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Abstract. Branching-time temporal logics have proved to be an extraordinarily suc-

cessful tool in the formal specification and verification of distributed systems. Much of

their success stems from the tractability of the model checking problem for the branching

time logic ctl, which has made it possible to implement tools that allow designers to

automatically verify that systems satisfy requirements expressed in ctl. Recently, ctl

was generalised by Alur, Henzinger, and Kupferman in a logic known as “Alternating-time

Temporal Logic” (atl). The key insight in atl is that the path quantifiers of ctl could

be replaced by “cooperation modalities”, of the form 〈〈Γ〉〉, where Γ is a set of agents. The

intended interpretation of an atl formula 〈〈Γ〉〉ϕ is that the agents Γ can cooperate to

ensure that ϕ holds (equivalently, that Γ have a winning strategy for ϕ). In this paper,

we extend atl with knowledge modalities, of the kind made popular in the work of Fa-

gin, Halpern, Moses, Vardi and colleagues. Combining these knowledge modalities with

atl, it becomes possible to express such properties as “group Γ can cooperate to bring

about ϕ iff it is common knowledge in Γ that ψ”. The resulting logic — Alternating-time

Temporal Epistemic Logic (atel) — shares the tractability of model checking with its atl

parent, and is a succinct and expressive language for reasoning about game-like multiagent

systems.

Keywords: Cooperation logic, epistemic logic, game theory, model checking.

1. Introduction

Perhaps the most successful approach to reasoning about distributed com-
puter systems involves the use of branching time logics, of which Computa-
tion Tree Logic (ctl) is the best known example [13]. ctl is a temporal logic
that is interpreted over tree-like structures, in which nodes represent time
points and arcs represent transitions between time points. In distributed sys-
tems applications, the set of all paths through a tree structure is assumed to
correspond to the set of all possible computations of a system. ctl combines
path quantifiers “A” and “E” for expressing that a certain series of events
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will happen on all paths and on some path respectively, with tense modali-

ties for expressing that something will happen eventually on some path (♦),
always on some path ( ) and so on. Thus, for example, by using ctl-like
logics, one may express properties such as “on all possible computations,
the system never enters a fail state”, which is represented by the ctl for-
mula A ¬fail. Although the computational complexity of the deductive
proof problem for ctl is prohibitively expensive (it is exptime-complete [13,
p.1037]), the model checking problem for ctl — the problem of determin-
ing whether a given formula of ctl is satisfied in a particular ctl model
— is computationally rather easy: it can be solved in time O(|M | × |ϕ|),
where |M | is the size of the model and |ϕ| is the size of the formula to be
checked [13, p.1044]. The tractability of ctl model checking has led to the
development of a range of ctl model checking tools, which have been widely
used in the verification of hardware and software systems [10].

Recently, multiagent systems have emerged as a new paradigm for un-
derstanding distributed systems [35]. In multiagent systems, computer pro-
cesses are viewed as economic entities — agents — in the sense that inter-
actions between them may not be cooperative, and may even be adversarial.
Interactions between agents in multiagent systems can thus be understood
as games in the sense of game theory [7, 29]. Branching time temporal logics
of the ctl genus prove to be of limited value when applied to multiagent
systems: given the game-like nature of multiagent systems, the kinds of
properties we wish to express of them are the powers that the system com-
ponents have. For example, we might wish to express the fact that “agent
(process) 1 has the power to ensure that the system never fails”. Alterna-
tively, we might express this property as “agent 1 has a winning strategy

for ensuring that the system never enters a fail state”. Similarly, we might
wish to express cooperative powers: “agents 1 and 2 can cooperate to en-
sure that the system never enters a fail state”. It is not possible to capture
such statements using ctl-like logics. The best one can do is either state
that something will inevitably happen, or else that it may possibly happen;
ctl-like logics have no notion of agency.

In 1997, Alur, Henzinger, and Kupferman introduced a logic intended to
make good this deficit [3]. Alternating-time Temporal Logic (atl) is a novel
generalisation of ctl, in which path quantifiers are replaced by cooperation

modalities: the atl expression 〈〈Γ〉〉ϕ, where Γ is a group of agents, expresses
the fact that the group Γ can cooperate to ensure that ϕ. Thus, for example,
the fact that agents 1 and 2 can ensure that the system never enters a fail
state may be captured in atl by the following formula.
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〈〈1, 2〉〉 ¬fail

atl generalises ctl because the path quantifiers A (“on all paths. . . ”) and E

(“on some paths. . . ”) can be simulated in atl by the cooperation modalities
〈〈∅〉〉 (“the emptyset of agents can cooperate to. . . ”) and 〈〈Σ〉〉 (“the grand
coalition of all agents can cooperate to. . . ”). One of the fascinating aspects
of atl is that it shares with ctl the computational tractability of its model
checking problem. This has led to the development of an atl model checking
system called mocha [4, 2].

Since the mid-1980s, epistemic logics — modal logics of knowledge —
have found a wide range of applications in computer science and artificial
intelligence [15, 27]. They have proved to be particularly useful for reason-
ing about multiagent systems, where it is frequently necessary to express
statements such as “if agent a sends agent b message m, then eventually, b
will know m” [20, 36].

In this paper, we show how atl may be extended with knowledge modal-
ities. The resulting logic is called Alternating-time Temporal Epistemic Logic

(atel). As well as operators for representing the knowledge of individual
agents, atel includes modalities for representing what “everyone knows”
and common knowledge [15, 27]. atel is a succinct and very powerful lan-
guage for expressing complex properties of multiagent systems. For example,
the following formula expresses the fact that if it is common knowledge in
group of agents Γ that ϕ, then Γ can cooperate to ensure ψ.

CΓϕ→ 〈〈Γ〉〉♦ψ

As another example, the following atel formula says that, if a knows that
ϕ, then a has a strategy to ensure that b knows ϕ — in other words, a can
communicate what it knows to other agents.

Kaϕ→ 〈〈a〉〉♦Kbϕ

The remainder of the paper is structured as follows. We begin in the
following section by presenting Alternating Epistemic Transition Systems,
the semantic structures that underpin atel. We then introduce the logic
atel, giving its semantics in terms of these structures. We discuss the
axiomatic basis of atel in section 4, and in section 5 we focus in particular
on the possible interactions between knowledge, ability, and cooperation. We
demonstrate how atel can be used to succinctly express a range of desirable
(and undesirable) properties of multiagent systems. We present a model
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checking algorithm for atel in section 6, and show that the complexity of
the atel model checking problem is ptime-complete, and hence no worse
than that of atl [3]. In section 6, we give a detailed model checking case
study, in which we show how atel properties of a system can be verified
using freely available atl model checking tools [4, 2]. We conclude with a
brief discussion on related work, and present some conclusions and possible
avenues for future research.

2. Alternating Epistemic Transition Systems

We begin by introducing the semantic structures used to represent our do-
mains. These structures are a straightforward extension of the alternating
transition systems used by Alur and colleagues to give a semantics to atl.
Formally, an alternating epistemic transition system (aets) is a tuple

〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉,
where:

• Π is a finite, non-empty set of atomic propositions;

• Σ = {a1, . . . , an} is a finite, non-empty set of agents;

• Q is a finite, non-empty set of states;

• ∼a⊆ Q×Q is an epistemic accessibility relation for each agent a ∈ Σ
— we usually require that each ∼a is an equivalence relation;

• π : Q → 2Π gives the set of primitive propositions satisfied in each
state;

• δ : Q× Σ → 22Q

is the system transition function, which maps states
and agents to the choices available to these agents. Thus δ(q, a) is
the set of choices available to agent a when the system is in state q.
We require that this function satisfy the constraint that the system
is completely controlled by its component agents: for every state q ∈
Q and every set Q1, . . . , Qn of choices Qa ∈ δ(q, a), the intersection
Q1 ∩ · · · ∩Qn is a singleton. This means that if every agent has made
his choice, the system is completely determined.

We denote the set of sequences over Q by Q∗, and the set of non-empty
sequences over Q by Q+.

Epistemic Relations

If Γ ⊆ Σ, we denote the union of Γ’s accessibility relations by ∼EΓ , so ∼EΓ =
(
⋃
a∈Γ ∼a). Also, ∼CΓ denotes the transitive closure of ∼EΓ . We will later use
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∼CΓ and ∼EΓ to give a semantics to the “common knowledge” and “everyone
knows” modalities in our logic [15].

Computations

For two states q, q′ ∈ Q and an agent a ∈ Σ, we say that state q′ is an a-

successor of q if there exists a set Q′ ∈ δ(q, a) such that q′ ∈ Q′. Intuitively,
if q′ is an a-successor of q, then q′ is a possible outcome of one of the choices
available to a when the system is in state q. We denote by succ(q, a) the set
of a successors to state q. We say that q′ is simply a successor of q if for
all agents a ∈ Σ, we have q′ ∈ succ(q, a); intuitively, if q′ is a successor to
q, then when the system is in state q, the agents Σ can cooperate to ensure
that q′ is the next state the system enters.

A computation of an aets 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉 is an infinite se-
quence of states λ = q0, q1, . . . such that for all u > 0, the state qu is a
successor of qu−1. A computation λ starting in state q is referred to as a
q-computation; if u ∈ N = {0, 1, . . . }, then we denote by λ[u] the u’th state
in λ; similarly, we denote by λ[0, u] and λ[u,∞] the finite prefix q0, . . . , qu
and the infinite suffix qu, qu+1, . . . of λ respectively.

Strategies and Their Outcomes

Intuitively, a strategy is an abstract model of an agents decision-making
process; a strategy may be thought of as a kind of plan for an agent. By
following a strategy, an agent can bring about certain states of affairs. For-
mally, a strategy fa for an agent a ∈ Σ is a total function fa : Q+ → 2Q,
which must satisfy the constraint that fa(λ · q) ∈ δ(q, a) for all λ ∈ Q∗

and q ∈ Q. Given a set Γ ⊆ Σ of agents, and an indexed set of strategies
FΓ = {fa | a ∈ Γ}, one for each agent a ∈ Γ, we define out(q, FΓ) to be
the set of possible outcomes that may occur if every agent a ∈ Γ follows the
corresponding strategy fa, starting when the system is in state q ∈ Q. That
is, the set out(q, FΓ) will contain all possible q-computations that the agents
Γ can “enforce” by cooperating and following the strategies in FΓ. Note that
the “grand coalition” of all agents in the system can cooperate to uniquely
determine the future state of the system, and so out(q, FΣ) is a singleton.
Similarly, the set out(q, F∅) is the set of all possible q-computations of the
system.

3. Alternating Temporal Epistemic Logic

Alternating epistemic transition systems are the structures we use to model
the systems of interest to us. We now introduce a language to represent
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and reason about these structures. This language — alternating temporal
epistemic logic (atel) — is an extension of the alternating temporal logic
(atl) of Alur, Henzinger, and Kupferman [3], which in turn takes its in-
spiration from the branching temporal logics ctl and ctl* [13]. Just as
formulae of alternating temporal logic are interpreted with respect to alter-
nating transition systems, formulae of atel are interpreted with respect to
the alternating epistemic transition systems introduced above.

Before presenting the detailed syntax of atel, we give an overview of
the intuition behind its key constructs. atel is an extension of classical
propositional logic, and so it contains all the conventional connectives that
one would expect to find: ∧ (“and”), ∨ (“or”), ¬ (“not”), → (“implies”),
and so on. In addition, atel contains the temporal cooperation modalities
of atl, as follows. The formula 〈〈Γ〉〉 ϕ, where Γ is a group of agents,
and ϕ is a formula of atel, means that the agents Γ can work together
(cooperate) to ensure that ϕ is always true. Similarly, 〈〈Γ〉〉 gϕ means that
Γ can cooperate to ensure that ϕ is true in the next state. The formula
〈〈Γ〉〉ϕU ψ means that Γ can cooperate to ensure that ϕ remains true until

such time as ψ is true — and moreover, ψ will be true at some time in the
future.

An atel formula, formed with respect to an alternating epistemic tran-
sition system S = 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉, is one of the following:

(S0) ⊤

(S1) p, where p ∈ Π is a primitive proposition;

(S2) ¬ϕ or ϕ ∨ ψ, where ϕ and ψ are formulae of atel;

(S3) 〈〈Γ〉〉 gϕ, 〈〈Γ〉〉 ϕ, or 〈〈Γ〉〉ϕU ψ, where Γ ⊆ Σ is a set of agents, and
ϕ and ψ are formulae of atel;

(S4) Kaϕ, where a ∈ Σ is an agent, and ϕ is a formula of atel;

(S5) CΓϕ or EΓϕ, where Γ ⊆ Σ is a set of agents, and ϕ is a formula of
atel.

We interpret the formulae of atel with respect to aets, as introduced in
the preceding section. Formally, if S is an aets, q is a state in S, and ϕ is a
formula of aetl over S, then we write S, q |= ϕ to mean that ϕ is satisfied
(equivalently, true) at state q in system S. The rules defining the satisfaction
relation |= are as follows:

• S, q |= ⊤

• S, q |= p iff p ∈ π(q) (where p ∈ Π);
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• S, q |= ¬ϕ iff S, q 6|= ϕ;

• S, q |= ϕ ∨ ψ iff S, q |= ϕ or S, q |= ψ;

• S, q |= 〈〈Γ〉〉 gϕ iff there exists a set of strategies FΓ, one for each a ∈ Γ,
such that for all λ ∈ out(q, FΓ), we have S, λ[1] |= ϕ;

• S, q |= 〈〈Γ〉〉 ϕ iff there exists a set of strategies FΓ, one for each a ∈ Γ,
such that for all λ ∈ out(q, FΓ), we have S, λ[u] |= ϕ for all u ∈ N;

• S, q |= 〈〈Γ〉〉ϕU ψ iff there exists a set of strategies FΓ, one for each
a ∈ Γ, such that for all λ ∈ out(q, FΓ), there exists some u ∈ N such
that S, λ[u] |= ψ, and for all 0 ≤ v < u, we have S, λ[v] |= ϕ;

• S, q |= Kaϕ iff for all q′ such that q ∼a q
′: S, q′ |= ϕ;

• S, q |= EΓϕ iff for all q′ such that q ∼EΓ q′: S, q′ |= ϕ;

• S, q |= CΓϕ iff for all q′ such that q ∼CΓ q′: S, q′ |= ϕ.

Before proceeding, we introduce some derived connectives: these include
the remaining connectives of classical propositional logic (⊥ =̂ ¬⊤, ϕ →
ψ =̂ ¬ϕ ∨ ψ and ϕ ↔ ψ =̂ (ϕ → ψ) ∧ (ψ → ϕ)), together with some other
useful connectives of temporal logic.

〈〈Γ〉〉♦ϕ =̂ 〈〈Γ〉〉⊤U ϕ
〈〈Γ〉〉 +ϕ =̂ 〈〈Γ〉〉 g〈〈Γ〉〉 ϕ

〈〈Γ〉〉♦+
ϕ =̂ 〈〈Γ〉〉 g〈〈Γ〉〉♦ϕ

As well as asserting that some collection of agents is able to bring about
some state of affairs, we can use the dual “[[. . .]]” to express the fact that a
group of agents cannot avoid some state of affairs. Thus [[Γ]]♦ϕ expresses
the fact that the group Γ cannot cooperate to ensure that ϕ will never
be true; the remaining agents in the system have a collection of strategies
such that, if they follow them, ϕ may eventually be achieved. Formally,
[[Γ]] gϕ is defined as an abbreviation for ¬〈〈Γ〉〉 g¬ϕ, while [[Γ]]♦ϕ is defined
as an abbreviation for ¬〈〈Γ〉〉 ¬ϕ, and so on. Finally, we generally omit
set brackets inside cooperation modalities, (i.e., writing 〈〈a, b〉〉 instead of
〈〈{a, b}〉〉), and we will usually write 〈〈〉〉 rather than 〈〈∅〉〉.

Some Informal Examples

To get a feel for the kinds of properties that may be expressed using atel,
consider the following informal examples of atel formulae.

〈〈m,w〉〉♦readerIsBored



132 W. van der Hoek and M. Wooldridge

This formula asserts that Mike and Wiebe have a collective strategy for
ensuring that, eventually, the reader is bored. That is, they can “force” the
reader to be bored if they so choose, in the sense that we say a player in
a game is able to “force a win”. The following says that m and w cannot
ensure that the reader is always excited.

¬〈〈m,w〉〉 excited

We can also write this previous example as follows.

[[m,w]]♦¬excited

The next (optimistic!) example says that m and w can ensure that eventu-
ally, the reader has the capability to eventually understand.

〈〈m,w〉〉♦〈〈reader〉〉♦understand

By combining atl cooperation modalities with knowledge modalities, we
can express much richer properties. The following formula says that w can
ensure that eventually, m knows that the Earth is round.

〈〈w〉〉♦KmearthIsRound

The final example — a formula scheme this time, rather than a formula —
says that if m can cause w to know something, then w knows it already (in
other words, m cannot tell w anything that he does not already know).

〈〈m〉〉♦Kwϕ→ Kwϕ

4. Axioms for ATEL

The aim of this paper is not to give a complete axiomatisation of atel. In
this section, we rather give some typical properties. Goranko [16] uses the
axiomatisation for Pauly’s coalition logic [30] to obtain an axiomatisation
for a fragment of atl with only the temporal operator for tomorrow ( g),
and some properties of atl with the operator are given. But, to the best
of our knowledge, there is as yet no completeness result for full atl in the
literature.

It should be clear that atel inherits the S5 axioms of normal modal
logic for knowledge modalities, as well as the associated axioms for common
knowledge and everyone knowing — as these axioms are by now well-known,
we will not describe them here (see e.g., [19, 15] for a detailed account).
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Also, at this stage of research, we have not investigated yet what kind of
interaction axioms would appear in natural extensions of atel, and whether
they would complicate a completeness proof. We will give examples of such
interaction properties in Section 5.

An obvious first question is the extent to which ctl axioms transfer to
atl/atel (see e.g., [13, p.1040]).

Ax1 All validities of propositional logic

Ax2 〈〈Σ〉〉♦ϕ↔ 〈〈Σ〉〉(⊤U ϕ)

Ax2b 〈〈∅〉〉 ϕ↔ ¬〈〈Σ〉〉♦¬ϕ

Ax3 〈〈∅〉〉♦ϕ↔ 〈〈∅〉〉(⊤U ϕ)

Ax3b 〈〈Σ〉〉 ϕ↔ ¬〈〈Σ〉〉♦¬ϕ

Ax4 (〈〈Σ〉〉 gϕ ∨ 〈〈Σ〉〉 gψ)↔ 〈〈Σ〉〉 g(ϕ ∨ ψ)

Ax5 〈〈∅〉〉 gϕ↔ ¬〈〈Σ〉〉 g¬ϕ

Ax8 〈〈∅〉〉 g⊤ ∧ [[Σ]] g⊤

Ax9 〈〈∅〉〉 (χ→ (¬ψ ∧ 〈〈Σ〉〉 gχ))→ (χ→ ¬〈〈∅〉〉(ϕU ψ))

Ax9b 〈〈∅〉〉 (χ→ (¬ψ ∧ 〈〈Σ〉〉 gχ))→ (χ→ ¬〈〈∅〉〉♦ψ)

Ax10 〈〈∅〉〉 (χ→ (¬ψ ∧ (ϕ→ 〈〈∅〉〉 gχ)))→ (χ→ ¬〈〈Σ〉〉(ϕU ψ))

Ax10b 〈〈∅〉〉 (χ→ (¬ψ ∧ 〈〈∅〉〉 gχ))→ (χ→ ¬〈〈Σ〉〉♦ψ)

Ax11 〈〈∅〉〉 (ϕ→ ψ)→ (〈〈Σ〉〉 gϕ→ 〈〈Σ〉〉 gψ)

We now discuss how these axioms generalise to properties of arbitrary
coalitions Γ, where Γ ranges over 2Σ. Ax2 and Ax3 can be combined in the
general:

Ax2&3 〈〈Γ〉〉♦ϕ↔ 〈〈Γ〉〉(⊤U ϕ)

Several axioms are not sound for arbitrary Γ ⊆ Σ. An example of such an
axiom is the generalisation of Ax2b to Ax2b′: [[Σ \ Γ]] ϕ ↔ ¬〈〈Γ〉〉♦¬ϕ,
which is equivalent to ¬〈〈Σ \ Γ〉〉 ¬ϕ ↔ ¬〈〈Γ〉〉♦¬ϕ, or, as a scheme, to
〈〈Σ \ Γ〉〉 ψ ↔ 〈〈Γ〉〉♦ψ, which is obviously not valid. Also, the following
generalisation of Ax3b is not valid:

〈〈Γ〉〉 ϕ↔ ¬〈〈Σ \ Γ〉〉♦¬ϕ (i)

It is the “←” direction that is invalid here: if a subgroup Σ \ Γ does not
have a strategy to ensure that sometime the system is not okay, it does not
mean that Γ can ensure that the system is always okay. Note that (Ax4)
is not sound for arbitrary Γ ⊆ Σ: see Example 1 below. A similar remark
holds for (Ax5): for subgroups Γ the implication ¬〈〈Γ〉〉 g¬ϕ→ 〈〈Σ \ Γ〉〉 gϕ
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is not sound (for instance, let Σ = {a1, a2}, Γ = {a1} and let ϕ be the
statement that a1 and a2 throw the same number with a dice. The we have
¬〈〈Γ〉〉 g¬ϕ but also ¬〈〈Σ \ Γ〉〉 gϕ). Also note that the axioms (Ax6) and
(Ax7) of [13, p.1040] have no counterpart in atel. Ax8 can be reduced to
simply 〈〈∅〉〉 g⊤ by using the supergroup property below.

Thus, new axioms are:

Seriality 〈〈a〉〉 g⊤

Supergroup( g) 〈〈Γ〉〉 gϕ→ 〈〈Γ ∪ {a}〉〉 gϕ

Complement( g) 〈〈Γ〉〉 gϕ→ ¬〈〈Σ \ Γ〉〉 g¬ϕ

Complement( ) 〈〈Γ〉〉 ϕ→ ¬〈〈Σ \ Γ〉〉¬♦ϕ

Ax4a (〈〈Σ〉〉 gϕ ∨ 〈〈Σ〉〉 gψ)→ 〈〈Σ〉〉 g(ϕ ∨ ψ)

Ax5b [[Σ]] gϕ→ ¬〈〈Σ〉〉 g¬ϕ

In fact, the Supergroup( g) and Complement( g) axioms follow from
the following, stronger axiom.

〈〈Γ1〉〉 gϕ1 ∧ 〈〈Γ2〉〉 gϕ2 → 〈〈Γ1 ∪ Γ2〉〉 g(ϕ1 ∧ ϕ2) (Γ1 ∩ Γ2 = ∅) (ii)

The only two obvious generalisations of Ax9 and Ax9b are those in which
we replace 〈〈Σ〉〉 by an arbitrary 〈〈Γ〉〉, but such a positive occurence of 〈〈Σ〉〉
may already be replaced by 〈〈Γ〉〉 by the supergroup property, mentioned
above. A similar remark applies to Ax10 and Ax10b. Let us finally observe
that Ax11 can be generalised to

Ax11’ 〈〈∅〉〉 (ϕ→ ψ)→ (〈〈Γ〉〉 gϕ→ 〈〈Γ〉〉 gψ)

but not to

〈〈Γ〉〉 (ϕ→ ψ)→ (〈〈Γ〉〉 gϕ→ 〈〈Γ〉〉 gψ) (iii)

which is seen as follows; if the coalition Γ has a stratey to guarantee that
(ϕ → ψ) is always true, then, if it has at the same time a strategy (which
may well be different) to make ϕ true in the next state, it does not necessarily
mean it has a strategy to guarantee ψ in the next state.

It is worth asking whether there is a property in the language reflecting
the requirement that the intersection of all the choices of the agents is a
singleton. Where the formula 3ϕ↔ 2ϕ in modal logic expresses that there
is exactly one successor, the fact that the whole group Σ determines a unique
outcome is not captured by:

〈〈Σ〉〉 gϕ↔ [[Σ]] gϕ (iv)
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Instead, we need the following two conditions. The first is that the
intersection of choices is non-empty, which is given by the following axiom.

〈〈Σ〉〉 g⊤ (v)

(Remarkably, (v) already follows from the seemingly weaker Seriality axiom:
〈〈a〉〉 g⊤.) The second property we place on system transition functions (i.e.,
that, if all the agents have chosen, there is at most one successor), is trickier.
First note that (vi) is not valid (Γ is an arbitrary set of agents).

〈〈Γ〉〉 g(ϕ ∨ ψ)→ (〈〈Γ〉〉 gϕ ∨ 〈〈Γ〉〉 gψ) (vi)

The following example illustrates why.

Example 1. Let Σ = {a1, a2}; let δ(q, a1) = {{v1}, {v2}} and δ(q, a2) =
{{v1, v2}}. Let p be only true in v1 and r only in v2. Then we have in q |=
〈〈a2〉〉 g(p ∨ q), but q 6|= 〈〈a2〉〉 gp ∨ 〈〈a2〉〉 gq.

Instead, the axiom we are after seems to be (vii).

〈〈Σ〉〉 g(ϕ ∨ ψ)→ (〈〈Σ〉〉 gϕ ∨ 〈〈Σ〉〉 gψ) (vii)

Still other properties relate 〈〈Γ〉〉, [[Γ]], Γ and Σ \ Γ. The next two prop-
erties seem to hold for any temporal formula ψ, rather than for just gϕ:

〈〈Γ〉〉 gϕ→ [[Σ \ Γ]] gϕ (viii)

〈〈Γ〉〉 gϕ→ 〈〈Γ′〉〉 gϕ (where Γ ⊆ Γ′) (ix)

As a corollary, we have the following.

〈〈∅〉〉 gϕ→ 〈〈Γ〉〉 gϕ (for any Γ ⊆ Σ) (x)

Distinguishing Subsystems

In [3], Alur and colleagues identify a number of distinct sub-systems of atl.
We now consider axioms that distinguish these subsystems.

Turn-based Systems

The first subsystem we consider is the turn-based synchronous subsystem.
In such a system, at every transition there is just one agent that is permitted
to make a choice (and hence determine the future). This would model many
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“classical” games, in which players alternate to move. A characterizing
property of a turn-based synchronous ats is the following:

〈〈Σ〉〉 gϕ→
∨

a∈Σ

〈〈a〉〉 gϕ (xi)

Property (xi) is the translation into atel of what Pauly calls “dictator-
ship” [30], and says that, if the grand coalition can establish ϕ to hold tomor-
row, then there is an agent who can achieve this on his own already. Note
that (xi) is equivalent to

∨
a∈Σ(〈〈Σ〉〉 gϕ→ 〈〈a〉〉 gϕ) and, since (ix) guaran-

tees us that since we have in arbitrary atel systems (〈〈Σ〉〉 gϕ← 〈〈a〉〉 gϕ),
we know that in turn-based synchronous systems we have the following.

∨

a∈Σ

(〈〈a〉〉 gϕ↔ 〈〈Σ〉〉 gϕ) (xii)

In fact, we can write (xii) to
∨
a∈Σ(¬〈〈a〉〉 gϕ ↔ ¬〈〈Σ〉〉 gϕ), then apply

Ax5 to this scheme to obtain
∨
a∈Σ([[a]] gψ ↔ [[Σ]] gψ). The latter property

would read: “everything that the grand coalition cannot avoid is that which
one of the agents cannot avoid”.

Lock-step Systems

In a lock-step ats, it is assumed that every state q is of the form 〈q[a1],
. . . , q[an]〉, with {a1, . . . , an} = Γ. The idea is that every agent ai has a
local state, and in q this local state is q[ai]. In a lock-step system, every
agent ai can only choose the effect on its own local state: agent ai can
only determine his next local state, i.e., every Qs ∈ δ(q, ai) is of the form
Qs = {q′ | q′[ai] = s}, where s is the local state that ai can bring about. This
kind of ats becomes particularly interesting when adding knowledge to it,
since one straightforward way to define the epistemic equivalence relations
here is by q ∼ai

q ⇔ q[ai] = q′[ai], i.e., the agent knows exactly what its own
state is. This brings us into the paradigm of interpreted systems, a notion
of epistemic systems thoroughly studied in [15, 26]. A well-known property
of such a system is for instance

CΣϕ→ 〈〈〉〉 CΣϕ (xiii)

saying that common knowledge is constant during every run in such a system
where the whole state space is the cartesian product of the local state spaces
(see also [27, p.61]).

In lock-step atel we also have 〈〈a〉〉 gϕ → 〈〈a〉〉 gKaϕ. This prop-
erty is closely related to that of perfect recall, which in atel could read
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Ka〈〈a〉〉 gϕ → 〈〈a〉〉 gKaϕ. Restricting oneself to runs that satisfy such
properties is a route undertaken by van de Meyden and Vardi in [32], when
they perform synthesis with incomplete information.

Turn-based Asynchronous Systems

A turn-based asynchronous system is much like a turn based synchronous
ats, but now, there is a special agent, the scheduler sch, who determines
which agent is to move, and hence the “dictator” is not determined by the
state.

Without going into the full details here, we state two properties of such
a system.

〈〈Σ〉〉 gϕ→
∨

sch 6=a∈Σ

〈〈sch, a〉〉 gϕ (xiv)

〈〈sch〉〉 gϕ→
∨

sch 6=a∈Σ

[[a]] gϕ (xv)

Property (xiv) expresses that if the grand coalition can guarantee that
tomorrow ϕ holds, it can be achieved by sch choosing some agent that can
guarantee ϕ. Then (xv) expresses the following. All that agent sch can do
is to schedule one of the other agents. So if sch wants to guarantee ϕ in the
next state, he should not just select an agent a that can guarantee ϕ (since
a might, when given the turn, choose another alternative), but sch should
pick an agent that cannot avoid ϕ.

atel*

ctl* is a well-known, and much more expressive variant of ctl [13]. Put
somewhat crudely, ctl* allows path quantifiers and tense modalities to be
arbitrarily intermingled in formulae, rather than requiring that tense modal-
ities be immediately preceded by a path quantifier, as in ctl. Thus, for
example, A♦ off is a formula of ctl* while it is not a formula of ctl.
It is not hard to see that ctl* is strictly more expressive than ctl: there
are properties of temporal tree structures that can be expressed using ctl*,
which cannot be expressed using ctl [14]. Alur and colleagues defined a vari-
ant of atl which plays a role analogous to that played of ctl*: in particular,
it allows tense modalities and cooperation modalities to be intermingled in
formulae. Thus 〈〈1〉〉♦ off is a formula of atl*, but not of atl. We will
not give a full definition of atl*, or its rather obvious generalisation atel*;
see [3] for details.
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The first obvious property we get is that every group Γ can obtain the
current state: one has nothing to do to obtain it.

ϕ→ 〈〈Γ〉〉ϕ (for state formulae ϕ) (xvi)

Moreover, agents cannot alter the current state: it has been obtained
already. Thus, we also have the following.

ϕ→ [[Γ]]ϕ (for state formulae ϕ) (xvii)

As a scheme, (xvii) is equivalent to 〈〈Γ〉〉ϕ→ ϕ; and so, despite the suggestive
existential notation, 〈〈·〉〉 does not take you further in time. From (xvi) and
(xvii) we obtain the following.

ϕ↔ ~Xϕ (for state formulae ϕ) (xviii)

where ~X is an arbitrary sequence of 〈〈Γ〉〉 and [[Γ′]] prefixes, with arbitrary
group variables Γ,Γ′.

5. Knowledge, Ability, and Cooperation

In this section, we demonstrate the expressive power and flexibility of atel,
by showing how it allows us to capture the many complex and subtle ways
in which knowledge, ability, and cooperation can interact.

Knowledge Preconditions

Performing actions and knowledge interfere in at least two ways: for some
actions, in order to be able to do them properly, some knowledge is required,
and, on the other hand, actions may add to an agent’s knowledge. A ma-
jor ongoing research problem in ai planning is that of correctly formulating
knowledge preconditions for actions and plans [1]. Intuitively, a knowledge
pre-condition for a particular plan is the information that an agent must
have in order to be able to successfully carry this plan out. Arguably the
best known, and most influential attempt to develop a formalism for knowl-
edge pre-conditions was that by Moore [28]. Moore used a formalism that
combined aspects of both epistemic logic [15, 27] and dynamic logic [21] in
order to capture what is needed to be known in order to carry out a plan.
(Many formalisms have subsequently been developed for this problem —
see [37] for a survey.)

We can formulate knowledge pre-conditions quite naturally using atel

and its variants, and the cooperation modality naturally and elegantly allows
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us to consider knowledge pre-conditions for multi-agent plans. The require-
ment that, in order for an agent a to be able to eventually bring about state
of affairs ϕ, it must know ψ, might, as a first attempt, be specified in atel

as:
〈〈a〉〉♦ϕ→ Kaψ (xix)

Formula (xix) intuitively says that knowing ψ is a necessary requirement for
having the ability to bring about ϕ. However, this requirement is too strong.
For instance, in order to be able to ever open the safe, I don’t necessarily
in general have to know the key right now; it sufficient that I know it when
I am going to open it. A slightly better formulation might therefore be the
following.

〈〈a〉〉 gϕ→ Kaψ (xx)

If (xx) is given as an overall constraint of the system, it helps the agent
to realize that he has to possess the right knowledge in order to achieve ϕ.
But taken as a local formula, it does not tell us anything about what the
agent should know if he wants to bring about ϕ the day after tomorrow,
or “sometime” for that matter. Taken as a local constraint, a necessary
knowledge condition to bring about ϕ might be

(¬〈〈a〉〉 gϕ)U Kaψ (xxi)

Property (xxi) expresses that our agent is not able to open the safe until
he knows its key. Of course, this is still a bit weak: one wants to express
that as soon as a does know the key, he in fact is able to open the safe. The
fact that knowing ψ is sufficient to be able to bring about ϕ is captured by
the converse of the scheme (xix):

Kaψ → 〈〈a〉〉♦ϕ (xxii)

This scheme presupposes that knowledge (of ψ) is not perishable, e.g., keys
for safes do not change. A more cautious condition might be:

Kaψ → 〈〈a〉〉 gϕ (xxiii)

Indeed, one might show that under the assumption that knowledge of a
key is non-perishable (Kaψ → gKaψ), equation (xxiii) implies (xxii).

Another example of such an ability is (xxiv), expressing that if Bob
knows that the combination of the safe is s, then he is able to open it (o),
as long as the combination remains unchanged.

Kb(c = s)→ 〈〈b〉〉(〈〈b〉〉 go)U ¬(c = s) (xxiv)

We have not yet explored knowledge-dependent abilities of groups. The
simplest case would be (Kaϕa ∧Kbϕb)→ 〈〈a, b〉〉♦ψ.
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Resource-bounded Reasoners

One may also use atel-formulas to model limited reasoners, i.e., reasoners
that do not obey all the S5-axioms in a blow, but who can approximate
them over time (here, we are assuming of course that an agent’s knowledge
accessibility relation ∼a is not an equivalence relation).

Kaψ → 〈〈a〉〉 gKaKaψ (xxv)

In fact, such reasoning bounded rules are proposed in [17], but there, the
introspective step is done “automatically” during a time step; in atel, the
agent may decide to apply it only when needed.

Cryptography and Security

Schemes like the above allow representing time consuming computations by
the agent needed to acquire or use his knowledge. An example of the latter
would be in cryptographic protocols, where the agents need to compute or
recognize a key in order to decrypt or authorize a message. In such logics,
one usually distinguishes between receiving a message (denoted by sees)
and knowing its contents [9]. Let us denote by {msg}Sab

that the message
msg is encrypted by a key Sab only known by a and b, then a decryption
rule would typically express that if agent a receives a message {msg}Sab

and
a knows that Sab is the shared key of a and b, then a can use this key to
encrypt the whole message, and safely conclude that b said msg:

seesa{msg}Sab
∧Ka(is-key〈(a, b), Sab〉)→ 〈〈a〉〉 gKasaidbmsg (xxvi)

The logic of [9] then has a rule to conclude when KaKbmsg holds: the
message msg must be fresh, that is, may not be seen in the current run of
the protocol (we feel that atel is especially useful when reasoning about
runs in protocols, in particular, it will be possible to denote that a message
has not been seen in a protocol yet):

(Kafresh(msg) ∧Kasaidbmsg)→ KaKbmsg (xxvii)

Communication

We now consider some properties that are important when agents commu-
nicate, gather information or, more generally, bring about knowledge. How
can a bring about that b learns something, i.e., how to guarantee 〈〈a〉〉♦Kbϕ?
There are many issues at stake here, dealing with the reliability of channels,
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the communication protocol used, the language that may be used in commu-
nication, etc. Let us have a look at a simple example, depicted in Figure 1.
The left part of the picture is an S52 model: reflexive and transitive arrows
are not drawn, the dotted lines are the accessibilities of agent 1, the straight
ones are those of agent 2. In state s, we have

s |= ¬K1p ∧ ¬K1¬p ∧K1(K2p ∨K2¬p)

which says that 1 does not know whether p, but 1 knows that 2 knows
whether p. Thus, 1 asking 2 whether p seems a reasonable thing to do. This
question is modeled as δ(s, 1) = {{s1, s2}}. One easily sees that this gives us
that 〈〈1〉〉 g(K1p ∨K1¬p) is true in s, that is, agent 1 can find out whether
p is true.

Thus, the speech act of a yes/no question ϕ? by agent a is nothing more
than a opening up his current state s in two alternatives, one in which he
knows ϕ, and one in which he knows ¬ϕ. Since we know that the intersection
of the results of all choices by the agents will be a unique state, we know that
after the other agents have completed their moves, agent a knows whether
ϕ.

s s1

s2

p,¬q p,¬qp, q p, q

¬p,¬q ¬p,¬q¬p, q ¬p, q

•

•

•

•

=⇒

•

•

•

•

Figure 1. Asking a question

In the particular example here, if agent 2 is truthful, he will select s1,
that is, δ(s, 2) = {{s1}}.

Note that we made a lot of assumptions in this example: the two agents
are willing to cooperate, and the communication is known to be reliable,
since in fact we have that s |= 〈〈1, 2〉〉 gC{1,2}p.

Let us now briefly examine a number of properties that may be important
in systems of communicating agents.

FS Kaϕ→ 〈〈a〉〉♦KaKbϕ

NH Kaϕ→ [[a]]♦KaKbϕ

TT ¬Kap→ [[a]] g¬KbKap

MO Kaϕ→ [[Γ]] Kaϕ
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The first principle, Freedom of Speech (FS), says that an agent can al-
ways tell the truth to other agents. The second principle, No Hiding (NH),
ensures that agents cannot but tell everything they know eventually to oth-
ers. In many cases, this makes sense for specific facts p only. Next, Telling
the Truth (TT): this says that if agent a does not know p now, he cannot
avoid that b will not know that a knows p tomorrow. This property is re-
stricted to propositional formulas p, for the following reason. Suppose we
have that agent a does not know p now; then he cannot know that b knows
p, hence we have ¬KaKbp. Suppose now b makes a public announcement
p, then we have that, in the next state, CΣp will be true, and in particu-
lar KbKaKbp, which gives a violation of TT, since we have a situation in
which ¬KaKbp∧〈〈Σ〉〉 gKbKaKbp holds! Finally, Monotony (MO) says that
knowledge can only decrease. This is not a realistic property for arbitrary
formulas either, for instance knowledge about gp generally does not per-
sist, and this property is also seen to be undesirable if one takes ϕ = ¬Kap.
The validity of (Ka¬Kap ↔ ¬Kap) together with MO would then yield
¬Kap→ [[Γ]] ¬Kap which would imply that a can never learn p.

As well as monotonicity of knowledge, persistence of ignorance may also
be an issue, both as a pre- and as a post-condition. In security protocols
for instance, where agents a and b share some common secret (a key Sab for
instance), what one typically wants is (xxviii), expressing that a can send
private information to b, without revealing the message to another agent c:

Kaϕ ∧ ¬Kbϕ ∧ ¬Kcϕ ∧ 〈〈a, b〉〉 g(Kaϕ ∧Kbϕ ∧ ¬Kcϕ) (xxviii)

Let us conclude this subsection by looking at a typical group way of bring-
ing about knowledge. Recall that distributed knowledge is the knowledge
that is implicitly present in the group: the idea is that it is the knowledge
that would become explicit if all the agents could communicate. More pre-
cisely, DΓϕ holds in group Γ iff there are ψ1, . . . , ψn (n = |Γ|), such that
one has (K1ψ1 ∧ · · · ∧Knψn) and |= (ψ1 ∧ · · · ∧ ψn) → ϕ (cf. [15, 23]). Let
us again look at a simple example, depicted in Figure 2. Again, 1 owns the
dotted arrows, and 2 the straight ones. The valuations of the worlds are not
repeated. Note that in s, we have

s |= K1p ∧K2(p→ q) ∧K1(q → r)

and hence, in s, proposition r is distributed knowledge, i.e., s |= D{1,2}r.

Figure 2 shows how the agents can establish that E{1,2}r: agent 1 first
communicates p to 2, who answers with p → q to which 1 concludes with
q → r. Thus, we obtain:

s |= 〈〈1, 2〉〉♦Er
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Figure 2. Making distributed knowledge explicit

Of course, semantically speaking, one could obtain the end result in one
blow (i.e., one agent taking the system to s3 in one step), but then the
question arises whether there is a natural intuition for such an action. What
we implicitly assumed is that agents can only communicate facts that they
know:

CF Kaϕ→ 〈〈a〉〉 gKaKbϕ ∧ (〈〈a〉〉 gKbϕ→ (Kaϕ ∨Kbϕ))

Now, consider the following property.

DE DΓϕ→ 〈〈Γ〉〉♦EΓϕ

DE states that agents can always cooperate to make distributed knowl-
edge explicit (so that they never have to agree to disagree). If we assume
CF, then from [23] we distill that DE is guaranteed iff the model is finite and
for every state, a unique formula must be true. Axioms closely related to
DE were used to characterise the soundness and completeness of distributed
problem solving systems in [34].

Common knowledge CΓ of a group Γ is also important. In particular,
one is interested in conditions that are sufficient to ensure that

CΓ〈〈Γ〉〉Tϕ (T a temporal operator) (xxix)

Schema (xxix) expresses that it is common knowledge in the group Γ
that it can bring about (next, or sometime, or always) ϕ. Note that this is
the kind of scenario made famous in the coordinated attack problem, and the
associated negative result, to the effect that, if message delivery is not guar-
anteed, then no amount of message exchange will be sufficient to establish
common knowledge [18]. In our case, it is not immediately clear that we have
such a negative result about obtaining common knowledge, since it seems
we can model actions stronger than communication. For instance, we may
have knowledge-producing actions, and also common-knowledge producing
actions, like making an announcement. If a can make an announcement
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p, he can choose a set of worlds in which the transitive closure of all the
accessibility relations only leads to p-worlds.

As a simple example, suppose we have three agents, of which agent 1
knows whether p, i.e., K1p∨K1¬p, and this is common knowledge; it is also
common knowledge that 1 always tells the truth. Now, given that 1 knows
p, we can model that 1 can tell the truth only to 2, or to 2 and 3 separately
or he can announce p in public:

〈〈1〉〉 g[(K2p ∧ ¬K3p) ∨ (K2p ∧K3p ∧ ¬C{2,3}p) ∨ (C{2,3}p)]

Games and Knowledge

The relevance of atel goes much further than communication. In [11],
Knowledge Games are investigated as a particular way of learning in mul-
tiagent systems. Epistemic updates are interpreted in a simple card game,
where the aim of the player is to find out a particular deal d of cards. Having
a winning strategy then easily translates into

d→ 〈〈a〉〉 g(Kad ∧
∧

a6=b

¬Kbd) (xxx)

Of course, when agents make strategic choices, both epistemic pre- and
post-conditions are at stake: a rational agent bases his choices upon his
knowledge, and will typically try to maximize his own knowledge, at the
same time minimize that of his competitors.

A reasonable constraint on rational agents is that they make their choices
depending on their knowledge. This requires first of all that an agent a must
be aware of the choice he has which, in its turn, assumes that he has the same
choices in all ∼a equivalent states. This leads to the semantic requirement
(xxxi):

q ∼a q
′ ⇒ δ(q, a) = δ(q′, a) (xxxi)

This gives us the following syntactic property.

AW 〈〈a〉〉Tϕ↔ Ka〈〈a〉〉Tϕ

However, this does not guarantee yet that the agent makes the same
decision in ∼a-equivalent states. For this, we have to stipulate the following
semantic property.

q ∼a q
′ ⇒ fa(λ · q) = fa(λ · q

′) (xxxii)

It seems that this property has no syntactic counterpart in atel: although
we are able to express that agent a can bring about ϕ, we cannot say that
he will do so.
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6. Model Checking for atel

It is well-known that the branching temporal logic ctl lacks expressive power
— fairness, for example, cannot be expressed in “vanilla” ctl (see e.g., [33]
for a recent discussion on the relative merits of ctl versus other temporal
logics). What makes ctl so attractive from the point of view of formal
methods is that the model checking problem for ctl is computationally
cheap: given a ctl model M of size m and a ctl formula ϕ of size ℓ, the
problem of checking whether or not ϕ is valid in M can be solved in time
O(mℓ). This has made it possible to implement efficient, industrial strength
formal verification tools for checking whether a given finite state system
satisfies a ctl specification [10]. The attractive computational properties
of ctl are known to carry across to the alternating temporal logic of Alur
et al [3]. The fact that model checking for alternating temporal logic is
tractable is particularly intriguing because this problem generalises several
other interesting problems of interest. For example, the realizability problem
—showing that it is possible to implement a system sys that satisfies a
particular specification ϕ— involves model checking the formula 〈〈sys〉〉ϕ in
a “maximal” model, which encodes all possible input/output relations. In
this section, we show that the tractability of model checking for alternating
temporal logic carries over to atel: we present a (deterministic) symbolic
model algorithm for atel that runs in time polynomial in the size of the
formula and the size of the system begin checked. The core of this algorithm
is given in Figure 4: the function eval(. . .) takes as input a formula ϕ of atel

and an alternating epistemic transition system S, and returns as output the
set of states in S in which the formula is satisfied.

The eval(. . .) function is recursive, and makes use of several subsidiary
definitions:

• The function pre : 2Σ × 2Q → 2Q, which takes as input a set of agents
Γ and a set of states Q1 and returns as output the set of all states Q2

such that when the system is in one of the states in Q2, the agents Γ
can cooperate and force the next state to be one of Q1.

• The function img : Q × 2Q×Q → 2Q, which takes as input a state q
and a binary relation R ⊆ Q × Q, and returns the set of states that
are accessible from q via R. That is, img(q,R) = {q′ | qRq′}.

Notice that for any given inputs, both of these functions may be easily
computed in time polynomial in the size of the inputs and the structure
against which they are being computed; the pre function involves a fixed
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point computation that may be carried out in linear time [3]. Given this,
our main results with respect to model checking are as follows.

Theorem 1. The algorithm given in Figure 4 terminates and is correct,

in the sense that it returns the set of states in which the input formula is

satisfied.

Proof. We only do the non-trivial case ϕ = 〈〈Γ〉〉 ψ: we have to show that
with this input, the set Q1 will eventually contain the set of states satisfying
this formula. Let us say that in state q group Γ can maintain ψ for n steps,
notation q |=↑n (〈〈Γ〉〉 gψ), n ≥ −1, if the following holds:

• q |= ⊤, in case n = −1;

• q |= ψ, in case n = 0;

• q |= 〈〈Γ〉〉 g(↑n−1 (〈〈Γ〉〉 gψ) ∧ ψ) ∧ ψ, else.

Intuitively, ↑n (〈〈Γ〉〉 gψ) is true in q if ψ is true in q, and the group Γ has
a strategy to maintain the truth of ψ for at least n steps. For convenience,
for any n ≥ −1, and a given system aets, let Γnψ be the set of states q ∈ Q

for which ↑n (〈〈Γ〉〉 gψ) is true. Note that for all n, Γn+1
ψ ⊆ Γnψ.

To prove the procedure correct, we use the notation of Hoare triples.
A triple {P}S{R} means that, if precondition P is true before statement
S is executed, then afterwards R will hold. An invariant of a while-loop
is a statement that is true before the while-loop is entered and after every
execution of the loop. The invariant of our while-loop will be the statement
I(Q1, Q2):

∃n ≥ −1(Q1 = Γnψ & Q2 = Γn+1
ψ ) (xxxiii)

To prove the while correct, we prove that I is indeed an invariant, and
we also show that the loop terminates. We will do that by proving that
there is an integer N that decreases every round of the loop. Finally, we
show that, if the loop finishes and I is true, that then the desired result
holds: Q1 = {q|q |= 〈〈Γ〉〉 ψ}. In the algorithm in Figure 3, comments ci
give conditions between two statements; we will also do an assignment to
the help-variable N .

Now, one easily sees that the while-loop terminates: the variable N

decreases every loop. We next result proves correctness:

∃n(Γnψ = Q1 & Γn+1
ψ = Q2) & Q1 = Q2 ⇒ Q1 = {q|q |= 〈〈Γ〉〉 ψ}

To prove the displayed formula, suppose the condition in the antecedent
holds. The only non-trivial task is then to show that Q1 ⊆ {q|q |= 〈〈Γ〉〉 ψ}.
So suppose q ∈ Q1. Then q |=↑n+1 (〈〈Γ〉〉 gψ). Pick a q′ that is visited in
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10. elsif ϕ = 〈〈Γ〉〉 ψ then

11. Q1 := Q

12. Q2 := Q3 := eval(ψ, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉)
c1 {Q1 = Γ−1

ψ &Q2 = Γ1
ψ, hence I(Q1, Q2) and Q2 ⊆ Q1}

13. while Q1 6⊆ Q2 do

c2 {∃q(q ∈ Q1, q 6∈ Q2) Put N := |Q1|}
14. Q1 := Q1 ∩Q2

c3. {∃n(Γnψ = Q1 = Q2), Q1 < N}
15. Q2 := pre(Γ, Q1) ∩Q3

c4. {∃n(Γnψ = Q1 & Γn+1

ψ = Q2) (= I(Q1, Q2))}
16. end-while

c5. {∃n(Γnψ = Q1 & Γn+1

ψ = Q2) & Q1 = Q2}
17. return Q1

34. end-function

Figure 3. A fragment of the model checking algorithm, with invariants.

the first step, when Γ maintains ψ in q. Then q′ |=↑n (〈〈Γ〉〉 gψ). Hence,
q′ is also a member of Q1, and hence q′ |=↑n+1 (〈〈Γ〉〉 gψ). But this means
that q |=↑n+2 (〈〈Γ〉〉 gψ). Obviously, for every k, q |=↑n+k (〈〈Γ〉〉 gψ), hence
q |= 〈〈Γ〉〉 ψ.

Theorem 2. The model checking problem for atel is ptime-complete.

Proof. ptime-hardness follows from the fact that atel subsumes atl, for
which the model checking problem is ptime-complete [3]. Ignoring the ob-
vious cases, consider where the input formula is of the form 〈〈Γ〉〉 ψ. Here,
the algorithm should return the set of states from which Γ can cooper-
ate to ensure that ψ is always true. Inspecting the proof of Theorem 1,
one notices that 〈〈Γ〉〉 ψ has a fixed point character: an axiom of atel is
〈〈Γ〉〉 ψ ↔ ψ∧〈〈Γ〉〉 g〈〈Γ〉〉 ψ, so 〈〈Γ〉〉 ψ can be understood as a maximal
solution to the equation

f(x) = ψ ∧ 〈〈Γ〉〉 gx.

where f maps formulae of atel to formulae of atel. The loop in lines (10)–
(17) of figure 4 essentially computes this solution. We showed in Theorem 1
that this while terminates. Note that the computation can in fact be done
in polynomial time.

The cases where ϕ = Kaψ and ϕ = CΓψ simply involve the computation
of the img function at most |Q| times, each computation requiring time at
most O(|Q×Q|3). Hence the algorithm operates in ptime.
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1. function eval(ϕ, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉) returns a subset of Q

2. if ϕ ∈ Π then

3. return {q | q ∈ π(ϕ)}
4. elsif ϕ = ¬ψ then

5. return Q \ eval(ψ, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉)
6. elsif ϕ = ψ1 ∨ ψ2 then

7. return eval(ψ1, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉) ∪ eval(ψ2, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉)
8. elsif ϕ = 〈〈Γ〉〉 eψ then

9. return pre(Γ, eval(ψ, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉))
10. elsif ϕ = 〈〈Γ〉〉 ψ then

11. Q1 := Q

12. Q2 := Q3 := eval(ψ, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉)
13. while Q1 6⊆ Q2 do

14. Q1 := Q1 ∩Q2

15. Q2 := pre(Γ, Q1) ∩Q3

16. end-while

17. return Q1

18. elsif ϕ = 〈〈Γ〉〉ψ1 U ψ2 then

19. Q1 := ∅
20. Q2 := eval(ψ2, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉)
21. Q3 := eval(ψ1, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉)
22. while Q2 6⊆ Q1 do

23. Q1 := Q1 ∪Q2

24. Q2 := pre(Γ, Q1) ∩Q3

25. end-while

26. return Q1

27. elsif ϕ = Kaψ then

28. Q1 := eval(ψ, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉)
29. return {q | img(q,∼a) ⊆ Q1}
30. elsif ϕ = CΓψ then

31. Q1 := eval(ψ, 〈Π,Σ, Q,∼1, . . . ,∼n, π, δ〉)
32. return {q | img(q,∼C

Γ
) ⊆ Q1}

33. end-if

34. end-function

Figure 4. A model checking algorithm for atel.

A Model Checking Case Study

We now give an example of how atel can be used to reason about multiagent
systems, and in particular how atel properties of a system can be verified
using model checking. The system we consider is a train controller (adapted
from [2]). The system contains three agents: two trains, and a controller —
see Figure 5(a). The trains, one of which is Eastbound, the other of which is
Westbound, each occupy their own circular track. At one point, both tracks
pass through a narrow tunnel — there is not room for both trains in the
tunnel at the same time. There are traffic lights on both sides of the tunnel,
which can be either red or green. Both trains are equipped with a signaller,
with which they can send signals to the controller; the idea is that they send
a signal when they approach the tunnel. The controller can receive signals



Cooperation, Knowledge, and Time . . . 149

from both trains, and controls the color of the traffic lights. The task of the
controller is, first and foremost, to ensure that the trains are never both in
the tunnel at the same time; the secondary task is to ensure the “smooth
running” of the system (e.g., the trains can always move through the tunnel,
they cannot be forced into the tunnel, and so on).

r
g

r
g

(a) Overall structure of the train controller sytem (b) Train states, transitions, and signals

s0 s1

away wait

s2 light = green

"I’ve left
tunnelthe tunnel!"

"I’ve arrived at the tunnel!"
tunnel

controller
traintrain

eastbound westbound

Figure 5. The train controller system.

The train controller system was modelled by Alur and colleagues using
a prototype model checking system for atl called mocha [4, 2]. mocha

takes as input an alternating transition system described using a (relatively)
high level language called reactivemodules. The system is then capable
of either randomly simulating the execution of this system, or else of taking
formulae of atl and automatically checking their truth or falsity in the
transition system. As well as atl formulae, mocha is capable of invariant

checking — of checking whether a given property is true across all reachable
states of the system. Although in its current implementation, mocha is
capable of model checking arbitrary atl formulae, and hence of determining
whether or not there exists a collective strategy to achieve some multiagent
goal, it does not exhibit such a strategy; it merely announces whether one
exists.

In the model developed by Alur and colleagues, each train was repre-
sented by an automaton that could be in one of three states (see Figure 5(b)):
“away” (state s0 — the initial state of the train); “wait” (state s1 — waiting
for a green light to enter the tunnel); and “tunnel” (state s2 — the train is
in the tunnel). Transitions between states may be guarded: for example, in
order for a train to go from s1 to s2, the condition “signal is green” must be
true. If a state transition is not labelled with a condition, then the condition
is assumed to be always true. In addition, when an agent makes a transit
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from one state to another, it may send a signal, as indicated by dashed lines
in Figure 5(b). So, for example, when a train is entering the tunnel, it sends
a signal to the controller to this effect. Note that just because a train can

make a state transition does not necessarily mean it does so: it may be
“lazy” (in the terminology of mocha), staying in the same state.

The train controller itself starts by setting both traffic lights to red.
When a train approaches the tunnel (indicated by an “entering the tunnel”
signal), the controller checks whether the opposing light is red; if it is, then
the light for the approaching train is set green, allowing access. When a
train moves out of the tunnel (also indicated by a signal to the controller),
the controller sets the light associated with this train to red.

In [2], various possible atl properties of this system are discussed, and
may be automatically checked using mocha. However, currently mocha

does not support the knowledge modalities of atel. We now discuss a
preliminary approach we have developed to check knowledge properties using
mocha, which involves translating knowledge formulae into atl. The idea
is inspired by translation-based theorem proving methods for modal logics,
which exploit the fact that formulae of modal logic can be automatically
translated into first-order logic; the theory of the approach is discussed in
more detail in [24].

The main component of atel missing from mocha is the accessibility
relations used to give a semantics to knowledge. Where do these relations
come from? We use the interpreted systems approach of [15]. Given a state
q ∈ Q and agent a ∈ Σ, we write statea(q) to denote the local state of agent
a when the system is in state q. The agent’s local state includes its program
counter and all its local variables. We then define the accessibility relation
∼a as follows:

q ∼a q
′ iff statea(q) = statea(q

′). (xxxiv)

We emphasise that this approach is well known and widely used in the
distributed systems and epistemic logic communities. So, suppose we want
to check whether, when the system is in some state q, agent a knows ϕ, i.e.,
whether S, q |= Kaϕ. Then by (xxxiv), this amounts to showing that

∀q′ ∈ Q s.t. statea(q) = statea(q
′) we have S, q′ |= ϕ. (xxxv)

We can represent such properties directly as formulae of atl, which can
be automatically checked using mocha. In order to do this, we need some
additional notation:

• we express the value of statea(q) as a constant s; and
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• we have a logical variable statea that denotes, in any given state q, the
value of statea(q).

Then we can express (xxxv) as the following atl invariant formula:

〈〈〉〉 ((statea = s)→ ϕ) (xxxvi)

Note that in saying that (xxxvi) is an invariant, we are stating that it must
hold across all reachable states of the system. Another way of reading (xxxvi)
is as “agent a’s state s carries the information that ϕ”.

Such formulae can be directly written as properties that can be checked
using mocha:

<< >>G((stateA = s) -> phi)

The G here is the mocha text form of the “always” operator (“ ”).

Turning back to the train example, we now show how a number of knowl-
edge properties of the system were proven. First, consider the property that
“when one train is in the tunnel, it knows the other train is not in the
tunnel”:

(statea = tunnel)→ Ka(stateb 6= tunnel) (a 6= b ∈ {E,W})

Translating into the mocha text form of atl this schema gives the following
two formulae

<<>> G ((stateE=tunnel) => ~(stateW=tunnel))

<<>> G ((stateW=tunnel) => ~(stateE=tunnel))

which were successfully model checked.

We can also show that when a train is away from the tunnel, it does not
know whether or not the other train is in the tunnel.

〈〈〉〉 (statea 6= tunnel)→
[(¬Ka(stateb = tunnel)) ∧ (¬Ka(stateb 6= tunnel))]

(a 6= b ∈ {E,W})

For the westbound train, we do this by checking the following formulae, both
of which fail.

<<>> G ~(stateE=tunnel) => (stateW=tunnel)

<<>> G ~(stateE=tunnel) => ~(stateW=tunnel)
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We can conclude that the only way a train knows whether the other train is

in the tunnel is if it is in the tunnel itself (in which case it knows the other
is not).

〈〈〉〉 [(Ka(stateb 6= tunnel))↔ (statea = tunnel)] a 6= b ∈ {E,W}

We can also check properties relating knowledge and ability. For exam-
ple, we can prove that an agent always knows that the system can cooperate
with it to allow it eventual access.

〈〈〉〉 Ka〈〈Σ〉〉♦(statea = tunnel) (a ∈ {E,W})

Since we wish to show that an agent always knows something, the quantifi-
cation over agent a’s knowledge-accessible states is across all states of the
system. We can thus write, for the westbound train (C is the controller, and
F is the mocha form of “♦”):

<<>> G <<C,TrainW,TrainE>> F (stateW=tunnel)

In fact, since we are quantifying over all states of the system, this gives us
that it is always common knowledge that the grand coalition of all agents can

cooperate to eventually get train a in the tunnel :

〈〈〉〉 CΣ〈〈Σ〉〉♦(statea = tunnel) (a ∈ {E,W}) (xxxvii)

We now consider formulae that express the fact that “one agent causes
another agent to know something”. The following formula means that Γ can
cooperate to make a know ϕ.

〈〈Γ〉〉♦Kaϕ

Without quantification, which we do not have in mocha, this property is
not expressed so easily — but it is possible. To see how we might do this,
assume that agent a can be in n distinct states s1, . . . , sn. Then saying that
Γ can bring about knowledge of ϕ in agent a is the same as saying:

• agent a’s state s1 carries information ϕ and Γ can ensure that a enters
s1; or

• agent a’s state s2 carries information ϕ and Γ can ensure that a enters
s2; or. . .

• agent a’s state sn carries information ϕ and Γ can ensure that a enters
sn.
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This observation allows us to rewrite 〈〈Γ〉〉♦Kaϕ in atl as:

∨

1≤i≤n

(〈〈〉〉 ((statea = si)→ ϕ) ∧ 〈〈Γ〉〉♦statea = si)

Such atl formulae can be directly coded and checked in mocha.
The first such property we prove relates to a train’s knowledge about

whether or not the other train is in the tunnel. Consider: is it possible to
cause a train to know that the other is not in the tunnel? We saw above
that when one train is in the tunnel, it knows that the other is not; but
when a train is away from the tunnel, it has no definite knowledge about the
position of the other train. So, for a train to know that the other train is not
in the tunnel, it must be in the tunnel. The first property we can check is
that the grand coalition of agents can cooperate to make a train know that
the other is not in the tunnel:

〈〈〉〉 〈〈Σ〉〉♦Ka(stateb 6= tunnel) (a 6= b ∈ {E,W})

For the westbound train, this property when translated and slightly simpli-
fied becomes the following property, which can readily be checked in mocha.

<<>>G (<<TrainW,C,TrainE>> F (stateW=tunnel))

Interestingly, no other subset of agents can bring this knowledge about —
because no other subset of agents can be guaranteed to get the westbound
train into the tunnel. Thus, for example, the following property does not
hold.

〈〈〉〉 〈〈a〉〉♦Ka(stateb 6= tunnel) (a 6= b ∈ {E,W})

From (xxxvii), we know that it is always common knowledge that the entire
system can cooperate to get a train in the tunnel. We can thus conclude
that it is always common knowledge that the entire system can cooperate
to eventually cause train a to know that train b is not in the tunnel:

〈〈〉〉 CΣ〈〈Σ〉〉♦Ka(stateb 6= tunnel) (a 6= b ∈ {E,W})

7. Conclusion

In this paper, we have introduced a natural extension to the Alternating
Temporal Logic of Alur and colleagues, which includes modalities for rep-
resenting knowledge, common knowledge, and the like. Using a simple ex-
ample, we illustrated how an existing model checker can be put to work to
verify formulas in atel.
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In recent years, there has been much interest in the use of logic for
representing and reasoning about game-like interactions. Examples include
the development of logics intended for reasoning about coalitional power in
games [31]; Goranko exploited the similarity between coalition logic and atl

to give a completeness proof for a subsystem of atl [16]. This might suggest
that Pauly’s [31] may give us hints to explore the complexity of atl and
atel further. Alternatively, our work on atel may provide ways to enrich
coalition logic with epistemic notions. In spite of the close relationship
between the two frameworks, there are also differences, of which the details
have yet to be sorted out.

Also of relevance to our work is the use of dynamic epistemic logics
to capture properties of games [22, 6, 11, 5], Bonanno’s work on the rela-
tionship of branching time logic to extensive form games [8], (building on
earlier work by Ladner and colleagues [25, pp.208–209]), and of course the
use of epistemic logic for capturing such game theoretic concepts as perfect
recall [15].

Recently, there has been a lot of emphasis on modelling knowledge and
its dynamics in one and the same framework [11, 5], which, in turn, also
takes the Multi Agent System approaches to belief revision seriously, since
it can model agents updating information about each other’s information.
It is clear that atel offers a framework to facilitate this. Moreover, many
impressive platforms have emerged that integrate (the dynamics of) epis-
temics, rationality, and decision making. Enhancement of the work begun
in this paper might further the computational relevance of such integrated
theories. This is especially so, since the focus of the mentioned platforms
has thus far been on formalising epistemic notions in game-theoretic set-
tings. The question of how to use these formalisations in finding winning
strategies in games of imperfect information for example, has only recently
been asked (cf. [12]).
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