
Acquisition of Stand-up Behavior by a Real Robot

using Hierarchical Reinforcement Learning

Jun Morimoto xmorimo@erato.atr.co.jp

Nara Institute of Science and Technology; Kawato Dynamic Brain Project, JST

2-2 Hikaridai Seika-cho Soraku-gun Kyoto 619-0288 JAPAN

Kenji Doya doya@ctr.atr.co.jp

ATR International; CREST, JST

2-2 Hikaridai Seika-cho Soraku-gun Kyoto 619-0288 JAPAN

Abstract

In this paper, we propose a hierarchical re-

inforcement learning architecture for a robot

with large degrees of freedom. In order to en-

able learning in a practical numbers of trials,

we introduce a low-dimensional representa-

tion of the state of the robot for higher-level

planning. The upper level learns a discrete

sequence of sub-goals in a low-dimensional

state space for achieving the main goal of

the task. The lower-level modules learn local

trajectories in the original high-dimensional

state space to achieve the sub-goal speci�ed

by the upper level. We applied the hierar-

chical architecture to a three-link, two-joint

robot for a task of learning to stand up by

trial and error. The upper-level learning was

implemented by Q learning, while the lower-

level learning was implemented by a contin-

uous actor-critic method. The robot success-

fully learned to stand up within 750 trials in

simulation and then in an additional 170 tri-

als using real hardware.

1. Introduction

Recently, there have been many attempts at apply-

ing reinforcement learning (RL) algorithms to acquisi-

tion of goal-directed behaviors in autonomous robots.

However, a crucial issue in applying RL to real-world

robot control is the curse of dimensionality. For exam-

ple, control of a humanoid robot easily involves a forty

or higher dimensional state space. Thus, the usual

way of quantizing the state space with grids easily

breaks down. We have recently developed RL algo-

rithms for dealing with continuous-time, continuous-

state control tasks without explicit quantization of

state and time (Doya, 2000). However, the methods

for high-dimensional function approximation and for

global exploration remain open problems. The speed

of learning is crucial in applying RL to real hardware

control because, unlike in idealized simulations, such

non-stationary e�ects as sensor drifts and mechanical

aging are not neglectable and learning has to be quick

enough to keep track of such changes in the environ-

ment.

In this article, we propose a hierarchical RL archi-

tecture that realizes practical learning speed in real

hardware control tasks. Hierarchical RL methods

have been developed for creating reusable behavioral

modules (Singh, 1992; Tham, 1995; Digney, 1998),

solving partially observable Markov decision problems

(POMDP's) (Wiering & Schmidhuber, 1997), and for

improving learning speed (Dayan & Hinton, 1993;

Kimura & Kobayashi, 1999).

Most previous studies of hierarchical RL consider a 2-

D maze-like state space and use coarse and �ne grain

quantization of the state space. However, in a high-

dimensional state space, even the coarsest quantiza-

tion into two bins in each dimension would create a

prohibitive number of states. Thus, in designing a hi-

erarchical RL architecture in high-dimensional space,

dimension reduction of the state space is mandatory

(Morimoto & Doya, 1998a).

In this study, we propose a hierarchical RL archi-

tecture in which the upper-level learner globally ex-

plores sequences of sub-goals in a low-dimensional

state space, while the lower-level learners optimize lo-

cal trajectories in the high-dimensional state space.

As a concrete example, we consider a \stand-up" task

for a two-joint, three-link robot (see Figure 1). The

goal of the task is to �nd a path in a high-dimensional

state space that links a lying state to an upright state

under the constraints of the system dynamics. The

robot is a non-holonomic system, as there is no actua-

tor linking the robot to the ground, and thus trajectory

planning is non-trivial. The geometry of the robot is

such that there is no static solution; the robot has to

stand up dynamically by utilizing the momentum of

its body.

8888888888888888
8888888888888888
8888888888888888

link1

link2
m

1

0

link3

2

Figure 1. Robot con�guration. �0:pitch angle, �1:hip joint

angle, �2:knee joint angle, �m:the angle of the line from the

center of mass to the center of the foot.

2. Hierarchical Reinforcement Learning

In this section, we propose a hierarchical RL archi-

tecture for non-linear control problems. The basic

idea is to decompose a non-linear problem in a high-

dimensional state space into two levels: a non-linear

problem in a lower-dimensional space and nearly linear

problems in the high-dimensional space (see Figure 2).

-

R(T)

r(t)

Q(X,U)

u(t)

+ −

X(T) U(T)

x(t)

Trigger

Switching

Action−value
function

Reward

Discretize

State Output

State Output

Reward

Controller

State−value
function V(x)

Robot

Figure 2. Hierarchical reinforcement learning architecture

2.1 Task Decomposition by Sub-goals

In the upper level, the learner deals with the entire

task. The reward for the upper-level learner is given by

the achievement of the entire task. In the lower level,

each learner deals with a sub-task. The reward for

the lower-level learner is given by the achievement of

a given sub-goal. An action of the upper-level learner

is the selection of the next sub-goal for the lower level.

An action of the lower-level learner is the command

for the actuators. The upper-level learner is activated

when the lower-level learner achieves the current sub-

goal. Then, the upper-level learner takes a new ac-

tion, which is given as a new sub-goal for the lower-

level learner. The state variables in the lower level

are the physical variables, while those in the upper

level are lower-dimensional state variables. The choice

of low-dimensional state variables is a important issue

in hierarchical RL. In general, the use of task-oriented

kinematic variables, such as the positions of the end ef-

fector and the center of mass, in the upper level would

be appropriate. In the stand-up task, we chose the

angles of the joints and the center of mass as the state

variables. In other words, we chose kinematic variables

in the upper level and dynamic variables in the lower

level as the input.

2.2 Upper-level Learning

In the upper level, the learner explores the whole rele-

vant area of a low-dimensional sub-space of the origi-

nal high-dimensional state space. In order to facilitate

global search, the state space is coarsely discretized

and the actions are de�ned as transitions to nearby

states. We then use the Q(�)-learning method (Peng

& Williams, 1996) to learn a sub-goal sequence to

achieve the goal of the entire task. Thus, a reward

R(T) to the upper level is given by the success or fail-

ure of the entire task, and the action-value function

Q(X(T);U(T)) predicts accumulated future reward if

the learner takes the action U(T) at the state X(T).

In the stand-up task, we chose the posture of the robot

X=(�m; �1; �2) as the state variables (see Figure 1).

The action is given by U(T) = (Um(T); U1(T); U2(T))

whose components are integers. Then, the desired pos-

ture of the robot X̂i(T) = Xi(T) + �XiUi(T) is sent

to the lower level as the next sub-goal, where �Xi is

the action step size (i = m; 1; 2).

The upper-level learner chose an action using

Boltzmman distribution (Sutton & Barto, 1998).

Thus we have

P (U(T) = a) =
exp[�Q(X(T); a)]P

b2A(X) exp[�Q(X(T); b)]
(1)

where A(X) is the set of possible actions at state X

and � is a parameter that controls the randomness in

action selection for exploration. We de�ne the reward

for the upper-level learner as follows.

R(T) = Rmain +Rsub

Rmain =

�
1 (on success of stand-up)

0 (on failure)

Rsub =

8<
:

1 (�nal goal achieved)

0:25(Y
L
+ 1) (subgoal achieved)

0 (on failure)

where Y is the height of the head of the robot at a

sub-goal posture and L is total length of the robot.

The �nal goal is the upright stand-up posture (90; 0; 0)

[deg]. When the robot achieves a sub-goal, the upper-

level learner gets a reward of less than 0.5. Note that

archiving the �nal goal is a necessary but not su�cient

condition of successful stand-up because there is the

case of the robot falling down after achieving the �nal

goal.

When the robot reaches to a neighborhood of the sub-

goal, the next sub-goal is selected and the action-value

function is updated in the upper level. When the robot

stands up stably, we then think the stand-up task is ac-

complished, otherwise (e.g. when the robot falls down,

or when a time limit has reached before the robot suc-

cessfully stands up), we think the robot fails to stand-

up.

2.3 Lower-level Learning

In the lower level, the learner explores local areas of

the high-dimensional state space without discretiza-

tion. The lower-level learner learns to achieve the sub-

goal speci�ed by the upper level from any given initial

state. Because each sub-goal is de�ned in the low-

dimensional state space of the upper level, the sub-

goal is not a point but a hyper-plane in the high-

dimensional state space of the lower level. We use

the continuous TD(�)-learning with the actor-critic

method (Doya, 2000) to learn the control command

sequence. In addition, we use an Incremental Normal-

ized Gaussian Network (INGnet) for implementing the

actor and the critic (Morimoto & Doya, 1998b). A re-

ward r(t) is given to the lower level by the achievement

of the sub-goal speci�ed by the upper level (Dayan &

Hinton, 1993).

In continuous TD(�)-learning of the lower-level

learner, the state-value function V (x(t)) predicts the

accumulated future reward at state x(t), while the con-

trol function uj(t) = umaxh(fj(x(t)) + �nj(t)) speci-

�es a nonlinear feedback control law, where h(x) =

�

2
arctan(2

�
x) is a sigmoid function to saturate output

with maximum torque umax, and �nj(t) is a noise term

for exploration. We use INGnets for the critic and the

actor.

In the stand-up task, we chose the pitch and joint an-

gles � = (�0; �1; �2) and the corresponding angular ve-

locities _� = (_�0; _�1; _�2) as state variables x(t) = (�; _�)

and chose torque u(t) = (�1; �2) for the two joints as

the action variables. The output torque is the sum

of two controllers, a linear servo controller and a non-

linear feedback controller fi(x), which is acquired by

the lower-level actor:

�j = umaxh

�
1

umax

(k(�̂j � �j)� b _�j) + fj(x) + �nj

�
(2)

where k = 0:26 [Nm/deg] and b = 0:017 [Nms/deg]

are feedback gains, and umax = 24 [N.m] is maximum

torque.

In this study, we used di�erent lower-level learners

for di�erent sub-goals. When the robot reaches the

neighborhood of a sub-goal (jj� � �̂jj < 10 [deg]),

the upper-level learner switches the current lower-level

learner module to the next one according to the choice

of next sub-goals (see Fig. 2). Thus, one lower-level

actor takes control until either the robot achieves the

sub-goal, a time limit is reached, or the robot falls

down. We used two types of reward for the lower

level. One is given during the control according to the

distance from the current posture � to the sub-goal

posture �̂(= U) given by the upper level

r(�; �̂) = exp

�
jj� � �̂jj2

s2
�

!
� 1; (3)

where s� = 30 [deg] gives the width of the reward

function. Additional reward is given at the end of the

control by the distance from the current pitch and joint

angular velocity _� to the desired values _̂� that are set

by the memory of successful trials

r(t) =

8><
>:

exp

� jj _�(t)� _̂�jj2

s
2

_�

!
(sub-goal achieved)

�1:5 (The robot falls down)

;

(4)

where s _� = 60 [deg/sec] gives the width of the reward

function. If the time limit is reached, the lower-level

learner is not updated at the end of control. The de-

sired angular velocity _̂� is initialized at the �rst suc-

cessful stand-up as the angular velocity _� when the

learner achieves the sub-goal area. It is then updated

by _̂� � _̂� + (1� �) _� with � = 0:9 in subsequent suc-

cessful trials. Note that we set reward r(t) = 0 in the

upper part of (4) before the robot achieves the �rst

stand-up.

3. Simulations

First, we show simulation results of the stand-up task

with a two-joint, three-link robot using the hierarchical

RL architecture. We then investigate the basic prop-

erties of the hierarchical architecture in a simpli�ed

stand-up task with one joint. We show how the per-

formance changes with the action step size in the upper

level. We also compare the performance between the

hierarchical RL architectures and non-hierarchical RL

architectures. Finally, we show the role of the upper-

level reward Rsub for reaching a sub-goal.

3.1 Stand-up Task using a Two-joint,

Three-link Robot

We tested the performance of the hierarchical RL

architectures in the stand-up task using the two-

joint, three-link robot (see Figure 1). We chose

X = (�m; �1; �2) in the upper level and x =

(�0; �1; �2; _�0; _�1; _�2) in the lower level. In this study,

we used a prior knowledge that the angle of the center

of mass �m should not decrease in successful stand-

up trajectories. Then, the upper level chose an action

from Um 2 f0; 1; 2g, U1 2 f0;�1;�2g, U2 2 f0;�1g
by using equation 1. We chose the action step size

in the upper level as �X = (��m;��1;��2) =

(30; 50; 25) [deg]. Each trial was started with the robot

lying on the ground, x = (90; 0; 0; 0; 0; 0) [deg], and

was continued for t < 2(T + 1) seconds in simulated

time, where T is the discrete time in the upper level.

When the robot fell down and hit its hip or head on the

ground, the trial was terminated and restarted again.

Each simulation was continued up to 1000 trials.

The physical structure and the parameters of the robot

are shown in Figure 8 and Table 2. The physical sys-

tem was simulated by a dynamic simulator made by

Boston Dynamics Inc., with a time step of 0.001 [sec].

We used the number of trials made before achieving 10

successful trials as the measure of the learning speed.

The robot successfully learned to stand up in 7 out of

10 simulation runs. The average number of learning

trials was 749, and it took 30 minutes in simulated

time (averaged over 7 successful runs). The upper-

level learner used 4.3 sub-goals (averaged over 7 suc-

cessful runs) for successful stand-up.

Figure 3(a) shows the time course of learning. The

vertical axis shows the performance index given by the

integral of the head height
R
te

0
y(t)dt, where te is ter-

minal time of the trial. Figure 3(b) shows the num-

ber of sub-goals used in each trial. In the �rst stage

of learning, the upper-level learner used only a few

sub-goals, but after the middle stage of learning, the

number of sub-goals increased because the lower-level

learner learned to achieve sub-goals.

Figure 4 shows an example of a sub-goal sequence ac-

quired in the upper level. Figure 5 shows an example

of a stand-up trajectory acquired in the lower level.

Each learner successfully learned the appropriate ac-

tion sequence for the stand-up task.

Next, we tested the a�ect of variability in the initial

position. Trials were started from randomly generated

postures on a constraint that the foot and the head are

touched on the ground (90 � �0 � 140, 0 � �1 � 150,

0 � �2 � 150 [deg]). In this condition, the robot suc-

cessfully learned to stand up in 7 out of 10 simulation

runs. The average number of learning trials was 706,

and it took 18 minutes in simulated time (averaged

over 7 successful suns). Thus, the variability in the

initial position improved learning speed. The result

indicates that it is not just a particular trajectory but

a robust control policy that was learned by the hier-

archical network.

3.2 Comparison between Di�erent Step Sizes

To investigate the e�ects of the action step size, we

compared the upper-level learners with di�erent �X.

For simplicity, we �xed �2 to 0 [deg] by servo con-

trol and chose action steps as ��1 = 25; 30; 50 [deg]

and ��m = 30 [deg]. Thus, we chose X = (�m; �1)

and x = (�0; �1; _�0; _�1) as state variables in the upper

and the lower levels, respectively. Each simulation was

continued up to 1000 trials.

Table 1 shows the results of the learning to stand up

with di�erent ��1. The robot acquired good perfor-

mance with ��1 = 25; 30 [deg], and poor performance

with ��1 = 50 [deg]. The upper level with smaller ��1
used more sub-goals for standing up. Figure 6 shows

examples of the stand-up trajectories and the sub-goal

points in joint angle space with di�erent ��1. The set

of sub-goal points with ��1 = 20 [deg] and ��1 = 30

[deg] were di�erent, but both were good via points for

generating stand-up trajectories. On the other hand,

the set of sub-goal points with ��1 = 50 [deg] lacked

the important via point that represents a maximum

curvature of the stand-up trajectory (see Figure 6).

Without this via point, the lower-level learner had to

learn a di�cult sub-task and often failed to acquire a

part of the stand-up trajectories.

Thus we showed that the proposed hierarchical rein-

forcement learning method was not so sensitive to the

Figure 4. Example of a successful sub-goal sequence

Figure 5. Example of a successful stand-up trajectory

0 200 400 600 800 1000
0

2

4

6

8

10

In
te

gr
al

 o
f h

ea
d

he
ig

ht

Trials

(a) Performance index

0 200 400 600 800 1000
1

2

3

4

5

6

N
um

be
r

of
 s

ub
−

go
al

s

Trials

(b) Number of sub-goals

Figure 3. Time course of learning. Circles show 10th suc-

cessful stand-up in which a simulation run was terminated.

(a)Performance index. (b)Average number of sub-goals in

each 50 trials.

choice of�X but has a certain range of�X in which

the upper-level learner successfully acquired the ap-

propriate sub-goals for stand-up.

Table 1. Comparison with di�erent ��1

��1 Success Trials Time Sub-goals

rate (Average over successful trials)

25 [deg] 90% 408 19 [min] 6.3

30 [deg] 100% 375 16 [min] 4.5

50 [deg] 20% 463 16 [min] 4

3.3 Comparison between Hierarchical and

Plain Architectures

We then compared the hierarchical RL architectures

with non-hierarchical, plain RL architectures. We

again used a one-joint, two-link robot and compared

the results in section 3.2 with the results in this sec-

tion. We used only one actor and critic pair in the

plain architecture, as in conventional reinforcement

learning. In such a case, the actor and the critic have

to learn highly non-linear control function and value

function, respectively. In preliminary experiments, we

used a simple reward like the height of the head for

the plain architecture without success. Thus, we used

a hand-crafted reward

r(y) =

8><
>:

0:3(y
L
) + 0:3 sin(�m)

+0:4 exp(�(
�
2

0
+�2

1

s
2

�

+
_�2
0
+ _�2

1

s
2

_�

))� 1 (during trial)

�1 (The robot falls down)

(5)

0 50 100 150
−140

−120

−100

−80

−60

−40

−20

0

20

θ
0
[deg]

θ 1[d
eg

]

o 25
+ 30
x 50

Goal Start

Figure 6. Stand-up trajectories and sub-goals using di�er-

ent ��1

for the plain architecture, where y is the hight of the

head of the robot, L is the total length of the robot,

and s� = 60 [deg] and s _� = 240 [deg/sec] give the

width of the reward function. Each simulation was

continued up to 2000 trials.

The robot successfully learned to stand up within 1685

trials, which took 56 minutes in simulated time (aver-

aged over 5 successful runs out of 10 simulation runs).

Figure 7 shows the time course of learning with plain

architecture. As a result, the robot with hierarchical

architecture learned to stand up four times faster than

the one with plain architecture. In addition, we can

say that the robot with hierarchical architecture (with

��1 = 30; 25[deg]) learned to stand up in a more ro-

bust way than the one with plain architecture because

the robot with hierarchical architecture achieved about

twice as many successful runs as the robot with plain

architecture.

0 500 1000 1500 2000
0

1

2

3

4

5

In
te

gr
al

 o
f h

ea
d

he
ig

ht

Trials

Figure 7. Time course of learning with plain architecture.

Circles show 10th successful stand-up in which a simulation

run was terminated.

4. Real Robot Experiments

Next, we applied the hierarchical RL to a real robot.

As the initial condition for the real robot learning, we

used the sub-goal sequence and non-linear controllers

acquired by the simulation in section 3.1. We then

applied the hierarchical RL to a real robot.

We used a PC/AT with Pentium 233MHz and RT-

Linux as the operating system for controlling the

robot. The time step of the lower-level learning was

�t = 0:01 [sec], and that of the servo control was

�t = 0:001 [sec].

The robot has a inclination sensor to detect the pitch

angle and angular velocity of the link3 (see Figure 1)

and two rotary encoders to detect joint angles (�1; �2).

We derived joint angular velocity (_�1; _�2) by numer-

ically di�erentiating the joint angles. We calculated

the pitch angle and angular velocity (�0, _�0) using the

above sensor data (see Figure 1).

The physical parameters of the real robot are shown

in Table 2.

Table 2. Physical parameters of the real robot

length weight inertia

link1 0.40 m 0.85 kg 0.064 kg m2

link2 0.15 m 3.5 kg 0.11 kg m2

link3 0.15 m 0.46 kg 0.011 kg m2

400

150

150

120

Encoder1

Encoder2

AC servo motor1

AC servo motor2

Inclination sensor

60

Figure 8. Real robot con�guration

We used the sub-goal sequence and non-linear con-

trollers acquired by the learning with 7 successful sim-

ulation runs as the initial setting for the real robot

experiments. Each experiment was continued up to

200 trials. The robot successfully learned to stand

up in 6 out of 7 experiments within 164 trials, and it

took 21 minutes (averaged over 6 successful runs). Fig-

ure 9 shows the time course of learning with the real

robot, and Figure 10 shows the time course of a suc-

cessful stand-up trajectory. These results showed that

Figure 11. Example of a stand-up trajectory using the real robot

the proposed hierarchical RL method enabled the real

robot to accomplish the stand-up task and that the

sub-goal sequence and non-linear controllers acquired

by the simulation is useful for the learning of the real

robot.

0 50 100 150 200
0

5

10

15

In
te

gr
al

 o
f h

ea
d

he
ig

ht

Trials

Figure 9. Time course of learning with the real robot. Cir-

cles show 10th successful stand-up in which a simulation

run was terminated.

0 0.5 1 1.5 2
−200

−150

−100

−50

0

50

100

150

Time [sec]

θ
[d

eg
]

θ
0

θ
1

θ
2

Subgoal

Figure 10. Example of a time course of a stand-up trajec-

tory and a sub-goal sequence (�0:pitch angle, �1; �2:joint

angle)

5. Discussion

In this section, we brie
y summarize the achievement

of this study in relation to the previous studies of hi-

erarchical RL.

5.1 Improving Learning Speed

Here we summarize the reasons for the successful

learning of the stand-up task by the hierarchical ar-

chitecture, which can be helpful in other tasks as well.

First, the upper level decomposed the original task into

simpli�ed sub-tasks. Furthermore, the upper level re-

ward of the success of a sub-task (Rsub) encouraged

the upper level to set realizable subgoals. Second, the

dimension reduction in the upper-level dramatically

reduced the number of state in high-dimensional state

space. Third, the coarse exploration in the upper level

enabled the robot to explore e�ciently in the entire

state space and prevented it from getting in stuck lo-

cal optimum. Fourth, in the hierarchical architecture,

prior knowledge can be easily included. We set the

appropriate size and direction of action steps in the

upper level and provided linear feedback component

in the lower level.

5.2 Selection of Reduced Variables

In this study, we chose the angles of the joints and the

center of mass as the low-dimensional state variables

for the upper level. However, this strategy has limita-

tion that the dimension can be reduced at most to the

half of the original dimension. For tasks with much

higher-dimensional state space, for example, arms or

legs with excess degrees of freedom, we should consider

the use of task-oriented kinematic variables in the up-

per level, such as the positions of the end e�ector and

the center of mass. How to select such essential vari-

ables by learning remains as a subject of future work.

In addition, we chose an appropriate step size �X in

the upper level, but a method of automatically choos-

ing and adapting step size is also a subject of future

work.

5.3 Multiple Tasks

We applied the lower-level modules to a single task.

However, for robots cope with multiple tasks, reusing

the lower-level modules is desired.

In compositional Q-Learning (CQ-L) (Singh, 1992), a

gating module stochastically switches reusable lower

level modules, and a bias module estimates the state-

value for compositional tasks.

In nested Q-learning (Digney, 1998), a state is detected

as a sub-goal if non-typical reinforcement is given in

the state or the learner visits the state many times.

Each sub-task then becomes one of the actions that

the learner can choose as a primitive action.

We will incorporate these ideas into our hierarchical

RL method as future work.

6. Conclusions

We proposed a hierarchical RL architecture based on a

reduced dimensional state representation in the upper

level, and showed that the stand-up task of a two-joint,

three-link real robot was successfully accomplished by

the hierarchical architecture. We showed that the hier-

archical architecture learned faster and more robustly

than a plain architecture.

Acknowledgments

We would like to thank Mitsuo Kawato, Stefan Schaal,

Tsukasa Ogasawara, and Kazuyuki Samejima for their

helpful discussions.

References

Dayan, P., & Hinton, G. E. (1993). Feudal Reinforce-

ment Learning. Advances in Neural Information
Processing Systems 5 (pp. 271{278). San Francisco,

CA: Morgan Kaufmann.

Digney, B. L. (1998). Learning Hierarchical Control

Structures for Multiple Tasks and Changing Envi-

ronments. Proceedings of the Fifth Conference on
the Simulation of Adaptive Behavior (pp. 321{330).
Cambridge, MA: The MIT Press.

Doya, K. (2000). Reinforcement Learning in Continu-

ous Time and Space. Neural Computation, 12, 219{
245.

Kimura, H., & Kobayashi, S. (1999). E�cient Non-

linear Control by Combining Q-learning with Local

Linear Controllers. Proceedings of the Sixteenth In-
ternational Conference on Machine Learning (pp.

210{219). San Francisco, CA: Morgan Kaufmann.

Morimoto, J., & Doya, K. (1998a). Hierarchical Re-

inforcement Learning of Low-dimensional Subgoals

and High-dimensional Trajectories. Proceedings of
the Fifth International Conference on Neural Infor-
mation Processing (pp. 850{853). Burke, VA: IOS

Press.

Morimoto, J., & Doya, K. (1998b). Reinforcement

Learning of Dynamic Motor Sequence: Learning to

Stand Up. Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp.
1721{1726). OMNIPRESS.

Peng, J., & Williams, R. (1996). Incremental Multi-

step Q-learning. Machine Learning, 22, 283{290.

Singh, S. (1992). Transfer of Learning by Composing

Solutions of Elemental Sequential Tasks. Machine
Learning, 8, 323{339.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA: The

MIT Press.

Tham, C. K. (1995). Reinforcement Learning of Multi-

ple Tasks using a Hierarchical CMAC Architecture.

Robotics and Autonomous Systems, 15, 247{274.

Wiering, M., & Schmidhuber, J. (1997). HQ-learning.

Adaptive Behavior, 6, 219{246.

Appendix

In this appendix, we show parameters which used in

this study.

Limits for the joint angles

In the stand-up task, we limited the posture angles

in the upper level as 0 � �m � 90, �150 � �1 � 0,

0 � �2 � 25 [deg]. In the lower level, we limited the

joint angles as �150 � �1 � 150, �150 � �2 � 150

[deg] which correspond to the limits of the real robot.

Exploration parameters

We set the exploration parameter in the upper level

as � = 0:2M(T), where M(T) is the number of trials

lasting no fewer than T steps.

The noise term in the lower level nj(t) is low-pass �l-

tered noise �n _nj(t) = �nj(t) + Nj(t), where Nj(t)

denotes normal Gaussian noise and �n = 0:1 [sec] is

a time constant for the low-pass �lter. The size of

the noise term � in the lower level was modulated as

� = �smin[1;max[0; V1�V (t)]]. V (t) is the lower level
state value function and V1 = 0:5 is a exploration pa-

rameter for the lower-level learner. The maximal noise

level �s was also changed according to the sub-goal and

the number of trials m as

�s =

8>><
>>:

�0 for �nal sub-goal

�1 otherwise if m � m1
(m2�m)�1+(m�m1)�2

m2�m1

if m1 < m < m2

�2 if m � m2

:

(6)

The parameters were m1 = 300 [trial], m2 = 600

[trial], �1 = 0:5, �2 = 0:1, and �0 = 0:01.

