
Lag in Multiprocessor Virtual RealityMatthias M. Wloka�Computer Science DepartmentBrown UniversityProvidence, RI 02912mmw@cs.brown.eduAbstractLag in virtual reality (VR), i.e., the delay between performing an ac-tion and seeing the result of that action, is critical when trying to achieveimmersion. While multiple, networked processors have been used to in-crease through-put, we concentrate on using multiple processors to reducelag. To that end, we present a complete list of all possible lag sources inVR applications, review available lag reduction techniques, and investi-gate how these reduction techniques interrelate. We also introduce a newprocess-synchronization scheme that reduces lag. We evaluate the e�ec-tiveness of this synchronization scheme both by software simulation, aswell as by actual lag measurements in our sample application.1 IntroductionVirtual reality (VR) applications strive to immerse users in arti�cial environ-ments. To do this, common knowledge dictates a minimum frame rate of 10frames per second. However, frame rate is only one of the important parame-ters that determine immersion: lag is equally important (Liu, Tharp, French,Lai, & Stark, 1993). Thus, instead of concentrating on frame rates (or through-put rates in general), system developers should aim more, we believe, to reducelag (Bishop & Fuchs et al, 1992; Brooks, 1988).1.1 What Is Lag?Lag is the time between when a user performs an action and when the applicationdisplays the result of that action. For example, when a user moves a 3D input�This work was supported in part by an IBM graduate fellowship for the author, theNSF/ARPA Science and Technology Center for Computer Graphics and Scienti�c Visual-ization, ONR Contract N00014-91-J-4052, ARPA Order 8225, and also Sun Microsystems,NASA, NCR, Hewlett Packard, and Digital Equipment Corporation.1



device, various computation stages process and transform the 3D input datato make it visible on-screen, so that the user's movements are displayed with a�nite delay. The process is illustrated in Figure 1.Lag is important because human beings are extremely sensitive to it. Forinstance, depending on the task and surrounding environment, lag of as littleas 100ms (less than a tenth of a second) degrades human performance (Held& Durlach, 1991; Liu, Tharp, French, Lai, & Stark, 1993). Even worse, if lagexceeds 300ms, humans start to dissociate their movements from the displayede�ects, thus destroying any immersive e�ect (Held & Durlach, 1991).This sensitivity to lag requires that we minimize lag for general applicationsto increase interactivity. VR applications in particular demand lag times ofless than 300ms to uphold immersion. (We base this conclusion on the abovecited results.) The most critical are augmented reality applications: for virtualobjects in a see-through, head-mounted display to seem realistic, perceived lagmust be less than 30ms (Held & Durlach, 1991).Throughput measurements cannot substitute for lag measurements in as-sessing the interactivity of an application, since lag and throughput measuredi�erent quantities: lag measures how long a computation process delays data,and throughput measures how frequently a computation process delivers a re-sult. However, the two quantities are related. Reducing lag in a computationprocess (for example, by using a faster algorithm) proportionally increases thethroughput of that process (but only if one is able to sample new input dataquickly enough). Yet increasing throughput does not necessarily decrease lag.For example, using multiple processors in a pipelined con�guration increasesthroughput yet maintains the same lag.In this paper, we focus on the general problem of lag for non-trivial interac-tions, i.e., responses to user input require substantial processing. Thus, trackingof head-mounted displays is a subproblem that is only marginally addressed,since it does not require substantial processing of the input.We concentrate on lag, not throughput. First, we list and characterize allthe sources of lag in VR applications. Second, we review techniques to reducelag, in particular multiprocessing. We complement the review by pointing outthe assumptions underlying each technique and how they interrelate. Third, weconstruct theoretical models of average lag and lag distributions that are veri�edby actual measurements; these models are crucial in quick evaluation of new lagreduction techniques for multiprocessing. Fourth and last, we introduce a newsynchronization scheme that reduces total lag while maximizing throughput andis superior to previous schemes.1.2 Single-CPU vs. Network-Parallel vs. MP-WorkstationOur discussion focuses on parallel VR applications. However, since all recentstate-of-the-art VR systems take advantage of multiple processors, this is norestriction. Furthermore, since multiprocessor (MP) workstations are becoming2



increasingly available, we wish to take maximum advantage of their added com-putational power. This is not trivial: for example, we have found that usingan MP workstation indiscriminately actually increases average end-to-end lagas compared to a single-CPU workstation (see Section 6)!We distinguish a multiprocessor (MP) architecture from the single-CPU ar-chitecture and the network-parallel architecture as follows. A single-CPU ar-chitecture uses exactly one CPU (while additional, specialized compute poweris usually available for rendering via a graphics card). This architecture con-trasts with a network-parallel architecture, in which several CPUs are inter-connected over a network and communicate via remote procedure calls or mes-sage passing. Typically, the network delays communication between CPUs non-deterministically by at least several milliseconds. Finally, a multiprocessor ar-chitecture incorporates a small number of CPUs into a single workstation; inthis architecture the processes on the CPUs typically communicate via sharedmemory without (measurable) delay.The results we present here are not limited to the MP architecture. Thediscussions of the sources of lag, lag reduction techniques, and theoretical lagmodels are general enough to apply equally well to network-parallel applica-tions and even single-CPU VR applications. Only the various synchronizationschemes, by their very nature, do not apply to single-CPU applications. Whereappropriate, we point out di�erences between MP and network-parallel archi-tectures and how they in
uence corresponding conclusions.1.3 OverviewWe review previous work in Section 2, and we analyze and characterize all possi-ble sources of lag in a typical VR application in Section 3. In Section 4, we reviewlag reduction techniques, namely prediction, time-critical computing, and par-allelism, and investigate what interrelating assumptions these techniques make.Section 5 describes our implementation and theoretical models to measure andcompare lag. In Section 6, we introduce and discuss a new synchronizationscheme that minimizes lag. Finally, we draw conclusions from our experimentsand suggest possible future work in Section 7.2 Previous WorkSo far, most research in parallel VR systems aims at increasing throughput, notdecreasing lag. A report by Mark Mine (Mine, 1993) is an exception. However,while Mine realizes the importance of lag in head-mounted display systems, hisdescription of its sources is insu�cient. He omits synchronization delay as asource of lag and fails to generalize his characterization of the other sources.Most of his report concentrates on measuring user input device delays. Andwhile Adelstein et al (Adelstein, Johnston, & Ellis, 1992) also quantify delays of3



user input devices, their results have only limited impact on total end-to-end lagin VR applications, because they describe lag of user input devices in isolation.Liang et al (Liang, Shaw, & Green, 1991) claim to measure user input devicedelay, even though they actually measure end-to-end lag (albeit for an virtualenvironment with very simple graphics). Nonetheless, due to the focus of theirwork, the same criticism applies: they attempt to isolate lag of user input devicesand disregard other sources of lag.Other researchers describe methods to reduce lag, such as prediction, time-critical computing, and use of parallelism. In particular, Liang et al (Liang,Shaw, & Green, 1991), Friedman et al (Friedmann, Starner, & Pentland, 1992),and Deering (Deering, 1992) propose prediction of user input data as a wayto reduce and even eliminate perceived lag. Deering implements linear extrap-olation, while the others apply a Kalman �lter which provides the best leastsquares predictor in the presence of Gaussian noise. However, the authors failto describe all the underlying constraints that restrict the use of prediction inVR applications (see Section 4.1).Time-critical computing (Funkhouser & Sequin, 1993; Gossweiler, 1993; Hol-loway, 1991; Wloka, 1993) allows \computing to a budget." In conventionalcomputing paradigms, we wait for the computer to �nish its tasks, howeverlong it takes. Time-critical computing ensures that we have at least approxi-mate results at certain time-deadlines. Thus, time-critical computing boundsthe maximum lag. We believe we are the �rst to explore the bene�ts of usingtime-critical computing in connection with user input prediction to control lag.The increased compute power of parallel processing is attractive to VR sys-tem designers, and thus several VR systems are network-parallel or MP-parallel(Appino, Lewis, Koved, Ling, Rabenhorst, & Codella, 1992; Codella, Jalili,Koved, & Lewis, 1993; Gobbetti, Balaguer, & Thalmann, 1993; Lewis, Koved,& Ling, 1991; Shaw, Liang, Green, & Sun, 1992; Wang, Koved, & Dukach, 1990).All these systems use asynchronous or other ad hoc process communication (ex-cept for left- and right-eye view rendering). Yet asynchronous communicationmaximizes throughput but is suboptimal for reducing lag. While Appino et al(Appino, Lewis, Koved, Ling, Rabenhorst, & Codella, 1992) mention the possi-bility of \just-in-time" synchronization schemes, they do not actually detail orimplement any such schemes. We are not aware of any work that analyzes andoptimizes synchronization schemes to reduce lag.3 Lag Sources in VR Systems3.1 User Input Device LagThe user input device in a VR application reports 3D position and orientationdata. It is external to the host workstation and typically communicates datavia the serial port. Examples of such devices include the Logitech \Red Baron"4



ultrasound sensor, the Polhemus Isotraks, and the Ascension Bird. Total userinput device lag includes signal generation and communication time.Depending on the type of device and mode of operation (i.e., noise �lter-ing on/o�, di�erent orientation reporting modes, etc.), lag ranges from 10msto 120ms; throughput is between 30 and 50 samples per second (Adelstein,Johnston, & Ellis, 1992; Mine, 1993),As a speci�c example, the Logitech \Red Baron" sensor reporting positionand Euler angles in a small work-volume in streaming mode has a lag of 47.5ms.Throughput for this device is 50 samples per second, i.e., one sample every20ms. (We made these measurements using our setup (see Section 5); Logitechindependently con�rmed them.)3.2 Application-Dependent Processing LagOnce the user input device data arrives at the host workstation, the applicationprocesses it. Processing can be as simple as transforming the data from thedevice format to the rendering format, i.e., the application echoes the user inputdevice position to the virtual environment. Other more complicated applicationprocesses are common, for example, interactive streamline computations forvirtual wind-tunnels (Bryson & Levitt, 1991).Processing lag is highly application-dependent and thus highly variable. Thesimple echoing scheme above is the lower bound; today's workstations performthese data transformations in one millisecond or less. The upper bound isharder to characterize. However, keeping in mind that the resulting VR sys-tem is supposedly immersive, we assume that the lag introduced by applicationprocessing does not exceed 500ms, since it is unlikely that applications with in-put processing requirements beyond 500ms can be made immersive. Therefore,application-dependent processing lag ranges from 1 to 500ms.1Throughput of the application depends on the number of processors avail-able. In the single-CPU case, the same processor computes the application andalso feeds the renderer (see Section 3.3). Therefore, throughput is1000(application lag + render lag) times per second,with all lag times measured in milliseconds.With at least two processors available, we assign one to feed the renderer.Application throughput is thus at least (1000=application lag) times per second,which translates to at least twice per second.If more than two processors are available, the application task should �rstbe parallelized so as to reduce lag. If thereafter application throughput is still1Of course, application delays of 500ms are only permissible if head-tracking proceedsasynchronouslyand independentlywith considerably less lag and higher frame rates; otherwiseimmersion is not achievable. 5



worse than rendering throughput (see Section 3.3) and processors are idle, thenwe recommend running several instances of the application on di�erent userinput data until application throughput is equal to or better than renderingthroughput. Since rendering throughput is at most 72 times per second (seeSection 3.3), application throughput is thus 2 to 72 times per second.3.3 Rendering LagRendering lag is the time from sending data to the rendering hardware until thesame data is displayed on the monitor. We assume double-bu�ering renderinghardware that does not use the CPU for rendering computations. Since double-bu�ering synchronizes the rendering hardware with the display refresh, the �nitedisplay refresh rate (typically 60-72Hz) causes a minimumrendering lag of 14ms.The maximumrendering lag derives from the minimumrequirement of 10 framesper second: 100ms. Rendering lag is highly scene- and viewpoint-dependent,and thus is likely to vary during the run-time of an application.The maximum rendering lag is longer if the rendering hardware is heavilypipelined. For instance, the 1,000,000 polygons/sec Pixel-Planes 5 architecture(Fuchs, Poulton, Eyles, Greer, Goldfeather, Ellsworth, Molnar, Turk, Tebbs,& Israel, 1989) renders a single polygon in 54ms (Mine, 1993). (However,Pixel-Planes 5 can be recon�gured to allow for shorter lag at the expense ofthroughput.) Our measurements indicate that conventional graphics cards (inparticular, the Sun ZX graphics boards) do not exhibit this anomaly.The scan-out of the display, since it occurs with a frequency of 60 to 72Hz,2causes additional lag. Depending on where the rendered data appears on thedisplay and whether the display refreshes from top to bottom or vice versa, thedata image may remain invisible for a further 0 to 17ms.As in the application case, rendering throughput depends on the number ofprocessors available. If only a single processor is available, rendering throughputequals application throughput, i.e., 1000=(application lag + render lag) timesper second, since the single CPU computes the application and also feeds therenderer.If at least two processors are available, assigning one of them exclusively tofeed the renderer yields a rendering throughput of 1000=render lag times persecond. Since we also assume that only a single graphics board renders intothe frame-bu�er, the presence of additional processors cannot further in
uencerendering throughput.3.4 Synchronization LagParallel VR applications process user input in several stages: the user inputdevice processing stage, the application-dependent processing stage, and the2These values apply to CRT displays. LCD-type displays have di�erent characteristics.6



rendering stage.3 Since these stages are independent, it is possible (and infact likely) that, for example, the user input device deposits a new sample onthe serial port shortly after the application reads the serial port. Thus, theapplication is busy processing the previous input before it reads the serial portagain and starts to process the current input, so that user input data is delayedbecause it is waiting to be processed by a currently busy stage.We de�ne synchronization lag as the total time data is waiting in-betweenstages without being processed.4 Synchronization lag is thus inversely propor-tional to the throughput rates of the various stages. It also varies during therun-time of the application.In the best case, synchronization lag is zero: each stage writes its outputjust before the next stage reads the data. The worst case is equally likely: eachstage writes its output just after the next stage reads the data. Synchronizationlag thus varies from 0 to a maximum of the sum of the inverse throughput ratesof each stage. On average, synchronization lag is half that maximum, so thataverage synchronization lag varies depending on the throughput rates of thevarious stages, i.e., it varies from( 1000max throughput UID+ 1000max throughput appl+ 1000max throughput render )=2 =(20 + 15 + 15)=2 = 25msto( 1000min throughput UID + 1000min throughput appl + 1000min throughput render )=2 =(33 + 500 + 100)=2 = 316:5ms.While synchronization lag is easy to overlook, it contributes up to 50% of thetotal lag in a VR system.3.5 Frame-Rate-Induced LagSlow frame rate induces a sample-and-hold artifact that has characteristics sim-ilar to lag. The moment we display a new frame, and thus new data, the dataon-screen is as up-to-date as possible. However, as time goes on and the displayis not updated, the data displayed becomes progressively out of date. We callthis phenomenon frame-rate-induced lag; it depends only on the frame rate andthus its maximum ranges from 15 to 100ms.We distinguish frame-rate-induced lag from all other lag sources. We de-�ne end-to-end lag as the delay between when the user moves the user input3Even in the single-CPU case, the user input device is separate and independent from theCPU computing the application and feeding the renderer. Thus, VR applications process userinput in two stages when running on a single-CPU architecture.4In the network-parallel case, synchronization lag also includes the network delays.7



device and the �rst display of that movement. End-to-end lag thus includesuser input device lag, application-dependent processing lag, rendering lag, andsynchronization lag, but speci�cally excludes frame-rate-induced lag.Frame-rate-induced lag is one of the reasons that slow frame rates are unac-ceptable for VR applications. It is therefore important to quantify frame-rate-induced lag in correlation to end-to-end lag. Yet simply adding the maximumframe-rate-induced lag to end-to-end lag, i.e., adding the time a frame is on-screen to the end-to-end lag, is insu�cient: such a model would imply that theuser �rst sees the data only when it is about to be replaced by newer data.Instead, we model the human visual system as another processing stage thatinterfaces the VR application display to the brain. This processing stage readsthe display immediately after a new frame is displayed. Let us call the time thisnew frame is displayed tnew. Thus, at time tnew we register only the end-to-endlag l.Only after a �nite time-interval iperc can the human eye receive new data,i.e., the human visual system has limited bandwidth. Thus, at time tnew+ ipercwe register a total lag equal to the end-to-end lag plus the age of the on-screendata: l + iperc. We repeat this process, recording lag times of l + k � iperc fork = 0; 1; : : :, until a new frame is displayed, i.e., untilk � iperc > time that the frame (data) is on-screen.Since the human visual system perceives 
icker on video monitors only up toa rate of about 70Hz (Blaire-Benson, 1986), we conclude that the above timeinterval iperc is roughly equal to 1000=70 = 14:3ms. To be safe we assume ipercto be equal to 5ms.This model successfully combines end-to-end lag and frame-rate-induced lag,while also being consistent with the test results of others (Liu, Tharp, French,Lai, & Stark, 1993). We rely on it when comparing di�erent lag-reductiontechniques in Section 6, since some of these techniques in
uence both end-to-end lag and frame rate and thus frame-rate-induced lag.Figure 1 summarizes the �ndings of this section.4 Techniques to Reduce Lag4.1 PredictionPrediction methods extrapolate past user input data to future time points, thusreducing perceived lag (Deering, 1992; Friedmann, Starner, & Pentland, 1992;Liang, Shaw, & Green, 1991). However, this extrapolation process introducesspatial inaccuracies that increase under the following three conditions (Fried-mann, Starner, & Pentland, 1992; Liang, Shaw, & Green, 1991): (1) the userinput device throughput is too low; (2) we predict too far into the future; (3)the user input device acceleration is too high.8



Yet prediction is the only available method that can drastically reduce totalperceived lag and in particular application-dependent processing lag (since weare discussing the general problem of transforming the user input non-triviallyin the application-dependent processing stage). To minimize lag, the user in-put device stage projects the user input data to the time this data reaches thedisplay. Thus, the user input device stage requires knowledge about the lagexperienced by the predicted data in future stages. Prediction thus demandsconstant (or close to constant) application-dependent processing lag and render-ing lag, as well as synchronization lag with as narrow a distribution as possible.In general, even prediction cannot eliminate perceived lag, because of variationsin total end-to-end lag. We illustrate these requirements in Figure 2.4.2 Time-Critical ComputingIt is not advisable to use time-critical computing (Funkhouser & Sequin, 1993;Gossweiler, 1993; Holloway, 1991; Wloka, 1993) directly to reduce lag. Sincetime-critical computing trades computation time for computation accuracy, sav-ing maximum time by computing with the least accuracy would produce grossvisual errors while still not fully eliminating lag. The bene�t gained is question-able.We propose instead to use time-critical computing to assure constant ornearly constant application-dependent processing lag and rendering lag. Thisbrings us one step closer to being able to use prediction, as shown in Figure 2.4.3 Multiple ProcessorsMultiple processors reduce lag in a VR application in several ways. If we par-allelize the application process, we can reduce application-dependent process-ing time directly. Pipelining the application or running several instances of itincreases the throughput of the application, and thus decreases the expectedaverage synchronization lag of data waiting to be processed by the application.However, the most popular use of multiple processors is to assign at least oneto each computation stage.Using at least one CPU for each computation stage in a VR application, evenin asynchronous communications mode (Appino, Lewis, Koved, Ling, Raben-horst, & Codella, 1992; Codella, Jalili, Koved, & Lewis, 1993; Lewis, Koved, &Ling, 1991; Shaw, Liang, Green, & Sun, 1992; Wang, Koved, & Dukach, 1990),has four main advantages. First, the user input device is independent from allother stages and thus runs with maximum throughput, allowing use of predic-tion (see Figure 2). Second, rendering also proceeds at maximum throughput,reducing frame-rate-induced lag (see Section 3). Third, the distribution of syn-chronization lag is also narrower and thus better than in the single-CPU case.Fourth and �nally, by allowing the user-input processor to communicate userinput device data directly to the rendering stage, we can \short-circuit" the9



application and display a low-lag cursor echoing the user input device positiondirectly in addition to the high-lag application-computed feedback.In Section 6 we introduce better synchronization schemes that, while main-taining all the above advantages of parallel processing, also reduce average syn-chronization lag. Surprisingly, asynchronous communication actually increasesaverage synchronization lag over the single-CPU architecture.5 Measuring Lag5.1 Implementation and Measuring Lag in PracticeTo evaluate lag-reduction techniques, we implemented a simple VR application:we pass a wand that emits several streamlines through a data-set representingthe air
ow around the space shuttle. The interactively computed streamlineslet us visualize the 
ow.The application reads the position and orientation of a user input device, pro-cesses the data by computing streamlines of the 
ow �eld for that position andorientation, and renders these streamlines. We also render a Gouraud-shadedrepresentation of the space shuttle consisting of approximately 9000 triangles.A single Logitech \Red Baron" ultrasound device mediates user input to a four-processor Sparc 10 workstation with a ZX graphics board. The Logitech deviceruns in streaming mode, reporting Euler angles in the small work-volume.We use only three of the four processors available: the �rst processor con-tinuously scans the serial port for new user input and extrapolates it to futuretimes, the second processor is responsible for computing the streamlines, andthe third feeds the rendering hardware. All processors run asynchronously (andlater synchronously, according to the synchronization scheme) and each stagesimply overwrites previous output, i.e., no bu�ering occurs. We leave the fourthprocessor idle to handle spontaneously occurring operating system (SunSoft So-laris) or other systems-related tasks. Thus, we ensure that the operating systemnever swaps out any of our application tasks.5We measure end-to-end lag of our implementation in a setup practicallyidentical to that described by Mine (Mine, 1993): we use an oscilloscope todetermine the time di�erence between when the Logitech tracker crosses a �xedboundary and when the computer graphically acknowledges the crossing bydisplaying a white triangle. Our measurements (see Figure 3) eliminate displayscan-out lag (see Section 3.3) since we display the triangle so that it is scannedout �rst.5The serial port causes additional systems-related lag. Standard Solaris only processes theserial port every 30ms, unnecessarily introducing 0 to 30ms additional lag. We modi�ed theserial port routines to eliminate this lag. 10



5.2 Evaluating and Comparing Lag in TheoryImplementing a new synchronization scheme and measuring the resulting lag istime-consuming and cumbersome. We have therefore developed theoretical lagmodels that let us calculate the expected lag (and thus usefulness) of a givenscheme. The models below estimate average lag as well as lag distribution.5.2.1 Orbit ModelIn the orbit model, we simulate in software the behavior of our application.Events represent user input motion: every time the user moves the user inputdevice, a new event is generated. We assume the user moves every millisecond,6and thus each millisecond we generate a new event. Our software simulationtracks the creation time of each event.We then simulate an event's passage through the various processing stages.The user input device stage, the application-dependent processing stage, andthe rendering stage each delay an event by a constant amount of time. Anevent is further delayed if, upon arrival at one of these stages, the stage is busyprocessing previous events, i.e., the event experiences synchronization lag. Eachevent therefore in
uences the lag of successive events, since once a stage startsto process an event, all successive events must wait until it becomes idle again.When an event exits the last stage, i.e., is displayed, we compare its exit timeto its creation time to determine its end-to-end lag.Since we assume that processing time for the user input device stage, theapplication-dependent processing stage, and the rendering stage is constant, thesynchronization lag before each stage fully characterizes the end-to-end lag ofan event. We thus notate an event as a tuple of numbers corresponding to thesynchronization lag experienced before each stage. In the single-CPU case, anevent is thus a pair, since there are only two stages; in general, there are threestages and an event is a triple.While this tuple-notation characterizes an event, it also describes the periodduring which each stage is busy after the arrival of that event. Thus, it fullydetermines the synchronization lag of the next event. Each event thereforedetermines a string of successive event lag times.Since each stage has �nite and constant processing time, events can expe-rience only a �nite number of di�erent synchronization lags before each stage.Thus, the space of non-identical (in the tuple notation sense) events is �nite.Accordingly, each event-originated string must form a cycle after a �nite numberof events | we call the generated circular structure of an event-string an orbit(we exclude the appendages that lead into an orbit). Figure 4 shows examples.6This assumption is not strictly correct: human motion is continuous. However, comparedto the much slower Logitech tracker sampling rate, a rate of 1kHz approximates the continuousbehavior well enough. 11



The orbit model records the end-to-end lag of the statistically relevantevents. We �nd these relevant events as follows. The model loops throughall possible synchronization lag combinations to generate all possible startingevents. Each starting event computes its limit orbit. All the events that arepart of an orbit are relevant. (All events that are part of an appendage are notrelevant, however, since they rarely occur in practice.)Since all the events in an orbit, as well as the events in the appendagesleading into that orbit, generate that same orbit, we record the end-to-end lagof the events in that orbit as many times as the orbit was generated. Themore often an orbit is generated the more statistically relevant it is. Thus, theend-to-end lag of the events in a long orbit with many appendages is recordedmany more times than the end-to-end lag of the events in a short orbit with noappendages.5.2.2 Combination ModelThe orbit model estimates end-to-end lag as de�ned in Section 3. It does nottake into account frame-rate-induced lag. The combination model simulates andmeasures frame-rate-induced lag via the model described in Section 3.5.The combination model is an extension of the orbit model. Instead of iden-tifying an event by its synchronization lag, the combination model identi�esevents by their synchronization lag and the amount of time each is on-screen.As before we generate all possible strings and count as relevant only the eventsthat are part of orbits. We then convert the on-screen time of each relevantevent into frame-rate-induced lag as described in Section 3.5. That is, eachrelevant event with end-to-end lag l and on-screen time t spawns a set of lagtimes fl + k � iperc j k = 0; 1; : : :; tiperc g:(The constant iperc corresponds to the �nite throughput of the human visualsystem as explained in Section 3.5, and is set equal to 5ms.) We add all the lagtimes in these sets to the lag distribution.6 Minimizing Synchronization LagSynchronization lag is one of the largest sources of lag in a typical VR ap-plication. We introduce a new synchronization scheme that reduces averagesynchronization lag, narrows lag distribution, and maintains high user inputdevice and rendering throughput. Thus, this new synchronization scheme is at-tractive for MP VR applications in general and predictive MP VR applicationsin particular.We compare this new synchronization scheme to the single-CPU case and theasynchronous synchronization scheme, and evaluate these comparisons using the12



orbit and the combination model (see Section 5.2). To validate the evaluationswe also show the actual, measured end-to-end lag of our implementation (seeSection 5.1) for each scheme.6.1 Single-CPU SynchronizationWe implement the single-CPU case on our four-processor workstation by usingonly one computation thread. This single thread reads the serial port, computesthe application, and sends data to the rendering hardware. The average end-to-end lag is better than the expected48 + (43 + 61) + 20 + 1042 = 214 ms,because the rendering hardware computes partially in parallel with the CPU(refer to Figure 3 for the sources of the various delays). Thus, we adjust ap-plication and rendering throughput from the expected (1000=(43 + 61)) = 9:6frames per second to the actually measured 11.0 frames per second. The resultsare shown in Figure 5, Figure 9, and Table 1.6.2 Asynchronous SynchronizationAsynchronous synchronization assigns one processor to read the serial port con-tinuously, one to compute the application process, and one to feed the renderer.Each processor runs independent of all others, and thus at maximum through-put. The resulting lag times are shown in Figure 6, Figure 9, and Table 1.6.3 Just-in-Time SynchronizationJust-in-time synchronization is a new synchronization scheme. Like asynchronoussynchronization, it assigns one processor to read the serial port continuously,one to compute the application process, and one to feed the renderer. Theprocessor that reads the serial port runs as fast as possible, thus producingmaximum throughput for the user input device. Similarly, the processor thatfeeds the renderer also runs as fast as possible to maintain maximum renderingthroughput.Unlike asynchronous synchronization, however, the application process doesnot run as often as possible. Instead, we start the application process so thatit �nishes computing just before the rendering process starts to compute a newframe. Thus, the rendering process always renders application data that is asup-to-date as possible.This synchronization scheme relies on two assumptions: �rst, that we knowthe computation time the application process requires, and second, that we knowwhen the rendering process starts to read data. That is we assume knowledgeof the rendering time of the currently rendering frame.13



Time-critical computing ensures that both assumptions are correct. Inparticular, in our sample implementation we compute the streamlines time-critically. This means that the application process computes for 43ms, andupon reaching this limit returns and communicates the result to the renderer.On the other hand, the renderer in our application has a fairly constant load,thus obviating advanced time-critical rendering techniques: it is su�cient tomonitor rendering times for each frame and use a weighted average of these topredict the rendering time of the current frame.To make just-in-time synchronization robust against unpredicted delays, weadjust it slightly. Our simulations show (and our measurements con�rm) thatit is advantageous for the application stage to wait for fresh data from theuser input stage. Instead of accepting the user input data indiscriminately, theapplication process examines the age of the currently available user input devicedata, i.e., when it was written. If it is older than 10ms, the application processwaits for fresh data.7 Since the user input device updates every 20ms, theapplication process waits less than 10ms. Accordingly, the rendering processchecks the age of the application data. If the data is older than 10ms, therendering process waits for new data to arrive. Because the application delaysdata by no more than 10ms, the maximumdelay for the rendering stage is 10ms.While this adjustment decreases rendering throughput slightly, the advan-tage of always processing fresh data balances the lost time (see Figure 8). Moreimportant, the synchronization scheme becomes robust against prediction errorsof the rendering times.8Figure 7, Figure 9, and Table 1 show the resulting lag distributions andperformance of the just-in-time synchronization scheme.6.4 Comparison of Synchronization SchemesAs Figure 9 and Table 1 clearly show, just-in-time synchronization outperformssingle-CPU and asynchronous synchronization. In particular, just-in-time syn-chronization reduces synchronization lag by about 33% as compared to asyn-chronous synchronization, and reduces average total lag in an MP VR appli-cation by about 10%. Just-in-time synchronization also narrows the spread oflag times for individual samples, while maintaining maximum throughput forthe user input device. Finally, just as in the asynchronous case, just-in-timesynchronization lets us \short-circuit" (see Section 4.3) the application.However, just-in-time synchronization has disadvantages. It lowers the framerate slightly. However, Liu et al (Liu, Tharp, French, Lai, & Stark, 1993) arguethat such a performance degradation is insigni�cant. Just-in-time synchroniza-tion is also harder to implement than asynchronous synchronization, and it7If the application relies on more than one input device, the same general mechanism isapplicable, using as the age a weighted average of the ages of all input devices.8This scheme is also robust against unpredictable network delays in the network-parallelcase, so that just-in-time synchronization should be applicable there as well.14



requires that computation times of both the application process and the ren-dering process be predictable. On the other hand, predictability or at least theexistence of an upper bound for application and rendering times is generally de-sirable for VR applications, since otherwise user input prediction cannot be usedto the fullest advantage, and worse, immersion would be lost due to excessivelag times for individual frames.7 Conclusions and Future WorkFrom the �ndings above, we recommend the following way to use multiple pro-cessors to reduce lag in VR applications. First, assign processors to user inputdevices. While previous work (Appino, Lewis, Koved, Ling, Rabenhorst, &Codella, 1992) recommends one processor per user input device, we modify thisrecommendation. Since serving a user input device has low overhead (we onlyneed to read the serial port every 20ms and predict), one processor su�ces toserve several user input devices. Achieving maximum throughput for the userinput devices enables maximum performance of the prediction algorithm (seeSection 4) and thus minimizes perceived lag.We reserve one processor for each hardware rendering board: since renderingis typically the bottleneck in VR applications, we need to utilize the availablerendering hardware maximally.All remaining processors process the application stage, which should be par-allelized to reduce lag as much as possible. Once lag cannot be reduced anyfurther, processors should run separate instances of the application to increaseits throughput to match the rendering stage's throughput.9Rendering as well as application processing should be time-critical to boundthe maximum possible lag. The just-in-time synchronization scheme shouldthen be used to provide data communication between the various stages inorder to minimize average end-to-end lag as well as lag variation. Since thesetup described ful�lls all requirements of prediction, predicting user input datato the minimumexpected end-to-end lag is advisable to minimize perceived lag.In our sample application running on an MP architecture, we also reserveone processor to run spontaneously occurring OS tasks. Leaving a processoridle is not required if the user threads are locked into individual processors(thus avoiding OS-internal rescheduling) or if the application runs on a network-parallel architecture.The e�ects on lag of the operating system preempting and rescheduling usertasks on an overloaded MP-architecture are worth studying. In particular, howdoes average lag and lag distribution change? We found that once Solaris pre-empts a user thread, it only reschedules it on the order of 10ms later. Does theadded processing power of using the idle processor balance the lag introduced9Pipelining achieves the same e�ect. However, since proper load balancing is harder toachieve, we discourage use of pipelining for the application process.15



by processes being swapped out? How does process rescheduling in
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AsynchronousSingle-CPU Just-in-TimeSingle-CPU Just-in-TimeAsynchronousMeasured sync. lag 1.22 0.76 0.62Data avg lag 1.05 0.89 0.85spread 0.78 0.75 0.87.9-spread 0.90 0.64 0.71Orbit sync. lag 1.11 0.75 0.67Model avg lag 1.03 0.93 0.91spread 1.04 0.88 0.85.9-spread 0.88 0.58 0.66Combination avg lag 0.96 0.88 0.92Model spread 0.82 0.77 0.94.9-spread 0.75 0.71 0.95Table 1: We use our actual measured data, the orbit model, and the combina-tion model to compare the average synchronization lag (sync. lag), the overallaverage lag (avg lag), the spread (spread), and the .9-spread (.9-spread) of thedi�erent synchronization schemes. The just-in-time synchronization scheme re-duces synchronization lag by 33% as compared to asynchronous synchronization.Total average lag in our VR application is reduced by about 10% as comparedto asynchronous synchronization.
18
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Figure 1: A typical VR application reacts to a user's actions with a �nite delaycaused by several characteristic components.19
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: single CPU lag, actual measurements
average lag: 202ms,

: single CPU lag, orbit model
average lag: 207ms,
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Figure 5: Lag distribution for the single-CPU case as estimated by the orbitmodel is compared with the actual, measured end-to-end lag. The end-to-endlag of 200 samples was measured. The spread is the maximum deviation fromthe average lag; the .9-spread indicates maximum deviation from the averagelag, taking into account only the 90% of the total number of samples that areclosest to the average. 23



: asynchronous lag, actual measurements
average lag: 213ms,

: asynchronous lag, orbit model
average lag: 213ms,
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Figure 6: Lag distribution for asynchronous synchronization as estimated bythe orbit model is compared with the actual, measured end-to-end lag. Theend-to-end lag of 200 samples was measured. The spread is the maximumdeviation from the average lag; the .9-spread indicates maximumdeviation fromthe average lag, taking into account only the 90% of the total number of samplesthat are closest to the average. 24



: just-in-time lag, actual measurements
average lag: 180ms,

: just-in-time lag, orbit model
average lag: 193ms,
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Figure 7: Lag distribution for just-in-time synchronization as estimated bythe orbit model is compared with the actual, measured end-to-end lag. Theend-to-end lag of 200 samples was measured. The spread is the maximumdeviation from the average lag; the .9-spread indicates maximumdeviation fromthe average lag, taking into account only the 90% of the total number of samplesthat are closest to the average. 25
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Figure 8: Lag distribution in the combination model for the just-in-time syn-chronization scheme without the adjustment versus the just-in-time synchro-nization scheme with the adjustment described in the text. The adjustmentmakes just-in-time synchronization robust against unpredicted delays.
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