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ABSTRACTToday there are several eÆient algorithms that ope withthe popular and omputationally expensive task of assoi-ation rule mining. Atually, these algorithms are more orless desribed on their own. In this paper we explain thefundamentals of assoiation rule mining and moreover de-rive a general framework. Based on this we desribe to-day's approahes in ontext by pointing out ommon aspetsand di�erenes. After that we thoroughly investigate theirstrengths and weaknesses and arry out several runtime ex-periments. It turns out that the runtime behavior of thealgorithms is muh more similar as to be expeted.
1. INTRODUCTION

1.1 Association RulesSine its introdution in 1993 [1℄ the task of assoiation rulemining has reeived a great deal of attention. Today themining of suh rules is still one of the most popular pattern-disovery methods in KDD.In brief, an assoiation rule is an expression X ) Y , whereX and Y are sets of items. The meaning of suh rules isquite intuitive: Given a database D of transations { whereeah transation T 2 D is a set of items {, X ) Y expressesthat whenever a transation T ontains X than T proba-bly ontains Y also. The probability or rule on�dene isde�ned as the perentage of transations ontaining Y inaddition to X with regard to the overall number of trans-ations ontaining X. That is, the rule on�dene an beunderstood as the onditional probability p(Y � T jX � T ).The idea of mining assoiation rules originates from theanalysis of market-basket data where rules like \A ustomerwho buys produts x1 and x2 will also buy produt y withprobability %." are found. Their diret appliability tobusiness problems together with their inherent understand-ability { even for non data mining experts { made assoi-ation rules a popular mining method. Moreover it beamelear that assoiation rules are not restrited to dependenyanalysis in the ontext of retail appliations, but are su-essfully appliable to a wide range of business problems.

When mining assoiation rules there are mainly two prob-lems to deal with: First of all there is the algorithmi om-plexity. The number of rules grows exponentially with thenumber of items. Fortunately today's algorithms are able toeÆiently prune this immense searh spae based on mini-mal thresholds for quality measures on the rules. Seond,interesting rules must be piked from the set of generatedrules. This might be quite ostly beause the generated rulesets normally are quite large { e.g. more than 100; 000 rulesare not unommon { and in ontrast the perentage of use-ful rules is typially only a very small fration. The workonerning the seond problem mainly fouses on support-ing the user when browsing the rule set, e.g. [14℄ and thedevelopment of further useful quality measures on the rules,e.g. [7; 6; 22℄.
1.2 Outline of the PaperIn this paper we deal with the algorithmi aspets of assoi-ation rule mining. In fat, a broad variety of eÆient algo-rithms to mine assoiation rules have been developed duringthe last years. These approahes are more or less desribedseparately in the orresponding literature. To overome thissituation we give a general survey of the basi ideas behindassoiation rule mining. In Setion 2 we identify the ba-si strategies and desribe them in detail. The resultingframework is used in Setion 3 to systematize and presenttoday's most ommon approahes in ontext. Furthermorewe show the ommon priniples and di�erenes between thealgorithms. Finally in Setion 4 we omplete our overviewwith a omparison of the algorithms onerning eÆieny.This omparison is based on theoreti onsiderations andonrete runtime experiments. In Setion 5 we onludewith a short summary of our results.
1.3 Related WorkIn our work we mainly restrit ourselves to what we allthe \lassi assoiation rule problem". That is, the min-ing of all rules existing in a database D with respet tominimal thresholds on ertain quality measures. D in thisase onsists of market-basket like data, that is, transationsontaining 10� 20 items in the average out of a total set of1; 000� 100; 000 items.Although the \lassi problem" is still topi of further re-searh, during reent years many algorithms for speial-SIGKDD Explorations. Copyright 2000 ACM SIGKDD, July 2000. Volume 2, Issue 1 - page 58



ized tasks have been developed: First of all, there are theapproahes that enhane the assoiation rules itself. E.g.quantitative assoiation rules, e.g. [24℄, generalized assoi-ation rules, e.g. [23; 12℄ and to some extent the work onsequential patterns, e.g. [3; 15℄. Moreover there are severalgeneralizations of the rule problem, e.g. [16; 27℄.In addition algorithms were developed that mine well de-�ned subsets of the rule set aording to spei�ed items orquality measures et, e.g. general onstraints [17; 25℄, op-timized rules [8; 20℄, maximal frequent itemsets [28℄, andfrequent losed itemsets [18; 19℄. Moreover there are algo-rithms to mine dense databases [5℄. These approahes aresupplemented by algorithms for online mining of assoiationrules, e.g. [10℄ and inremental algorithms, e.g. [26; 4℄.
2. BASIC PRINCIPLES

2.1 Formal Problem DescriptionLet I = fx1; : : : ; xng be a set of distint literals, alleditems. A set X � I with k = jXj is alled a k-itemsetor simply an itemset. Let a database D be a multi-set ofsubsets of I. Eah T 2 D is alled a transation. We saythat a transation T 2 D supports an itemset X � I ifX � T holds. An assoiation rule is an expression X ) Y ,where X;Y are itemsets and X \ Y = ; holds. The fra-tion of transations T supporting an itemset X with re-spet to database D is alled the support of X, supp(X) =jfT 2 D j X � Tgj=jDj. The support of a rule X ) Y is de-�ned as supp(X ) Y ) = supp(X[Y ). The on�dene of thisrule is de�ned as onf(X ) Y ) = supp(X [ Y )=supp(X),.f. [2℄.As mentioned before the main hallenge when mining assoi-ation rules is the immense number of rules that theoretiallymust be onsidered. In fat the number of rules grows expo-nentially with jIj. Sine it is neither pratial nor desirableto mine suh a huge set of rules, the rule sets are typiallyrestrited by minimal thresholds for the quality measuressupport and on�dene, minsupp and minonf respetively.This restrition allows us to split the problem into two sep-arate parts [2℄: An itemset X is frequent if supp(X) � min-supp. One, F = fX � I j X frequentg, the set of all fre-quent itemsets together with their support values is known,deriving the desired assoiation rules is straight forward(See [2℄ for minor enhanements.): For every X 2 F hekthe on�dene of all rules X n Y ) Y; Y � X; ; 6= Y 6= Xand drop those that do not ahieve minonf. Aording toits de�nition above, it suÆes to know all support values ofthe subsets of X to determine the on�dene of eah rule.The knowledge about the support values of all subsets of Xis ensured by the downward losure property of itemset sup-port: All subsets of a frequent itemset must also be frequent,.f. [2℄.With that in mind the task of assoiation rule mining anbe redued to the problem of �nding all itemsets that arefrequent with respet to a given minimal threshold minsupp.The rest of this paper and most of the literature on assoi-ation rule mining addresses exatly this topi.
2.2 Traversing the Search SpaceAs explained we need to �nd all itemsets that satisfy min-supp. For pratial appliations looking at all subsets of Iis doomed to failure by the huge searh spae. In fat, a lin-

early growing number of items still implies an exponentialgrowing number of itemsets that need to be onsidered.For the speial ase I = f1; 2; 3; 4g we visualize the searhspae that forms a lattie in Figure 1, .f. [28℄. The frequent
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Figure 1: Lattie for I = f1; 2; 3; 4gitemsets are loated in the upper part of the �gure whereasthe infrequent ones are loated in the lower part. Althoughwe do not expliitly speify support values for eah of theitemsets, we assume that the bold border separates the fre-quent from the infrequent itemsets. The existene of suha border is independent of any partiular database D andminsupp. Its existene is solely guaranteed by the downwardlosure property of itemset support.The basi priniple of the ommon algorithms is to employthis border to eÆiently prune the searh spae. As soonas the border is found, we are able to restrit ourselves ondetermining the support values of the itemsets above theborder and to ignore the itemsets below.Let map: I ! f1; : : : ; jIjg be a mapping that maps allitems x 2 I one-to-one onto natural numbers. Now theitems an be seen as totally ordered by the relation \<" be-tween natural numbers. In addition, for X � I let X:item :f1; : : : ; jXjg ! I : n 7! X:itemn be a mapping withX:itemndenoting the n-th item of the items x 2 X inreasinglysorted by \<". The n-pre�x of an itemset X with n � jXjis then de�ned by P = fX:itemm j 1 � m � ng, .f. [12℄.Let the lasses E(P ); P � I with E(P ) = fX � I j jXj =jP j+ 1 and P is a pre�x of Xg be the nodes of a tree. Twonodes are onneted by an edge, if all itemsets of a lass Ean be generated by joining two itemsets of the parent lassE0, e.g. Figure 2.Together with the downward losure property of itemsetsupport this implies the following: If the parent lass E0of a lass E does not ontain at least two frequent itemsetsthan E must also not ontain any frequent itemset. If weenounter suh a lass E0 on our way down the tree, thenwe have reahed the border separating the infrequent fromthe frequent itemsets. We do not need to go behind thisborder so we prune E and all desendants of E from thesearh spae.The latter proedure allows us to eÆiently restrit the num-ber of itemsets to investigate. We simply determine theSIGKDD Explorations. Copyright 2000 ACM SIGKDD, July 2000. Volume 2, Issue 1 - page 59
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Figure 2: Tree for I = f1; 2; 3; 4gsupport values only of those itemsets that we \visit" onour searh for the border between frequent and infrequentitemsets. Finally, the atual strategy to searh for the bor-der is at our own hoie. Today's ommon approahes em-ploy both breadth-�rst searh (BFS) or depth-�rst searh(DFS). With BFS the support values of all (k� 1)-itemsetsare determined before ounting the support values of thek-itemsets. In ontrast, DFS reursively desends followingthe tree struture de�ned above.
2.3 Determine Itemset SupportsIn the following an itemset that is potentially frequent andfor whih we deide to determine its support during lattietraversal is alled a andidate itemset or simply a andidate.One ommon approah to determine the support value of anitemset is to diretly ount its ourrenes in the database.For that purpose a ounter is set up and initialized to zerofor eah itemset that is urrently under investigation. Thenall transations are sanned and whenever one of the andi-dates is reognized as a subset of a transation, its ounteris inremented. Typially subset generation and andidatelookup is integrated and implemented on a hashtree or asimilar data struture. In brief, not all subsets of eah trans-ation are generated but only those that are ontained in theandidates or that have a pre�x in ommon with at least oneof the andidates, .f. [2℄ for further details.Another approah is to determine the support values of an-didates by set intersetions. A tid is a unique transationidenti�er. For a single item the tidlist is the set of identi�ersthat orrespond to the transations ontaining this item.Aordingly tidlists also exist for every itemset X and aredenoted by X:tidlist. The tidlist of a andidate C = X[Y isobtained by C:tidlist = X:tidlistTY:tidlist. The tidlists aresorted in asending order to allow eÆient intersetions.Note that by bu�ering the tidlists of frequent andidates asintermediate results, we remarkably speedup the generationof the tidlists of the following andidates. Finally the atualsupport of a andidate is obtained by determining jC:tlistj.
3. COMMON ALGORITHMSIn this setion we briey desribe and systematize the mostommon algorithms. We do this by referring to the funda-mentals of frequent itemset generation that we identi�ed inthe previous setion. Our goal is not to go to muh intodetail but to show the basi priniples and the di�erenes

between the approahes.
3.1 SystematizationThe algorithms that we onsider in this paper are system-atized in Figure 3. We haraterize eah of the algorithmsa) by its strategy to traverse the searh spae and b) by itsstrategy to determine the support values of the itemsets. In
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3.2 BFS and Counting OccurrencesThe most popular algorithm of this type is Apriori [2℄where also the downward losure property of itemset sup-port was introdued. Apriori makes additional use of thisproperty by pruning those andidates that have an infre-quent subset before ounting their supports. This optimiza-tion beomes possible beause BFS ensures that the supportvalues of all subsets of a andidate are known in advane.Apriori ounts all andidates of a ardinality k together inone san over the database. The ritial part is looking upthe andidates in eah of the transations. For this purpose[2℄ introdues a so alled hashtree struture. The items ineah transation are used to desend in the hashtree. When-ever we reah one of its leafs, we �nd a set of andidateshaving a ommon pre�x that is ontained in the transation.Then these andidates are searhed in the transation thathas been enoded as a bitmap before. In the ase of suessthe ounter of the andidate in the tree is inremented.AprioriTID [2℄ is an extension of the basi Apriori ap-proah. Instead of relying on the raw database AprioriTIDinternally represents eah transation by the urrent andi-dates it ontains. With AprioriHybrid both approahesare ombined, .f. [2℄. To some extent also SETM [13℄ isan Apriori(TID)-like algorithm whih is intended to be im-plemented diretly in SQL.DIC is a further variation of the Apriori-Algorithm [7℄. DICsoftens the strit separation between ounting and generat-ing andidates. Whenever a andidate reahes minsupp, thatis even when this andidate has not yet \seen" all trans-ations, DIC starts generating additional andidates basedSIGKDD Explorations. Copyright 2000 ACM SIGKDD, July 2000. Volume 2, Issue 1 - page 60



on it. For that purpose a pre�x-tree is employed. In on-trast to the hashtree, eah node { leaf node or inner node {of the pre�x-tree is assigned to exatly one andidate re-spetively frequent itemset. In ontrast to the usage of ahashtree that means whenever we reah a node we an besure that the itemset assoiated with this node is ontainedin the transation. Furthermore interloking support deter-mination and andidate generation dereases the number ofdatabase sans.
3.3 BFS and TID-List IntersectionsThe Partition-Algorithm [21℄ is an Apriori-like algorithmthat uses set intersetions to determine support values. Asdesribed above Apriori determines the support values of all(k � 1)-andidates before ounting the k-andidates. Theproblem is that Partition of ourse wants to use the tidlistsof the frequent (k � 1)-itemsets to generate the tidlists ofthe k-andidates. Obviously the size of those intermediateresults easily grows beyond the physial memory limitationsof ommon mahines. To overome this Partition splits thedatabase into several hunks that are treated independently.The size of eah hunk is hosen in suh a way that all in-termediate tidlists �t into main memory. After determiningthe frequent itemsets for eah database hunk, an extra sanis neessary to ensure that the loally frequent itemsets arealso globally frequent.
3.4 DFS and Counting OccurrencesCounting ourrenes assumes andidate sets of a reasonablesize. For eah of those andidate sets a database san is per-formed. E.g. Apriori that relies on BFS sans the databaseone for every andidate size k. When using DFS the andi-date sets onsist only of the itemsets of one of the nodes ofthe tree from Setion 2.2. Obviously sanning the databasefor every node results in tremendous overhead. The simpleombination of DFS with ounting ourrenes is thereforeof no pratial relevane, .f.[11℄.Reently in [9℄ a fundamentally new approah alled FP-growth was introdued. In a preproessing step FP-growthderives a highly ondensed representation of the transationdata, the so alled FP-tree. The generation of the FP-tree isdone by ounting ourrenes and DFS. In ontrast to for-mer DFS-approahes, FP-growth does not follow the nodesof the tree from Subsetion 2.2, but diretly desends tosome part of the itemsets in the searh spae. In a se-ond step FP-growth uses the FP-tree to derive the supportvalues of all frequent itemsets.
3.5 DFS and TID-List IntersectionsIn [28℄ the algorithm Elat is introdued, that ombinesDFS with tidlist intersetions. When using DFS it suÆesto keep the tidlists on the path from the root down to thelass urrently investigated in memory. That is, splittingthe database as done by Partition is no longer needed.Elat employs an optimization alled \fast intersetions".Whenever we interset two tidlists then we are only inter-ested in the resulting tidlist if its ardinality reahes min-supp. In other words, we should break o� eah intersetionas soon as it is sure that it will not ahieve this threshold.Elat originally generates only frequent itemsets of size �3. We modi�ed Elat to mine also the frequent 1- and2-itemsets by alling it on the lass that ontains the 1-itemsets together with their tidlists.

In addition in [28℄ algorithms that mine only the maximalfrequent itemsets are introdued, e.g. MaxElat. An item-set X is maximal frequent if for every frequent itemset YX � Y ) Y = X holds. We do not onsider these algo-rithms beause although it is straight forward to derive theset of all frequent itemsets from the maximal frequent item-sets this does not hold for the orresponding support values.Without those, we are not able to derive rule on�denes andtherefore we annot generate assoiation rules.
4. COMPARISON OF THE ALGORITHMSIn this setion we ompare the algorithms and explain theobserved di�erenes in performane behavior.
4.1 ExperimentsTo arry out performane studies we implemented the mostommon algorithms to mine frequent itemsets, namely Apri-ori, DIC, Partition, and Elat, in C++. Atually we had toleave out DIC in the harts for reasons explained later. Inaddition we did not onsider AprioriTID and FP-growth be-ause these algorithms were designed to mine data that isnot typial for retail environments, that is data ontainingquite long patterns.The experiments were performed on a SUN UltraSPARC-IIworkstation loked at 248Mhz. The experiments in Fig-ures 4 { 11 were arried out on syntheti datasets from [2;21℄. These datasets were generated with a data generator [2℄that simulates the buying behavior of ustomers in retailbusiness. Dataset \T10.I4.D100K" means an average trans-ation size of 10, an average size of the maximal potentiallyfrequent itemsets of 4 and 100,000 generated transations.The number of patterns was set to 2; 000 and the number ofitems to 1; 000.In addition to the experiments from [2; 21℄, we restritedthe maximal length of generated itemsets from 1 up to 9on the dataset \T20.I4.D100K" at minsupp = 0:33%, .f.Figure 9. Figures 10 and 11 show the behavior of the al-gorithms on real-world appliations. The basket data on-sists of about 70; 000 ustomer transations with approxi-mately 60; 000 di�erent items. The average transation sizeis � 10:5 items. The ar equipment data ontains infor-mation about 700; 000 ars with about 6; 000 items. In theaverage � 20 items are assigned to eah ar.It is important to say that all algorithms sale linearly withthe database size.
4.2 Counting Occurrences vs. Intersecting SetsThe basi question onerning the runtime of the algorithmsis whether ounting ourrenes or interseting tidlists showsbetter performane results. The advantage of ounting isthat only andidates that atually our in the transationsause any e�ort. In ontrast, an intersetion means at leastpassing through all tids of the smaller of the two tidlists,even if the andidate is not ontained in the database at all.(\Fast Intersetions" save some osts but we still need topass a substantial number of tids.) But intersetions alsohave their bene�ts. Counting implies looking up the andi-dates in the transations. Of ourse this an get quite ex-pensive for andidates of higher ardinality. On the ontrarywhen using intersetions the size of the andidate under in-vestigation does not have any inuene.In pratie both e�ets seem to balane out on the basket-SIGKDD Explorations. Copyright 2000 ACM SIGKDD, July 2000. Volume 2, Issue 1 - page 61
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Figure 4: T10.I2.D100K
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Figure 5: T10.I4.D100K
20

40

60

80

100

120

140

160

180

2 1.51.5 1 0.750.75 0.50.5 0.330.33 0.25

tim
e 

in
 s

ec

minsupp in %

apriori
eclat

partition

Figure 6: T20.I2.D100K
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Figure 7: T20.I4.D100K
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Figure 8: T20.I6.D100K
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Figure 9: Maximal Frequent Itemset Size
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Figure 10: Basket Data
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like data. The runtime behavior in Figures 4 { 8 doesnot show any substantial di�erenes between the algorithmApriori that ounts ourrenes and the tidlists intersetingalgorithms Partition and Elat. Only at quite low aver-age size of the maximal potentially frequent itemsets, e.g.\T10.I2.D100K" in Figure 4, Apriori is somehow superiorwhereas at larger average size of the maximal potentially fre-quent itemsets, e.g. \T20.I6.D100K" in Figure 8, Partitionand Elat perform better. The same explanation holds forthe real-world experiments. With an average size of � 2:2items at minsupp = 0:06% the frequent itemsets found inthe basket data were rather short ompared to the frequentitemsets from the ar equipment database, that ontained� 4:1 items in the average at minsupp = 3%.In Figure 9 it beomes lear what happens behind the senes:Elat and Partition spend most of their time with determin-ing the support values of the 2- and 3-andidates whereasApriori is eÆiently handling suh small itemsets. In on-trast for itemsets with size � 4 the additional e�ort ausedfor Elat and Partition is to be negleted whereas this doesnot hold for Apriori.
4.3 Relaxing the Separation between Candi-

date Generation and Support CountingOn the one hand the introdution of the pre�x-tree with DICallows relaxing the separation between andidate generationand support ounting and therefore redues the number ofdatabase sans. Moreover eah node is assigned to preiselyone itemset. Consequently looking up andidates in bitmap-enoded transations is no longer neessary. On the otherhand the memory usage of the pre�x-tree aused problems,when we experimented with our own implementation of DIC:The pre�x-tree is already setup before all frequent 1-itemsetsare known. That means a mapping to frequent items asdesribed in [2℄ to keep the memory usage of hash tables ineah node of the tree small is not possible. Moreover thise�et is strengthened by the fat that every andidate isstored in its own node and that in addition a separate nodefor eah pre�x of the andidate exists. Another drawbak ofthe pre�x-tree is that the frequent itemsets are stored in thesame tree as the andidates. Eah frequent k-itemset that isnot pre�x of any k0-andidate with k0 > k imposes overheadwhen ounting that is avoided by the hashtree-approah ofApriori.Atually we did not ome to a �nal result onerning theeÆieny of DIC. But what we want to say is that DIC'sadvantage of reduing the number of database sans shouldnot be overestimated in a retail environment. In [7℄ a perfor-mane gain of only about 30% ompared with basi Aprioriis deteted for data with quite small average size of the max-imal potentially frequent itemsets.
4.4 Additional Candidate PruningTypially the main task of the algorithms is determiningsupport values. That is, the time spent with andidate gen-eration { and andidate pruning { an be negleted. Conse-quently Apriori's andidate pruning step helps to redue theandidates to be ounted but does not add any substantialoverhead. It is important to note that basi DFS, as em-ployed by Elat does not allow proper subset pruning. Onlyright-most DFS as introdued in [12℄ for the mining of gen-eralized assoiation rules allows transferring the additionalprune step of Apriori to algorithms using DFS.

Our experiments suggest that the e�et of additional an-didate pruning is rather small for the datasets we took intoonsideration. Additional pruning does not help Partitionto ompensate Elat's advantage based on the \fast inter-setions". This impression was also supported by furtherstudies with an enhaned version of Elat that inorporatesadditional andidates pruning by using right-most DFS.
4.5 Splitting the DatabasePartition needs to split the database. Whereas this opti-mization helps to ope with large databases it adds the ad-ditional overhead of an extra pass to determine the globallyfrequent itemsets. In our experiments the size of the trans-ation sets were always small enough that we ould employPartition without splitting. In [21℄ espeially at lower val-ues for minsupp Partition that splits su�ers strongly. Thereason is the inreasing number of loally frequent itemsetsthat �nally turn out to be globally infrequent.
4.6 “Fast Intersections”Elat's fast intersetions are obviously an advantage. Theoverhead aused by heking whether minsupp is still reah-able is learly outweighed by breaking o� unneessary in-tersetions. As a result in all our experiments Elat beatsPartition with a nearly onstant fator.
5. CONCLUSIONIn this paper we dealt with the algorithmi aspets of asso-iation rule mining. We restrited ourselves to the \lassi"assoiation rule problem, that is the generation of all assoi-ation rules that exist in market basket-like data with respetto minimal thresholds for support and on�dene.From the broad variety of eÆient algorithms that have beendeveloped we ompared the most important ones. We sys-tematized the algorithms and analyzed their performanebased on both runtime experiments and theoreti onsid-erations. The results were quite surprising: Although weidenti�ed fundamental di�erenes onerning the employedstrategies, the algorithms show quite similar runtime behav-ior in our experiments. At least there is no algorithm thatis fundamentally beating out the other ones. In fat ourexperiments showed that the advantages and disadvantageswe identi�ed onerning the strategy to determine the sup-port values of the frequent itemsets nearly balane out onmarket basket-like data.In a forthoming paper we pursue the development of a hy-brid approah that eÆiently ombines ounting ourrenesand tidlist intersetions [11℄.
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