
1to appear in Scienti�c ProgrammingCompiler Technology for Parallel Scienti�c ComputationCan �Ozturan, Balaram Sinharoy1 and Boleslaw K. SzymanskiDepartment of Computer Science, Rensselaer Polytechnic InstituteTroy, New York 12180-3590, USAAbstractThere is a need for compiler technology that, given the source program, will generate e�cient paral-lel codes for di�erent architectures with minimal user involvement. Parallel computation is becomingindispensable in solving large-scale problems in science and engineering. Yet, the use of parallel com-putation is limited by the high costs of developing the needed software. To overcome this di�culty weadvocate a comprehensive approach to the development of scalable architecture-independent software forscienti�c computation based on our experience with Equational Programming Language, EPL.Our approach is based on a program decomposition, parallel code synthesis and run-time support forparallel scienti�c computations. The program decomposition is guided by the source program annotationsprovided by the user. The synthesis of parallel code is based on con�gurations that describe the overallcomputation as a set of interacting components. Run-time support is provided by the compiler-generatedcode that redistributes computation and data during object program execution. The generated parallelcode is optimized using techniques of data alignment, operator placement, wavefront determination andmemory optimization.In this paper we discuss annotations, con�gurations, parallel code generation and run-time supportsuitable for parallel programs written in the functional parallel programming language EPL and inFortran.1 IntroductionWith a constant need to solve scienti�c and engineering problems of ever-growing complexity, there isan increasing need for software tools that provide solutions with minimal user involvement. Parallelcomputation is becoming indispensable in the solution of the large-scale problems that arise in scienceand engineering. While the use of parallel computation has been increasing, its widespread applicationhas been hampered by the level of e�ort required to develop and implement the needed software.Parallel software often must be tuned to a particular parallel architecture to execute e�ciently; thus, itoften requires costly redesign when ported to new machines. Parallel program correctness requires theresults to be independent of the number and speed of the processors. This requirement can be satis�edonly if the parallel tasks are independent of each other or properly synchronized when a dependenceexists. Designing proper synchronization is a major source of di�culty in ensuring parallel programcorrectness. Di�erent categories of parallel architectures have led to a proliferation of dialects ofstandard computer languages. Varying parallel programming primitives for di�erent parallel languagedialects greatly limit parallel software portability. Poor portability of parallel programs has resultedin a duplication of e�orts and has limited the use of developed systems.Parallel computation can be viewed as an interwoven description of operations that are to beapplied to data distributed over the processors, and of data mapping and synchronization that dictatethe data movements and the computation order. The traditional programming languages, such asFortran, C, or C++, cope well with the task of prescribing operations to be performed. However,the description of data mapping and synchronization in such languages is often introduced by ad1Currently with IBM Corporation, P.O. Box 950, Poughkeepsie, NY 12602.

�Ozturan et al. 2hoc architecture-dependent extensions. Examples are various synchronization constructs, like busy-wait, locks or barriers, used in programs for shared-memory machines, send and receive with di�erentsemantics employed by programs for message-passing architectures, and dimension projection and databroadcast popular in programs for SIMD computers. To avoid such architecture-dependent languagede�nitions, we propose to separate the description of operations to be performed on the data valuesfrom the de�nition of data mapping and synchronization needed to supply these data values to theproper processor at the proper instance of the program execution.With this goal in mind, we developed tools (Govindaraju and Szymanski, 1992; Szymanski, 1994)that (i) decompose, at least partially, the parallel program into the two (nearly) orthogonal partsdescribed above, (ii) translate the necessary data movements into optimal form customized for thetarget architecture, and (iii) synthesize an overall parallel computation. Using these tools the usercan describe high-level features of a program and synthesize parallel computation from numericalalgorithms, program fragments, and data structures that are implemented separately. The tools support(i) parallel task generation and their allocation to the processors, (ii) distribution of data to theprocessors, (iii) run-time optimization, and (iv) rapid prototyping of di�erent parallel implementations.
Fortran Transformer

Configurator/SynthesizerDefiniton
Configuration

Scalable Code Generator
Description

Architecture

Annotated Annotated Annotated

Parallel Code

Annotation Processor

Precompiler

Program Fragments, Data
Program Components:

EPL Programs Fortran77 Programs FortranD/90 Programs

Figure 1: Software tools and their usesThrough the application of transformation techniques, di�erent versions of the same program canbe generated from decomposed components. The synthesized computation uses load assignment, datadistribution, and synchronization appropriate to the size and type of target parallel architecture. Thecomputation synthesis is guided by conditional dependence graphs that represent externally accessibleinformation in each of the synthesized fragments. Usage of conditional information in data ow analysisand parallelization signi�cantly increase e�ciency of the generated parallel code.The summary view of our approach is given in Figure 1. Program components are created by anno-

�Ozturan et al. 3tating source programs in Fortran or in the functional parallel programming language EPL (Szymanski,1991). Fortran programs are transformed into an equational form before decomposition. The con�gu-ration de�nition guides the synthesis of the components into a parallel computation. The synthesizedcomputation together with the architecture description is used by the code generator to produce anobject code customized for the target architecture. In Figure 1, continuous lines describe system pathsthat have been implemented, broken lines represent paths currently under development, and dottedlines correspond to paths at an early stage of investigation.This paper is intended as an overview of the research done towards implementing software toolsas envisioned in Figure 1. More technical discussion can be found elsewhere (Bruno and Szymanski,1988; �Ozturan et al., 1992; Spier and Szymanski, 1990; Szymanski, 1991; Szymanski and Prywes, 1988;Sinharoy and Szymanski, 1994a; Sinharoy and Szymanski, 1994b; McKenney and Szymanski, 1992).A brief description of the EPL language, its annotations and con�gurations is given in Section 2.The relationship of EPL constructs and tools to di�erent levels of parallelism is discussed in Section 3.The EPL compiler is discussed in Section 4. Section 4.4 includes an overview of our approach to scalableparallel code generation. A dynamic load management strategy for adaptive scienti�c computation onSIMD architecture is the topic of Section 5. Finally, conclusions and comparison to other approachesis given in Section 6.2 Overview of the EPL LanguageEPL is a simple non-strict functional language with a type inference designed for scienti�c computa-tion. Although computationally vast, scienti�c computations are typically quite regular both in termsof control ow patterns and employed data structures. The data structures used are usually somevariations of multidimensional arrays (sparse matrices, grids, jagged-edge arrays, and even some hi-erarchical structures can be viewed as such). Correspondingly, the EPL language is de�ned in termsof just a few constructs: generalized arrays and subscripts for data structures, recurrent equations forprogram speci�cation, ports for process communication, and virtual processors to facilitate mappingof computation onto processors and load balancing.A computation is viewed in EPL as a collection of cooperating processes. A process is describedby an EPL program that consists of only data declarations and annotated conditional equations. Thecanonical data structure is a tree with nodes that can repeat and with leaves of primitive types. In itssimplest form such a tree can be viewed as a multi-dimensional array; each level of a tree correspondingto a new dimension of the corresponding array. Structured �les are provided for communication withan external environment (in records) and with other processes (through ports). EPL enforces a single-assignment rule, i.e., each data element should be de�ned exactly once (the EPL compiler, however, isfree to produce multiple-assignment object code). Thus equations, though syntactically reminiscent ofassignment statements, are best viewed as assertions of equality.The EPL programmer also de�nes the process interconnection network (the graph obtained byrepresenting processes as nodes and port interconnections as edges) in the con�guration �le. Processesalong with the con�guration �les are provided by the user to facilitate the compiler in extracting thecoarse grain parallelism in the computation by generating processes and inter-process communicationconstructs. Con�gurations also allow the programmer to reuse the same process in di�erent computa-tions.2.1 IterationsAn iteration is a staple of scienti�c computing. In EPL, iterations are programmed using subscripts. Asubscript assumes a range of integers as its value. Subscripts give EPL a dual avor. In the de�nitionalview, they may be treated as universal quanti�ers and equations can be viewed as logical predicates.

�Ozturan et al. 4In the operational view, they can be seen as loop control variables and each equation can be seen as astatement nested in loops implied by its subscripts.There is a special class of indirect indexes, called sublinear subscripts, that are used in scienti�capplications so often that a special construct devoted to them has been introduced in EPL. Formally,an indirect index s de�ned over the subscript i is sublinear to this subscript if it satis�es the followingproperty: (0 � s[1] � 1) and (s[i] � s[i+ 1] � s[i] + 1) for i = 1; 2; : : :It immediately follows from this de�nition that the sublinear subscript s[i] starts with the value of either1 or 0 and then, with each increase of i, it is either incremented by 1 or kept unchanged. Typically,there is a condition associated with each sublinear subscript. The condition dictates when the subscriptincreases. This is the way a sublinear subscript is de�ned in EPL. For example, a sparse matrix S thatis a row-major representation of a matrix D can be de�ned in EPL using a sublinear subscript col[j]as follows: subscript: col is sublinear j : D[i; j] 6= 0;S[i; col] = D[i; j]Sublinear subscripts have an implicit range determined by the number of times the de�ning conditionyields true.The sublinear subscripts are convenient in expressing such operations as creating a list of selectedelements, operating on sparse matrices, or de�ning a subset of the given set. Even more important isthe fact that in the implementation of a process no new iteration has to be created for computationassociated with the sublinear subscripts. Instead, all necessary computation can be nested in theiterations created for subscripts in terms of which the considered sublinear subscript has been de�ned.Sublinear subscripts are also useful in de�ning dynamic distribution of data to processors at run-time.An example of such a de�nition is given in Section 5.2.2.2 ReductionA computation that frequently occurs in scienti�c applications is to apply a binary operation overan entire vector and store the result in the last element of the vector. For example, in scienti�ccomputation there is often a need to apply an associative operator (such as +; �;�; max;min; etc.)selectively on the elements of an array. Scan and Reduce are language constructs in EPL and otherparallel languages that allow such operations to be succinctly written. Reduce applied to a vector ofvalues produces a scalar result, whereas scan results in a vector of partial results. For example, considera matrix A multiplied by a vector X with the result placed in a vector r. This operation can be writtenin EPL as:Temp[i,j] = if j==1 then A[i,j]*X[j] else Temp[i,j-1]+A[i,j]*X[j];r[i] = Temp[i,range.j];or, even shorter asr[i]= scan(+,A[i,j]*X[j], j);Such operations result in references of the form V [: : : range:i; : : :], where range:i indicates the rangeof the reduced/scanned dimension of a multidimensional array V . (In general, the EPL range variablepre�x denotes the size of its su�x.) The presence of such references in the program is explored bymemory optimization and scheduling which is discussed later.A more detailed description of the language is given in (Szymanski, 1991).

�Ozturan et al. 52.3 Con�gurationsIn our approach a parallel computation is viewed as a collection of cooperating processes. Processesare de�ned as functional programs. Process cooperation is described by a simple macro dataowspeci�cation, called a con�guration. Con�gurations support programming-in-the-large. The user canexperiment with various con�gurations to �nd the one that results in the most e�cient code.The con�gurator uses the dependence graph created during con�guration analysis to generate anarchitecture-independent parallel description which is fed to the code generator. Con�gurations de�neprocesses (and their aggregates) and ports. Statements of the con�guration represent relations betweenports in di�erent processes. They are supplied by the user to direct integration of the processes into aparallel computation.Processes created dynamically can communicate with ports located at parent, child, and siblingprocesses; each of those processes is just a copy of the same program, except the parent process thatcan be arbitrary.Consider as an example an iterative solver of linear equations Ax = b which uses the followingrecursion: rk = Axk�1xk [i] = b � rkA[i; i] + xk�1[i]The �rst part of the recursion is a matrix vector multiplication which may form a separate process,de�ned as:process: mvm; in: inf; out: ouf;�le: inf,int n, double A[*,*], /* �rst record with n*n matrix A */record iter[*], double x[*]; /* sequence of records with vector x */�le: ouf,record appr[*], double r[*]; /* sequence of result vectors r */subscripts: i,j,k;range.A=n; range.A[i]=n; range.x=n; range.r=n;r[k,i]=scan(+,A[i,j]*x[k,j],j);Figure 2: Matrix vector multiplication in EPLNote that there are no explicit input/output statements and the order of equations is irrelevantbecause all variables are singly valued. If we assume that the separate process, let's call it XC, calculatesthe new approximation of the vector x and monitors convergence and the third process, MAIN, provides�nal input/output, then the corresponding con�guration is shown in Figure 3. The textual de�nitionlists data-ow paths that cover a con�guration graph. The graphical de�nition is bulit from processboxes and �le edges. It is augmented with �le structure information provided by the EPL system (seeFigure 3 b).2.4 Program Decomposition through AnnotationsAnnotations provide an e�cient way of introducing the user's directives that assist the compiler inprogram parallelization. Annotations have been proposed in many systems by various researchers

�Ozturan et al. 6
P:XC -> inf -> P: MVM -> ouf -> P:XC

Configuration file:

Input: P: MAIN -> inf -> P:MVM

Output: P: XC -> xf -> P: MAIN

ouf

MVM XC

MAIN
inf

inf

ouf

inf

xf

xf

(a) (b)Figure 3: Con�guration for an iterative solver in a) textual and b) graphical form(Mehrotra and Van Rosendale, 1991; Fox et al., 1991; Chapman et al., 1992; Hudak, 1991; Chapman andZima, 1992) and are used mainly as compiler directives. In our approach annotations limit the feasiblemappings of computation onto the processors. Hence, they are used only during the decompositionof a process into smaller fragments. This kind of annotation is similar to ON clause as used in theKali compiler (Mehrotra and Van Rosendale, 1991), Fortran D (Fox et al., 1991) or Vienna Fortran(Chapman et al., 1992).Annotation does not have any e�ect on the result computed by a program. Consequently, sequen-tial programs that have manifested their correctness over many years of usage are good candidates forparallelization through annotations. Being orthogonal to the program description, annotations sup-port rapid prototyping of di�erent parallel solutions for the same problem, which can be helpful inperformance tuning.In EPL, each equation can be annotated with the name of an array of virtual processors on whichit is to be mapped. Virtual processors can be indexed by the equation's subscripts to identify instancesof equations assigned to individual virtual processors. Such instances constitute the smallest granuleof parallel computation. For example, for the process MVM the following annotation:P[i]: r[k,i]=scan(+,A[i,j]*x[k,j],j);will cause the compiler to consider only the tasks that de�ne a sequence of r vector elements. Eachtask will locally store one row of array A but the vectors x[k; �] must be broadcast to all of those tasks.The above partitioning allocates a slice of the equation de�ned by a single subscript value. Theresultant granularity may be too �ne for a target architecture. However, when an annotation is indexedby a sublinear subscript, then the corresponding sublinear expression dictates how the annotatedequations are clustered onto the virtual processors. For example, let p be a sublinear subscript of i,then range:p is the number of physical or virtual processors. (This number may be a system constantnot even known explicitly to the user; it may depend on the architecture, system load, or it may bede�ned by the user or compiler directive.) Considering again the previous example of a matrix vectormultiplication, we can use an annotation:

�Ozturan et al. 7P[p]: r[k,i] = reduce(+,A[i,j]*x[k,j],j);It will distribute (or partition) the last dimension of r and A over range:p processors in a block fashion(each processor will hold bnp c or dnp e elements of r and rows of A). In Section 5.2 there is an example inwhich a di�erent distribution is achieved using a sublinear subscript in an annotation. This distributionbalances the load on the processors.There are similarities as well as di�erences between the EPL annotations and the Fortran languageextensions that have been introduced in many systems, e.g., Vienna Fortran (Chapman et al., 1992;Zima et al., 1992; Benkner et al., 1992), Fortran D (Fox et al., 1991; Hiranandani et al., 1992; Hi-ranandani et al., 1991a) and SUPERB (Gerndt and Zima, 1992). Vienna Fortran provides directivesfor array-like processor structure de�nition. The distribution of arrays can be speci�ed at compile-timethrough the use of aDIST directive with BLOCK or CYCLIC options. INDIRECT directives canbe added to indicate run-time distribution. Such a distribution may have a range of valid distributionsde�ned in its declaration. It uses an explicit mapping array to assign a distribution by an executablestatement. The assigned distribution can be part of the condition in the source program. In additionto direct distribution de�nition, an array in Vienna Fortran can inherit a distribution from the de�ni-tion of its alignment relative to some other array (and vice versa). Directive DIST can be used withoptions like =A, TRANSPOSE(A), PERMUTE(A; PERM) to align an array with, respectively,another array AD, transposed array A or array A with indicies permuted according to the given vectorPERM.Fortran D directives are similar to Vienna Fortran, however distribution is separated from align-ment. In Fortran D, �rst the DECOMPOSITION statement is used to declare a problem domainfor each computation. The ALIGN statement is then used to describe problem mapping that de�nesthe alignment of arrays with respect to each other. Finally, the DISTRIBUTE statement is used tomap the problem and its associated arrays to the physical machine.In EPL, by subscripting the annotated virtual process names and de�ning the appropriate rangesfor the subscripts, the user can distribute the arrays in blocks, columns or rows. The arrays can alsobe transposed by permuting the subscripts of annotated virtual processors. Unlike Vienna Fortran andFortran D, EPL does not provide the user with directives to do manual alignment of data. Instead,data alignment algorithms have been developed to facilitate this task automatically (see Section 4.4.1).Hence embedding alignment directives in source programs is not necessary.3 Parallelism Extraction in EPLIn EPL, compile-time parallelism is sought on three levels:� Coarse Grain parallelism is sought by creating tasks that are primarily dictated by the user-de�ned processes and process interconnection network described in the con�guration �les. Theprocess interconnection network is decomposed into parallelizable tasks by the compiler. Sincethe optimal decomposition is NP-hard for machines having more than three processors (Bokhari,1981), the EPL compiler uses heuristics.� Medium Grain parallelism is sought at the level of equation clusters. Several equations in aprogram can be clustered into a group. Separate tasks are generated for each of the clusters. Acluster can run concurrently with other clusters in the same program. Programmers can assist thecompiler in determining such clusters by annotating each equation by a virtual processor name.To minimize interprocess communication the compiler uses an heuristic to impose a hierarchyamong the generated processes (see Section 2.4).� Fine Grain parallelism is explored at the level of individual instances of equations or theirclusters. This source of parallelism is of the greatest importance in massively parallel SIMD

�Ozturan et al. 8architectures. Mapping arrays onto the processors dictates communication costs of fetching thearguments and storing the results of operations. The problem of �nding the mapping optimal inthis respect is known as the data alignment problem which is discussed in Section 4.4.1. Anotherproblem arises in connection with mapping operators onto processors. The solution to the latterproblem is discussed in Section 4.4.2. The order of evaluation of the array elements is importantfor SIMD code e�ciency. A compile-time method of determining an e�cient order, known aswavefront determination, is discussed in Section 4.4.3.
Developed
Tools

Medium GrainCoarse Grain

Developed
Tools

Type of
Parallelism

Problems

Addressed

Problems
Addressed

Granularity Fine Grain

Control Parallelism Loop Parallelism Data Parallelism

Configurator Annotations Data Alignment

Memory Optimization Wavefront Determination

Partitioning Algorithms

Synchronization
Matrix Computations Recurrence Equations

Iterative Solvers

Load Balancing

Direct Solvers

Dynamic Load Balancing

Adaptive Solution of Partial Differential Equations

Run-Time

Compile-Time
Scheduler

Figure 4: Developed tools and their relationships to issues in parallel scienti�c computationFigure 4 shows the tools that have been developed and their correspondence to various modelsof parallel computations. The control-parallel model assumes that there are separate, relatively inde-pendent processes or functions that can be executed simultaneously. This model requires the user tohandle the error-prone and di�cult task of synchronizing these independent processes. The con�gura-tor eases the burden of programming for control parallelism by automating the de�nition of interprocesscoordination.Data parallelism, popular in massively parallel systems, assumes that there are large data structuresto be processed and that each element of every structure can be assigned to a single processor (eithervirtual or real). The same sequence of instructions is applied simultaneously to all elements of theprocessed structures. It is also necessary to decide which elements of the di�erent structures shouldbe placed on the same processor in order to minimize the cost of fetching arguments for operationsinvolving those elements. Data alignment tools described in this paper can �nd sub-optimal solutionsto this problem without user involvement.Annotations, relevant mainly to loop-parallelism, provide the user with the means of rapid-prototypingalternative parallelizations of the program. For example, supplying proper annotations, the user canexperiment with various combinations of column- and row-wise parallelizations of the matrix operationsin a program.A load-balancing problem surfaces at all three levels of parallelism. In Section 5 we describe howthe partitioning tools developed for the presented compiler can be used to do either static or dynamicload balancing on linear or rectangular arrays of processors. The partitioning tool is applicable to

�Ozturan et al. 9irregular computations that result from using adaptive solvers of partial di�erential equations on eitherhomogeneous or heterogeneous processors.In EPL, the programmer can assist the compiler in extracting coarse- and medium-level parallelism.As described earlier, coarse-grain parallelism is obtained by creating tasks from the processes and theirinterconnection network as speci�ed in the con�guration �les. The programmer can help in determiningthe medium-grain parallelism by annotating the equations in the source program. After determiningthe coarse- and medium-grain parallelism, the parallel program is synthesized with the help of thecon�gurator.4 EPL Compiler
Checking

Parsing
and Syntax

Annotated

Annotation

Processing Construction

Array
Graph

Propagation
Completeness

Verification

Type
Inference

Dimension

Annotation
Process

Generation Propagation

Dependence
Analysis

Configuration
Dependence
Generation Generation

Range

Analysis

Condition

Scheduling
Schedule

Optimization

Code
Object Code

Intra-Port
Architecture

Description

Processor

Annotation

Precompiler

Synthesizer Scalable Code Generator

EPL Source

Figure 5: The structure of the EPL compilerThe basic techniques used in EPL compilation are data-dependence analysis and data-attributepropagation. In a single program, the dependences are represented in the compact form by the condi-tional array graph. A similar dependence graph is also created for a con�guration. It shows the datadependences among processes of the computation and is used for scheduling processes and mappingthem onto the processors. Figure 5 depicts the structure of the EPL compiler by showing part ofFigure 1 in more detail. In particular, all components of Annotation Processing, Precompiler andScalable Code Generator are explicitly shown. The major stages of the EPL compilation are:1. Array Graph Construction which transforms the source code into its intermediate form. Themain components of this form are the array graph and the symbol table. The array graph nodes

�Ozturan et al. 10represent the variables and the equations. Each array graph edge represents the dependencebetween the nodes and is labeled by its attributes such as the associated subscript expressions,dependence type, and conditions under which the dependence holds.2. Dimension Propagation that checks correctness and assigns dimensionality to each EPL variable.3. Type Checking which veri�es that all variables and expressions have or can be assigned consistenttypes.4. Completeness Veri�cation that performs various semantic checks and veri�es that each variableis de�ned over its entire domain.5. Range Propagation that �nds equivalences between ranges of variables and equations. The EPLcompiler uses the concept of a range set as an object to which all equivalent ranges are linked.Range propagation links all dimensions which share a common bound into a range set.6. Condition Analysis which establishes equivalence and/or exclusiveness of predicates used in con-ditional equations. The found relations of predicates are used in scheduling and veri�cation.7. Scheduler that �nds an array graph evaluation order which is minimal among all orders preservingthe program semantics. Scheduler also de�nes the scopes and nesting of the loops in the objectprogram. The output generated by the scheduler is used by the schedule optimizer and the codegenerator.8. Schedule Optimization is an architecture-dependent step that customizes the generated scheduleto the target architecture (see, for example, (McKenney and Szymanski, 1992) for SIMD speci�coptimizations).9. Annotation Processing, Con�guration Processing and Code Generation are discussed in Sections4.2, 4.3 and 4.4, respectively.4.1 Single Assignment FortranThrough extensions and annotations, imperative languages, particularly Fortran, have maintained theirdominance in scienti�c computation over such non-traditional languages as dataow, logic or functional.Nevertheless, languages based on the single assignment rule have proven to be a convenient basis fordeveloping sophisticated program optimizations. EPL research has centered its program optimizationtechniques on the array graph representation of recurrence equations. We believe that by transformingthe Fortran programs to array graph representation, a wider spectrum of program optimization andparallel code generation methods can be applied to the transformed programs than to their Fortransource.An important step towards an e�cient parallelization of Fortran programs with the help of the EPLcompiler involves an equational transformation during which the equational equivalent of the programis generated (Szymanski, 1994). The transformed programs obey the single assignment rule and do notcontain any control statements (Ge and Prywes, 1990). The transformation is done in the followingtwo steps:1. Program expansion, during which the variables are expanded to enforce the single assignmentrule. In particular, the reassignments elimination involves replacing the reassigned variablesby:� vector (additional dimension) { inside loops,� variants { in \if" branches and basic blocks.

�Ozturan et al. 112. Program optimization, that consists of:Condition Analysis: Conditions in the transformed program are analyzed using a Sup-Inf in-equality prover (Bruno and Szymanski, 1988) and the Kau variable elimination method(Kau, 1988) to �nd pairwise equivalent or exclusive conditions.Variable's Variants Elimination: Variants created in equivalent and exclusive conditions aremerged into a single variable.Additional Dimension Elimination: During scheduling and code generation for individualprocesses, memory optimization is performed to replace entire dimensions by windows of fewelements for multidimensional variables (Szymanski and Prywes, 1988). This step restoresthe memory e�ciency of the original program.The transformed Fortran program is then compatible with the programs produced by annotatingEPL programs.4.2 Annotation ProcessingEach virtual processor produces data, typically used by other virtual processors, and in turn consumesdata produced by others. By performing data-dependence analysis in a style of PTRAN (Sarkar, 1991),the annotation processor can �nd the dependencies local to each virtual processor as well as datastructures produced and consumed by this processor. All data produced by the processor become localto it and are placed in the its local memory. The created parallel tasks are supplied with communicationstatements needed to move non-local data. Parallel tasks associated with virtual processors at thebottom of the block hierarchy are the smallest components used in the program synthesis. Hence,annotation processing includes:� creating parallel tasks de�ned by annotated fragments of the original program,� declaring ports needed to interconnect created tasks into a network,� interconnecting ports according to the task communication graph to preserve data dependencesbetween created tasks.Each annotated fragment of the source program becomes a separate task. All data elements de�ned inthe task are local to it.2 All used but not local data must be sent in from the other tasks. The annotationprocessor builds the task communication graph. Then, it augments the code of each task by portdeclarations and send and receive statements that are needed to implement the required intertask dataow. To minimize the communication generated by the added statements, the annotation processorembeds a tree in the task communication graph.Let G(V;E) be a task communication graph with a set of nodes V representing tasks and a set ofedges E � V � V representing intertask communication. Each edge ei;j 2 E has the associated cost,c(ei;j), that represents the volume of data being sent from the task i to the task j. In a spanning treeT , the distance dT (ei;j) de�nes the minimum length path from task i to task j. Using these de�nitions,the cost of the spanning tree T can be de�ned as:C(T) = Xei;j2E c(ei;j) � dT (ei;j)2We refer to this principle as Executor Owns rule, it is an inverse of the more commonly used Owner Computes rule.In (Sinharoy and Szymanski, 1994a) we have shown an example of computation for which neither of the two rules resultsin an optimal solution.

�Ozturan et al. 12To minimize the total communication cost, proper cut-tree must be found. It can be done in O(j V j4)steps (Gomory and Hu, 1961) by solving j V j maximal ow problems.To embed the tree, we developed an heuristic which selects the embedding using the followingcriteria:� Dimension nesting: If two tasks with di�erent dimensionalities are connected in the taskcommunication graph, the task with more dimensions should be located lower in the spanningtree.� Range nesting: Whenever possible, tasks sharing the same range should be clustered togetherin the spanning tree. Variables that share ranges usually appear in the same equations. Thus,clustering such variables together decreases the number of cross-process references to distributedvariables.� Data ow: The total communication cost of the selected spanning tree should be the smallestamong all spanning trees satisfying the above two criteria.
x

XC

MAIN

init iter

inf

ouf

A

MVM

[i,*]

i-range
P[i] cluster

r[k,i]

x[k,i]

x[0,i]

Figure 6: Communication tree for matrix vector multiplicationTrees created from an annotation of the matrix vector multiplication program are shown in Figure6. The double outcoming arrows indicate scattering the data from a task to a group of tasks. Thedouble incoming arrows represent an inverse operation of gathering the data. For example, processMAIN scatters the vector x[0] among processors P [i]. On the other hand, process XC gathers thevector r[k] by collecting individual elements r[k; i] from processes P [i].4.3 Program Synthesis with the Con�guratorThe goal of con�guration processing is to establish scheduling constraints for the overall computation.In the parallel computation, individual process correctness is a necessary but not su�cient conditionfor the correctness of the entire computation. If a task has input and output ports that belong to acycle in the con�guration graph, then this task's input messages are dependent on the output messages.Such dependences (in addition to dependences imposed by the statements of a task) have to be taken

�Ozturan et al. 13
Compile_2

IntraTask

Task Code

Tasks Configurations

Configure_1Compile_1

IntraTask
Analysis

Inter Task
Analysis

Configuration

Configure_2

Synchronization
Code

Dependencies

Figure 7: Two-stage dependence analysisinto account in generating the object program for individual tasks; otherwise, loss of messages, processblocking, or even a deadlock can arise.Tasks that belong to a cycle in the task communication graph can execute concurrently only if theyare all enclosed in the same loop including the respective send and receive statements. Such tasks arecalled atomic, since they cannot be broken into parts without splitting the loop. For example, if a sendstatement is executed in a separate loop from the matching receive statement, then all messages willbe sent before any one can be received, and the successors of such nonatomic tasks cannot start untilits predecessors in the task communication graph �nish sending messages.The algorithm for �nding external data dependences has been presented in (Spier and Szymanski,1990). The analysis starts by inspecting all atomic processes and then propagates transitive depen-dences along the paths of the task communication graph restricted to atomic processes. As a result, acon�guration dependence �le is created and later used by the synthesizer and the code generator. This�le contains a list of the additional externally imposed data dependences (edges and their dimensiontypes) that need to be added to the task array graph. One task may have several such �les, eachassociated with a di�erent con�guration in which this task participates.Each edge in the con�guration dependence �le may have the following e�ects on the programgenerated from the array graph:� an additional constraint is imposed by an edge if there is no equal or stronger internal dependencybetween the considered nodes, or� an error is discovered when there are internal dependencies incompatible with the edge.Hence, as shown in Figure 7, the dependence analysis for the synthesized computation has to bedone in two stages.

�Ozturan et al. 144.4 Code Generation and Optimization for Massively Parallel ArchitecturesData structures used in scienti�c computation can be viewed as a function � from an index domain Ito a value domain V. An index domain, in general a set of tuples of integers < i1; i2; : : : ; in >, is oftena subset of the Cartesian product of integer intervals, for regular n-dimensional arrays. For example, I= I1� I2� : : :� In, where Ij = [1; Imax;j]. Often an inverse function ��1 does not exist. Following thestandard higher-level programming language notation, we denote the value of the function � at point< i1; : : : ; in > as v[i1; : : : ; in].Program execution can be seen as an evaluation of the arrays at various index points (elements ofthe index domain). The order of execution is restricted only by data dependences that rarely imposethe total order.
V value domain

I index domain

A

T - time domain

P - processor domain

M - virtual memory

L - limited (real) memory

δ

: A TxPxMω
wavefront

virtual architecture

µ
T x P x M T x P x L

α : I A alignment

: I V data structure

: M L memory optimization

data-driven schedulingFigure 8: Functional view of code generationFigure 8 shows the conceptual stages of mapping the index domain of a variable to the Cartesianproduct of the processor domain, their local memory domains and the time domain. The goal is to �nda mapping that results in the minimum execution time. In Figure 8, A represents a virtual architecture.It is de�ned by the computer interconnection network. For example, in a k-dimensional mesh-connectedarchitecture of size N , processors can be thought of as arranged in a k-dimensional array, with A =[1; n1]� [1; n2] � : : :� [1; nk], where N = n1 � n2 � : : : � nk . The processor p[l1; l2; : : : ; lk] is connectedwith processors p[l1; : : : ; lj � 1; : : : ; lk]; 1 � j � k provided that processor p[l1; : : : ; lj � 1; : : : ; lk] exists(lj � 1 mod nj , in the case of torus-connected architecture). To facilitate data alignment and timescheduling, we assume that a virtual architecture A is compatible with the domain I . Local memorydomain L can be viewed as a multidimensional cube with the volume equal to the actual local memoryavailable on each processor. Virtual memory domainM is of the same structure as the domain L, exceptit has unlimited memory size. The execution time steps are represented by time domain T = [1; tmax],where tmax is the total number of time steps needed to complete the computation.In such a view, there are three major problems that need to be solved for generating optimized codefor massively parallel architectures: Data Alignment, Time Scheduling and Memory Optimization.Data alignment is discussed in some detail in the next section. Time scheduling of iterative com-putations is usually done either through data-driven scheduling or wavefront determination. Bothmethods explore the fact that iterative computations often allow the simultaneous evaluation of manyarray elements. Data-driven scheduling starts the execution of an index point as soon as all data that

�Ozturan et al. 15this point is dependent on becomes available. However, data dependencies often hold under conditionsthat involve input data and therefore can be resolved only in run-time. Consequently, data-drivenscheduling typically relies on run-time distributed synchronization. In the case of functional programswith single assignment and recurrent relations, the compile-time data-driven scheduling is decidable(Pnueli et al., 1984). Such a scheduler has been implemented in the compiler for EPL language (Szy-manski and Prywes, 1988) and is not discussed here. Wavefront Scheduling is presented in Section4.4.3.Programs written in EPL or transformed from Fortran obey the single assignment rule. A variablewhich is reassigned in a procedural language is seen as a vector of values with a di�erent subscript valuefor each assignment. This extra temporal dimension allows the program to be speci�ed without anyreassignments but, unless optimized, may require an exorbitant amount of memory. The EPL compilercan often reduce the memory requirement of a program by replacing the entire dimension of an arrayby a few elements (Szymanski and Prywes, 1988). However, we have proven (Sinharoy and Szymanski,1993) that the problem of �nding the optimum replacement is equivalent to the well-known NP-hardproblem of determining the maximum weight clique problem. Consequently, the EPL compiler usesheuristics to determine a good loop arrangement for memory optimization.4.4.1 Data AlignmentIn a distributed-memory parallel computer, a signi�cant speedup can be achieved by distributing (ormapping) data structures in a program onto the processors. One processor is allocated (at leastconceptually) to each array element or composite data structure. Operations on elements of twodata structures can be performed entirely locally if the elements are allocated to the same processor;otherwise, processor communication has to be involved. The cost of communication depends on therelative position of the two processors involved and the architecture under consideration. One of themajor challenges in programming distributed-memory parallel computers is to distribute data structuresamong the processors so that the communication cost is minimized.The problem is particularly acute when the communication is synchronous, such as in the caseof SIMD machines. In addition, di�erent alignments of multi-dimensional arrays on a grid-connectedSIMD architecture result in di�erent communication patterns during parallel program execution. Theusual approach to this problem (O'Boyle and Hedayat, 1992; Knobe et al., 1990) is to select the bestalignment for each array in the program independently of other arrays. Hence, such an approach doesnot succeed when the independently found alignments conict with each other. Similarly, the algorithmpresented in (Gilbert and Schreiber, 1991) �nds the minimum communication cost of evaluating anexpression over a distributed processor array but only for a single expression. Given the initial allocationof data, the algorithm determines the processors at which the temporary variables should reside and asubexpression evaluation should take place to minimize the communication cost.In (Szymanski and Sinharoy, 1992), we have shown that the data alignment problem for an entireprogram is NP-hard for all communication cost metrics. In (Sinharoy and Szymanski, 1994a), weproposed an heuristic that starts with an integer approximation of the rational minimum of the costfunction when the distance is de�ned by the second (Euclidean) norm. The initial solution is theniteratively improved by following the steepest decline direction of the cost function. Results of usingthis algorithm on random graphs are encouraging (Sinharoy and Szymanski, 1994a).Here, we focus on the de�nition of the problem and its impact upon the code generation. Let'sconsider an equation efI1;:::;Ikg de�ned over k subscripts I1; : : : ; Ik (such an equation corresponds to astatement nested in k iterations):efI1;:::;Ikg : vl[s1; s2; : : : ; sk] = : : : vr[f1; f2; : : : ; fk] : : :where each simple indexing expression sj on the left side of the equation is an a�ne function of the

�Ozturan et al. 16corresponding subscript Ij , and each indexing expression fj on the right side is a function over possiblymany subscripts. A large class of parallel scienti�c computations can be expressed as Regular IterativeAlgorithms (RIA) (Rao, 1985) in which all indexing expressions are of the form \I + c", where I is asubscript and c is an integer constant.To generate e�cient code for SIMD machines, one or two dimensions of a data array should beprojected along the processor array (McKenney and Szymanski, 1992). For the i-th projected dimensionof each array (each equation), we de�ne an alignment function �i that maps the index of that dimensioninto the position of the virtual processor that stores (executes) its value. We consider the simplest butalso the most useful form of the alignment function de�ned as a constant shift, e.g., for variable vl,�l(Ii) = Ii + aliHence, the equation e with alignment shifts can be written as:efI1;:::;Ikg : vl[I1; : : : ; Ik] = : : :vr[I1 + c1; : : : ; Ik + ck] (1)This equation incurs the communication cost:C = Xfor all v in e � d(jae1 � av1 + cv1j; : : : ; jaek � avk + cvkj)where d is a distance metric, denotes the time needed for sending a unit message between twodirectly connected processors, and n is the dimensionality of the communication network. The distancemetric is de�ned by the interconnection of the processors in the considered parallel architecture. Thus,the problem is to �nd alignment functions �'s for each of the variables and equations such that thecommunication cost C for the given set of assignments is minimal. Figure 9 shows the communication
?

-HHHHHHj HHHHHHHjLocalMemoryProcessor Numberef:::;i;:::g : vl[: : : ; i; : : :] = : : :vr[: : : ; i+ c; : : :] : : :i� xr + c i� xe i� x1 ivr[i+ c] e[i] v1[i] vr[i+ xr]v1[i+ x1]e[i+ xe]jx1 � xejjxr � xe � cj
for i=1 to ...

Figure 9: Communication cost of executing equation eamong the processors executing the i-th instance of Eq. 1 along a single dimension. Contrary to thewell known Owner Computes rule, to minimize communication costs, the processor executing the i-thinstance of the equation may be di�erent from the processor that stores the i-th element of the arrayde�ned by this equation.

�Ozturan et al. 174.4.2 Array Operator PlacementProper assignment of array operators to processors in large scienti�c computations executed on adistributed-memory machine can reduce total computation time signi�cantly. For example, considerthe following computation3 evaluated over the rectangular stencil. Let n1; n2 stand for the lengths ofthe sides of the stencil and p1; p2 be the o�sets (measured from the lower left corner of the stencil)of the desired position of the result. Let si;j be a data structure distributed over the two-dimensionalprocessor array and (m; q) be the coordinates of the processor that should receive the result. Thecomputation is de�ned as: result = m+n1�p1Xi=m�p1 q+n2�p2Xj=q�p2 f(sm;q; si;j)The above computation is evaluated repeatedly for each rectangular stencil in the processor array.Hence, it is likely to dominate the total execution time. The above computation is an example ofa reduction evaluated simultaneously over many overlapping continuous sections of an array. Otherexamples of usage of such operations are likely to be found in cluster recognition, fractal dimensioncomputation in biological modeling (Szymanski and Caraco, 1994), or in modeling physical phenomena(e.g., solvers of partial di�erential equations characterizing uid ow).Simultaneous reduction is evaluated over a one-dimensional consecutive section of an array, calledhere an array interval; each array element is used as an operand to many reductions evaluated si-multaneously over di�erent overlapping intervals. This is distinct from what is usually referred to asParallel Reduction, which involves the parallel evaluation of a single reduction (Andrews, 1991) or itsvariants. An algorithm for standard parallel reduction that uses a balanced binary tree implementationfor mesh-connected architectures has been presented in (Gibbons and Ziani, 1991). Another standardparallel reduction algorithm has been introduced in (Miguet and Robert, 1992) for tree topologies ofarbitrary but bounded fan-in and arbitrary tree depth. The segmented pre�x problem is a variantof parallel reduction that subdivides a single dimension of processors into non-overlapping contiguousregions of varying size. A multiple pre�x algorithm that reduces non-contiguous regions simultaneouslyfor this variant has been presented in (Sanz and Cypher, 1992). None of the published algorithms copewith the overlapping of the regions being reduced.E�ciency of the simultaneous reduction has been discussed in (Szymanski et al., 1992). It canbe expressed as a function of (i) operation count; i.e., the number of required reduction operationsteps, (ii) communication cost; that is, a function of the number of messages sent (message count),the distances traveled by messages (hop count) and the length of the messages (message size), and(iii) memory count; i.e., the number of memory locations used to store intermediate results at eachprocessor. The lower bounds for the above counts are: dlog2ne for the operation, message and memorycounts, n � 1 for the hop count, and 1 for the message size. For the interval of size n = 2k and anarbitrary o�set p, a modi�cation of the well known Parallel Pre�x algorithm (Andrews, 1991) achievesthe above bounds. The modi�cation de�nes the direction of the message transfer in each step by thecorresponding bit of the binary representation of the o�set p.For an arbitrary interval size n and an arbitrary o�set p we have designed an algorithm calledIntersect that achieves the lower bound of communication and memory counts and is within a factorof 1.5 of the lower bound of operation count.For an arbitrary interval size n and an arbitrary o�set p, we have designed an algorithm called Splitwhich produces the result with the memory, hop and message size equal to their lower bounds. Theoperation and message counts are at most twice the value of the corresponding lower bound. Dependingon the relative cost of the increased message and operation counts versus the smaller hop count, thisalgorithm may or may not outperform intersect for the given interval and o�set.3This example is based on the computation arising in modeling ecosystem on the MasPar (Maniatty et al., 1993).

�Ozturan et al. 18For an arbitrary interval size we have designed two algorithms that require asymptotically smalloperation and message counts: both counts are log2n + 2 if the reduction's binary operator has aninverse and log2n+ 2(log2n)c + o((log2n)c), where c = log126 � 0:721057 : : :, otherwise.4.4.3 Wavefront DeterminationOne of the most common forms of parallelism available in a scienti�c computation is data parallelism,in which the same operation is performed on many elements in an n-dimensional data array. In compu-tation over such an array, a wavefront of computation can be de�ned as an (n�1)-dimensional subarraywhose elements are all evaluated simultaneously. Di�erent wavefronts result in di�erent performance,so the question arises how to determine the wavefront that results in the minimum computation time.Wavefront determination should also de�ne which wavefront elements are to be computed by eachprocessor at every execution step. This type of scheduling is appropriate for Single Program MultipleData (SPMD) (Darema-Rogers et al., 1985; Jordan, 1985) implementation on distributed-memory ar-chitecture or for data parallelism on SIMD architectures. SPMD implementation, in general, requireslarger parallel granules than SIMD implementation; therefore, it is more e�cient provided that thecomputations at each index point are fairly complex (i.e., involve computationally intensive functionevaluation).
G’

H"

H’

F’

F"

G G"H

FE’E" E

B
(2,-2)

(4, 2)

A

OFigure 10: Di�erent wavefronts to evaluate array EFigure 10 illustrates how the choice of a particular wavefront can a�ect the performance of analgorithm. A two-dimensional array E is to be evaluated on a one-dimensional (logically) processorarray. The elements are de�ned by the following equation (elements that are beyond the array boundaryare considered to be zero):E[x1; x2] = f(E[x1 � 2; x2 + 2]; E[x1� 4; x2 � 2]) (2)A data dependence vector of an equation is any vector that connects two index points. The endpoint of this vector is an index point at which the equation is executed and the starting point of thevector is an index point at which some value used in the de�nition is evaluated. For Regular IterativeAlgorithms (Rao, 1985) expressed in EPL, the dependence vectors are de�ned by the di�erence betweenthe corresponding subscript expressions used in the left and right side of the equation. In the abovecomputation, there are just two dependence vectors: OA ([4,2]) and OB([2,-2]).In general, let D = f �d1; �d2; : : : ; �dkg be the set of dependence vectors in a program (i.e., a setdependence vector for all equations in the EPL program). Variables can be evaluated simultaneously

�Ozturan et al. 19at all index points on a wavefront �h, if and only if �h � �dl > 0 for all dependence vectors �dl. Intuitively,this condition requires that all index points reachable from a wavefront �h are known at the time ofexecution of this wavefront or, in other words, all array elements in an appropriate side of the wavefronthave already been evaluated. In Figure 10 all dependence vectors are on one side of the lines EH ,E0H 0 and E 00H 00, so all of them are wavefronts. Evidently, any line between OB and OA (traversedclockwise) in Figure 10 may be a wavefront, since for these and only these lines are the dependencevectors on one side of the line. However, such a wavefront does not always exist. For example, whendata dependences are di�erent at di�erent regions of the index domain, there may be no single wavefrontwith the required property in the entire index domain.Two parallel wavefronts form a strip of computation that can be divided among a number of pro-cessors for execution. The separation between the wavefronts can be made such that once all packets(containing array elements evaluated by other processors) reach their destination, no more communi-cation is needed to complete the evaluation of all the array elements between the two wavefronts. InFigure 10, EFGH , E 0F 0G0H 0 and E 00F 00G00H 00 are three such strips. Since EFGH covers a biggerarea than E 00F 00G00H 00, computation along this wavefront results in less frequent communication andsynchronization. Wavefront EH can be preferred to E 00H 00 for another reason; namely, the smallerdistance that data must travel (compare projection of OA on E 00H 00 with the projection of OA onEH). Wavefront EH can be partitioned into more sections than E 00H 00 with the similar computation-to-communication ratio, leading to a higher degree of parallelism.Even if there are no restrictions on the number of available processors, it is not straightforwardto determine how the wavefronts should be optimally partitioned and mapped to the processors. Asmall partition increases communication time, because most of the input array elements needed toevaluate a particular index point may reside outside the evaluating processor's local memory. Forcertain dependence vectors and the sizes of the partitions, input array elements may be quite a fewprocessors away. On the other hand, the processors may be underutilized, if a large partition of thewavefront is assigned to a single processor.The wavefront approach to �nding the set of index points at which evaluation can proceed simul-taneously was originally proposed in (Lamport, 1974). However, to �nd the wavefront minimizing thetotal execution time, an NP-hard integer programming problem has to be solved. This original resulthas been extended by many researchers over the years (Moldovan, 1986; Sheu and Tai, 1991; Lee andKedem, 1988; Lee and Kedem, 1990); however, the proposed solutions still are NP-hard because theycan be reduced to an instance of the integer-programming problem.Assuming that the spacetime representation of an algorithm is a continuous domain, we can deter-mine the wavefront �h with the minimum execution time with polynomial complexity. This result holdsfor two-dimensional arrays processed on a linear, arbitrary large array of processors. It is valid for twodi�erent models of communication: (i) individual element transfer, and (ii) packet transfer. In the �rstcase, we have proven, under the above simplifying assumptions, that the only wavefronts which canbe optimal are those that are either perpendicular to one of the dependence vectors or parallel to they-axis. This property leads to a simple but e�cient procedure for �nding an optimal wavefront by justinspecting all potentially optimal wavefronts (complexity of this procedure is linear in the size of theinput).For the example in Figure 10, there are only three angles of a wavefront to consider: 1 = �=2; 2 =arctan(�2); 3 = �=4. The wavefronts with 1 and 2 are shown in Figure 11. In a single execution stepwith the wavefront de�ned by 1, each processor evaluates four index points and needs to receive eightvalues from the neighboring processors. However, for 2 wavefront, the number of evaluated points andreceived messages is at most three. The number of steps needed is also di�erent for these two wavefrontsbecause they move in di�erent directions. If we assume that the computation is de�ned over a rectanglewith corners at the points (0; 0); (0; Y); (X; 0); (X;Y); X = 100; Y = 10, then the number of steps madeby the �rst wavefront is 50 and by the second one is 105. The corresponding total computation times

�Ozturan et al. 20
e e e e e e e ee e e e e e e ef f f f f f f ff f f f f f f f e e ee e e ee e e ee e e ee e e ee e e ef f ff f f ff f f ff f f ff f f ff f f fAAAAAAAAAAAAA

AAA
AAAAAAAAAAAAA

AAA
AAAAAAAAAAAAA

AAA AAAAAAAAAAAAu uu u uuu��������� @@@@I @@@@I ���������c c c c c c c cc c c c c cc c c c c cc c c c c c c cc c c c c c c cc c c c c c c cc c c c c c c c c c c c c c c cc c c c c c c cc c c c c c c cc c c c c cc c c c c c cc c c c c c c cc c c c c c c c
��������������������������������AAAAAAAAAAAAA

AAA
AAAAAAAAAAAAA

AAA
Figure 11: Optimal wavefronts for array Efor all three discussed wavefronts will be T1 = 315e+ 315c; T2 = 200e+ 400c; T3 = 630e+ 630c, wheree is the cost of execution at each index point, and c is the cost of communicating one datum betweenneighboring processors. Depending on the value of c=e, the �rst or the second angle should be selected(see Figure 11).Usually, array elements are not passed individually, but several of them are grouped together andsent in a single packet. This method is commonly used in the communication model known as blockSIMD. In this model, o�-processor values required to compute a designated block of parallel code areobtained immediately before the beginning of the block, and all o�-processor values generated withinthe block are communicated immediately after the end of the block (Rosing et al., 1992). Typically,packets of values are formed for communication and transferred between non-neighboring processorsby means of hopping.The wavefront strip is partitioned among the processors and the width of each partition impacts thetotal computation time. With too small a width, processors spend less time computing and more timecommunicating, because less relevant information is available in the local memory. On the other hand,a large width enables processors to spend more time computing between data transfers, resulting in asmaller communication cost. Beyond a certain width, the communication cost does not decrease anyfurther with an increase in the partition width. If the partitions are too large, the available parallelismmay not be exploited fully.As in the previous case, we have proved that the optimal wavefront can only be at certain anglesto the dependence vectors (the number of possible angles is limited by the square of the number ofdependence vectors). Once again the proof leads to an e�cient enumeration procedure.In our analysis we have assumed a continuum of data elements in an array. In reality, arrays arediscrete, so the analysis is approximate. For example, in mapping a computation onto a linear arrayof processors, the algorithm provides a good wavefront when the longest projections (on each side) ofthe data dependence vectors on the selected wavefront are much larger than the length of packets sentalong the wavefront.The methods described here can be applied to any set of uncoupled recurrence equations. Todecrease the communication cost, a good alignment of all arrays in the program should be determined�rst (Sinharoy and Szymanski, 1994a; Li and Chen, 1991). Many methods described in the literature(Sheu and Tai, 1991; Lee and Kedem, 1988; Lee and Kedem, 1990; Moldovan, 1986) determine theactual mapping of the computation onto the processors, once the wavefront is determined by solving aninteger programming optimization problem. These algorithms can be used for the wavefronts obtained

�Ozturan et al. 21by our method.There are many open problems in this area. One major issue concerns �nding an e�cient algorithmto determine a good wavefront when a set of recurrence equations involving m-dimensional arrays areto be computed on an n-dimensional array of processors (m � n). Another important question is howto generate the packets of convenient sizes and shapes e�ciently, once their size and orientation areknown.5 Run-Time SupportAs discussed earlier, the main problem of e�cient parallelization is to properly map addresses of valuesbeing computed onto the computer processors. Pure compiler techniques have been successful in caseswhen the data addresses are input-independent and can be established at compile time. However,many important applications involve sparse matrix computations, adaptive numerical algorithms orcomputations over irregular meshes and therefore do not belong to this category.Traditionally supported compiler optimizations for parallel computation involves subscript analysisor directives for regular problem decompositions and distribution. Language and software tools fordealing with irregularity in parallel computation rely either on user-provided partitioning algorithms,e.g., dynamic distributions in Vienna FORTRAN (Benkner et al., 1992) or the tracing of sampleexecutions, e.g., Kali compiler (Mehrotra and Van Rosendale, 1991; Koelbel and Mehrotra, 1991) andthe PARTI library (Hiranandani et al., 1991b; Wu et al., 1991)). Communication patterns of manyadvanced parallel computations are rarely known at compile time. However, transferring individual datais expensive because of the usually large latency of MIMD architecture communication. Fortunately,often communication patterns change with each input data but remain constant inside the loop atrun-time. Therefore, both the Kali compiler and the PARTI library attempt to group messages. Entireblocks of data that must be sent to the single processor are assembled into a single message in looppreprocessing done at run-time (Koelbel and Mehrotra, 1991; Hiranandani et al., 1991b).In adaptive computation, the run-time support is needed because the workload distribution amongthe subregions of the computational domain changes during run-time. Therefore, there is a needfor run-time task reallocation of adaptive computation executed on massively parallel distributed-memory machines. Such task reallocation requires di�erent methods than the large-grain, few-processorapproaches discussed in the literature (Berger and Bokhari, 1987). We have proposed a new type ofso-called density workload problems appropriate for such environments (�Ozturan et al., 1992).5.1 Run-Time Task DistributionOne of the most challenging problems encountered while implementing adaptive scienti�c computationson distributed-memory machines is run-time mapping of a dynamically changing computational loadonto the parallel processors. In (Nicol, 1991), the following Rectilinear Partitioning Problem (RPP)has been proposed and solved:Partition the given n�m workload matrix into (N + 1)� (M + 1) rectangles with N +Mrectilinear cuts in such a way that the maximum workload among rectangles is minimized.Such optimization is appropriate for adaptive �nite element computations on architectures with localcommunication that is faster than the global one. Since balanced partitions tend to increase the volumeof local versus global communication, the overall communication cost can be decreased by using theoptimum rectilinear partition.In (�Ozturan et al., 1992), we investigated the balancing of an adaptive scienti�c computation onSIMD machines: this is the problem with similar motivation and applications as the RPP problem. InRPP, the sum of the weights is taken as the cost of a rectangle, whereas in our problem the cost is

�Ozturan et al. 22expressed as the workload density, i.e., the ratio of the workload to the area with which this workloadis associated. The area is proportional to the number of processors active in it. Such cost de�nitionis motivated by the mesh re�nement techniques used in adaptive numerical methods. Each entry inthe workload matrix represents the solution error obtained by an error estimation procedure (Flahertyet al., 1989). The high-error regions need recomputing and the needed work is proportional to themagnitude of the error. Hence, the number of processors reassigned to each solution region should beproportional to the re�nement factor.
a b dc

processor array

error distribution in the solution

Figure 12: Example of one-dimensional partitioningConsider a load-balancing problem as illustrated in Figure 12 for a one-dimensional problem. Theuniform mesh yields the solution with a high error in the interval b � x � c and within the requiredaccuracy in intervals a � x � b and c � x � d. Taking the magnitude of an error as an estimate of thework !i for each element i = 1; : : : ; n, we assign a small weight � << maxif!ig to work the estimatein regions a � x � b and c � x � d. To balance the workload, the majority of the processors shouldbe assigned the interval b � x � c.In adaptive solutions of partial di�erential equations, parallel tasks perform basically the samecomputation over di�erent spatial subdomains (intervals for one-dimensional problems) and with adi�erent discretization parameter �x. Let K denote the number of such tasks. It is important tokeep this number small for the following reasons. The subdomain interactions are proportional to thenumber of existing subdomains and in higher dimensions such interactions require expensive globalcommunications. In each time step of the subdomain computation, a fraction of executed code issubdomain-speci�c (e.g., in hyperbolic equations the time step has to be set di�erently in each sub-domain). For purely SIMD machines, execution of this code fraction has to be done in K consecutivestages. In each stage, processors in one subdomain are executing while processors belonging to theremaining K � 1 subdomains remain idle.4 Therefore, each subdomain associated with a parallel taskshould represent a localized structure in the solution domain.Figure 13(a) shows an example of the more di�cult two-dimensional case in which a coarse meshis trivially mapped to the processor mesh. In regions A and B, the mesh must be re�ned due to thepresence of high errors. Hence, we have to spread sub-domains A and B over bigger rectangular subsetsof processors to improve load balancing as in Figures 13(b) and (c).If mesh-movement or static rezone techniques are used, the mesh elements are moved into high-error regions. A global solution strategy will re�ne the high-error regions and repeat the entire step ofthe iteration. Consequently, a reassignment of processors is needed. A local solution strategy, on theother hand, repeats the iteration only where it is needed. Hence, local re�nement results in less directcomputation and enables more processors to be assigned to regions A and B. However, local re�nementrequires more interactions between the local and global solutions. Such interactions involve global4For more general MIMD architectures that support coordinated parallelism (i.e., CM-5), all K subdomains can executethis fraction of code in parallel.

�Ozturan et al. 23communication that can outweigh the bene�ts of an adaptive procedure. Global solutions and mesh-movement techniques require less interactions of this kind. Careful bu�ering of the high-error regionscan increase the number of iterations executed before re-gridding or mesh movement is needed. Thiswill, in turn, decrease the frequency of the needed load balancing. It is these global mesh-re�nement andmesh-movement techniques executed on a mesh-connected architecture that motivated us to developdensity-type partitioning.
A

(a)

A

C

D

BE

BA

C

A

B

E

D

(b)

(c) (d)

E

C
B

D

Figure 13: (a) Coarse mesh with high error regions A and B, (b) repartitioning with global re�nement,(c) repartitioning with local re�nement, (d) Nicol's partitioningIt should be noted that applying RPP partitioning to the example shown in Figure 13(d) results inassigning unnecessary processors to regions C and D. To avoid such a waste, partitioning methodologycannot be restricted to rectilinear cuts extending across the whole domain in both dimensions. Hence, inour problem de�nition and solution (�Ozturan et al., 1992), we require that K selected rectangles coverthe whole domain. The heuristics for the two-dimensional case projects the weights to one dimensionand results in rectilinear cuts extending across the whole dimension in one direction. Figure 13(b)shows an example of this kind of partition.To give a brief formal treatment of a one-dimensional case, let PK be the set of all K-partitions ofa one-dimensional workload array !i; i = 1; : : : ; n into K subintervals (xk�1; xk), where 1 � xk�1 �xk � n; k = 1; : : : ; K. The one-dimensional workload partitioning problem can then be stated as:M(x0 ;:::;xn�1 ;xn)2PK8<: Ok2[1;K](Pxki=xk�1 !if(k))9=; (3)As shown in Table 1, selecting a di�erent meaning for operations L and N yields di�erent opti-mization problems. For L � min, N � max and f(x1k ; x2k) = 1, an instance of RPP is obtainedwhich can be solved in O(Kn) or O(n+ (Klogn)2) steps (Nicol, 1991).The problem of load balancing for adaptive PDE solvers on machines where the number of processorsexceeds the number of tasks can be obtained by puttingL � min,N � max and f(k) = (xk�xk�1+1),i.e., when the sum of the workloads in each partition is divided by the interval length (i.e., the number

�Ozturan et al. 24Problem L N f(k)One-dimensional partitioning (Nicol, 1991) min max 1Density type for PDEs min max (xk � xk�1 + 1)Shortest path with k arcs min + 1Partitioning for heterogeneous processors min max skTable 1: Instances of problem represented by Eq.(1)of processors). If there are K heterogeneous processors, each with a di�erent speed sk k = 1; : : : ; K,then f(k), L and N can be instantiated according to the fourth row of Table 1. The RPP algorithmcan handle only the case with the monotonically increasing cost function Pxki=xk�1 !i. In contrast, ouralgorithm can solve more complicated problems with an arbitrary cost function Pxki=xk�1 !i=f(k) inO(Kn3) steps.There is a similarity between the weighted independent set for interval graphs and our problem(Golumbic, 1980). The interval graph for our problem can be created as follows. Each possiblesubinterval (xk�1; xk) is represented by a node of the interval graph. The weight of the node representing(xk�1; xk) is set to Pxki=xk�1 !i=f(k). In such a graph, the independent set of size K which coversthe whole interval, 1; : : : ; n; gives the solution to the original problem. The interval graph can beconverted to a directed acyclic graph (DAG). The shortest path algorithm applied to this DAG will�nd the minimum weight dominating set (Bertossi and Gori, 1988). This approach results in theoptimal algorithm for the one-dimensional case and also leads to an heuristic algorithm that can beeasily generalized to two dimensions (by projecting the workloads to one dimension).5.2 Run-Time Array Distribution in EPLTo illustrate the run-time support provided in the EPL compiler, consider the sparse matrix-vectormultiplication. This operation lies at the heart of many numerical algorithms, such as the conjugategradient algorithm for the solution of linear systems of equations. The corresponding computation is:r = AxLet S be the row-major representation of the sparse n�n matrix A, colend[i] be the number of non-zeroentries in each row (i � n) and colmap[i; j] be the column number for each non-zero entry. The variable-sized rows of S must be mapped onto P processors where P < n. The total execution time of sucha computation is de�ned by the execution time on the processor with the largest number of non-zeroelements (because processors synchronize after each multiplication step in an iterative solver). Hence,it is important that rows of S are distributed in such a way that processors are load-balanced{i.e.,each has about the same number of non-zero elements to evaluate. The corresponding EPL programis shown in Figure 14.The load-balancing scheme can be implemented solely on the basis of the ranges of rows in S. Thescheduler implemented in the EPL compiler (Szymanski, 1991) detects that the ranges of the rows in Smust be available before the matrix-vector multiplication loop starts. Hence, the last two statementsin the above EPL program which explicitly implement a simple load-balancing algorithm will alwaysbe scheduled before the loop body. The rows of S are then distributed accordingly to the run-timede�ned sizes. If these load-balancing statements are not given explicitly, then the block distributionwill result, with each processor having the same (or nearly the same) number of rows, independentlyof the number of nonzero elements in those rows.The program for distributing arrays was run on several benchmarks including meshes originally usedby Hammond (Hammond, 1991) and test cases from the Harwell-Boeing Sparse Matrix Collection (Du�

�Ozturan et al. 25process:sparse multiply; out: outp�le; in : in�le;�le: in�le,int n, np, colend[*], colmap[*,*],/*number of rows, processors, column ends, non-zeroes in each row*/double x[*],S[*,*] /* vector and sparse matrix in major-column format */�le: out�le, double r[*] ; /* output vector */subs: i,j;range.S = n; range.colend = n; range.b = n;range.S[i] = colend[i]; range.colmap[i] = colend[i];P[p]: r[i] = reduce(+,S[i,j]*x[colmap[i,j]] , j);/*** optional user statements and declarations for run-time load balancing ***/int tload, load[*]; /* total load, cumulative load */subs: p is sublinear i: load[i] ! = load[i-1];tload = reduce(+,colend[i], i);load[i] = (scan(+,colend[i], i)*np+tload-1)/tload);Figure 14: Sparse matrix-vector multiplication with dynamic load balancinget al., 1992). The characteristics of the tests are given in Table 2. The �rst test case is an unstructuredtriangular mesh around a three-component airfoil, while the second test is a portion of a larger meshrepresenting an unstructured tetrahedral mesh about a Lockheed S-3A Viking aircraft. The thirdtest case arises from a mixed kinetics di�usion problem (speci�cally, the study of ionization in thestratosphere with 38 chemical species). The fourth mesh is derived from a model of a gas coolednuclear reactor core, and the �fth test was generated using a package for reservoir modeling.The most straightforward implementation of the sparse matrix vector multiplication used in IT-PACK library (Kincaid et al.,) is shown in Figure 15(a). It multiplies each nonzero element by thecorresponding vector element that is fetched through communication, if necessary. The results of sev-eral runs of the sparse vector multiplication are given in Table 2. The rows labeled \block" and \loadbalance" give times for runs of the multiplication with a standard block distribution and with the blockdistribution adjusted by the load-balancing step, respectively. Results from executions presented inTable 2 showed up to a 21 percent cost reduction for the MP-1.6 Conclusion and Comparison with Other ApproachesIn this section we characterize EPL in terms of criteria that identify important properties of parallellanguages (Skillicorn, 1994).Architecture Independence. The same source code is used by the EPL compiler to producedi�erent parallel executables for di�erent architectures. Currently, EPL compiler includes code gen-erators for MPL and C* languages for SIMD architectures (MasPar and CM-200), Dynix C for theshared-memory Sequent Balance, and message-passing C for the Stardent computer. There is on-goingwork on C code generators for the CM-5 and SP1 architectures. Nethertheless, the user may still preferto use di�erent annotations or even di�erent EPL programs for di�erent architectures to achieve theoptimal performance.

�Ozturan et al. 26
X X X

X
X

X

X
X

X

X

X
X

X

X

X X
XX

X XX

XX X
XXX

XX

X X X

X
X X

X

XX

X

X

X

X
X

X

X
X
X

X

X
X

X

X

.

.

.

A x

(b)

partition 1

partition K

 SUBROUTINE PMULT (...)

 DO 30 I = 1,N

 IBGN = IA(I)

 IEND = IA(I+1)-1

 SUM = 0.0D0

 IF (IBGN.GT.IEND) GO TO 20

 JAJJ = JA(J)

10 CONTINUE

20 W(I) = SUM

30 CONTINUE

 DO 10 J = IBGN,IEND

(a)

 RETURN

 SUM = SUM+A(J)*X(JAJJ)Figure 15: (a) ITPACK matrix-vector multiplication code and (b) ordered array partitioningMethod/constant 3elt viking6 fs 760 1 nnc1374 pores 2Mesh Characteristicsnumber of rows 4720 6000 760 1374 1224number of nonzeroes 27444 73734 5976 8606 9613Multiplication timings.t (s) t (s) t (s) t (s) t (s)block distribution 33.6 92.8 63.8 59.6 64.5load balance 28.5 79.8 50.5 52.8 55.3100%*balanced/block 85% 86% 79% 88% 86%Table 2: Mesh characteristics and execution times for test runs on the MasPar for 1000 iterationsParallelism speci�cation. A high-level language should shield the user from having to specifyeach and every detail of parallel execution. Below we discuss the level of user involvement in de�ningparallel execution of EPL programs.� specifying data and program decompositionOnly partial speci�cation is expected from the user. An EPL computation consists of cooperatingfunctional processes that de�ne an initial decomposition of the program. Parallel tasks are createdby the EPL system through merging and splitting EPL processes based on the communication-to-communication ratio on the target architecture. The programmer can use explicit annotationsto de�ne the part of an EPL process that is to be assigned to a single virtual processor. Theannotations de�ne the lower limit on the granularity of decomposed tasks to improve the e�ciencyof generating program decomposition. If, during the process decomposition, a task is created thatincludes all computation designated to some virtual process, this task will not be further dividedby the EPL system.� specifying mapping

�Ozturan et al. 27Mapping of the parallel task (created from processes by the EPL system) to the physical processorsis done entirely by the EPL system. However, the quality of the mapping is decided by the qualityof the decomposition which, in turn (see point above), is partially de�ned by the user who de�nesthe EPL processes.� de�ning communicationAt each process description there is no di�erence between communication and regular input/output;both are seen as externally provided input to the process. The necessary communication code isgenerated by the EPL compiler.� de�ning synchronizationAgain, the user is shielded from this aspect of parallel programming. The synchronization gener-ated by the EPL compiler is derived from the data dependency imposed by the EPL processes.Software Development Methodology. EPL relies on functional decomposition of the com-putation into processes. Processes are described in an equational language and their cooperation isdescribed as a con�guration. Programs describing processes are compiled by the EPL compiler and acon�guration is processed by the con�gurator, i.e., the compiler for the con�guration language. Hence,there is a separation of programming-in-the-large from programming-in-the-small. The process writtenas a functional program may be re�ned by user-supplied annotations. The parallel code is generatedthrough a series of transformations. First, the ow of control is established and minimum synchroniza-tion necessary for preserving correctness is found (in EPL terms, a schedule of a process is created),which is still architecture-independent. Then, the decomposition and mapping takes place (creatinganother, equivalent form, of the source program). Finally, input/output and communication statementsspeci�c to the target architecture are generated and the �nal parallel code is produced.� structure of the development processIn EPL, the equational program for a process is written very independently from the programs ofother processes. Only clearly de�ned interfaces (data structures exchange with the environment)are of concern for the process program writer.� exposition of the decision pointsPreparing a con�guration for the overall computation forces the user to decide on the method ofwriting the program at the global level without considering low-level details.� record of constructsThanks to their conciseness and lack of implementation details (i.e., input/output, communica-tion, ow of control), computation con�guration and equational programs for its processes forma good basis for program documentation.� preservation of correctnessThe parallel code is produced in three major transformations that were designed to be correctness-preserving.� limit of proofs to derivation systemProof of the correctness-preserving properties of the EPL transformation has not been madeformally yet, however these properties strongly inuence their design and implementation.

�Ozturan et al. 28Cost Measures. There is a part of the system, called the Timer, that provides the user withthe execution time estimates for equational programs. As in (Fahringer and Zima, 1993), the Timerrelies on a set of architecture measurements that can be established by running initiation programsof the Timer on the given architectures. However, we do not have a mechanism for determining theoverall computation execution cost (i.e., execution cost at the level of a con�guration) at this time. ForSPMD models, Timer is su�cient; however, in a more general setting there's a need for a better tool.Timer drives transformations of equational programs into schedules and the stage of decompositionand mapping.No Preferred Scale of Granularity. There is no upper or lower limit on the grain size in EPLwith the exception of the statement instance; i.e., EPL does not explore parallelism on the level ofexpressions and below.E�ciently Implementable. Our experience with the current EPL implementation indicatesthat the EPL generated code is no more than 20%-50% slower than the equivalent hand-written code.However, we have not yet measured the e�ciency of larger applications (or even a large number ofsmaller ones).Program decomposition through annotations and computation synthesis through con�gurationscan support e�cient parallel code generation for domain-speci�c computation. Annotations supportrapid prototyping and performance tuning of a parallel program. Adaptivity, with its associated errorestimates and the shrewd use of computation resources only in regions where accuracy requirementsare not satis�ed, can provide the needed numerical reliability and e�ciency to parallel computation.In the EPL system, adaptivity is supported through run-time task distribution.There are several premises underpinning our approach, among the most important ones are:� Annotations provide an easy and e�cient way to parallelize existing codes.� Large parallel programs consist of interconnected processes which represent logical partitions ofthe program.� Absence of control statements simpli�es program analysis and increases compiler's ability toproduce an e�cient parallel code.� Most parallel code optimization problems are NP-hard; hence, development of proper heuristicsis important.� A hierarchical view of parallel computation is helpful in extracting functional parallelism.Our research on scalable program synthesis has left many interesting issues unexplored. Future workon program synthesis that we intend to undertake includes parallelization of dynamic task distributionand run-time support for irregular computation. E�ciency of our methods will be measured for largeapplications, such as �nite di�erence and �nite element formulations for various scienti�c computations.AcknowledgementThe authors wish to thank the anonymous reviewers and Prof. Hans Zima, Associate Editor, for theirvaluable comments on the earlier versions of this paper. Special thanks are also due to Louis Ziantzfor assistance with running the EPL tests on the MasPar and to Joyce Brock for help in preparing themanuscript. This work was partially supported by the O�ce of Naval Research under grant N00014-93-1-0076, by the National Science Foundation under grants CCR-9216053 and ASC-9318184 and bythe IBM Corp. Development Grant. The content of this entry does not necessarily reect the positionor policy of the U.S. Government|no o�cial endorsements should be inferred or implied.

�Ozturan et al. 29ReferencesAndrews, G. (1991). Concurrent Programming: Principles and Practice. Benjamin/Cummings Publishing Com-pany Inc., Redwood City, CA.Benkner, S., Chapman, B., and Zima, H. (1992). Vienna Fortran 90. In Proc. Scalable High PerformanceComputing Conference 1992, Williamsburg, pages 51{59. IEEE Computer Science Press, Washington, DC.Berger, M. and Bokhari, S. (1987). A partitioning strategy for nonuniform problems on multiprocessors. IEEETransactions on Computers, C-36:570{580.Bertossi, A. and Gori, A. (1988). Total domination and irredundance in weighted interval graphs. SIAM J. Disc.Mathematics, 1(3):317{327.Bokhari, S. (1981). A shortest tree algorithm for optimal assignments across space and time in a distributedprocessor system. IEEE Trans. Soft. Eng., SE-7(6).Bruno, J. and Szymanski, B. (1988). Analyzing conditional data dependencies in an Equational LanguageCompiler. In Proc. Third Supercomputing Conference, Boston, pages 358{365. Supercomputing Institute,Tampa.Chapman, B. and Zima, H. (1992). Programming in Vienna Fortran. Scienti�c Programming, 1:31{50.Chapman, B. M., Mehrotra, P., and Zima, H. P. (1992). Vienna Fortran - a Fortran language extension fordistributed memory multiprocessors. In Saltz, J. and Mehrotra, P., editors, Languages Compilers andRun-Time Environments for Distributed Memory Machines, pages 39{62. Elsevier, Amsterdam.Darema-Rogers, F., Norton, V.A., and P�ster, G.F. (1985). A VM parallel environment. IBM Research ReportRC 11225, IBM Corp., Yorktown Heights.Du�, I., Grimes, R., and Lewis, J. (1992). User's Guide for the Harwell-Boeing Sparse Matrix Collection.CERFACS, Toulouse Cedex, France, �rst edition.Fahringer, T. and Zima, H. (1993). A static parameter based performance prediction tool for parallel programs.In The Seventh ACM International Conference on Supercomputing, Tokyo, Japan. ACM Press, New York.Flaherty, J. E., Paslow, P. J., Shephard, M., and Vasilakis, J. D., editors (1989). Adaptive Methods for PartialDi�erential Equations. SIAM, Philadelphia.Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C., and Wu, W. (1991). Fortran Dlanguage speci�cation. Technical Report COMP 90079, Department of Computer Science, Rice University,Houston.Ge, X. and Prywes, N. (1990). Reverse software engineering of concurrent programs. In Proc. Fifth JerusalemConference on Information Technology, Jerusalem, pages 731{742, IEEE Computer Science Press, Wash-ington, DC.Gerndt, M. and Zima, H. P. (1992). SUPERB: Experience and future research. In Saltz, J. and Mehrotra, P.,editors, Languages Compilers and Run-Time Environments for Distributed Memory Machines, pages 1{15.Elsevier, Amsterdam.Gibbons, A. and Ziani, R. (1991). The balanced binary tree technique on mesh-connected computers. InformationProcessing Letters, 37(2):101{109.Gilbert, J. and Schreiber, R. (1991). Optimal expression evaluation for data parallel architectures. Journal ofParallel and Distributed Computing, 13:58{64.Golumbic, M. (1980). Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.Gomory, R. and Hu, T. (1961). Multi-terminal network ows. SIAM J. of Appl. Math., 9:551{570.Govindaraju, R. and Szymanski, B. (1992). Synthesizing scalable computations from sequential programs. InProc. Scalable High Performance Computing Conference, Williamsburg, pages 228{231. IEEE ComputerScience Press, Washington, DC.

�Ozturan et al. 30Hammond, S. W. (1991). Mapping Unstructured Grid Computations to Massively Parallel Computers. PhDthesis, Computer Science Department, Rensselaer Polytechnic Institute, Troy.Hiranandani, S., Kennedy, K. Koelbel, C., Kremer, U., and Tseng, C. (1991a). An overview of the FortranD programming system. In Fourth Workshop on Languages and Compilers for Parallel Computing, SantaClara.Hiranandani, S., Kennedy, K., and Tseng, C. (1992). Compiler support for machine-independent parallel pro-gramming in Fortan D. In Saltz, J. and Mehrotra, P., editors, Languages, Compilers and Run-TimeEnvironments for Distributed Memory Machines, pages 139{176. Elsevier, Amsterdam.Hiranandani, S., Saltz, J., Piyush, M., and Berryman, H. (1991b). Performance of hashed cache data migrationschemes on multicomputers. Journal of Parallel and Distributed Computing, 12(3):315{422.Hudak, P. (1991). Para-Functional programming in Haskell. In Szymanski, B., editor, Parallel FunctionalLanguages and Environments, pages 159{196. ACM Press, New York.Jordan, H.F. (1985). Parallel computation with the Force. Technical Report 84-45, ICASE, Hampton, VA.Kau, T. (1988). Reasoning about systems of linear inequalities. In Ninth International Conference on AutomatedDeduction, Aragon. IL, pages 563{72, Springer-Verlag, Heidelberg-Berlin.Kincaid, D. R., Respess, J., Young, D., and Grimes, R. ITPACK 2C: A Fortran package for solving large sparselinear systems by adaptive accelerated iterative methods. Technical Report, University of Texas at Austin.Knobe, K., Lukas, J., and Steele Jr., G. (1990). Data optimization: Allocation of arrays to reduce communicationon SIMD machines. Journal of Parallel and Distributed Computing, 8:112{118.Koelbel, C. and Mehrotra, P. (1991). Compiling global name-space parallel loops for distributed execution. IEEETrans. on Parallel and Distributed Systems, 2:440{451.Lamport, L. (1974). The parallel execution of do loops. Communications of the ACM, 17:83{93.Lee, P.-Z. and Kedem, Z. M. (1988). Synthesizing linear array algorithms from nested for loop algorithms. IEEETrans. on Computers, 37(12):1578{1598.Lee, P.-Z. and Kedem, Z. M. (1990). Mapping nested loop algorithms into multidimensional systolic arrays.IEEE Transactions on Parallel and Distributed Processing, 1(1):64{76.Li, J. and Chen, M. (1991). The data alignment phase in compiling programs for distributed-memory machines.Journal of Parallel and Distributed Computing, 13:213{221.Maniatty, B., Szymanski, B., and Sinharoy, B. (1993). E�ciency of data alignment on MasPar. SIGPLANNotices, 28(1):48{51.McKenney, B. and Szymanski, B. (1992). Generating parallel code for SIMD machines. ACM Let. ProgrammingLanguages and Systems, 1:37{46.Mehrotra, P. and Van Rosendale, J. (1991). Programming distributed memory architectures using Kali. InNicolau, A., Gelernter, D., Gross, T., and Padua, D., editors, Advances in Languages and Compilers forParallel Processing, pages 364{384. MIT Press, Cambridge, MA.Miguet, S. and Robert, Y. (1992). Reduction operators on a distributed memory machine with a recon�gurableinterconnection. IEEE Trans. Parallel and Distributed Systems, 3(4):501{512.Moldovan, D. I. (1986). Partitioning and mapping algorithms into �xed size systolic arrays. IEEE Transactionson Computers, C-35(1):1{12.Nicol, D. M. (1991). Rectilinear partitioning of irregular data parallel computations. Technical Report 91-55,ICASE, Hampton, VA.O'Boyle, M. and Hedayat, G. (1992). Data alignment: Transformation to reduce communication on distributedmemory architectures. In Proc. Scalable High Performance Computing Conference 1992, Williamsburg,pages 366{371. IEEE Computer Science Press, Washington. DC.

�Ozturan et al. 31�Ozturan, C., Szymanski, B., and Flaherty, J. E. (1992). Adaptive methods and rectangular partitioning prob-lem. In Proc. Scalable High Performance Computing Conference 1992, Williamsburg, pages 409{415. IEEEComputer Science Press, Washington. DC.Pnueli, A., Prywes, N., and Zahri, R. (1984). Scheduling equational speci�cations and nonprocedural programs.In Biermann, Guiho, and Kondrato�, editors, Automatic program construction techniques, pages 273{287.McMillan, New York.Rao, S. K. (1985). Regular Iterative Algorithms and their Implementations on Processor Arrays. PhD thesis,Department of Electrical Engineering, Stanford University, Stanford.Rosing, M., Schnabel, R. B., and Weaver, R. P. (1992). Scienti�c programming languages for distributed memorymultiprocessors: Paradigms and research issues. In Saltz, J. and Mehrotra, P., editors, Languages, Compilersand Run-Time Environments for Distributed Memory Machines. Elsevier, Amsterdam.Sanz, J. L. C. and Cypher, R. (1992). Data reduction and fast routing: A strategy for e�cient algorithms formessage-passing parallel computers. Algorithmica, 7(1):77{89.Sarkar, V. (1991). PTRAN - the IBM parallel translation system. In Szymanski, B., editor, Parallel FunctionalLanguages and Compilers, pages 309{391. ACM Press, New York.Sheu, J.-P. and Tai, T.-H. (1991). Partitioning and mapping nested loops on multiprocessor systems. IEEETrans. on Parallel and Distributed Systems, 2(4):430{439.Sinharoy, B. and Szymanski, B. (1993). Memory optimization for parallel functional programs. In Abstracts ofInternational Meeting on Vector and Parallel Processing, CICA, Porto, Portugal, full paper submitted toComputing Structures in Engineering.Sinharoy, B. and Szymanski, B. (1994a). Data and task alignment in distributed memory architectures. Journalof Parallel and Distributed Computing, 21(1).Sinharoy, B. and Szymanski, B. (1994b). Finding optimal wavefront for parallel computation. Journal of ParallelAlgorithms and Applications, 2(1):1{22.Skillicorn, D. (1994). A Model for Practical Parallelism. Cambridge University Press, Cambridge, U.K., toappear.Spier, K. and Szymanski, B. (1990). Interprocess analysis and optimization in the Equational Language Compiler.In CONPAR-90. Lecture Notes in Computer Science. Springer, Berlin-Heidelberg-New York.Szymanski, B. (1991). EPL - parallel programming with recurrent equations. In Szymanski, B., editor, ParallelFunctional Languages and Environments, pages 51{104. ACM Press, New York.Szymanski, B. (1994). Scalable software tools for parallel computations. In Kowlik, J. and Grandinetti, L.,editors, Software for Parallel Computation, volume 106, NATO ASI Series F, pages 76{90. Springer Verlag,Berlin.Szymanski, B. and Caraco, T. (1994). Spatial analysis of vector-borne disease: A four species model. EvolutionaryEcology, 8, in press.Szymanski, B., Maniatty, B., and Sinharoy, B. (1992). Simultaneous parallel reduction. Technical Report CS 92-31, Computer Science Department, Rensselaer Polytechnic Institute, Troy, submitted to Parallel ProcessingLetters.Szymanski, B. and Prywes, N. (1988). E�cient handling of data structures in de�nitional languages. Science ofComputer Programming, 10:221{245.Szymanski, B. and Sinharoy, B. (1992). Complexity of the closest vector problem in a lattice generated by(0,1)-matrix. Information Processing Letters, 42:141{146.Wu, J., Saltz, J., Berryman, H., and Hiranandani, S. (1991). Distributed memory compiler design for sparseproblems. Technical Report 91-13, ICASE, Hampton, VA.Zima, H., Brezany, P., Chapman, B., Mehrotra, P., and Schwald, A. (1992). Vienna Fortran - a languagespeci�cation version 1.1. Technical Report Interim 21, ICASE, Hampton, VA.

