure 9, and Table 1 show the resulting lag distributions and
performance of the just-in-time synchronization scheme.

6.4 Comparison of Synchronization Schemes

As Figure 9 and Table 1 clearly show, just-in-time synchronization outperforms
single-CPU and asynchronous synchronization. In particular, just-in-time syn-
chronization reduces synchronization lag by about 33% as compared to asyn-
chronous synchronization, and reduces average total lag in an MP VR appli-
cation by about 10%. Just-in-time synchronization also narrows the spread of
lag times for individual samples, while maintaining maximum throughput for
the user input device. Finally, just as in the asynchronous case, just-in-time
synchronization lets us “short-circuit” (see Section 4.3) the application.
However, just-in-time synchronization has disadvantages. It lowers the frame
rate slightly. However, Liu et al (Liu, Tharp, French, Lai, & Stark, 1993) argue
that such a performance degradation is insignificant. Just-in-time synchroniza-
tion is also harder to implement than asynchronous synchronization, and it

TIf the application relies on more than one input device, the same general mechanism is
applicable, using as the age a weighted average of the ages of all input devices.

8This scheme is also robust against unpredictable network delays in the network-parallel
case, so that just-in-time synchronization should be applicable there as well.

14

requires that computation times of both the application process and the ren-
dering process be predictable. On the other hand, predictability or at least the
existence of an upper bound for application and rendering times is generally de-
sirable for VR, applications, since otherwise user input prediction cannot be used
to the fullest advantage, and worse, immersion would be lost due to excessive
lag times for individual frames.

7 Conclusions and Future Work

From the findings above, we recommend the following way to use multiple pro-
cessors to reduce lag in VR applications. First, assign processors to user input
devices. While previous work (Appino, Lewis, Koved, Ling, Rabenhorst, &
Codella, 1992) recommends one processor per user input device, we modify this
recommendation. Since serving a user input device has low overhead (we only
need to read the serial port every 20ms and predict), one processor suffices to
serve several user input devices. Achieving maximum throughput for the user
input devices enables maximum performance of the prediction algorithm (see
Section 4) and thus minimizes perceived lag.

We reserve one processor for each hardware rendering board: since rendering
is typically the bottleneck in VR, applications, we need to utilize the available
rendering hardware maximally.

All remaining processors process the application stage, which should be par-
allelized to reduce lag as much as possible. Once lag cannot be reduced any
further, processors should run separate instances of the application to increase
its throughput to match the rendering stage’s thronghput.®

Rendering as well as application processing should be time-critical to bound
the maximum possible lag. The just-in-time synchronization scheme should
then be used to provide data communication between the various stages in
order to minimize average end-to-end lag as well as lag variation. Since the
setup described fulfills all requirements of prediction, predicting user input data
to the minimum expected end-to-end lag is advisable to minimize perceived lag.

In our sample application running on an MP architecture, we also reserve
one processor to run spontaneously occurring OS tasks. Leaving a processor
idle is not required if the user threads are locked into individual processors
(thus avoiding OS-internal rescheduling) or if the application runs on a network-
parallel architecture.

The effects on lag of the operating system preempting and rescheduling user
tasks on an overloaded MP-architecture are worth studying. In particular, how
does average lag and lag distribution change? We found that once Solaris pre-
empts a user thread, it only reschedules it on the order of 10ms later. Does the
added processing power of using the idle processor balance the lag introduced

9Pipelining achieves the same effect. However, since proper load balancing is harder to
achieve, we discourage use of pipelining for the application process.

15

by processes being swapped out? How does process rescheduling influence user
input prediction and compute time predictions used in the time-critical algo-
rithms?

Other future work includes extending our sample VR, application to operate
on dynamic data sets; this will require further research in the general areas
of time-critical computing and time-critical rendering. Furthermore, the lag
models introduced in Section 5 simulate actual lag only. Since prediction trades
spatial errors for better temporal accuracy, thus reducing perceived lag, models
that quantify this trade-off and thus simulate perceived lag are needed. User
studies should prove helpful in this task.

Acknowledgements

We thank Nate Huang and Tom Meyer for implementing parts of the example
application, Bob Zeleznik for helpful discussions, our Sun sponsor Barry Medoff
for speedy resolution of hardware-specific questions, Michael Deering for provid-
ing the code that reads and predicts the user input device, and the anonymous
reviewers for the many detailed comments.

References

Adelstein, B. D., Johnston, E. R., & Ellis, S. R. (1992). A testbed for
characterizing dynamic response of virtual environment spatial sensors.
1992 UIST Proceedings, 15-22.

Appino, P. A.| Lewis, J. B., Koved, L., Ling, D. T., Rabenhorst, D. A., &
Codella, C. F. (1992). An architecture for virtual worlds. Presence, 1(1),
1-17.

Bishop, G., & Fuchs, H., et al (1992). Research Directions in Virtual
Environments: Report of an NSF Invitational Workshop, March 23-24,

1992, at UNC Chapel Hill. Computer Graphics, 26(3), 153-177.

Blaire-Benson, K. (1986). Television Engineering Handbook, chapter 1. McGraw
Hill.

Brooks, Jr., F. P. (1988). Grasping reality through illusion — interactive graphics
serving science. In Human Factors in Computing Systems, 1-11. Special Issue
of the SIGCHI Bulletin.

Bryson, S., & Levitt, C. (1991). The virtual windtunnel: An environment for the
exploration of three-dimensional unsteady flows. In Visualization ’91, 17-24.

Codella, C. F., Jalili, R., Koved, L., & Lewis, J. B. (1993). A toolkit for developing
multi-user, distributed virtual environments. In IEEFE Virtual Reality Annual
International Symposium, 401-407.

Deering, M. (1992). High resolution virtual reality. Computer Graphics
(SIGGRAPH 92 Proceedings), 26(2), 195-202.

16

Friedmann, M., Starner, T., & Pentland, A. (1992). Device synchronization using
an optimal linear filter. Computer Graphics (1992 Symposium on Interactive
3D Graphies), 25(2), 57-62.

Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, J., Ellsworth, D., Molnar,
S., Turk, G., Tebbs, B., & Israel, L. (1989). Pixel-planes 5: A heterogeneous
multiprocessor graphics system using processor-enhanced memories. Computer
Graphics (SIGGRAPH °89 Proceedings), 23(3), 79-88.

Funkhouser, T. A. & Sequin, C. H. (1993). Adaptive display algorithm for
interactive frame rates during visualization of complex virtual environments.
Computer Graphics (SIGGRAPH 93 Proceedings), 247-254.

Gobbetti, E., Balaguer, J.-F., & Thalmann, D. (1993). VB2: An architecture
for interaction in synthetic worlds. In 71998 UIST Proceedings, 167-178.

ACM SIGGRAPH, Addison-Wesley.

Gossweiler, R. (1993). Time-critical rendering in an immersive virtual
environment. Thesis Proposal, available from author on request.

Held, R., & Durlach, N. (1991). Telepresence, time delay and adaptation. In
Stephen R. Ellis, editor, Pictorial Communication in Virtual and Real
Environments, chapter 14. Taylor and Francis.

Holloway, R. L. (1991). Viper: A quasi-real-time virtual worlds application.
Technical Report TR92-004, University of North Carolina, Chapel Hill.

Lewis, J. B., Koved, L., & Ling, D. T. (1991). Dialogue structures for virtual
worlds. Proceedings of CHI’91, 131-136.

Liang, J., Shaw, C., & Green, M. (1991). On temporal-spatial realism in the
virtual reality environment. Proceedings of the 1991 User Interface Software
Technology, 19-25.

Liu, A., Tharp, G., French, L., Lai, S., & Stark, L. (1993). Some of what one
needs to know about using head-mounted displays to improve teleoperator
performance. IEEE Transactions on Robotics and Automation, 9(5), 638-648.

Mine, M. R.. (1993). Characterization of end-to-end delays in head-mounted
display systems. Technical Report TR93-001, University of North Carolina
at Chapel Hill.

Shaw, C., Liang, J., Green, M., & Sun, Y. (1992). The decoupled simulation
model for virtual reality systems. Proceedings of CHI’92, 321-328.

Wang, C. P., Koved, L., & Dukach, S. (1990). Design for interactive performance
in a virtual laboratory. Computer Graphics (1990 Symposium on Interactive
3D Graphies), 24(2), 39-40.

Wloka, M. M. (1993). Ph.D. thesis proposal: Time-critical graphics. Technical
Report CS-93-50, Brown University, Department of Computer Science,
Providence, RI.

17

Asynchronous Just-in-Time Just-in-Time

Single-CPU Single-CPU Asynchronous
Measured sync. lag 1.22 0.76 0.62
Data avg lag 1.05 0.89 0.85
spread 0.78 0.75 0.87
.9-spread 0.90 0.64 0.71
Orbit sync. lag 1.11 0.75 0.67
Model avg lag 1.03 0.93 0.91
spread 1.04 0.88 0.85
.9-spread 0.88 0.58 0.66
Combination avg lag 0.96 0.88 0.92
Model spread 0.82 0.77 0.94
.9-spread 0.75 0.71 0.95

Table 1: We use our actual measured data, the orbit model, and the combina-

tion model to compare the average synchronization lag (sync. lag), the overall

average lag (avg lag), the spread (spread), and the .9-spread (.9-spread) of the

different synchronization schemes. The just-in-time synchronization scheme re-

duces synchronization lag by 33% as compared to asynchronous synchronization.

Total average lag in our VR application is reduced by about 10% as compared

to asynchronous synchronization.

18

User

W\

0-33ms
Tracker 30-50 updates/s
10-120ms
0-500ms —— Synchronization Lag
Application 2-72 updates/s
1-500ms
{ 0-100ms
Rend 10-72 updates/s
enAerer! 14-100ms
0-17ms Display Scan-Out Lag
\'\W
Dispia
ey Frame-Rate-
0-100ms Induced Lag
Brain

Figure 1: A typical VR application reacts to a user’s actions with a finite delay

caused by several characteristic components.

19

Prediction

requires: » Tracker
Time-Critical | _ 4| Constant Application Lag Lag
. ‘:
Computing "~ <a| Constant Renderer Lag Renderer
High Tracker Throughput Lag
. |Narrow Sync. Lag Distr. Application
oA Lag
Multiple |+ / Synchronization
Processors \\> Lag
Frame-Rate-
Induced Lag

A——pB : Areduces B
A----B : AenablesB

Figure 2: Interdependencies of the various lag-reduction techniques.

20

Tracker

'

50 updates/s
48ms

Application

23 updates/s
43ms

'

Renderer

#

16 updates/s
61ms

Display

User

=

0-20ms

0-43ms

0-61ms

0-15ms

0-61ms

Brain

Synchronization Lag

Display Scan-Out Lag

Frame-Rate-
Induced Lag

Figure 3: The particular lag times of our sample implementation.

21

finite event—space

:Jjﬁjj 1:] JﬁJJJﬁﬂéi
_I_I ASAASNs YN

. S T TON T
8 SN

% A
T T

RESRERANE ﬁﬁﬁ:

= Events
: Orbit Appendage
o Events high-
lighted for f

illustration
purposes = /

o

Figure 4: With constant processing times for each stage, each event determines
the end-to-end lag of its successor. Therefore, each event generates a string
of succeeding events, as shown here. Because the number of combinations of
different lag-times for each event is finite, the strings ultimately circle, i.e., they
form orbits, giving the orbit model its name. The examples shown here do not

represent real processes; they are chosen arbitrarily for illustration purposes.

Figure 5: Lag distribution for the single-CPU case as estimated by the orbit
model 18 compared with the actual, measured end-to-end lag. The end-to-end
lag of 200 samples was measured. The spread is the maximum deviation from
the average lag; the .9-spread indicates maximum deviation from the average
lag, taking into account only the 90% of the total number of samples that are

closest to the average.

23

Figure 6: Lag distribution for asynchronous synchronization as estimated by
the orbit model 1s compared with the actual, measured end-to-end lag. The
end-to-end lag of 200 samples was measured. The spread is the maximum
deviation from the average lag; the .9-spread indicates maximum deviation from
the average lag, taking into account only the 90% of the total number of samples

that are closest to the average.

24

Figure 7: Lag distribution for just-in-time synchronization as estimated by
the orbit model 1s compared with the actual, measured end-to-end lag. The
end-to-end lag of 200 samples was measured. The spread is the maximum
deviation from the average lag; the .9-spread indicates maximum deviation from
the average lag, taking into account only the 90% of the total number of samples

that are closest to the average.

25

Figure 8: Lag distribution in the combination model for the just-in-time syn-
chronization scheme without the adjustment versus the just-in-time synchro-
nization scheme with the adjustment described in the text. The adjustment

malkes just-in-time synchronization robust against unpredicted delays.

26

Figure 9: Curves of all the synchronization schemes as computed by the com-

bination model. Average lag, spread, and .9-spread are given for each scheme.

27

