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1 From direct style to continuation-passing style and backThe BNF of the pure (direct-style) �-calculus reads as follows.r 2 DRoot | DS terms r ::= ee 2 DExp | DS expressions e ::= e0 e1 j tt 2 DTriv | DS trivial expressions t ::= x j �x:rx 2 Ide | identi�ersFigure 1 presents a one-pass continuation-passing style (CPS) transformer for the pure�-calculus with call-by-value evaluation from left to right. This transformer is an optimizedversion of Plotkin's CPS transformer [21]. It was derived in an earlier work [8] and is onlyrephrased slightly here to match the syntactic domains. The result of transforming a DS termr into CPS is given by C[[r]].These equations can be read as a two-level speci�cation �a la Nielson and Nielson [19] andthus they can be transliterated in any functional-programming language. Operationally, theoverlined �'s and @'s correspond to functional abstractions and applications in the transla-tion program (and coincide with the so-called \administrative reductions" [21]), while theunderlined �'s and @'s represent abstract-syntax constructors.1The corresponding BNF of CPS terms reads as follows. (NB: the original identi�ers xcoming from the DS term are distinguished from the fresh identi�ers v and k introduced byC. A single identi�er k is su�cient.)r 2 CRoot | CPS terms r ::= �k:ee 2 CExp | CPS (serious) expressions e ::= t0 t1 (�v:e) j k tt 2 CTriv | CPS trivial expressions t ::= x j �x:r j vx 2 Ide | source identi�ersv; k 2 Var | fresh variablesThe distinction between \serious" and \trivial" expressions is due to Reynolds [22]. Seriousterms are passed a continuation | their evaluation may diverge. Trivial terms are passed toa continuation | their evaluation cannot diverge.A CPS term encodes an evaluation order | here call-by-value | but it also encodesa sequencing order | here from left to right. This sequencing order imposes occurrenceconditions over the formal parameters of continuations. The conditions for left-to-right call-by-value are reproduced in Figure 2. Transforming a DS term r with C yields a CPS termthat satis�es the judgement `CRoot C[[r]]since the transformation C encodes left-to-right call-by-value. Such a CPS term can be mappedback to direct style with the transformation D of Figure 4.21For example, the two-level expression (�x:(�y:y)@ x)@ z evaluates to the expression (�y:y) z.2D can be derived as follows [7]. Specialize the direct-style denotational semantics of the �-calculus toCPS terms. Modify the denotation of applications to apply functions to their argument and to an identitycontinuation, and send the result to the continuation. This suggests an obvious simpli�cation: to apply2



C : DRoot ! CRootC[[e]] = �k:CDExp[[e]] (�t:k@ t)CDExp : DExp ! [CTriv ! CExp] ! CExpCDExp[[e0 e1]] � = CDExp[[e0]] (�t0:CDExp[[e1]] (�t1:(t0@ t1)@ (�v:�@ v)))CDExp[[t]] � = �@ (CDTriv[[t]])CDTriv : DTriv ! CTrivCDTriv[[x]] = xCDTriv[[�x:r]] = �x:C[[r]]where k and the v's are fresh variables.Figure 1: Call-by-value, left-to-right CPS transformation for the pure �-calculus� `CExp e`CRoot �k:e� `CTriv t1 ; �1 �1 `CTriv t0 ; �0 �0; v `CExp e� `CExp t0 t1 (�v:e) � `CTriv t ; �� `CExp k t� `CTriv x ; � `CRoot r� `CTriv �x:r ; � �; v `CTriv v ; �Figure 2: Occurrence conditions over formal parameters of continuationsThe CPS transformation of Figure 1 performs a particular tree traversal | post�x andleft-to-right | yielding a 
attened tree [6]. So detecting whether a CPS term encodes acall-by-value and left-to-right evaluation order amounts to parsing a string in reversed-Polish form: with a stack. This is done by scanning the CPS term with a push-down list� holding the formal parameters of continuations. � denotes the empty list. See Figure 3for an example. 3



C[[(f x) ((g x) (h x))]]= �k:f x (�v1:g x (�v2:h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5)))))�; v5 `CTriv v5 ; ��; v5 `CExp k v5�; v1 `CTriv v1 ; ��; v1; v4 `CTriv v4 ; �; v1�; v1; v4 `CExp v1 v4 (�v5:k v5)�; v1; v2 `CTriv v2 ; �; v1�; v1; v2; v3 `CTriv v3 ; �; v1; v2�; v1; v2; v3 `CExp v2 v3 (�v4:v1 v4 (�v5:k v5))�; v1; v2 `CTriv h ; �; v1; v2�; v1; v2 `CTriv x ; �; v1; v2�; v1; v2 `CExp h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5)))�; v1 `CTriv g ; �; v1�; v1 `CTriv x ; �; v1�; v1 `CExp g x (�v2:h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5))))� `CTriv f ; �� `CTriv x ; �� `CExp f x (�v1:g x (�v2:h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5)))))`CRoot �k:f x (�v1:g x (�v2:h x (�v3:v2 v3 (�v4:v1 v4 (�v5:k v5)))))Figure 3: Derivation tree for a CPS termD : CRoot ! DRootD[[�k:e]] = DCExp[[e]] �emptyDCExp : CExp ! [Var ! DExp] ! DExpDCExp[[t0 t1 (�v:e)]] � = DCExp[[e]] �[v 7! (DCTriv[[t0]] �)@ (DCTriv[[t1]] �)]DCExp[[k t]] � = DCTriv[[t]] �DCTriv : CTriv ! [Var ! DExp] ! DExpDCTriv[[x]] � = xDCTriv[[�x:r]] � = �x:D[[r]]DCTriv[[v]] � = �@ vFigure 4: Call-by-value DS transformation for the pure �-calculus4



� `CExp e . e0`CRoot �k:e . e0 � `CTriv t . t0 ; �� `CExp k t . t0� `CTriv t1 . t01 ; �1 �1 `CTriv t0 . t00 ; �0 �0; (t00@ t01) `CExp e . e0� `CExp t0 t1 (�v:e) . e0� `CTriv x . x ; � `CRoot r . r0� `CTriv �x:r . �x:r0 ; � �; a `CTriv v . a ; �Figure 5: Alternative call-by-value DS transformation for the pure �-calculusFor example, a CPS term such as�k:k (�x:�k:f x (�v1:g x (�v2:v1 v2 (�v3:k v3))))satis�es the occurrence conditions over formal parameters of continuations and thus it can bemapped back to direct style with D, yielding�x:(f x) (g x):Figure 4 presents D equationally to match C in Figure 1. Figure 5 presents it in logicalform to match Figure 2. A CPS term r is transformed into a DS term r0 whenever r satis�esthe occurrences conditions over formal parameters of continuations:`CRoot r`CRoot r . r0The logical presentation makes it more apparent that for satisfactory CPS terms, the substi-tution carried out with an environment � in Figure 4 can actually be carried out with a stack� in Figure 5.But most CPS terms break the stack discipline of Figure 2. For example, a term such as�k:k (�x:�k:g x (�v2:f x (�v1:v1 v2 (�v3:k v3))))does not satisfy the occurrence conditions over formal parameters of continuations because(g x) is computed before (f x) but its result v2 is used after the result v1 of (f x).This unsatisfactory CPS term, however, can be rewritten as another one satisfying theoccurrence conditions of Figure 2:�k:k (�x:�k:g x (�v2:[�v:�k:f x (�v1:v1 v (�v4:k v4))] v2 (�v3:k v3)))functions to their argument only instead of to both their argument and the identity continuation. By thesame token, since the continuation identi�er k always denotes the identity continuation, its occurrences canbe simpli�ed away. The resulting semantics can be taken as a syntax-directed translation D of the (CPS)�-calculus into the (DS) �-calculus. 5



This rewritten CPS term can be mapped back to direct style with D, yielding�x:[�v:(f x) v] (g x)where we have used brackets instead of parentheses to improve readability. The rewriting issimply an �-expansion in CPS, ensuring that (g x) is evaluated before (f x).2 Staging the CPS and the DS transformationsThe e�ect of the CPS transformation can be separated into stages [6, 16, 26]. Starting witha DS term, all intermediate values can be named with a let form, their computation canbe sequentialized, and all trivial terms can be coerced into serious ones with a return form.Then continuations can be introduced without any further syntax shu�ing. Figure 6 presentsthe encoding of �-terms into an intermediate �-language containing return and let. Thecorresponding BNF of intermediate terms reads as follows.r 2 IRoot | intermediate terms r ::= ee 2 IExp | intermediate (serious) expressions e ::= let v = t0 t1 in e j return(t)t 2 ITriv | intermediate trivial expressions t ::= x j �x:r j vx 2 Ide | source identi�ersv 2 Var | fresh variablesUnfolding the form let v = s in eas (�v:e)@ si.e., by substituting s for v in e (which is safe because the let parameters occur similarly asthe continuation parameters in Figure 2) undoes the encoding of Figure 6 and thus yields aDS term (see Figure 8 for details3). Translating the let form ass@(�v:e)amounts to introducing continuations and thus yields a CPS term (see Figure 9 for details).The situation is summarized in the following diagram.DRoot IRoot CRootEdBBBBBBBBBB!! "/ C ��FBBBBBBBBBB !!BaaBBBBBBBBBB EcaaBBBBBBBBBB oDOO
3Again, Figure 8 could be expressed in logical form as Figures 2 and 5, and the substitution could be carriedout with a stack, as in Figure 5. 6



Ed : DRoot ! IRootEd[[e]] = EDExpd [[e]] (�t:return(t))EDExpd : DExp ! [ITriv ! IExp] ! IExpEDExpd [[e0 e1]] � = EDExpd [[e0]] (�t0:EDExpd [[e1]] (�t1:let v = t0@ t1 in �@ v))EDExpd [[t]] � = �@ (EDTrivd [[t]])EDTrivd : DTriv ! ITrivEDTrivd [[x]] = xEDTrivd [[�x:r]] = �x:Ed[[r]]where the v's are fresh variables.Figure 6: DS encoding into a �-language with return and let
Ec : CRoot ! IRootEc[[�k:e]] = ECExpc [[e]]ECExpc : CExp ! IExpECExpc [[t0 t1 (�v:e)]] = let v = (ECTrivc [[t0]])@ (ECTrivc [[t1]]) in ECExpc [[e]]ECExpc [[k t]] = return(ECTrivc [[t]])ECTrivc : CTriv ! IExpECTrivc [[x]] = xECTrivc [[�x:r]] = �x:Ec[[r]]ECTrivc [[v]] = vFigure 7: CPS encoding into a �-language with return and let (continuation elimination)7



B : IRoot ! DRootB[[e]] = BIExp[[e]] �emptyBIExp : IExp ! [Var ! DExp] ! DExpBIExp[[let v = t0 t1 in e]] � = BIExp[[e]] �[v 7! (BITriv[[t0]]�)@ (BITriv[[t1]]�)]BIExp[[return(t)]] � = BITriv[[t]]�BITriv : ITriv ! DTrivBITriv[[x]]� = xBITriv[[�x:r]]� = �x:B[[r]]BITriv[[v]]� = �@ vFigure 8: Back to direct styleF : IRoot ! CRootF [[e]] = �k:F IExp[[e]] kF IExp : IExp ! Var ! CExpF IExp[[let v = t0 t1 in e]] k = (F ITriv[[t0]]@F ITriv[[t1]])@ (�v:F IExp[[e]] k)F IExp[[return(t)]] k = k@ (F ITriv[[t]])F ITriv : ITriv ! CTrivF ITriv[[x]] = xF ITriv[[�x:r]] = �x:F [[r]]F ITriv[[v]] = vwhere k is a fresh variable.Figure 9: Forth to continuation-passing style (continuation introduction)8



Going back to the example of Section 1, Ed transforms the DS term�x:(f x) (g x)into the intermediate-style term �x: let v1 = f xin let v2 = g xin let v3 = v1 v2in return(v3)which F transforms into the CPS term�k:k (�x:�k:f x (�v1:g x (�v2:v1 v2 (�v3:k v3)))):Ec maps this CPS term into the intermediate-style term above, and B maps this intermediate-style term back to the DS term above.The mapping between CPS terms and intermediate terms is a bijection [14]. The inter-mediate terms coincide with Moggi's \monadic" language, B in Figure 8 corresponds to theidentity monad, and F in Figure 9 corresponds to the continuation monad [11, 13, 18]. Fi-nally, coercing a CPS term into another one that satis�es the occurrence conditions over theparameters of continuations, i.e., �-expansion, corresponds to using a strict binding constructin the DS �-calculus.3 Proper tail recursionSometimes it is important to process tail-calls properly, e.g., in the implementation of aprogramming language such as Scheme [4]. The transformations C and Ed are not properlytail-recursive encodings. This is easily seen in the common example of Sections 1 and 2:In the body of the �-abstraction �x:(f x) (g x)the outer call is a tail-call | i.e., the result of this call is also the result of the call to the�-abstraction. However, in the intermediate encoding,�x: let v1 = f xin let v2 = g xin let v3 = v1 v2in return(v3)the call v1 v2 is not a tail-call anymore. A properly tail-recursive encoding would be thefollowing one. �x: let v1 = f xin let v2 = g xin v1 v29



Similarly, in the CPS encoding,�k:k (�x:�k:f x (�v1:g x (�v2:v1 v2 (�v3:k v3))))the continuation of v1 v2 intensionally is not the same as k. A properly tail-recursive encodingwould be the following one.�k:k (�x:�k:f x (�v1:g x (�v2:v1 v2 k)))Such an encoding can make a signi�cant di�erence in a CPS compiler such as the one forStandard ML of New Jersey [1] (Trevor Jim and Andrew Appel, personal communication,San Francisco, California, June 1992).Here are the BNFs of intermediate terms and of CPS terms that enable a properly tail-recursive encoding:r 2 IRoot r ::= ee 2 IExp e ::= let v = t0 t1 in e j t0 t1 j return(t)t 2 ITriv t ::= x j �x:r j vx 2 Idev 2 Varr 2 CRoot r ::= �k:ee 2 CExp e ::= t0 t1 (�v:e) j t0 t1 k j k tt 2 CTriv t ::= x j �x:r j vx 2 Idev; k 2 VarThe diligent reader is left with the exercise of updating the �gures to match these twoBNFs. (Hint: see [8, Fig. 3].)4 Related workSabry and Felleisen's recent work on equational reasoning about CPS programs [23] aims atunderstanding precisely what in CPS transformation enables, e.g., compile-time optimiza-tions. This leads them to de�ne an \un-CPSer" that only partly corresponds to the DStransformer for the pure �-calculus in that:1. It does not consider the occurrence conditions over the formal parameters of continu-ations (see Figure 2). This is because the un-CPSer is not used as a source-to-sourceprogram transformer but rather aims at relating terms that have the same meaning.2. It performs the steps of Figure 7 but represents let expressions as �-redexes. Also, itdoes not use return expressions.3. It does not perform the administrative reductions corresponding to unfolding the letexpressions (and enabled by the occurrence conditions over the formal parameters ofcontinuations). 10



Sabry and Felleisen too notice and rely on the uniqueness of a continuation identi�er k. TheirCPS transformer also performs additional reductions for DS �-redexes.In \Back to Direct Style II" [9], the unicity of k is relaxed by letting any lexically visiblecontinuation identi�er be applied, instead of only the current one. In the DS world, thisamounts to introducing control operators such as call/cc to declare a �rst-class continuationand throw to send a value to a �rst-class continuation. More generally, relaxing the CPStexture to allow non-tail calls would amount to introducing control operators and delimiterssuch as shift and reset [8, 10, 11, 15].Other stagings of the CPS transformation are possible. For example, it is possible to (1)name intermediate values, (2) introduce named continuations, and (3) inline these continua-tions, obtaining a CPS term. In fact, it is even possible to factor out sequentialization fromthe CPS transformation by creating a new step (2'). This new step amounts to deciding inwhich order the intermediate continuations should be inlined. Each of these steps is reversible.This staging is described elsewhere [16].Intermediate languages such as the one of Section 2 are currently being investigated asan alternative to CPS. Flanagan et al. address the problem of compiling with and withoutcontinuations [12]. Finally, to have or not to have continuations can in
uence the precisionof 
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