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ABSTRACTToday there are several eÆ
ient algorithms that 
ope withthe popular and 
omputationally expensive task of asso
i-ation rule mining. A
tually, these algorithms are more orless des
ribed on their own. In this paper we explain thefundamentals of asso
iation rule mining and moreover de-rive a general framework. Based on this we des
ribe to-day's approa
hes in 
ontext by pointing out 
ommon aspe
tsand di�eren
es. After that we thoroughly investigate theirstrengths and weaknesses and 
arry out several runtime ex-periments. It turns out that the runtime behavior of thealgorithms is mu
h more similar as to be expe
ted.
1. INTRODUCTION

1.1 Association RulesSin
e its introdu
tion in 1993 [1℄ the task of asso
iation rulemining has re
eived a great deal of attention. Today themining of su
h rules is still one of the most popular pattern-dis
overy methods in KDD.In brief, an asso
iation rule is an expression X ) Y , whereX and Y are sets of items. The meaning of su
h rules isquite intuitive: Given a database D of transa
tions { whereea
h transa
tion T 2 D is a set of items {, X ) Y expressesthat whenever a transa
tion T 
ontains X than T proba-bly 
ontains Y also. The probability or rule 
on�den
e isde�ned as the per
entage of transa
tions 
ontaining Y inaddition to X with regard to the overall number of trans-a
tions 
ontaining X. That is, the rule 
on�den
e 
an beunderstood as the 
onditional probability p(Y � T jX � T ).The idea of mining asso
iation rules originates from theanalysis of market-basket data where rules like \A 
ustomerwho buys produ
ts x1 and x2 will also buy produ
t y withprobability 
%." are found. Their dire
t appli
ability tobusiness problems together with their inherent understand-ability { even for non data mining experts { made asso
i-ation rules a popular mining method. Moreover it be
ame
lear that asso
iation rules are not restri
ted to dependen
yanalysis in the 
ontext of retail appli
ations, but are su
-
essfully appli
able to a wide range of business problems.

When mining asso
iation rules there are mainly two prob-lems to deal with: First of all there is the algorithmi
 
om-plexity. The number of rules grows exponentially with thenumber of items. Fortunately today's algorithms are able toeÆ
iently prune this immense sear
h spa
e based on mini-mal thresholds for quality measures on the rules. Se
ond,interesting rules must be pi
ked from the set of generatedrules. This might be quite 
ostly be
ause the generated rulesets normally are quite large { e.g. more than 100; 000 rulesare not un
ommon { and in 
ontrast the per
entage of use-ful rules is typi
ally only a very small fra
tion. The work
on
erning the se
ond problem mainly fo
uses on support-ing the user when browsing the rule set, e.g. [14℄ and thedevelopment of further useful quality measures on the rules,e.g. [7; 6; 22℄.
1.2 Outline of the PaperIn this paper we deal with the algorithmi
 aspe
ts of asso
i-ation rule mining. In fa
t, a broad variety of eÆ
ient algo-rithms to mine asso
iation rules have been developed duringthe last years. These approa
hes are more or less des
ribedseparately in the 
orresponding literature. To over
ome thissituation we give a general survey of the basi
 ideas behindasso
iation rule mining. In Se
tion 2 we identify the ba-si
 strategies and des
ribe them in detail. The resultingframework is used in Se
tion 3 to systematize and presenttoday's most 
ommon approa
hes in 
ontext. Furthermorewe show the 
ommon prin
iples and di�eren
es between thealgorithms. Finally in Se
tion 4 we 
omplete our overviewwith a 
omparison of the algorithms 
on
erning eÆ
ien
y.This 
omparison is based on theoreti
 
onsiderations and
on
rete runtime experiments. In Se
tion 5 we 
on
ludewith a short summary of our results.
1.3 Related WorkIn our work we mainly restri
t ourselves to what we 
allthe \
lassi
 asso
iation rule problem". That is, the min-ing of all rules existing in a database D with respe
t tominimal thresholds on 
ertain quality measures. D in this
ase 
onsists of market-basket like data, that is, transa
tions
ontaining 10� 20 items in the average out of a total set of1; 000� 100; 000 items.Although the \
lassi
 problem" is still topi
 of further re-sear
h, during re
ent years many algorithms for spe
ial-SIGKDD Explorations. Copyright 
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ized tasks have been developed: First of all, there are theapproa
hes that enhan
e the asso
iation rules itself. E.g.quantitative asso
iation rules, e.g. [24℄, generalized asso
i-ation rules, e.g. [23; 12℄ and to some extent the work onsequential patterns, e.g. [3; 15℄. Moreover there are severalgeneralizations of the rule problem, e.g. [16; 27℄.In addition algorithms were developed that mine well de-�ned subsets of the rule set a

ording to spe
i�ed items orquality measures et
, e.g. general 
onstraints [17; 25℄, op-timized rules [8; 20℄, maximal frequent itemsets [28℄, andfrequent 
losed itemsets [18; 19℄. Moreover there are algo-rithms to mine dense databases [5℄. These approa
hes aresupplemented by algorithms for online mining of asso
iationrules, e.g. [10℄ and in
remental algorithms, e.g. [26; 4℄.
2. BASIC PRINCIPLES

2.1 Formal Problem DescriptionLet I = fx1; : : : ; xng be a set of distin
t literals, 
alleditems. A set X � I with k = jXj is 
alled a k-itemsetor simply an itemset. Let a database D be a multi-set ofsubsets of I. Ea
h T 2 D is 
alled a transa
tion. We saythat a transa
tion T 2 D supports an itemset X � I ifX � T holds. An asso
iation rule is an expression X ) Y ,where X;Y are itemsets and X \ Y = ; holds. The fra
-tion of transa
tions T supporting an itemset X with re-spe
t to database D is 
alled the support of X, supp(X) =jfT 2 D j X � Tgj=jDj. The support of a rule X ) Y is de-�ned as supp(X ) Y ) = supp(X[Y ). The 
on�den
e of thisrule is de�ned as 
onf(X ) Y ) = supp(X [ Y )=supp(X),
.f. [2℄.As mentioned before the main 
hallenge when mining asso
i-ation rules is the immense number of rules that theoreti
allymust be 
onsidered. In fa
t the number of rules grows expo-nentially with jIj. Sin
e it is neither pra
ti
al nor desirableto mine su
h a huge set of rules, the rule sets are typi
allyrestri
ted by minimal thresholds for the quality measuressupport and 
on�den
e, minsupp and min
onf respe
tively.This restri
tion allows us to split the problem into two sep-arate parts [2℄: An itemset X is frequent if supp(X) � min-supp. On
e, F = fX � I j X frequentg, the set of all fre-quent itemsets together with their support values is known,deriving the desired asso
iation rules is straight forward(See [2℄ for minor enhan
ements.): For every X 2 F 
he
kthe 
on�den
e of all rules X n Y ) Y; Y � X; ; 6= Y 6= Xand drop those that do not a
hieve min
onf. A

ording toits de�nition above, it suÆ
es to know all support values ofthe subsets of X to determine the 
on�den
e of ea
h rule.The knowledge about the support values of all subsets of Xis ensured by the downward 
losure property of itemset sup-port: All subsets of a frequent itemset must also be frequent,
.f. [2℄.With that in mind the task of asso
iation rule mining 
anbe redu
ed to the problem of �nding all itemsets that arefrequent with respe
t to a given minimal threshold minsupp.The rest of this paper and most of the literature on asso
i-ation rule mining addresses exa
tly this topi
.
2.2 Traversing the Search SpaceAs explained we need to �nd all itemsets that satisfy min-supp. For pra
ti
al appli
ations looking at all subsets of Iis doomed to failure by the huge sear
h spa
e. In fa
t, a lin-

early growing number of items still implies an exponentialgrowing number of itemsets that need to be 
onsidered.For the spe
ial 
ase I = f1; 2; 3; 4g we visualize the sear
hspa
e that forms a latti
e in Figure 1, 
.f. [28℄. The frequent
{2} {3}

{1, 4} {2, 3} {2, 4} {3, 4}{1, 3}{1, 2}

{1}

{1, 3, 4} {2, 3, 4}{1, 2, 4}{1, 2, 3}

{1, 2, 3, 4}

{}

{4}

Figure 1: Latti
e for I = f1; 2; 3; 4gitemsets are lo
ated in the upper part of the �gure whereasthe infrequent ones are lo
ated in the lower part. Althoughwe do not expli
itly spe
ify support values for ea
h of theitemsets, we assume that the bold border separates the fre-quent from the infrequent itemsets. The existen
e of su
ha border is independent of any parti
ular database D andminsupp. Its existen
e is solely guaranteed by the downward
losure property of itemset support.The basi
 prin
iple of the 
ommon algorithms is to employthis border to eÆ
iently prune the sear
h spa
e. As soonas the border is found, we are able to restri
t ourselves ondetermining the support values of the itemsets above theborder and to ignore the itemsets below.Let map: I ! f1; : : : ; jIjg be a mapping that maps allitems x 2 I one-to-one onto natural numbers. Now theitems 
an be seen as totally ordered by the relation \<" be-tween natural numbers. In addition, for X � I let X:item :f1; : : : ; jXjg ! I : n 7! X:itemn be a mapping withX:itemndenoting the n-th item of the items x 2 X in
reasinglysorted by \<". The n-pre�x of an itemset X with n � jXjis then de�ned by P = fX:itemm j 1 � m � ng, 
.f. [12℄.Let the 
lasses E(P ); P � I with E(P ) = fX � I j jXj =jP j+ 1 and P is a pre�x of Xg be the nodes of a tree. Twonodes are 
onne
ted by an edge, if all itemsets of a 
lass E
an be generated by joining two itemsets of the parent 
lassE0, e.g. Figure 2.Together with the downward 
losure property of itemsetsupport this implies the following: If the parent 
lass E0of a 
lass E does not 
ontain at least two frequent itemsetsthan E must also not 
ontain any frequent itemset. If ween
ounter su
h a 
lass E0 on our way down the tree, thenwe have rea
hed the border separating the infrequent fromthe frequent itemsets. We do not need to go behind thisborder so we prune E and all des
endants of E from thesear
h spa
e.The latter pro
edure allows us to eÆ
iently restri
t the num-ber of itemsets to investigate. We simply determine theSIGKDD Explorations. Copyright 
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Figure 2: Tree for I = f1; 2; 3; 4gsupport values only of those itemsets that we \visit" onour sear
h for the border between frequent and infrequentitemsets. Finally, the a
tual strategy to sear
h for the bor-der is at our own 
hoi
e. Today's 
ommon approa
hes em-ploy both breadth-�rst sear
h (BFS) or depth-�rst sear
h(DFS). With BFS the support values of all (k� 1)-itemsetsare determined before 
ounting the support values of thek-itemsets. In 
ontrast, DFS re
ursively des
ends followingthe tree stru
ture de�ned above.
2.3 Determine Itemset SupportsIn the following an itemset that is potentially frequent andfor whi
h we de
ide to determine its support during latti
etraversal is 
alled a 
andidate itemset or simply a 
andidate.One 
ommon approa
h to determine the support value of anitemset is to dire
tly 
ount its o

urren
es in the database.For that purpose a 
ounter is set up and initialized to zerofor ea
h itemset that is 
urrently under investigation. Thenall transa
tions are s
anned and whenever one of the 
andi-dates is re
ognized as a subset of a transa
tion, its 
ounteris in
remented. Typi
ally subset generation and 
andidatelookup is integrated and implemented on a hashtree or asimilar data stru
ture. In brief, not all subsets of ea
h trans-a
tion are generated but only those that are 
ontained in the
andidates or that have a pre�x in 
ommon with at least oneof the 
andidates, 
.f. [2℄ for further details.Another approa
h is to determine the support values of 
an-didates by set interse
tions. A tid is a unique transa
tionidenti�er. For a single item the tidlist is the set of identi�ersthat 
orrespond to the transa
tions 
ontaining this item.A

ordingly tidlists also exist for every itemset X and aredenoted by X:tidlist. The tidlist of a 
andidate C = X[Y isobtained by C:tidlist = X:tidlistTY:tidlist. The tidlists aresorted in as
ending order to allow eÆ
ient interse
tions.Note that by bu�ering the tidlists of frequent 
andidates asintermediate results, we remarkably speedup the generationof the tidlists of the following 
andidates. Finally the a
tualsupport of a 
andidate is obtained by determining jC:tlistj.
3. COMMON ALGORITHMSIn this se
tion we brie
y des
ribe and systematize the most
ommon algorithms. We do this by referring to the funda-mentals of frequent itemset generation that we identi�ed inthe previous se
tion. Our goal is not to go to mu
h intodetail but to show the basi
 prin
iples and the di�eren
es

between the approa
hes.
3.1 SystematizationThe algorithms that we 
onsider in this paper are system-atized in Figure 3. We 
hara
terize ea
h of the algorithmsa) by its strategy to traverse the sear
h spa
e and b) by itsstrategy to determine the support values of the itemsets. In

D
FSBFS

C
ou

nt
in

g

Intersecting

IntersectingC
ou

nt
in

g

Apriori Eclat

AprioriTID

DIC

FP-Partition
growthFigure 3: Systematization of the Algorithmsaddition an algorithm may employ spe
i�
 optimizations forfurther speedup.

3.2 BFS and Counting OccurrencesThe most popular algorithm of this type is Apriori [2℄where also the downward 
losure property of itemset sup-port was introdu
ed. Apriori makes additional use of thisproperty by pruning those 
andidates that have an infre-quent subset before 
ounting their supports. This optimiza-tion be
omes possible be
ause BFS ensures that the supportvalues of all subsets of a 
andidate are known in advan
e.Apriori 
ounts all 
andidates of a 
ardinality k together inone s
an over the database. The 
riti
al part is looking upthe 
andidates in ea
h of the transa
tions. For this purpose[2℄ introdu
es a so 
alled hashtree stru
ture. The items inea
h transa
tion are used to des
end in the hashtree. When-ever we rea
h one of its leafs, we �nd a set of 
andidateshaving a 
ommon pre�x that is 
ontained in the transa
tion.Then these 
andidates are sear
hed in the transa
tion thathas been en
oded as a bitmap before. In the 
ase of su

essthe 
ounter of the 
andidate in the tree is in
remented.AprioriTID [2℄ is an extension of the basi
 Apriori ap-proa
h. Instead of relying on the raw database AprioriTIDinternally represents ea
h transa
tion by the 
urrent 
andi-dates it 
ontains. With AprioriHybrid both approa
hesare 
ombined, 
.f. [2℄. To some extent also SETM [13℄ isan Apriori(TID)-like algorithm whi
h is intended to be im-plemented dire
tly in SQL.DIC is a further variation of the Apriori-Algorithm [7℄. DICsoftens the stri
t separation between 
ounting and generat-ing 
andidates. Whenever a 
andidate rea
hes minsupp, thatis even when this 
andidate has not yet \seen" all trans-a
tions, DIC starts generating additional 
andidates basedSIGKDD Explorations. Copyright 
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on it. For that purpose a pre�x-tree is employed. In 
on-trast to the hashtree, ea
h node { leaf node or inner node {of the pre�x-tree is assigned to exa
tly one 
andidate re-spe
tively frequent itemset. In 
ontrast to the usage of ahashtree that means whenever we rea
h a node we 
an besure that the itemset asso
iated with this node is 
ontainedin the transa
tion. Furthermore interlo
king support deter-mination and 
andidate generation de
reases the number ofdatabase s
ans.
3.3 BFS and TID-List IntersectionsThe Partition-Algorithm [21℄ is an Apriori-like algorithmthat uses set interse
tions to determine support values. Asdes
ribed above Apriori determines the support values of all(k � 1)-
andidates before 
ounting the k-
andidates. Theproblem is that Partition of 
ourse wants to use the tidlistsof the frequent (k � 1)-itemsets to generate the tidlists ofthe k-
andidates. Obviously the size of those intermediateresults easily grows beyond the physi
al memory limitationsof 
ommon ma
hines. To over
ome this Partition splits thedatabase into several 
hunks that are treated independently.The size of ea
h 
hunk is 
hosen in su
h a way that all in-termediate tidlists �t into main memory. After determiningthe frequent itemsets for ea
h database 
hunk, an extra s
anis ne
essary to ensure that the lo
ally frequent itemsets arealso globally frequent.
3.4 DFS and Counting OccurrencesCounting o

urren
es assumes 
andidate sets of a reasonablesize. For ea
h of those 
andidate sets a database s
an is per-formed. E.g. Apriori that relies on BFS s
ans the databaseon
e for every 
andidate size k. When using DFS the 
andi-date sets 
onsist only of the itemsets of one of the nodes ofthe tree from Se
tion 2.2. Obviously s
anning the databasefor every node results in tremendous overhead. The simple
ombination of DFS with 
ounting o

urren
es is thereforeof no pra
ti
al relevan
e, 
.f.[11℄.Re
ently in [9℄ a fundamentally new approa
h 
alled FP-growth was introdu
ed. In a prepro
essing step FP-growthderives a highly 
ondensed representation of the transa
tiondata, the so 
alled FP-tree. The generation of the FP-tree isdone by 
ounting o

urren
es and DFS. In 
ontrast to for-mer DFS-approa
hes, FP-growth does not follow the nodesof the tree from Subse
tion 2.2, but dire
tly des
ends tosome part of the itemsets in the sear
h spa
e. In a se
-ond step FP-growth uses the FP-tree to derive the supportvalues of all frequent itemsets.
3.5 DFS and TID-List IntersectionsIn [28℄ the algorithm E
lat is introdu
ed, that 
ombinesDFS with tidlist interse
tions. When using DFS it suÆ
esto keep the tidlists on the path from the root down to the
lass 
urrently investigated in memory. That is, splittingthe database as done by Partition is no longer needed.E
lat employs an optimization 
alled \fast interse
tions".Whenever we interse
t two tidlists then we are only inter-ested in the resulting tidlist if its 
ardinality rea
hes min-supp. In other words, we should break o� ea
h interse
tionas soon as it is sure that it will not a
hieve this threshold.E
lat originally generates only frequent itemsets of size �3. We modi�ed E
lat to mine also the frequent 1- and2-itemsets by 
alling it on the 
lass that 
ontains the 1-itemsets together with their tidlists.

In addition in [28℄ algorithms that mine only the maximalfrequent itemsets are introdu
ed, e.g. MaxE
lat. An item-set X is maximal frequent if for every frequent itemset YX � Y ) Y = X holds. We do not 
onsider these algo-rithms be
ause although it is straight forward to derive theset of all frequent itemsets from the maximal frequent item-sets this does not hold for the 
orresponding support values.Without those, we are not able to derive rule 
on�den
es andtherefore we 
annot generate asso
iation rules.
4. COMPARISON OF THE ALGORITHMSIn this se
tion we 
ompare the algorithms and explain theobserved di�eren
es in performan
e behavior.
4.1 ExperimentsTo 
arry out performan
e studies we implemented the most
ommon algorithms to mine frequent itemsets, namely Apri-ori, DIC, Partition, and E
lat, in C++. A
tually we had toleave out DIC in the 
harts for reasons explained later. Inaddition we did not 
onsider AprioriTID and FP-growth be-
ause these algorithms were designed to mine data that isnot typi
al for retail environments, that is data 
ontainingquite long patterns.The experiments were performed on a SUN UltraSPARC-IIworkstation 
lo
ked at 248Mhz. The experiments in Fig-ures 4 { 11 were 
arried out on syntheti
 datasets from [2;21℄. These datasets were generated with a data generator [2℄that simulates the buying behavior of 
ustomers in retailbusiness. Dataset \T10.I4.D100K" means an average trans-a
tion size of 10, an average size of the maximal potentiallyfrequent itemsets of 4 and 100,000 generated transa
tions.The number of patterns was set to 2; 000 and the number ofitems to 1; 000.In addition to the experiments from [2; 21℄, we restri
tedthe maximal length of generated itemsets from 1 up to 9on the dataset \T20.I4.D100K" at minsupp = 0:33%, 
.f.Figure 9. Figures 10 and 11 show the behavior of the al-gorithms on real-world appli
ations. The basket data 
on-sists of about 70; 000 
ustomer transa
tions with approxi-mately 60; 000 di�erent items. The average transa
tion sizeis � 10:5 items. The 
ar equipment data 
ontains infor-mation about 700; 000 
ars with about 6; 000 items. In theaverage � 20 items are assigned to ea
h 
ar.It is important to say that all algorithms s
ale linearly withthe database size.
4.2 Counting Occurrences vs. Intersecting SetsThe basi
 question 
on
erning the runtime of the algorithmsis whether 
ounting o

urren
es or interse
ting tidlists showsbetter performan
e results. The advantage of 
ounting isthat only 
andidates that a
tually o

ur in the transa
tions
ause any e�ort. In 
ontrast, an interse
tion means at leastpassing through all tids of the smaller of the two tidlists,even if the 
andidate is not 
ontained in the database at all.(\Fast Interse
tions" save some 
osts but we still need topass a substantial number of tids.) But interse
tions alsohave their bene�ts. Counting implies looking up the 
andi-dates in the transa
tions. Of 
ourse this 
an get quite ex-pensive for 
andidates of higher 
ardinality. On the 
ontrarywhen using interse
tions the size of the 
andidate under in-vestigation does not have any in
uen
e.In pra
ti
e both e�e
ts seem to balan
e out on the basket-SIGKDD Explorations. Copyright 
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Figure 4: T10.I2.D100K
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Figure 5: T10.I4.D100K
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Figure 6: T20.I2.D100K
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Figure 7: T20.I4.D100K
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Figure 8: T20.I6.D100K
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Figure 9: Maximal Frequent Itemset Size
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Figure 10: Basket Data
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like data. The runtime behavior in Figures 4 { 8 doesnot show any substantial di�eren
es between the algorithmApriori that 
ounts o

urren
es and the tidlists interse
tingalgorithms Partition and E
lat. Only at quite low aver-age size of the maximal potentially frequent itemsets, e.g.\T10.I2.D100K" in Figure 4, Apriori is somehow superiorwhereas at larger average size of the maximal potentially fre-quent itemsets, e.g. \T20.I6.D100K" in Figure 8, Partitionand E
lat perform better. The same explanation holds forthe real-world experiments. With an average size of � 2:2items at minsupp = 0:06% the frequent itemsets found inthe basket data were rather short 
ompared to the frequentitemsets from the 
ar equipment database, that 
ontained� 4:1 items in the average at minsupp = 3%.In Figure 9 it be
omes 
lear what happens behind the s
enes:E
lat and Partition spend most of their time with determin-ing the support values of the 2- and 3-
andidates whereasApriori is eÆ
iently handling su
h small itemsets. In 
on-trast for itemsets with size � 4 the additional e�ort 
ausedfor E
lat and Partition is to be negle
ted whereas this doesnot hold for Apriori.
4.3 Relaxing the Separation between Candi-

date Generation and Support CountingOn the one hand the introdu
tion of the pre�x-tree with DICallows relaxing the separation between 
andidate generationand support 
ounting and therefore redu
es the number ofdatabase s
ans. Moreover ea
h node is assigned to pre
iselyone itemset. Consequently looking up 
andidates in bitmap-en
oded transa
tions is no longer ne
essary. On the otherhand the memory usage of the pre�x-tree 
aused problems,when we experimented with our own implementation of DIC:The pre�x-tree is already setup before all frequent 1-itemsetsare known. That means a mapping to frequent items asdes
ribed in [2℄ to keep the memory usage of hash tables inea
h node of the tree small is not possible. Moreover thise�e
t is strengthened by the fa
t that every 
andidate isstored in its own node and that in addition a separate nodefor ea
h pre�x of the 
andidate exists. Another drawba
k ofthe pre�x-tree is that the frequent itemsets are stored in thesame tree as the 
andidates. Ea
h frequent k-itemset that isnot pre�x of any k0-
andidate with k0 > k imposes overheadwhen 
ounting that is avoided by the hashtree-approa
h ofApriori.A
tually we did not 
ome to a �nal result 
on
erning theeÆ
ien
y of DIC. But what we want to say is that DIC'sadvantage of redu
ing the number of database s
ans shouldnot be overestimated in a retail environment. In [7℄ a perfor-man
e gain of only about 30% 
ompared with basi
 Aprioriis dete
ted for data with quite small average size of the max-imal potentially frequent itemsets.
4.4 Additional Candidate PruningTypi
ally the main task of the algorithms is determiningsupport values. That is, the time spent with 
andidate gen-eration { and 
andidate pruning { 
an be negle
ted. Conse-quently Apriori's 
andidate pruning step helps to redu
e the
andidates to be 
ounted but does not add any substantialoverhead. It is important to note that basi
 DFS, as em-ployed by E
lat does not allow proper subset pruning. Onlyright-most DFS as introdu
ed in [12℄ for the mining of gen-eralized asso
iation rules allows transferring the additionalprune step of Apriori to algorithms using DFS.

Our experiments suggest that the e�e
t of additional 
an-didate pruning is rather small for the datasets we took into
onsideration. Additional pruning does not help Partitionto 
ompensate E
lat's advantage based on the \fast inter-se
tions". This impression was also supported by furtherstudies with an enhan
ed version of E
lat that in
orporatesadditional 
andidates pruning by using right-most DFS.
4.5 Splitting the DatabasePartition needs to split the database. Whereas this opti-mization helps to 
ope with large databases it adds the ad-ditional overhead of an extra pass to determine the globallyfrequent itemsets. In our experiments the size of the trans-a
tion sets were always small enough that we 
ould employPartition without splitting. In [21℄ espe
ially at lower val-ues for minsupp Partition that splits su�ers strongly. Thereason is the in
reasing number of lo
ally frequent itemsetsthat �nally turn out to be globally infrequent.
4.6 “Fast Intersections”E
lat's fast interse
tions are obviously an advantage. Theoverhead 
aused by 
he
king whether minsupp is still rea
h-able is 
learly outweighed by breaking o� unne
essary in-terse
tions. As a result in all our experiments E
lat beatsPartition with a nearly 
onstant fa
tor.
5. CONCLUSIONIn this paper we dealt with the algorithmi
 aspe
ts of asso-
iation rule mining. We restri
ted ourselves to the \
lassi
"asso
iation rule problem, that is the generation of all asso
i-ation rules that exist in market basket-like data with respe
tto minimal thresholds for support and 
on�den
e.From the broad variety of eÆ
ient algorithms that have beendeveloped we 
ompared the most important ones. We sys-tematized the algorithms and analyzed their performan
ebased on both runtime experiments and theoreti
 
onsid-erations. The results were quite surprising: Although weidenti�ed fundamental di�eren
es 
on
erning the employedstrategies, the algorithms show quite similar runtime behav-ior in our experiments. At least there is no algorithm thatis fundamentally beating out the other ones. In fa
t ourexperiments showed that the advantages and disadvantageswe identi�ed 
on
erning the strategy to determine the sup-port values of the frequent itemsets nearly balan
e out onmarket basket-like data.In a forth
oming paper we pursue the development of a hy-brid approa
h that eÆ
iently 
ombines 
ounting o

urren
esand tidlist interse
tions [11℄.
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