
IPTES: A Concurrent Engineering Approach for Real-TimeSoftware DevelopmentP. PulliTechnical Research Centre of Finland (VTT)Computer Technology LaboratoryKaitovayla 1, P.O. Box 201, SF-90571 Oulu, FinlandR. Elmstr�mThe Institute of Applied Computer Science (IFAD)Forskerparken 10, DK-5230 Odense M, DenmarkAbstractThe constantly increasing concurrency, complexity, and risks associated with the indus-trial development of real-time embedded computer systems has been approached in dif-ferent ways in recent years. In Esprit project no. EP5570, called IPTES, a methodologyand a supporting environment to support the Boehm's spiral process are being developed.The prototyping environment will enable the speci�cation, development, and veri�cation ofexecutable system models so that di�erent parts of the system may represent di�erent mod-eling levels and yet can be executed as a total system. Concurrent engineering problems inconnection with multi-supplier, distributed software development are also addressed in theIPTES environment. In the IPTES project the concept of heterogeneous prototyping isproposed as a solution. Each of the development teams may use relatively abstract modelsof the other parts of the systems as a testbed (environment model) for their own part, yetthey can proceed developing their own part full speed by means of advancing the maturityof their part to the next abstraction level(s). The IPTES environment provides a set oftools to help in the process of creating, analysing, and testing distributed heterogeneousprototypes.

1 IntroductionThree major trends can be seen in the development of software for embedded systems in thenineties:1. The complexity of systems is constantly increasing.2. Just-on-time delivery policies and
exible manufacturing will require new degrees of free-dom from the traditional software development process.3. The number and the impact of risks associated with software development are on theincrease.In general, the software part of typical embedded systems is becoming more dominant. There-fore the management of risks, such as misunderstanding of customer needs, subcontractor co-ordination problems, schedule overruns, sta� or budget overruns, functional or quality pitfalls,or in the worst case cancelled projects is increasingly important in the industrial developmentof embedded systems.Over the last few years, more and more attention has been paid to alternative software develop-ment models that could both overcome de�ciencies [Agresti86] of the traditional waterfall model[Boehm81], and accommodate activities such as prototyping, reuse, and automatic coding aspart of the process.In ESPRIT project EP5570, IPTES1, a methodology and a supporting environment to supportBoehm's spiral process are being developed. The IPTES methodology and the supportingenvironment integrates the use of Ward andMellor's StructuredAnalysis for Real-time Systems,the formal speci�cation language VDM-SL, and incremental prototyping into Boehm's spiralmodel. In this paper we present the IPTES methodology.In the next section we present the background of the IPTES methodology in the spiral processmodel. In section 3 we present how the IPTES methodology supports the use of the spiralmodel in the development of embedded software systems. In section 4 we present the bene�tsforeseen in applying the IPTES approach. In section 5 we present some related work and �nallyin section 6 we give some concluding remarks.2 Spiral Process ModelThe spiral model proposed by Boehm [Boehm88] (Figure 1) is a development process modelin which prototyping and reuse are important ingredients. The model describes an iterativedevelopment process where planning, risk identi�cation and resolution and development (ofprototypes or product) are part of each iteration.The risk-driven nature of the spiral model makes it particularly applicable to complex embeddedsystems.2.1 Risk ManagementThe spiral model guides a developer to postpone detailed elaboration of low-risk software ele-ments and to avoid going too deep in their design until the essential high-risk elements of thedesign are stabilised. Risk management requires appropriate attention to early risk resolutiontechniques such as early prototyping and simulation. The spiral model may incorporate proto-typing as a risk reduction option at any stage of development and explicitly calls for suitable riskassessment and risk control activities throughout major portions of the development process.1IPTES is an acronym for Incremental Prototyping Technology for Embedded real-time Systems1

Protot.
 1

Concept

R
A

Risk
analysis

Risk
analysis

Risk
analysis

Protot.
 2

Protot.
 3

Operational
prototype

Concept of
operation

Requirements
plan, lifecycle
plan sw

require-
ments

require-
ments
validation

Development
plan

Integration &
 test plan

Detailed
design

Code
Unit
test

Integration
& test

Accept.
test

Implementation

Progress
through
steps

Cumulative cost

DETERMINE
OBJECTIVES,
ALTERNATIVES,
CONSTRAINTS

EVALUATE
ALTERNATIVES,
IDENTIFY &
RESOLVE RISKS

PLAN NEXT
PHASES

DEVELOP,
VERIFY
NEXT-LEVEL
PRODUCT

Commitment

partition

Figure 1: Boehm's spiral model for the software development process. The radial dimensionrepresents the cumulative cost, and the angular dimension represents the progress made incompleting each cycle of the spiral.
2

Risk management involves the following steps [Boehm91]:� Risk assessment techniques{ Risk identi�cation produces lists of the project speci�c risk items likely to compro-mise a project's success.{ Risk analysis quanti�es the loss probability and loss magnitude for each identi�edrisk item, and it assesses compound risks in risk item interactions.{ Risk priorisation produces a ranked list of risk items according to their severity.� Risk control techniques{ Risk management planning helps prepare you to address each risk item. It alsoincludes the coordination of the individual risk item plans with each other and withthe overall project plan.{ Risk resolution produces a situation in which the risk items are eliminated or other-wise resolved.{ Risk monitoring involves tracking of the project's progress towards resolving its riskitems and taking corrective action where appropriate.2.2 Concurrent Threads of Activities
Ab

st
ra

ct
ne

ss

Pure
thought

Physical
implementation

Time

Spiral 1 Spiral 2 Spiral 3 Spiral 4 Spiral 5 .. N

Commitment

Commitment

Commitment

Commitment

Concept
development

Requirements

Architecture

Design

Code,
unit test

Integration,
acceptance

Highest risk

Medium risk

Low risk

Architecture
prototypeFigure 2: Level of abstraction vs. time under the spiral model.The spiral model allows concurrent threads of development activities that may traverse thetraditional progression of software product phases in a loosely synchronised manner. Theconcurrent threads may be organised around levels of risk [Boehm88]. Figure 2 gives an example[TRW89] of concurrent development threads in a hypotethical development project targeted toa major breakthrough product. In Figure 2, the horizontal axis represents elapsed time. Thevertical axis represents the level of abstraction at which a representation or an understanding ofthe system is being developed. The development process is depicted by three traces through thetwo dimensional space. Each trace corresponds to a thread of engineering activities. In general,moving downwards represents progress. A highly jagged trace represents an activity thread inwhich much iteration (prototyping) takes place. This is seen in Figure 2 where an architecturalprototype is developed for the high-risk thread, during the third spiral. This prototype is3

later analysed and the produced code thrown away. Based on the lessons learned from thearchitectural prototype, the high-risk thread enters full-scale design and implementation basedon the valid parts of the architecture and design during Spiral 4. Concurrent with the thirdand fourth spirals the medium-risk elements are being speci�ed. During the �fth and laterspirals the high-, medium- and low-risk threads progress concurrently, leading to incrementalintegration, installation, and use.3 IPTES ApproachThe spiral model is a generic model, so it does not explicitly de�ne the milestone abstrac-tion levels to be produced for each cycle. The spiral has to be customised on a company orproject basis. [Royce90] presents a derivative of the spiral model which explicitly de�nes thesemilestones according to the US military standard [DOD-STD-2167A]. [Nettles91] describes an-other on-going coordinated e�ort of producing guidelines for applying Spiral model which alsoheads for DOD-2167A compliance. We have chosen not to strive for 2167A compliance, be-cause it being a document driven approach tends to force excess synchronisation of concurrentdevelopment threads.
MODEL SUB-MODEL IMPLEMENTATION

DEPENDENCE
OBSERVABILITY
OF BEHAVIOUR

NOTATION DEVELOPENT
PHASE

COMMENTS

Logical

Environmental

Behavioural

Independent

Non-
transparent

Context
diagram,
events list

DFD,
STD,
ERD,

MetaIV
mini-
specs

Analysis

System scope
focusing
on external events
Implementation-free
user-observable
requirements

Physical

Processor
Environment

Software
Environment

Code
Organisation

Dependent

Transparent
Structure
chart,
OOSD

Code

Design

Implementation

Processor
configuration,
interfaces

Architecture,
execution and
storage units

Code, class/object
architecture, and
interfaces

Reuse, run-time
adaption

Implementation

Subsystems System modularity,
concurrent
engineering

Figure 3: The di�erent levels of abstraction for real-time system development proposed by theIPTES guidelines.Figure 3 presents the abstraction levels we propose. They follow the abstraction levels of awell-known embedded system development method, Ward & Mellor's Structured Analysis forReal-Time Systems (SA/RT) method [Ward&85] enhanced with a subsystems level of abstrac-tion similar to one proposed in [Gomaa89]. This extension may prove useful for large sys-tems development and for concurrent engineering [Reddy&92] purposes. The rationales behindchoosing Ward&Mellor SA/RT like levels of abstraction are:� SA/RT being a model-oriented rather than phase- or document-oriented method it sup-ports several abstraction levels. 4

� SA/RT is a well-known and understood method used in industrial embedded systemdevelopment, i.e. it is not too fancy and risky.� There exists textbooks, courses and consulting services providing an abundance of guide-lines, heuristics and other support.The Logical Model (LM) consists of an environmental model and a behavioural model. Inthe environmental model the system's environment and the events from this environment aredescribed. In the behavioural model the system's externally observable behaviour is described.The physical model consists of several sub-models. The optional SubsystemsModel (SM) is usedto identify subsystems within a logical model. Subsystems are characterised with high internalcohesion and low external coupling. Subsystem model is useful for large logical models, andfor systems where parts of the model have multiple instances2. The Processor EnvironmentModel (PEM) describes how system activities and data are allocated to di�erent processorswhich are truly concurrent. The interfaces between processors are also described. The SoftwareEnvironment Model (SEM) is a description of the software architecture inside one processor.The SEM model describes how concurrency will be solved using a sequential processor. TheCode Organisation Model (COM) describes the modularisation scheme to implement the soft-ware. It will identify a hierarchy of modules and data structures. For object oriented designs itwill identify a hierarchy of classes and objects. The Implementation Model (IM) describes theproduct implementation.3.1 Heterogeneous PrototypeA heterogeneous prototype is an executable systemmodel whose di�erent parts may be speci�edat di�erent abstraction (modeling) levels, and yet they can be executed together as a totalsystem. Over the lifetime of the prototype the mix of abstraction levels may change [Gabriel89].Figures 4 and 5 [Mortensen90] illustrate the concept of the heterogeneous prototype.3.2 Incremental PrototypeIncremental prototyping is the process of building heterogeneous prototypes over time. Theincremental prototyping process may contain concurrent engineering [Reddy&92], i.e. theremay be several teams working simultaneously with di�erent heterogeneous prototypes. Eachof the teams may use relatively abstract models of the other parts of the system as a testbed(environment model) for their own part, yet they can proceed developing their own part fullspeed by means of advancing the maturity of their own part to the next abstraction level.Concurrent engineering can take place at the level of concurrent threads shown in Figure 4, orit may take place at a subsystem level, i.e. work for each subsystem may contain concurrentthreads, see Figure 6.3.3 Decision Support TechniquesThe spiral model decision making has following characteristics:� Planning (at all levels) is carried out using the standard planning sequence: determineobjectives, alternatives, constraints, evaluate alternatives, identify and resolve risks.� Signi�cant parts of the global decision making activities can explicitly be left to be takenlater in the project.2Subsystem can also be thought as a unit of development work to be allocated to working groups within alarge project. 5

A
bs

tr
ac

tn
es

s

Pure
thought

Physical
implementation

Spiral 1 Spiral 2 Spiral 3 Spiral 4 Spiral 5 .. N

TimeCommitment

Commitment

Commitment

Commitment

Concept
development

Requirements

Architecture

Design

Code,
unit test

Integration,
acceptance

Highest risk

Medium risk

Low risk

Heterogeneous prototype

Existing code
library

Figure 4: A heterogeneous prototype can be viewed as a vertical snapshot of concurrent devel-opment threads of Boehm's spiral model.� There are explicit provisions for contingency planning activities during the project.� Concurrent engineering aspects: There is relative freedom in the order/concurrency tasksare carried out.In IPTES we have chosen to support decision making with an advanced form of value analysisespecially suited for teamwork. Quality Function Deployment (QFD) [Zultner89] was developedin Japan in 1970's and 1980's [Akao90] as an integrated set of quality tools and techniques. Itis used for market research and product design purposes to make explicit the "voice of thecustomer" throughout the product design process. Basic to the application of QFD is theuse of variety of matrices to examine in detail the interaction of various dimensions such asfunction, cost, customer demands, raw materials, etc. Matrices are prepared by a team e�ort,so they have the potential to bridge the expertise of di�erent individuals or groups. We seethe QFD techniques as complementing the Boehm spiral model in teamwork-based decisionsupport. From the decision making point of view, the QFD matrices present a roadmap for theactual decision network [Curtis87] of the project team. We are currently looking for ways toextend the current QFD system [King89] for identi�cation and quanti�cation of risk elementsof the product, project, and the company infrastructure.3.4 Speci�cation LanguagesWe have chosen Ward and Mellor's Structured Analysis for Real-Time Systems (SA/RT) graph-ical notation as a basis for speci�cation and design descriptions in IPTES. However, SA/RTbeing a semi-formal language implies that an executable dialect of the SA/RT notation has tobe developed since the use of incremental prototyping requires the use of executable speci�-cation languages. In the IPTES project we have chosen to use VDM-SL [Elmstr�m&93a] andhigh-level timed Petri nets [Felder&93] to give exact formal syntax and semantics to SA/RT.6

Code organisation model: CSubsystem model: A

Software environment model: B

CBASubsystem

X

X

X

X

Model

return

gear1: proc

drive_cmd

A_max

Existing code library

Implementation

Code organisation

Software environment

Processor environment

Subsystem

Logical

MBX

MBX

A_max
drive_cmd

gear_sel

gear1

MBX
gear_sel

Figure 5: An example of a heterogeneous prototype. Subsystem C is already partly coded whilethe other subsystems are modeled at higher levels of abstraction. Notice that models communi-cate through shared elements, such as data-
ows, data-stores, operating system communicationprimitives, and procedure calls. 7

Environment model
(B+C)

Subsystem A

Subsystem
C

Subsystem
A

Subsystem
B

Logical Model of
System

Environment model
(A+C)

Subsystem B
(high risk)

Subsystem A developers provide
a physical model to developers of
subsystem B

Subsystem B developers provide
an implementation model to
developers of subsystem A

Subsystem B
(low risk)

Subsystem B
(medium risk)Figure 6: An example of incremental prototyping in a concurrent engineering context. Sev-eral loosely coupled heterogeneous prototypes are used during development to allow maximumconcurrency of working groups.

8

We have also de�ned an executable subset of the emerging BSI and ISO standard VDM-SLlanguage [Elmstr�m&93b] to be used for specifying the data transformation part of SA/RT inmini-speci�cations. The derived mini-speci�cation language is called IPTES Meta-IV.A high-level timed Petri net (HLTPN) kernel is used as the underlying execution mechanismof the IPTES environment. This kernel is used as basis for the execution and analysis of theseSA/RT-VDM models. The HLTPN kernel makes the IPTES environment open for extensionto other executable speci�cation languages.Run-time adaptation techniques [Leon&93] de�ne a basic set of distributed data, control, andtiming exchange mechanisms between the HLTPN kernel and high-level programming languageroutines.3.5 Tool EnvironmentThe IPTES environment [Leon&93] provides a set of graphically-oriented tools to help in theprocess of creating, analysing and testing distributed heterogeneous prototypes. The visualisa-tion of prototype execution is based on graphical animation techniques [Pulli&93].Internally, the environment is based on a representation of the system in terms of high-leveltimed Petri nets with shared places [Puente&93]. The interchange of information between thenodes is performed by a real-time object communication subsystem that ensures consistencybetween shared places.4 Bene�tsThe following bene�ts are foreseen in applying the IPTES approach from the viewpoint ofproject managers and software engineers:� E�cient user needs tracking and accommodation into product� Improved project visibility� E�cient coordination of subcontracting� Management of increasing complexity� Piecewise modernisation of a mature product� Controlled transfer of technically and commercially risky features into products� Improved control over time within the project� Advanced quality management� Harnessing application code generators in development workFigure 7 describes how the IPTES mechanisms support these bene�ts.5 Related WorkGabriel presents the requirements for a future prototyping environment in [Gabriel89]. Gabrielforesees the need for heterogeneous prototyping by requiring that elements from behaviouraland structural prototypes can be combined and during the development process this mix maychange as the requirements to the prototype change.9

User needs
accomodation

Transfer of risky
features to product

Coordination of
subcontracting

Piecewise product
modernisation

Application
code generators

Management of
complexity

Control over
development time

Quality
management

E
xe

cu
ta

bl
e

m
od

el
s

of
 s

ub
sy

st
em

s

A
bs

tr
ac

tio
n

M
od

el
 li

br
ar

ie
s

H
et

er
og

en
eo

us
pr

ot
ot

yp
es

R
is

k
an

d
de

pe
nd

en
cy

an

al
ys

is

E
xe

cu
ta

bl
e

en
vi

ro
nm

en
t

m
od

el
s

D
et

ec
tio

n
of

 c
ri

tic
al

 p
ar

ts

Q
FD

 d
ec

is
io

n
su

pp
or

t

C
us

to
m

er
 fe

ed
ba

ck

on
 p

ro
to

ty
pe

s

R
un

-t
im

e
ad

ap
ta

tio
n

to

ex
is

tin
g

C
 c

od
e

E
xe

cu
ta

bl
e

m
od

el
s

us
ed

fo

r a
cc

ep
ta

nc
e

te
st

Benefit

M
ec

ha
ni

sm

Correlation: strong

Improved visibility

D
is

tr
ib

ut
ed

pr
ot

ot
yp

es

Fo
rm

al
 n

ot
at

io
ns

Modeling Prototyping Decision support

C
om

m
un

ic
at

io
n

A
ct

iv
ity

st

ru
ct

ur
in

g
In

sf
ra

st
ru

ct
ur

e

medium weak <empty> noneFigure 7: Bene�ts supported by IPTES mechanisms. The rows of the matrix describe theindividual bene�ts of the IPTES approach. The columns describe the mechanisms supportingthe bene�t.
10

Luqi has presented a prototyping environment for large software system design based on reusableAda software components [Luqi86]. The computational model is based on data
ow undersemantically uni�ed control and timing constraints. Luqi has presented the importance of thecomputational model for a prototyping tool, language and method in [Luqi86]. A limitation ofthe Luqi's system is that it does not support multiple abstraction levels. The abstraction levelsupported is roughly equivalent to the software environment model of SA/RT3.Harel et al. have produced a commercial, graphical executable speci�cation tool, Statemate[Harel&90], that has prototyping features. It is possible to automatically generate prototypecode from the activity-chart and Statechart [Harel87] speci�cations. Currently translations intoAda and C code are supported. A limitation of the Statemate tool is that it does not supportmultiple abstraction levels. Currently, an abstraction level equivalent to the logical model ofSA/RT is supported4. However, it is possible to combine the prototype code generated out ofStatemate models with user-written programs in Ada or C [Harel&90], [Coleman&90].A recently started EUREKA project "RiskMan" [Manperil&91] is working on de�ning a projectmanagementmethodology and developing a toolset for the management of large, predominantlysoftware-oriented systems. The project is developing modules matching the spiral model iter-ative life cycle steps. The project has selected value analysis as a decision support techniqueto be applied for identi�cation of objectives and alternatives, for traceability, and for variousconstraints.Aoyama [Aoyama87] and Hatley [Hatley91] have studied the requirements for organisationinfrastructure to support concurrent development of embedded software-intensive systems.[Blumofe&88] and [Cadre90] describe a commercial, graphical executable speci�cation tool,Teamwork/SIM. This tool supports a limited form of execution, capable of expressing only con-trol and timing issues. Computations and data have been omitted. However, Teamwork/SIMsupports several abstraction levels equivalent to the LM, PEM and SEM from SA/RT.There are a number of tools for SA/RT logical model execution [Webb&86], [Reilly&87],[Coomber&90], [Athena89].Some of the surveyed tools can be used for execution of heterogeneous models, and in that sensethey make incremental prototyping possible. However, none of the tools supports incrementalprototyping5.6 Concluding RemarksThe IPTES approach addresses the future requirements of the software engineering process:overcoming increasing complexity and development risks and supporting
exible just-on-timeproduct development:� IPTES improves communication by improving the visibility of the software engineeringwork, allowing user needs to be accommodated earlier, more reliably, and accurately.3One can argue that there are in fact two abstraction levels: the Software Environment Model level and thecode level. This is because Luqi's system does not have a mini-speci�cation language; instead Ada is used.4[Harel&90] mentions plans to make the prototype code generation more adjustable. This can be interpretedas an indication of interest to support more physical abstraction levels.5To better understand the di�erence between \makes possible" and \supports", consider the case of object-orientation. Any programming language can be used for constructing object-oriented software. However,the bene�ts of object-orientation were �rst realised with proper languages and environments like Smalltalk-80 [Goldberg&85]. 11

� IPTES allows e�cient development work structuring and allocation to concurrent devel-opment teams and individuals. IPTES allows teams to use intermediate results from otherteams for validating their own progress.� IPTES strengthens the organisational infrastructure by providing better control over de-velopment time, subcontracting, and product quality elements.These bene�ts are achieved with strong modeling, prototyping and decision support capabilities.7 AcknowlegdementsThe work presented in this paper has been carried out in the IPTES project [Pulli&91b].The objective of the IPTES (Incremental Prototyping Technology for Embedded Real-TimeSystems) project is to develop methodologies, tools, and theoretical results on distributed pro-totyping of real-time systems. IPTES is partially funded by the European Communities underthe ESPRIT programme, project no. EP5570 and the Technical Development Centre of Finland(TEKES).The IPTES consortium is formed by IFAD (Denmark), VTT (Finland), MARI (UK), CEA/LETI(France), ENEA (Italy), Synergie (France), Universidad Polit�ecnica de Madrid (Spain), Telef�onicaI+D (Spain), Politecnico di Milano (Italy), and Rautaruukki (Finland).8 References[Agresti86] W. Agresti (editor). New Paradigms for Software Development. IEEEComputer Society Press, 1986. 295 pages.[Akao90] Y. Akao. Quality Function Deployment. Integrating Customer Re-quirements into Product Design. Productivity Press, Cambridge, Mas-sachusetts Norwalk, Connecticut, 1990. 369 pages.[Aoyama87] M. Aoyama. Concurrent Development of Software Systems { A NewDevelopment Paradigm. ACM Sigsoft Software Engineering Notes,12(3):20{23, 1987.[Athena89] Athena Systems Inc. Foresight: Modeling and Simulation Toolset forReal-Time System Development, User's Manual. March 1989.[Blumofe&88] R. Blumofe, A. Hecht. Executing Real-Time Structured Analysis spec-i�cations. ACM Sigsoft Software Engineering Notes, pages 32{40, 13, 31989.[Boehm81] B. Boehm. Software Engineering Economics. Prentice-Hall, 1981. 767 pages.[Boehm88] B. Boehm. A Spiral Model of Software Development and Enhancement.IEEE Computer, 21(5):61{72, 1988.[Boehm91] B. W. Boehm. Software Risk Management: Principles and Practices.IEEE Software, pages 32{41, January 1991.[Cadre90] Cadre Technologies Inc. Teamwork/SIM. User's Guide. Release 4.0.December 1990. Part Number D048XX4A.12

[Coleman&90] G.L. Coleman, C.P. Ellison, G.G. Gardner, D.L. Sandini, J.W. Brackett.Experience in Modelling a Concurrent Software System using Statem-ate. Proceedings of the Compeuro'90 Conference. Tel Aviv, Isreal,pages 104{108, Washington D.C. IEEE Computer Society Press, May1990.[Coomber&90] C. Coomber, R. Childs. A graphical tool for prototyping of real-timesystems. ACM Sigsoft Software Engineering Notes, pages 70{82, 15, 21990.[Curtis87] B. Curtis. Models of Iteration in Software Development. Proc. 3rd In-ternational Software Process Workshop, Breckenridge, Colorado, pages53{56, 17-19 November 1987.[DOD-STD-2167A] Military standard DOD-STD-2167A: Defence System Software Devel-opment. Department of Defence (US), February 1988. 51 pages.[Elmstr�m&93a] R. Elmstr�m, R. Lintulampi, M. Pezze. Giving Semantics to SA/RTby Means of High-Level Timed Petri Nets. This issue of Real-TimeSystems Journal, 1993.[Elmstr�m&93b] R. Elmstr�m, P.B. Lassen, M. Andersen. An Executable Subset ofVDM-SL, in an SA/RT Framework. This issue of Real-Time SystemsJournal, 1993.[Felder&93] M. Felder, C. Ghezzi, M. Pezze. High-Level Timed Petri Nets as aKernel for Executable Speci�cation. This issue of Real-Time SystemsJournal, 1993.[Gabriel89] R.P. Gabriel (editor). Draft Report on Requirements for a CommonPrototyping System. ACM Sigplan Notices, 24(3):93{165, 1989.[Goldberg&85] A. Goldberg, D. Robson. Smalltalk-80: The Language and its imple-mentation. Addison Wesley, Reading Massachusetts, 1985.[Gomaa89] H. Gomaa. A Software Design Method for Distributed Real-Time Ap-plications. The Journal of Systems and Software, 9(2):81{94, 1989.[Harel87] D. Harel. StateCharts: A Visual Formalism for Complex Systems. Sci-ence of Computer Programming, 8(3):231{274, 1987.[Harel&90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,A. Shtull-Trauring, M. Trakhtenbrot. STATEMATE: A Working En-vironment for the Development of Complex Reactive Systems. IEEETransactions on Software Engineering, 16(4):403{414, April 1990.[Hatley91] D.J. Hatley. Parallel, Cooperative System Development. Proceedingsof Embedded Systems Conference, Santa Clara, California, Vol II, 823{836, September 24-27 1991.[King89] B. King. Better Designs in Half the Time: Implementing QFD QualityFunction Deployment in America. Goal/QPC, Methuen, Massachusetts,1989. 564 pages. 13

[Leon&93] G. Le�on, J.A. de la Puente, J.C. Due~nas, A. Alonso, and N. Zakhama.The IPTES Environment: Support for Incremental, Heterogeneous andDistributed Prototyping. This issue of Real-Time Systems Journal,1993.[Luqi86] Luqi. Rapid prototyping for large software system design. Ph.D thesis,University of Minnesota, 103 pages, 1986.[Manperil&91] C. Manperil, Y. Rommel, J. Prinz. Risk Management Applied to Pre-dominantly Software-Oriented Systems: The RiskMan Project. Draftpaper, available fromCGI/CR2A, 19 Avenue Dubonnet, 92411 CourbevoieCedex.[Mortensen90] B. G. Mortensen (Coordinating Proposer). IPTES: Incremental Proto-typing Technology for Embedded Real-Time Systems. Part II. ProjectDescription. Technical Report, IFAD, Odense, Denmark, January 8,1990.[Nettles91] D. Nettles. Consortium Prepares Evolutionary Spiral Process Deliver-ables. SPC Quarterly, pages 4{6, Spring 1991.[Puente&93] J.A. de la Puente, A. Alonso, G. Le�on, J.C. Due~nas. Distributed Ex-ecution of Speci�cations. This issue of Real-Time Systems Journal,1993.[Pulli&91b] P. Pulli, R. Elmstr�m, G. Le�on, J.A. de la Puente. IPTES{ Incremen-tal Prototyping Technology for Embedded real-time Systems. ESPRITInformation Processing Systems and Software, Results and Progress ofSelected Projects 1991, pages 497{512, Esprit, Commission of the Eu-ropean Communities, November 1991.[Pulli&93] P. Pulli, M. Heikkinen, R. Lintulampi. Graphical Animation as a Formof Prototyping Real-Time Software Systems. This issue of Real-TimeSystems Journal, 1993.[Reddy&92] R. Reddy, R.T. Wood, K.J. Cleetus. The DARPA Initiative in Concur-rent Engineering. Concurrent Engineering Research in Review, pages2{10, Winter 1991/1992, 1992.[Reilly&87] E.L. Reilly, J.W. Brackett. An experimental system for executing Real-Time Structured Analysis models. Proceedings of the XII StructureMethods Conference. Chicago, Illinois. Pages 301{313, Chicago, Struc-tured Techniques Association, May 1987.[Royce90] W. Royce. TRW's Ada Process Model for Incremental Developmentof Large Software Systems. 12th International Conference on SoftwareEngineering, pages 2{11, 1990.[TRW89] A. Marmor-Squires (principal investigator). Process Model for HighPerformance Trusted Systems in Ada. Technical Report, TRW SystemsDivision, Fairfax, Virginia, August 1989. 76 pages.14

[Ward&85] P.T. Ward and S.J. Mellor. Structured Development for Real-TimeSystems. Volume 1-3, Yourdon Press, New York, 1985-1986.[Webb&86] M. Webb, P. Ward. Executable Data Flow Diagrams: An ExperimentalImplementation. Proceedings of the Structured Development ForumVIII. Chicago, Illinois. Structured Techniques Association, pages 1{21,August 1986.[Zultner89] R. E. Zultner. Software Quality (Function) Deployment { ApplyingQFD to Software. 13th Rocky Mountain Quality Conference, 1989.Available from Zultner & Company, 12 Wallingford Drive, Princeton,NJ 08540. 11 pages.

15

