
Back to Direct Style �Olivier Danvy ��Department of Computer ScienceAarhus University ���(danvy@daimi.aau.dk)February 22, 1994AbstractThis paper describes the transformation of �-terms from continuation-passing style(CPS) to direct style. This transformation is the left inverse of Plotkin's left-to-right call-by-value CPS encoding for the pure �-calculus.Not all �-terms are CPS terms, and not all CPS terms encode a left-to-right call-by-value evaluation. These CPS terms are characterized here; they can be mappedback to direct style. In addition, the two transformations | to continuation-passing style and to direct style | are factored using a language where all inter-mediate values are named and their computation is sequentialized. The issue ofproper tail-recursion is also addressed.Much work has been devoted to transforming programs into continuation-passing style(CPS). (For a recent survey, see Talcott's special issue on continuations [25].) In a CPSprogram, all procedures take an extra parameter | the continuation | which is a functionalaccumulator representing \the rest of the computation". As a consequence, all calls are tail-calls. By contrast, programs that are not in CPS (e.g., programs before CPS transformation)are said to be in \direct style" (DS). Their procedure calls can occur anywhere (i.e., notnecessarily in tail position).In contrast to the work mentioned above, the present paper studies the transformation ofCPS programs into DS. For brevity, only the pure (call-by-value, with left-to-right evaluation)�-calculus is considered. A more thorough study (i.e., addressing conditional expressions,primitive operations, block structure, and recursive de�nitions) is available in a technicalreport [7].�Science of Computer Programming, Vol. 22, pp. 183{195. A expanded version is available as Technicalreport CIS-92-1, Department of Computing and Information Sciences, Kansas State University, Manhattan,Kansas 66506, USA. An earlier version of this paper appeared in the Proceedings of the 4th European Sym-posium on Programming, Bernd Krieg-Br�uckner, editor, number 582 in Lecture Notes in Computer Science,pages 130{150, Rennes, France, February 1992.��This project was initiated during a summer visit to Xerox PARC in 1991 and carried out while theauthor was working at Kansas State University. This paper was completed during a spring visit to the Schoolof Computer Science of Carnegie Mellon University in 1993, and expurgated while at Aarhus University. Thiswork was partly supported by NSF under grant CCR-9102625 and by the DART project (Design, Analysisand Reasoning about Tools) of the Danish Research Councils.���Ny Munkegade, 8000 Aarhus C, Denmark. 1

1 From direct style to continuation-passing style and backThe BNF of the pure (direct-style) �-calculus reads as follows.r 2 DRoot | DS terms r ::= ee 2 DExp | DS expressions e ::= e0 e1 j tt 2 DTriv | DS trivial expressions t ::= x j �x:rx 2 Ide | identi�ersFigure 1 presents a one-pass continuation-passing style (CPS) transformer for the pure�-calculus with call-by-value evaluation from left to right. This transformer is an optimizedversion of Plotkin's CPS transformer [21]. It was derived in an earlier work [8] and is onlyrephrased slightly here to match the syntactic domains. The result of transforming a DS termr into CPS is given by C[[r]].These equations can be read as a two-level speci�cation �a la Nielson and Nielson [19] andthus they can be transliterated in any functional-programming language. Operationally, theoverlined �'s and @'s correspond to functional abstractions and applications in the transla-tion program (and coincide with the so-called \administrative reductions" [21]), while theunderlined �'s and @'s represent abstract-syntax constructors.1The corresponding BNF of CPS terms reads as follows. (NB: the original identi�ers xcoming from the DS term are distinguished from the fresh identi�ers v and k introduced byC. A single identi�er k is su�cient.)r 2 CRoot | CPS terms r ::= �k:ee 2 CExp | CPS (serious) expressions e ::= t0 t1 (�v:e) j k tt 2 CTriv | CPS trivial expressions t ::= x j �x:r j vx 2 Ide | source identi�ersv; k 2 Var | fresh variablesThe distinction between \serious" and \trivial" expressions is due to Reynolds [22]. Seriousterms are passed a continuation | their evaluation may diverge. Trivial terms are passed toa continuation | their evaluation cannot diverge.A CPS term encodes an evaluation order | here call-by-value | but it also encodesa sequencing order | here from left to right. This sequencing order imposes occurrenceconditions over the formal parameters of continuations. The conditions for left-to-right call-by-value are reproduced in Figure 2. Transforming a DS term r with C yields a CPS termthat satis�es the judgement `CRoot C[[r]]since the transformation C encodes left-to-right call-by-value. Such a CPS term can be mappedback to direct style with the transformation D of Figure 4.21For example, the two-level expression (�x:(�y:y)@ x)@ z evaluates to the expression (�y:y) z.2D can be derived as follows [7]. Specialize the direct-style denotational semantics of the �-calculus toCPS terms. Modify the denotation of applications to apply functions to their argument and to an identitycontinuation, and send the result to the continuation. This suggests an obvious simpli�cation: to apply2

C : DRoot ! CRootC[[e]] = �k:CDExp[[e]] (�t:k@ t)CDExp : DExp ! [CTriv ! CExp] ! CExpCDExp[[e0 e1]] � = CDExp[[e0]] (�t0:CDExp[[e1]] (�t1:(t0@ t1)@ (�v:�@ v)))CDExp[[t]] � = �@ (CDTriv[[t]])CDTriv : DTriv ! CTrivCDTriv[[x]] = xCDTriv[[�x:r]] = �x:C[[r]]where k and the v's are fresh variables.Figure 1: Call-by-value, left-to-right CPS transformation for the pure �-calculus� `CExp e`CRoot �k:e� `CTriv t1 ; �1 �1 `CTriv t0 ; �0 �0; v `CExp e� `CExp t0 t1 (�v:e) � `CTriv t ; �� `CExp k t� `CTriv x ; � `CRoot r� `CTriv �x:r ; � �; v `CTriv v ; �Figure 2: Occurrence conditions over formal parameters of continuationsThe CPS transformation of Figure 1 performs a particular tree traversal | post�x andleft-to-right | yielding a
attened tree [6]. So detecting whether a CPS term encodes acall-by-value and left-to-right evaluation order amounts to parsing a string in reversed-Polish form: with a stack. This is done by scanning the CPS term with a push-down list� holding the formal parameters of continuations. � denotes the empty list. See Figure 3for an example. 3

C[[(f x) ((g x) (h x))]]= �k:f x (�v1:g x (�v2:h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5)))))�; v5 `CTriv v5 ; ��; v5 `CExp k v5�; v1 `CTriv v1 ; ��; v1; v4 `CTriv v4 ; �; v1�; v1; v4 `CExp v1 v4 (�v5:k v5)�; v1; v2 `CTriv v2 ; �; v1�; v1; v2; v3 `CTriv v3 ; �; v1; v2�; v1; v2; v3 `CExp v2 v3 (�v4:v1 v4 (�v5:k v5))�; v1; v2 `CTriv h ; �; v1; v2�; v1; v2 `CTriv x ; �; v1; v2�; v1; v2 `CExp h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5)))�; v1 `CTriv g ; �; v1�; v1 `CTriv x ; �; v1�; v1 `CExp g x (�v2:h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5))))� `CTriv f ; �� `CTriv x ; �� `CExp f x (�v1:g x (�v2:h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5)))))`CRoot �k:f x (�v1:g x (�v2:h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5)))))Figure 3: Derivation tree for a CPS termD : CRoot ! DRootD[[�k:e]] = DCExp[[e]] �emptyDCExp : CExp ! [Var ! DExp] ! DExpDCExp[[t0 t1 (�v:e)]] � = DCExp[[e]] �[v 7! (DCTriv[[t0]] �)@ (DCTriv[[t1]] �)]DCExp[[k t]] � = DCTriv[[t]] �DCTriv : CTriv ! [Var ! DExp] ! DExpDCTriv[[x]] � = xDCTriv[[�x:r]] � = �x:D[[r]]DCTriv[[v]] � = �@ vFigure 4: Call-by-value DS transformation for the pure �-calculus4

� `CExp e . e0`CRoot �k:e . e0 � `CTriv t . t0 ; �� `CExp k t . t0� `CTriv t1 . t01 ; �1 �1 `CTriv t0 . t00 ; �0 �0; (t00@ t01) `CExp e . e0� `CExp t0 t1 (�v:e) . e0� `CTriv x . x ; � `CRoot r . r0� `CTriv �x:r . �x:r0 ; � �; a `CTriv v . a ; �Figure 5: Alternative call-by-value DS transformation for the pure �-calculusFor example, a CPS term such as�k:k (�x:�k:f x (�v1:g x (�v2:v1 v2 (�v3:k v3))))satis�es the occurrence conditions over formal parameters of continuations and thus it can bemapped back to direct style with D, yielding�x:(f x) (g x):Figure 4 presents D equationally to match C in Figure 1. Figure 5 presents it in logicalform to match Figure 2. A CPS term r is transformed into a DS term r0 whenever r satis�esthe occurrences conditions over formal parameters of continuations:`CRoot r`CRoot r . r0The logical presentation makes it more apparent that for satisfactory CPS terms, the substi-tution carried out with an environment � in Figure 4 can actually be carried out with a stack� in Figure 5.But most CPS terms break the stack discipline of Figure 2. For example, a term such as�k:k (�x:�k:g x (�v2:f x (�v1:v1 v2 (�v3:k v3))))does not satisfy the occurrence conditions over formal parameters of continuations because(g x) is computed before (f x) but its result v2 is used after the result v1 of (f x).This unsatisfactory CPS term, however, can be rewritten as another one satisfying theoccurrence conditions of Figure 2:�k:k (�x:�k:g x (�v2:[�v:�k:f x (�v1:v1 v (�v4:k v4))] v2 (�v3:k v3)))functions to their argument only instead of to both their argument and the identity continuation. By thesame token, since the continuation identi�er k always denotes the identity continuation, its occurrences canbe simpli�ed away. The resulting semantics can be taken as a syntax-directed translation D of the (CPS)�-calculus into the (DS) �-calculus. 5

This rewritten CPS term can be mapped back to direct style with D, yielding�x:[�v:(f x) v] (g x)where we have used brackets instead of parentheses to improve readability. The rewriting issimply an �-expansion in CPS, ensuring that (g x) is evaluated before (f x).2 Staging the CPS and the DS transformationsThe e�ect of the CPS transformation can be separated into stages [6, 16, 26]. Starting witha DS term, all intermediate values can be named with a let form, their computation canbe sequentialized, and all trivial terms can be coerced into serious ones with a return form.Then continuations can be introduced without any further syntax shu�ing. Figure 6 presentsthe encoding of �-terms into an intermediate �-language containing return and let. Thecorresponding BNF of intermediate terms reads as follows.r 2 IRoot | intermediate terms r ::= ee 2 IExp | intermediate (serious) expressions e ::= let v = t0 t1 in e j return(t)t 2 ITriv | intermediate trivial expressions t ::= x j �x:r j vx 2 Ide | source identi�ersv 2 Var | fresh variablesUnfolding the form let v = s in eas (�v:e)@ si.e., by substituting s for v in e (which is safe because the let parameters occur similarly asthe continuation parameters in Figure 2) undoes the encoding of Figure 6 and thus yields aDS term (see Figure 8 for details3). Translating the let form ass@(�v:e)amounts to introducing continuations and thus yields a CPS term (see Figure 9 for details).The situation is summarized in the following diagram.DRoot IRoot CRootEdBBBBBBBBBB!! "/ C ��FBBBBBBBBBB !!BaaBBBBBBBBBB EcaaBBBBBBBBBB oDOO
3Again, Figure 8 could be expressed in logical form as Figures 2 and 5, and the substitution could be carriedout with a stack, as in Figure 5. 6

Ed : DRoot ! IRootEd[[e]] = EDExpd [[e]] (�t:return(t))EDExpd : DExp ! [ITriv ! IExp] ! IExpEDExpd [[e0 e1]] � = EDExpd [[e0]] (�t0:EDExpd [[e1]] (�t1:let v = t0@ t1 in �@ v))EDExpd [[t]] � = �@ (EDTrivd [[t]])EDTrivd : DTriv ! ITrivEDTrivd [[x]] = xEDTrivd [[�x:r]] = �x:Ed[[r]]where the v's are fresh variables.Figure 6: DS encoding into a �-language with return and let
Ec : CRoot ! IRootEc[[�k:e]] = ECExpc [[e]]ECExpc : CExp ! IExpECExpc [[t0 t1 (�v:e)]] = let v = (ECTrivc [[t0]])@ (ECTrivc [[t1]]) in ECExpc [[e]]ECExpc [[k t]] = return(ECTrivc [[t]])ECTrivc : CTriv ! IExpECTrivc [[x]] = xECTrivc [[�x:r]] = �x:Ec[[r]]ECTrivc [[v]] = vFigure 7: CPS encoding into a �-language with return and let (continuation elimination)7

B : IRoot ! DRootB[[e]] = BIExp[[e]] �emptyBIExp : IExp ! [Var ! DExp] ! DExpBIExp[[let v = t0 t1 in e]] � = BIExp[[e]] �[v 7! (BITriv[[t0]]�)@ (BITriv[[t1]]�)]BIExp[[return(t)]] � = BITriv[[t]]�BITriv : ITriv ! DTrivBITriv[[x]]� = xBITriv[[�x:r]]� = �x:B[[r]]BITriv[[v]]� = �@ vFigure 8: Back to direct styleF : IRoot ! CRootF [[e]] = �k:F IExp[[e]] kF IExp : IExp ! Var ! CExpF IExp[[let v = t0 t1 in e]] k = (F ITriv[[t0]]@F ITriv[[t1]])@ (�v:F IExp[[e]] k)F IExp[[return(t)]] k = k@ (F ITriv[[t]])F ITriv : ITriv ! CTrivF ITriv[[x]] = xF ITriv[[�x:r]] = �x:F [[r]]F ITriv[[v]] = vwhere k is a fresh variable.Figure 9: Forth to continuation-passing style (continuation introduction)8

Going back to the example of Section 1, Ed transforms the DS term�x:(f x) (g x)into the intermediate-style term �x: let v1 = f xin let v2 = g xin let v3 = v1 v2in return(v3)which F transforms into the CPS term�k:k (�x:�k:f x (�v1:g x (�v2:v1 v2 (�v3:k v3)))):Ec maps this CPS term into the intermediate-style term above, and B maps this intermediate-style term back to the DS term above.The mapping between CPS terms and intermediate terms is a bijection [14]. The inter-mediate terms coincide with Moggi's \monadic" language, B in Figure 8 corresponds to theidentity monad, and F in Figure 9 corresponds to the continuation monad [11, 13, 18]. Fi-nally, coercing a CPS term into another one that satis�es the occurrence conditions over theparameters of continuations, i.e., �-expansion, corresponds to using a strict binding constructin the DS �-calculus.3 Proper tail recursionSometimes it is important to process tail-calls properly, e.g., in the implementation of aprogramming language such as Scheme [4]. The transformations C and Ed are not properlytail-recursive encodings. This is easily seen in the common example of Sections 1 and 2:In the body of the �-abstraction �x:(f x) (g x)the outer call is a tail-call | i.e., the result of this call is also the result of the call to the�-abstraction. However, in the intermediate encoding,�x: let v1 = f xin let v2 = g xin let v3 = v1 v2in return(v3)the call v1 v2 is not a tail-call anymore. A properly tail-recursive encoding would be thefollowing one. �x: let v1 = f xin let v2 = g xin v1 v29

Similarly, in the CPS encoding,�k:k (�x:�k:f x (�v1:g x (�v2:v1 v2 (�v3:k v3))))the continuation of v1 v2 intensionally is not the same as k. A properly tail-recursive encodingwould be the following one.�k:k (�x:�k:f x (�v1:g x (�v2:v1 v2 k)))Such an encoding can make a signi�cant di�erence in a CPS compiler such as the one forStandard ML of New Jersey [1] (Trevor Jim and Andrew Appel, personal communication,San Francisco, California, June 1992).Here are the BNFs of intermediate terms and of CPS terms that enable a properly tail-recursive encoding:r 2 IRoot r ::= ee 2 IExp e ::= let v = t0 t1 in e j t0 t1 j return(t)t 2 ITriv t ::= x j �x:r j vx 2 Idev 2 Varr 2 CRoot r ::= �k:ee 2 CExp e ::= t0 t1 (�v:e) j t0 t1 k j k tt 2 CTriv t ::= x j �x:r j vx 2 Idev; k 2 VarThe diligent reader is left with the exercise of updating the �gures to match these twoBNFs. (Hint: see [8, Fig. 3].)4 Related workSabry and Felleisen's recent work on equational reasoning about CPS programs [23] aims atunderstanding precisely what in CPS transformation enables, e.g., compile-time optimiza-tions. This leads them to de�ne an \un-CPSer" that only partly corresponds to the DStransformer for the pure �-calculus in that:1. It does not consider the occurrence conditions over the formal parameters of continu-ations (see Figure 2). This is because the un-CPSer is not used as a source-to-sourceprogram transformer but rather aims at relating terms that have the same meaning.2. It performs the steps of Figure 7 but represents let expressions as �-redexes. Also, itdoes not use return expressions.3. It does not perform the administrative reductions corresponding to unfolding the letexpressions (and enabled by the occurrence conditions over the formal parameters ofcontinuations). 10

Sabry and Felleisen too notice and rely on the uniqueness of a continuation identi�er k. TheirCPS transformer also performs additional reductions for DS �-redexes.In \Back to Direct Style II" [9], the unicity of k is relaxed by letting any lexically visiblecontinuation identi�er be applied, instead of only the current one. In the DS world, thisamounts to introducing control operators such as call/cc to declare a �rst-class continuationand throw to send a value to a �rst-class continuation. More generally, relaxing the CPStexture to allow non-tail calls would amount to introducing control operators and delimiterssuch as shift and reset [8, 10, 11, 15].Other stagings of the CPS transformation are possible. For example, it is possible to (1)name intermediate values, (2) introduce named continuations, and (3) inline these continua-tions, obtaining a CPS term. In fact, it is even possible to factor out sequentialization fromthe CPS transformation by creating a new step (2'). This new step amounts to deciding inwhich order the intermediate continuations should be inlined. Each of these steps is reversible.This staging is described elsewhere [16].Intermediate languages such as the one of Section 2 are currently being investigated asan alternative to CPS. Flanagan et al. address the problem of compiling with and withoutcontinuations [12]. Finally, to have or not to have continuations can in
uence the precisionof
ow analyses, as studied elsewhere [5, 24].AcknowledgementsKaroline Malmkj�r kindly con�rmed the BNF of CPS terms using abstract interpretation[17]. Frank Pfenning demonstrated his Elf system [20] by checking the contents of the �gures.I am also grateful to Andrzej Filinski, John Hatcli�, and Julia Lawall for their interaction.The diagram of Section 2 was drawn with Kristo�er Rose's XY-pic package.References[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.[2] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM Symposium onPrinciples of Programming Languages, Portland, Oregon, January 1994. ACM Press.[3] William Clinger, editor. Proceedings of the 1992 ACM Conference on Lisp and FunctionalProgramming, LISP Pointers, Vol. V, No. 1, San Francisco, California, June 1992. ACMPress.[4] William Clinger and Jonathan Rees (editors). Revised4 report on the algorithmic lan-guage Scheme. LISP Pointers, IV(3):1{55, July-September 1991.[5] Charles Consel and Olivier Danvy. For a better support of static data
ow. In JohnHughes, editor, Proceedings of the Fifth ACM Conference on Functional Programmingand Computer Architecture, number 523 in Lecture Notes in Computer Science, pages496{519, Cambridge, Massachusetts, August 1991.11

[6] Olivier Danvy. Three steps for the CPS transformation. Technical Report CIS-92-2,Kansas State University, Manhattan, Kansas, December 1991.[7] Olivier Danvy. Back to direct style (revised and extended version). Technical ReportCIS-92-1, Kansas State University, Manhattan, Kansas, 1993.[8] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transfor-mation. Mathematical Structures in Computer Science, 2(4):361{391, December 1992.[9] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. InClinger [3], pages 299{310.[10] Matthias Felleisen. The theory and practice of �rst-class prompts. In Jeanne Ferrante andPeter Mager, editors, Proceedings of the Fifteenth Annual ACM Symposium on Principlesof Programming Languages, pages 180{190, San Diego, California, January 1988.[11] Andrzej Filinski. Representing monads. In Boehm [2], pages 446{457.[12] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essenceof compiling with continuations. In David W. Wall, editor, Proceedings of the ACMSIGPLAN'93 Conference on Programming Languages Design and Implementation, SIG-PLAN Notices, Vol. 28, No 6, pages 237{247, Albuquerque, New Mexico, June 1993.ACM Press.[13] John Hatcli� and Olivier Danvy. A generic account of continuation-passing styles. InBoehm [2], pages 458{471.[14] Julia L. Lawall. Proofs by structural induction using partial evaluation. In David A.Schmidt, editor, Proceedings of the Second ACM SIGPLAN Symposium on Partial Eval-uation and Semantics-Based Program Manipulation, pages 155{166, Copenhagen, Den-mark, June 1993. ACM Press.[15] Julia L. Lawall. PhD thesis, Computer Science Department, Indiana University, Bloom-ington, Indiana, USA, 1994. Forthcoming.[16] Julia L. Lawall and Olivier Danvy. Separating stages in the continuation-passing styletransformation. In Susan L. Graham, editor, Proceedings of the Twentieth Annual ACMSymposium on Principles of Programming Languages, pages 124{136, Charleston, SouthCarolina, January 1993. ACM Press.[17] Karoline Malmkj�r. Abstract Interpretation of Partial-Evaluation Algorithms. PhDthesis, Department of Computing and Information Sciences, Kansas State University,Manhattan, Kansas, USA, March 1993.[18] Eugenio Moggi. Notions of computation and monads. Information and Computation,93:55{92, 1991. 12

[19] Flemming Nielson and Hanne Riis Nielson. Two-level semantics and code generation.Theoretical Computer Science, 56(1):59{133, January 1988. Special issue on ESOP'86,the First European Symposium on Programming, Saarbr�ucken, March 17-19, 1986.[20] Frank Pfenning. Logic programming in the LF logical framework. In G�erard Huetand Gordon Plotkin, editors, Logical Frameworks, pages 149{181. Cambridge UniversityPress, 1991.[21] Gordon D. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical ComputerScience, 1:125{159, 1975.[22] John C. Reynolds. De�nitional interpreters for higher-order programming languages. InProceedings of 25th ACM National Conference, pages 717{740, Boston, 1972.[23] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passingstyle. In Clinger [3], pages 288{298.[24] Amr Sabry and Matthias Felleisen. Is continuation-passing useful for data
ow analysis?In Vivek Sarkar, editor, Proceedings of the ACM SIGPLAN'94 Conference on Program-ming Languages Design and Implementation, SIGPLAN Notices (to appear), Orlando,Florida, June 1994. ACM Press.[25] Carolyn L. Talcott, editor. Special issue on continuations, LISP and Symbolic Compu-tation, Vol. 6, Nos. 3/4 and Vol. 7, No. 1. Kluwer Academic Publishers, 1993-1994.[26] Daniel Weise. Advanced compiling techniques. Course notes at Stanford University,1990.

13

