to appear in Scientific Programming
Compiler Technology for Parallel Scientific Computation
Can Ozturan, Balaram Sinharoy! and Boleslaw K. Szymanski
Department of Computer Science, Rensselaer Polytechnic Institute

Troy, New York 12180-3590, USA

Abstract

There is a need for compiler technology that, given the source program, will generate efficient paral-
lel codes for different architectures with minimal user involvement. Parallel computation is becoming
indispensable in solving large-scale problems in science and engineering. Yet, the use of parallel com-
putation is limited by the high costs of developing the needed software. To overcome this difficulty we
advocate a comprehensive approach to the development of scalable architecture-independent software for
scientific computation based on our experience with Fquational Programming Language, EPL.

Our approach is based on a program decomposition, parallel code synthesis and run-time support for
parallel scientific computations. The program decomposition is guided by the source program annotations
provided by the user. The synthesis of parallel code is based on configurations that describe the overall
computation as a set of interacting components. Run-time support is provided by the compiler-generated
code that redistributes computation and data during object program execution. The generated parallel
code is optimized using techniques of data alignment, operator placement, wavefront determination and
memory optimization.

In this paper we discuss annotations, configurations, parallel code generation and run-time support
suitable for parallel programs written in the functional parallel programming language EPL and in
Fortran.

1 Introduction

With a constant need to solve scientific and engineering problems of ever-growing complexity, there is
an increasing need for software tools that provide solutions with minimal user involvement. Parallel
computation is becoming indispensable in the solution of the large-scale problems that arise in science
and engineering. While the use of parallel computation has been increasing, its widespread application
has been hampered by the level of effort required to develop and implement the needed software.
Parallel software often must be tuned to a particular parallel architecture to execute efficiently; thus, it
often requires costly redesign when ported to new machines. Parallel program correctness requires the
results to be independent of the number and speed of the processors. This requirement can be satisfied
only if the parallel tasks are independent of each other or properly synchronized when a dependence
exists. Designing proper synchronization is a major source of difficulty in ensuring parallel program
correctness. Different categories of parallel architectures have led to a proliferation of dialects of
standard computer languages. Varying parallel programming primitives for different parallel language
dialects greatly limit parallel software portability. Poor portability of parallel programs has resulted
in a duplication of efforts and has limited the use of developed systems.

Parallel computation can be viewed as an interwoven description of operations that are to be
applied to data distributed over the processors, and of data mapping and synchronization that dictate
the data movements and the computation order. The traditional programming languages, such as
Fortran, C, or C++, cope well with the task of prescribing operations to be performed. However,
the description of data mapping and synchronization in such languages is often introduced by ad

!Currently with IBM Corporation, P.O. Box 950, Poughkeepsie, NY 12602.

Ozturan et al. 2

hoc architecture-dependent extensions. Examples are various synchronization constructs, like busy-
walit, locks or barriers, used in programs for shared-memory machines, send and receive with different
semantics employed by programs for message-passing architectures, and dimension projection and data
broadcast popular in programs for SIMD computers. To avoid such architecture-dependent language
definitions, we propose to separate the description of operations to be performed on the data values
from the definition of data mapping and synchronization needed to supply these data values to the
proper processor at the proper instance of the program execution.

With this goal in mind, we developed tools (Govindaraju and Szymanski, 1992; Szymanski, 1994)
that (i) decompose, at least partially, the parallel program into the two (nearly) orthogonal parts
described above, (ii) translate the necessary data movements into optimal form customized for the
target architecture, and (iii) synthesize an overall parallel computation. Using these tools the user
can describe high-level features of a program and synthesize parallel computation from numerical
algorithms, program fragments, and data structures that are implemented separately. The tools support
(i) parallel task generation and their allocation to the processors, (ii) distribution of data to the
processors, (iii) run-time optimization, and (iv) rapid prototyping of different parallel implementations.

Annotated Annotated Annotated
EPL Programs Fortran77 Programs T~ - FortranD/90 Programs

~ 7

/“

Annotation Processor Fortran Transformer

\ 7/
\ _ -

(Precompiler <----"

Program Components:
Program Fragments, Data

Configuration .]
Definiton Configurator/Synthesizer

Architecture 1\ Scalable Code Generator]
Description
Parallel Code

Figure 1: Software tools and their uses

Through the application of transformation techniques, different versions of the same program can
be generated from decomposed components. The synthesized computation uses load assignment, data
distribution, and synchronization appropriate to the size and type of target parallel architecture. The
computation synthesis is guided by conditional dependence graphs that represent externally accessible
information in each of the synthesized fragments. Usage of conditional information in data flow analysis
and parallelization significantly increase efficiency of the generated parallel code.

The summary view of our approach is given in Figure 1. Program components are created by anno-

Ozturan et al. 3

tating source programs in Fortran or in the functional parallel programming language EPL (Szymanski,
1991). Fortran programs are transformed into an equational form before decomposition. The configu-
ration definition guides the synthesis of the components into a parallel computation. The synthesized
computation together with the architecture description is used by the code generator to produce an
object code customized for the target architecture. In Figure 1, continuous lines describe system paths
that have been implemented, broken lines represent paths currently under development, and dotted
lines correspond to paths at an early stage of investigation.

This paper is intended as an overview of the research done towards implementing software tools
as envisioned in Figure 1. More technical discussion can be found elsewhere (Bruno and Szymanski,
1988; Ozturan et al., 1992; Spier and Szymanski, 1990; Szymanski, 1991; Szymanski and Prywes, 1988;
Sinharoy and Szymanski, 1994a; Sinharoy and Szymanski, 1994b; McKenney and Szymanski, 1992).

A brief description of the EPL language, its annotations and configurations is given in Section 2.
The relationship of EPL constructs and tools to different levels of parallelism is discussed in Section 3.
The EPL compiler is discussed in Section 4. Section 4.4 includes an overview of our approach to scalable
parallel code generation. A dynamic load management strategy for adaptive scientific computation on
SIMD architecture is the topic of Section 5. Finally, conclusions and comparison to other approaches
is given in Section 6.

2 Overview of the EPL Language

EPL is a simple non-strict functional language with a type inference designed for scientific computa-
tion. Although computationally vast, scientific computations are typically quite regular both in terms
of control flow patterns and employed data structures. The data structures used are usually some
variations of multidimensional arrays (sparse matrices, grids, jagged-edge arrays, and even some hi-
erarchical structures can be viewed as such). Correspondingly, the EPL language is defined in terms
of just a few constructs: generalized arrays and subscripts for data structures, recurrent equations for
program specification, ports for process communication, and virtual processors to facilitate mapping
of computation onto processors and load balancing.

A computation is viewed in EPL as a collection of cooperating processes. A process is described
by an EPL program that consists of only data declarations and annotated conditional equations. The
canonical data structure is a tree with nodes that can repeat and with leaves of primitive types. In its
simplest form such a tree can be viewed as a multi-dimensional array; each level of a tree corresponding
to a new dimension of the corresponding array. Structured files are provided for communication with
an external environment (in records) and with other processes (through ports). EPL enforces a single-
assignment rule, i.e., each data element should be defined exactly once (the EPL compiler, however, is
free to produce multiple-assignment object code). Thus equations, though syntactically reminiscent of
assignment statements, are best viewed as assertions of equality.

The EPL programmer also defines the process interconnection network (the graph obtained by
representing processes as nodes and port interconnections as edges) in the configuration file. Processes
along with the configuration files are provided by the user to facilitate the compiler in extracting the
coarse grain parallelism in the computation by generating processes and inter-process communication
constructs. Configurations also allow the programmer to reuse the same process in different computa-
tions.

2.1 TIterations

An iteration is a staple of scientific computing. In EPL, iterations are programmed using subscripts. A
subscript assumes a range of integers as its value. Subscripts give EPL a dual flavor. In the definitional
view, they may be treated as universal quantifiers and equations can be viewed as logical predicates.

Ozturan et al. 4

In the operational view, they can be seen as loop control variables and each equation can be seen as a
statement nested in loops implied by its subscripts.

There is a special class of indirect indexes, called sublinear subscripts, that are used in scientific
applications so often that a special construct devoted to them has been introduced in EPL. Formally,
an indirect index s defined over the subscript ¢ is sublinear to this subscript if it satisfies the following
property:

(0<s[l]<1)and (s[i] <sfi+ 1] <s[i]+1)fori=1,2,...

It immediately follows from this definition that the sublinear subscript s[i] starts with the value of either
1 or 0 and then, with each increase of 7, it is either incremented by 1 or kept unchanged. Typically,
there is a condition associated with each sublinear subscript. The condition dictates when the subscript
increases. This is the way a sublinear subscript is defined in EPL. For example, a sparse matrix 5 that
is a row-major representation of a matrix D can be defined in EPL using a sublinear subscript col[j]
as follows:

subscript: col is sublinear j : D[, j] # 0;
i, col] = D, j

Sublinear subscripts have an implicit range determined by the number of times the defining condition
yields true.

The sublinear subscripts are convenient in expressing such operations as creating a list of selected
elements, operating on sparse matrices, or defining a subset of the given set. Even more important is
the fact that in the implementation of a process no new iteration has to be created for computation
associated with the sublinear subscripts. Instead, all necessary computation can be nested in the
iterations created for subscripts in terms of which the considered sublinear subscript has been defined.
Sublinear subscripts are also useful in defining dynamic distribution of data to processors at run-time.
An example of such a definition is given in Section 5.2.

2.2 Reduction

A computation that frequently occurs in scientific applications is to apply a binary operation over
an entire vector and store the result in the last element of the vector. For example, in scientific
computation there is often a need to apply an associative operator (such as +,*, —, max, min, etc.)
selectively on the elements of an array. Scan and Reduce are language constructs in EPL and other
parallel languages that allow such operations to be succinctly written. Reduce applied to a vector of
values produces a scalar result, whereas scan results in a vector of partial results. For example, consider

a matrix A multiplied by a vector X with the result placed in a vector r. This operation can be written
in EPL as:

Temp[i,j] = if j==1 then A[i,]}*X[j] else Temp[ij-11+A[i,[*X[il
r[i] = Templi,range.j];

or, even shorter as
rfi]= scan(+,A[Lj]*X[j]. j);

Such operations result in references of the form V...range.i,...], where range.i indicates the range
of the reduced/scanned dimension of a multidimensional array V. (In general, the EPL range variable
prefix denotes the size of its suffix.) The presence of such references in the program is explored by
memory optimization and scheduling which is discussed later.

A more detailed description of the language is given in (Szymanski, 1991).

Ozturan et al. 5

2.3 Configurations

In our approach a parallel computation is viewed as a collection of cooperating processes. Processes
are defined as functional programs. Process cooperation is described by a simple macro dataflow
specification, called a configuration. Configurations support programming-in-the-large. The user can
experiment with various configurations to find the one that results in the most efficient code.

The configurator uses the dependence graph created during configuration analysis to generate an
architecture-independent parallel description which is fed to the code generator. Configurations define
processes (and their aggregates) and ports. Statements of the configuration represent relations between
ports in different processes. They are supplied by the user to direct integration of the processes into a
parallel computation.

Processes created dynamically can communicate with ports located at parent, child, and sibling
processes; each of those processes is just a copy of the same program, except the parent process that
can be arbitrary.

Consider as an example an iterative solver of linear equations Ax = b which uses the following
recursion:

ry = Avp_y
. b—r .
wilil = Zrm el

The first part of the recursion is a matrix vector multiplication which may form a separate process,

defined as:

process: mvm; in: inf; out: ouf;

file: inf,
int n, double A[* *], /* first record with n*n matrix A */
record iter[*], double x[*]; /* sequence of records with vector x */
file: ouf,

record appr[*], double r[*]; /* sequence of result vectors r */
subscripts: 1,3,k;

range.A=n; range.A[i]=n; range.x=n; range.r=n;

rlk,i]=scan(+,A[i,i]*x[kj}.j);

Figure 2: Matrix vector multiplication in EPL

Note that there are no explicit input/output statements and the order of equations is irrelevant
because all variables are singly valued. If we assume that the separate process, let’s call it XC, calculates
the new approximation of the vector x and monitors convergence and the third process, MAIN, provides
final input/output, then the corresponding configuration is shown in Figure 3. The textual definition
lists data-flow paths that cover a configuration graph. The graphical definition is bulit from process
boxes and file edges. It is augmented with file structure information provided by the EPL system (see
Figure 3 b).

2.4 Program Decomposition through Annotations

Annotations provide an efficient way of introducing the user’s directives that assist the compiler in
program parallelization. Annotations have been proposed in many systems by various researchers

Ozturan et al. 6

xf
MAIN
inf
[T]
Configuration file: inf inf | xf
LT [

Input: P: MAIN ->inf -> P.MVM
Output: P: XC -> xf -> P: MAIN MVM XC
P:XC ->inf -> P. MVM -> ouf -> P:XC i I .

ou i ouf

(@) (b)

Figure 3: Configuration for an iterative solver in a) textual and b) graphical form

(Mehrotra and Van Rosendale, 1991; Fox et al., 1991; Chapman et al., 1992; Hudak, 1991; Chapman and
Zima, 1992) and are used mainly as compiler directives. In our approach annotations limit the feasible
mappings of computation onto the processors. Hence, they are used only during the decomposition
of a process into smaller fragments. This kind of annotation is similar to ON clause as used in the
Kali compiler (Mehrotra and Van Rosendale, 1991), Fortran D (Fox et al., 1991) or Vienna Fortran
(Chapman et al., 1992).

Annotation does not have any effect on the result computed by a program. Consequently, sequen-
tial programs that have manifested their correctness over many years of usage are good candidates for
parallelization through annotations. Being orthogonal to the program description, annotations sup-
port rapid prototyping of different parallel solutions for the same problem, which can be helpful in
performance tuning.

In EPL, each equation can be annotated with the name of an array of virtual processors on which
it is to be mapped. Virtual processors can be indexed by the equation’s subscripts to identify instances
of equations assigned to individual virtual processors. Such instances constitute the smallest granule
of parallel computation. For example, for the process MVM the following annotation:

Pli]: r[k,i]=scan(+,Af]i,j]*x[k,jl.j);

will cause the compiler to consider only the tasks that define a sequence of r vector elements. Each
task will locally store one row of array A but the vectors x[k, *] must be broadcast to all of those tasks.

The above partitioning allocates a slice of the equation defined by a single subscript value. The
resultant granularity may be too fine for a target architecture. However, when an annotation is indexed
by a sublinear subscript, then the corresponding sublinear expression dictates how the annotated
equations are clustered onto the virtual processors. For example, let p be a sublinear subscript of 1,
then range.p is the number of physical or virtual processors. (This number may be a system constant
not even known explicitly to the user; it may depend on the architecture, system load, or it may be
defined by the user or compiler directive.) Considering again the previous example of a matrix vector
multiplication, we can use an annotation:

Ozturan et al. 7

Plp]: r[k,i] = reduce(+,Afi,j]*x[k,jl.j);

It will distribute (or partition) the last dimension of r and A over range.p processors in a block fashion
n

(each processor will hold] or [£] elements of 7 and rows of A). In Section 5.2 there is an example in
which a different distribution is achieved using a sublinear subscript in an annotation. This distribution
balances the load on the processors.

There are similarities as well as differences between the EPL annotations and the Fortran language
extensions that have been introduced in many systems, e.g., Vienna Fortran (Chapman et al., 1992;
Zima et al., 1992; Benkner et al., 1992), Fortran D (Fox et al., 1991; Hiranandani et al., 1992; Hi-
ranandani et al., 1991a) and SUPERB (Gerndt and Zima, 1992). Vienna Fortran provides directives
for array-like processor structure definition. The distribution of arrays can be specified at compile-time
through the use of a DIST directive with BLOCK or CYCLIC options. INDIRECT directives can
be added to indicate run-time distribution. Such a distribution may have a range of valid distributions
defined in its declaration. It uses an explicit mapping array to assign a distribution by an executable
statement. The assigned distribution can be part of the condition in the source program. In addition
to direct distribution definition, an array in Vienna Fortran can inherit a distribution from the defini-
tion of its alignment relative to some other array (and vice versa). Directive DIST can be used with
options like =A, TRANSPOSE(A), PERMUTE(A, PERM) to align an array with, respectively,
another array AD, transposed array A or array A with indicies permuted according to the given vector
PERM.

Fortran D directives are similar to Vienna Fortran, however distribution is separated from align-
ment. In Fortran D, first the DECOMPOSITION statement is used to declare a problem domain
for each computation. The ALIGN statement is then used to describe problem mapping that defines
the alignment of arrays with respect to each other. Finally, the DISTRIBUTE statement is used to
map the problem and its associated arrays to the physical machine.

In EPL, by subscripting the annotated virtual process names and defining the appropriate ranges
for the subscripts, the user can distribute the arrays in blocks, columns or rows. The arrays can also
be transposed by permuting the subscripts of annotated virtual processors. Unlike Vienna Fortran and
Fortran D, EPL does not provide the user with directives to do manual alignment of data. Instead,
data alignment algorithms have been developed to facilitate this task automatically (see Section 4.4.1).
Hence embedding alignment directives in source programs is not necessary.

3 Parallelism Extraction in EPL

In EPL, compile-time parallelism is sought on three levels:

¢ Coarse Grain parallelism is sought by creating tasks that are primarily dictated by the user-
defined processes and process interconnection network described in the configuration files. The
process interconnection network is decomposed into parallelizable tasks by the compiler. Since
the optimal decomposition is NP-hard for machines having more than three processors (Bokhari,
1981), the EPL compiler uses heuristics.

¢ Medium Grain parallelism is sought at the level of equation clusters. Several equations in a
program can be clustered into a group. Separate tasks are generated for each of the clusters. A
cluster can run concurrently with other clusters in the same program. Programmers can assist the
compiler in determining such clusters by annotating each equation by a virtual processor name.
To minimize interprocess communication the compiler uses an heuristic to impose a hierarchy
among the generated processes (see Section 2.4).

¢ Fine Grain parallelism is explored at the level of individual instances of equations or their
clusters. This source of parallelism is of the greatest importance in massively parallel SIMD

Ozturan et al. 8

architectures. Mapping arrays onto the processors dictates communication costs of fetching the
arguments and storing the results of operations. The problem of finding the mapping optimal in
this respect is known as the data alignment problem which is discussed in Section 4.4.1. Another
problem arises in connection with mapping operators onto processors. The solution to the latter
problem is discussed in Section 4.4.2. The order of evaluation of the array elements is important
for SIMD code efficiency. A compile-time method of determining an efficient order, known as
wavefront determination, is discussed in Section 4.4.3.

Granularity Coarse Grain Medium Grain Fine Grain
Typeof (Control Parallelism) (Loop Pardlelism) (Data Parallelism)
Parallelism

Configurator (Annotations) Data Alignment
Compile-Time
P Developed (Scheduler) (Memory OptimizatiorD

Tools
(Partitioning Algorithms)
— Matrix Computations ~ Recurrence Equati 0”5)
Problems (W) Direct Solvers Iterative Solvers
Addr (Load Balancing)
Developed (Dynamic Load Balancing)
. Tools
Run-Time

Problems (Adaptive Solution of Partial Differential Equations)

Addressed

Figure 4: Developed tools and their relationships to issues in parallel scientific computation

Figure 4 shows the tools that have been developed and their correspondence to various models
of parallel computations. The control-parallel model assumes that there are separate, relatively inde-
pendent processes or functions that can be executed simultaneously. This model requires the user to
handle the error-prone and difficult task of synchronizing these independent processes. The configura-
tor eases the burden of programming for control parallelism by automating the definition of interprocess
coordination.

Data parallelism, popular in massively parallel systems, assumes that there are large data structures
to be processed and that each element of every structure can be assigned to a single processor (either
virtual or real). The same sequence of instructions is applied simultaneously to all elements of the
processed structures. It is also necessary to decide which elements of the different structures should
be placed on the same processor in order to minimize the cost of fetching arguments for operations
involving those elements. Data alignment tools described in this paper can find sub-optimal solutions
to this problem without user involvement.

Annotations, relevant mainly to loop-parallelism, provide the user with the means of rapid-prototyping
alternative parallelizations of the program. For example, supplying proper annotations, the user can
experiment with various combinations of column- and row-wise parallelizations of the matrix operations
in a program.

A load-balancing problem surfaces at all three levels of parallelism. In Section 5 we describe how
the partitioning tools developed for the presented compiler can be used to do either static or dynamic
load balancing on linear or rectangular arrays of processors. The partitioning tool is applicable to

Ozturan et al. 9

irregular computations that result from using adaptive solvers of partial differential equations on either
homogeneous or heterogeneous processors.

In EPL, the programmer can assist the compiler in extracting coarse- and medium-level parallelism.
As described earlier, coarse-grain parallelism is obtained by creating tasks from the processes and their
interconnection network as specified in the configuration files. The programmer can help in determining
the medium-grain parallelism by annotating the equations in the source program. After determining
the coarse- and medium-grain parallelism, the parallel program is synthesized with the help of the
configurator.

4 EPL Compiler

Parsing
Annotated and Syntax
_—
EPL Source Checking
. ; A Precompiler
) (- rray
: Annotation : : Graph
: Processng | . Construction
Annotation : Dimension Type Completeness
Pr ocessor ! Propagation Inference Verification
R
, Annotation | Range Condition
, Process < Pr) I .
_ Generation _ | opegaion Andysis
Intra-Port Schedule
Dependence |<——| Scheduling |——= Optimization Arcthec‘ture
Analysis Description
I Configuration : : Code
! Dependence | - o '
i Object Code
:_ Generation | Generation)
Synthesizer Scalable Code Generator

Figure 5: The structure of the EPL compiler

The basic techniques used in EPL compilation are data-dependence analysis and data-attribute
propagation. In a single program, the dependences are represented in the compact form by the condi-
tional array graph. A similar dependence graph is also created for a configuration. It shows the data
dependences among processes of the computation and is used for scheduling processes and mapping
them onto the processors. Figure 5 depicts the structure of the EPL compiler by showing part of
Figure 1 in more detail. In particular, all components of Annotation Processing, Precompiler and
Scalable Code Generator are explicitly shown. The major stages of the EPL compilation are:

1. Array Graph Construction which transforms the source code into its intermediate form. The
main components of this form are the array graph and the symbol table. The array graph nodes

Ozturan et al. 10

represent the variables and the equations. Fach array graph edge represents the dependence
between the nodes and is labeled by its attributes such as the associated subscript expressions,
dependence type, and conditions under which the dependence holds.

2. Dimension Propagation that checks correctness and assigns dimensionality to each EPL variable.

3. Type Checking which verifies that all variables and expressions have or can be assigned consistent
types.

4. Completeness Verification that performs various semantic checks and verifies that each variable
is defined over its entire domain.

5. Range Propagation that finds equivalences between ranges of variables and equations. The EPL
compiler uses the concept of a range set as an object to which all equivalent ranges are linked.
Range propagation links all dimensions which share a common bound into a range set.

6. Condition Analysis which establishes equivalence and/or exclusiveness of predicates used in con-
ditional equations. The found relations of predicates are used in scheduling and verification.

7. Scheduler that finds an array graph evaluation order which is minimal among all orders preserving
the program semantics. Scheduler also defines the scopes and nesting of the loops in the object
program. The output generated by the scheduler is used by the schedule optimizer and the code
generator.

8. Schedule Optimization is an architecture-dependent step that customizes the generated schedule
to the target architecture (see, for example, (McKenney and Szymanski, 1992) for SIMD specific
optimizations).

9. Annotation Processing, Configuration Processing and Code Generation are discussed in Sections
4.2, 4.3 and 4.4, respectively.

4.1 Single Assignment Fortran

Through extensions and annotations, imperative languages, particularly Fortran, have maintained their
dominance in scientific computation over such non-traditional languages as dataflow, logic or functional.
Nevertheless, languages based on the single assignment rule have proven to be a convenient basis for
developing sophisticated program optimizations. EPL research has centered its program optimization
techniques on the array graph representation of recurrence equations. We believe that by transforming
the Fortran programs to array graph representation, a wider spectrum of program optimization and
parallel code generation methods can be applied to the transformed programs than to their Fortran
source.

An important step towards an efficient parallelization of Fortran programs with the help of the EPL
compiler involves an equational transformation during which the equational equivalent of the program
is generated (Szymanski, 1994). The transformed programs obey the single assignment rule and do not
contain any control statements (Ge and Prywes, 1990). The transformation is done in the following
two steps:

1. Program expansion, during which the variables are expanded to enforce the single assignment
rule. In particular, the reassignments elimination involves replacing the reassigned variables

by:

¢ vector (additional dimension) — inside loops,

e variants — in “if” branches and basic blocks.

Ozturan et al. 11

2. Program optimization, that consists of:

Condition Analysis: Conditions in the transformed program are analyzed using a Sup-Inf in-
equality prover (Bruno and Szymanski, 1988) and the Kaufl variable elimination method
(Kaufl, 1988) to find pairwise equivalent or exclusive conditions.

Variable’s Variants Elimination: Variants created in equivalent and exclusive conditions are
merged into a single variable.

Additional Dimension Elimination: During scheduling and code generation for individual
processes, memory optimization is performed to replace entire dimensions by windows of few
elements for multidimensional variables (Szymanski and Prywes, 1988). This step restores
the memory efficiency of the original program.

The transformed Fortran program is then compatible with the programs produced by annotating
EPL programs.

4.2 Annotation Processing

Each virtual processor produces data, typically used by other virtual processors, and in turn consumes
data produced by others. By performing data-dependence analysis in a style of PTRAN (Sarkar, 1991),
the annotation processor can find the dependencies local to each virtual processor as well as data
structures produced and consumed by this processor. All data produced by the processor become local
to it and are placed in the its local memory. The created parallel tasks are supplied with communication
statements needed to move non-local data. Parallel tasks associated with virtual processors at the
bottom of the block hierarchy are the smallest components used in the program synthesis. Hence,
annotation processing includes:

o creating parallel tasks defined by annotated fragments of the original program,
o declaring ports needed to interconnect created tasks into a network,

e interconnecting ports according to the task communication graph to preserve data dependences
between created tasks.

Each annotated fragment of the source program becomes a separate task. All data elements defined in
the task are local to it.? All used but not local data must be sent in from the other tasks. The annotation
processor builds the task communication graph. Then, it augments the code of each task by port
declarations and send and receive statements that are needed to implement the required intertask data
flow. To minimize the communication generated by the added statements, the annotation processor
embeds a tree in the task communication graph.

Let G(V, F) be a task communication graph with a set of nodes V' representing tasks and a set of
edges I/ C V x V representing intertask communication. Fach edge e; ; € I has the associated cost,
c(e; ;), that represents the volume of data being sent from the task ¢ to the task j. In a spanning tree
T, the distance dT(em) defines the minimum length path from task ¢ to task j. Using these definitions,
the cost of the spanning tree T can be defined as:

C(T)y= " eleiy)d (ei)

i, €L

2We refer to this principle as Ezecutor Owns rule, it is an inverse of the more commonly used Owner Computes rule.
In (Sinharoy and Szymanski, 1994a) we have shown an example of computation for which neither of the two rules results
in an optimal solution.

Ozturan et al. 12

To minimize the total communication cost, proper cut-tree must be found. It can be done in O(] V' |*)
steps (Gomory and Hu, 1961) by solving | V' | maximal flow problems.

To embed the tree, we developed an heuristic which selects the embedding using the following
criteria:

¢ Dimension nesting: If two tasks with different dimensionalities are connected in the task
communication graph, the task with more dimensions should be located lower in the spanning
tree.

¢ Range nesting: Whenever possible, tasks sharing the same range should be clustered together
in the spanning tree. Variables that share ranges usually appear in the same equations. Thus,
clustering such variables together decreases the number of cross-process references to distributed
variables.

¢ Data flow: The total communication cost of the selected spanning tree should be the smallest
among all spanning trees satisfying the above two criteria.

MAIN

[T 1]

ALY X
it S Aol

l init iter I U
| | i-range
| Pi] | cluster XC
! [
\ 1 I [
N :

.ol | L N

S~ _7 MVM

~_~ —_ -

Figure 6: Communication tree for matrix vector multiplication

Trees created from an annotation of the matrix vector multiplication program are shown in Figure
6. The double outcoming arrows indicate scattering the data from a task to a group of tasks. The
double incoming arrows represent an inverse operation of gathering the data. For example, process
MAIN scatters the vector z[0] among processors P[i]. On the other hand, process X gathers the
vector 7[k] by collecting individual elements r[k,{] from processes P[i].

4.3 Program Synthesis with the Configurator

The goal of configuration processing is to establish scheduling constraints for the overall computation.
In the parallel computation, individual process correctness is a necessary but not sufficient condition
for the correctness of the entire computation. If a task has input and output ports that belong to a
cycle in the configuration graph, then this task’s input messages are dependent on the output messages.
Such dependences (in addition to dependences imposed by the statements of a task) have to be taken

Ozturan et al. 13

SEEC contigratons

(Compile 1) [Configue 1

| TIntraTask Inter Task
Analysis Analysis

.- Dependencies.

N
IIy

Configuration

(Compile 2

Configure 2
_Task Code Synchronization
——— Code

Figure 7: Two-stage dependence analysis

into account in generating the object program for individual tasks; otherwise, loss of messages, process
blocking, or even a deadlock can arise.

Tasks that belong to a cycle in the task communication graph can execute concurrently only if they
are all enclosed in the same loop including the respective send and receive statements. Such tasks are
called atomic, since they cannot be broken into parts without splitting the loop. For example, if a send
statement is executed in a separate loop from the matching receive statement, then all messages will
be sent before any one can be received, and the successors of such nonatomic tasks cannot start until
its predecessors in the task communication graph finish sending messages.

The algorithm for finding external data dependences has been presented in (Spier and Szymanski,
1990). The analysis starts by inspecting all atomic processes and then propagates transitive depen-
dences along the paths of the task communication graph restricted to atomic processes. As a result, a
configuration dependence file is created and later used by the synthesizer and the code generator. This
file contains a list of the additional externally imposed data dependences (edges and their dimension
types) that need to be added to the task array graph. One task may have several such files, each
associated with a different configuration in which this task participates.

Each edge in the configuration dependence file may have the following effects on the program
generated from the array graph:

e an additional constraint is imposed by an edge if there is no equal or stronger internal dependency
between the considered nodes, or

e an error is discovered when there are internal dependencies incompatible with the edge.

Hence, as shown in Figure 7, the dependence analysis for the synthesized computation has to be
done in two stages.

Ozturan et al. 14

4.4 Code Generation and Optimization for Massively Parallel Architectures

Data structures used in scientific computation can be viewed as a function ¢ from an index domain I
to a value domain V. An index domain, in general a set of tuples of integers < ¢1,13,...,1, >, is often
a subset of the Cartesian product of integer intervals, for regular n-dimensional arrays. For example, 1
=1 x Iy x...xI,, where I; = [1, 1,4, ;]. Often an inverse function 6~ does not exist. Following the
standard higher-level programming language notation, we denote the value of the function é at point
< Apyennyly > a8 V[lg, ..., iy

Program execution can be seen as an evaluation of the arrays at various index points (elements of
the index domain). The order of execution is restricted only by data dependences that rarely impose
the total order.

T - time domain value domain

P - processor domain o: | = V datastructure

M - virtual memory [index domain

L - limited (real) memory
a:l = Aadignment

A virtual architecture
® :A> TxPxM

wavefront NN Ejata-driven scheduling

N
N
AN

AN
N

TxPxM . TxPxL
K M= L memory optimization

Figure 8: Functional view of code generation

Figure 8 shows the conceptual stages of mapping the index domain of a variable to the Cartesian
product of the processor domain, their local memory domains and the time domain. The goal is to find
a mapping that results in the minimum execution time. In Figure 8, A represents a virtual architecture.
It is defined by the computer interconnection network. For example, in a k-dimensional mesh-connected
architecture of size N, processors can be thought of as arranged in a k-dimensional array, with A =
[1,n9] x [1,n9] x ... x [1,ng], where N = ny % ng *...% ng. The processor p[ly,l3,...,[;] is connected
with processors p[ly,...,[; £1,...,{x], 1 <j <k provided that processor p[ly,...,[; £ 1,..., ;] exists
(I; £ 1 mod n;, in the case of torus-connected architecture). To facilitate data alignment and time
scheduling, we assume that a virtual architecture A is compatible with the domain I. Local memory
domain L can be viewed as a multidimensional cube with the volume equal to the actual local memory
available on each processor. Virtual memory domain M is of the same structure as the domain L, except
it has unlimited memory size. The execution time steps are represented by time domain T = [1,t,,45],
where t,,,, is the total number of time steps needed to complete the computation.

In such a view, there are three major problems that need to be solved for generating optimized code
for massively parallel architectures: Data Alignment, Time Scheduling and Memory Optimization.

Data alignment is discussed in some detail in the next section. Time scheduling of iterative com-
putations is usually done either through data-driven scheduling or wavefront determination. Both
methods explore the fact that iterative computations often allow the simultaneous evaluation of many
array elements. Data-driven scheduling starts the execution of an index point as soon as all data that

Ozturan et al. 15

this point is dependent on becomes available. However, data dependencies often hold under conditions
that involve input data and therefore can be resolved only in run-time. Consequently, data-driven
scheduling typically relies on run-time distributed synchronization. In the case of functional programs
with single assignment and recurrent relations, the compile-time data-driven scheduling is decidable
(Pnueli et al., 1984). Such a scheduler has been implemented in the compiler for EPL language (Szy-
manski and Prywes, 1988) and is not discussed here. Wavefront Scheduling is presented in Section
4.4.3.

Programs written in EPL or transformed from Fortran obey the single assignment rule. A variable
which is reassigned in a procedural language is seen as a vector of values with a different subscript value
for each assignment. This extra temporal dimension allows the program to be specified without any
reassignments but, unless optimized, may require an exorbitant amount of memory. The EPL compiler
can often reduce the memory requirement of a program by replacing the entire dimension of an array
by a few elements (Szymanski and Prywes, 1988). However, we have proven (Sinharoy and Szymanski,
1993) that the problem of finding the optimum replacement is equivalent to the well-known NP-hard
problem of determining the maximum weight clique problem. Consequently, the EPL compiler uses
heuristics to determine a good loop arrangement for memory optimization.

4.4.1 Data Alignment

In a distributed-memory parallel computer, a significant speedup can be achieved by distributing (or
mapping) data structures in a program onto the processors. One processor is allocated (at least
conceptually) to each array element or composite data structure. Operations on elements of two
data structures can be performed entirely locally if the elements are allocated to the same processor;
otherwise, processor communication has to be involved. The cost of communication depends on the
relative position of the two processors involved and the architecture under consideration. One of the
major challenges in programming distributed-memory parallel computers is to distribute data structures
among the processors so that the communication cost is minimized.

The problem is particularly acute when the communication is synchronous, such as in the case
of SIMD machines. In addition, different alignments of multi-dimensional arrays on a grid-connected
SIMD architecture result in different communication patterns during parallel program execution. The
usual approach to this problem (O’Boyle and Hedayat, 1992; Knobe et al., 1990) is to select the best
alignment for each array in the program independently of other arrays. Hence, such an approach does
not succeed when the independently found alignments conflict with each other. Similarly, the algorithm
presented in (Gilbert and Schreiber, 1991) finds the minimum communication cost of evaluating an
expression over a distributed processor array but only for a single expression. Given the initial allocation
of data, the algorithm determines the processors at which the temporary variables should reside and a
subexpression evaluation should take place to minimize the communication cost.

In (Szymanski and Sinharoy, 1992), we have shown that the data alignment problem for an entire
program is NP-hard for all communication cost metrics. In (Sinharoy and Szymanski, 1994a), we
proposed an heuristic that starts with an integer approximation of the rational minimum of the cost
function when the distance is defined by the second (Euclidean) norm. The initial solution is then
iteratively improved by following the steepest decline direction of the cost function. Results of using
this algorithm on random graphs are encouraging (Sinharoy and Szymanski, 1994a).

Here, we focus on the definition of the problem and its impact upon the code generation. Let’s
consider an equation ey, ;1 defined over k subscripts Iy, ..., Iy (such an equation corresponds to a
statement nested in k iterations):

A 81, 82, -y Sk = o[f1s f2s e SR - e

where each simple indexing expression s; on the left side of the equation is an affine function of the

Ozturan et al. 16

corresponding subscript /;, and each indexing expression f; on the right side is a function over possibly
many subscripts. A large class of parallel scientific computations can be expressed as Regular Iterative
Algorithms (RIA) (Rao, 1985) in which all indexing expressions are of the form “I + ¢”, where [is a
subscript and ¢ is an integer constant.

To generate efficient code for SIMD machines, one or two dimensions of a data array should be
projected along the processor array (McKenney and Szymanski, 1992). For the i-th projected dimension
of each array (each equation), we define an alignment function a; that maps the index of that dimension
into the position of the virtual processor that stores (executes) its value. We consider the simplest but
also the most useful form of the alignment function defined as a constant shift, e.g., for variable vy,

a(l;) = I; + ay
Hence, the equation e with alignment shifts can be written as:
€{L Ty} olly, ..., Ix) = ..o Iy + ey oo I+ ¢k (1)
This equation incurs the communication cost:

C= Z V*d(|a61_av1+Cv1|7"-7|aek_avk+cvk|)

for all v in e

where d is a distance metric, v denotes the time needed for sending a unit message between two
directly connected processors, and n is the dimensionality of the communication network. The distance
metric is defined by the interconnection of the processors in the considered parallel architecture. Thus,
the problem is to find alignment functions a’s for each of the variables and equations such that the
communication cost C' for the given set of assignments is minimal. Figure 9 shows the communication

for i=1 to ...

€firn) vl by =it e]

Y

Processor Number

t—x,+c~""" 11—z, [~~~ t—x1 [~~~)

Local v.[t + €] vt + a,]
Memory
eli] eli + x]

Yj@

v1[i] vi[i + 2]

Figure 9: Communication cost of executing equation e

among the processors executing the ¢-th instance of q. 1 along a single dimension. Contrary to the
well known Owner Computes rule, to minimize communication costs, the processor executing the ¢-th
instance of the equation may be different from the processor that stores the ¢-th element of the array
defined by this equation.

Ozturan et al. 17

4.4.2 Array Operator Placement

Proper assignment of array operators to processors in large scientific computations executed on a
distributed-memory machine can reduce total computation time significantly. For example, consider
the following computation® evaluated over the rectangular stencil. Let nq,ny stand for the lengths of
the sides of the stencil and pq,ps be the offsets (measured from the lower left corner of the stencil)
of the desired position of the result. Let s; ; be a data structure distributed over the two-dimensional
processor array and (m,q) be the coordinates of the processor that should receive the result. The

computation is defined as:
m+tn1—p1 g+nz—p2

result = Z Z F(Smqs5i5)
i=m-p1 j=q—p2

The above computation is evaluated repeatedly for each rectangular stencil in the processor array.
Hence, it is likely to dominate the total execution time. The above computation is an example of
a reduction evaluated simultaneously over many overlapping continuous sections of an array. Other
examples of usage of such operations are likely to be found in cluster recognition, fractal dimension
computation in biological modeling (Szymanski and Caraco, 1994), or in modeling physical phenomena
(e.g., solvers of partial differential equations characterizing fluid flow).

Simultaneous reduction is evaluated over a one-dimensional consecutive section of an array, called
here an array interval; each array element is used as an operand to many reductions evaluated si-
multaneously over different overlapping intervals. This is distinct from what is usually referred to as
Parallel Reduction, which involves the parallel evaluation of a single reduction (Andrews, 1991) or its
variants. An algorithm for standard parallel reduction that uses a balanced binary tree implementation
for mesh-connected architectures has been presented in (Gibbons and Ziani, 1991). Another standard
parallel reduction algorithm has been introduced in (Miguet and Robert, 1992) for tree topologies of
arbitrary but bounded fan-in and arbitrary tree depth. The segmented prefix problem is a variant
of parallel reduction that subdivides a single dimension of processors into non-overlapping contiguous
regions of varying size. A multiple prefix algorithm that reduces non-contiguous regions simultaneously
for this variant has been presented in (Sanz and Cypher, 1992). None of the published algorithms cope
with the overlapping of the regions being reduced.

Efficiency of the simultaneous reduction has been discussed in (Szymanski et al., 1992). It can
be expressed as a function of (i) operation count; i.e., the number of required reduction operation
steps, (ii) communication cost; that is, a function of the number of messages sent (message count),
the distances traveled by messages (hop count) and the length of the messages (message size), and
(iii) memory count; i.e., the number of memory locations used to store intermediate results at each
processor. The lower bounds for the above counts are: [logan] for the operation, message and memory
counts, n — 1 for the hop count, and 1 for the message size. For the interval of size n = 2* and an
arbitrary offset p, a modification of the well known Parallel Prefiz algorithm (Andrews, 1991) achieves
the above bounds. The modification defines the direction of the message transfer in each step by the
corresponding bit of the binary representation of the offset p.

For an arbitrary interval size n and an arbitrary offset p we have designed an algorithm called
Intersect that achieves the lower bound of communication and memory counts and is within a factor
of 1.5 of the lower bound of operation count.

For an arbitrary interval size n and an arbitrary offset p, we have designed an algorithm called Split
which produces the result with the memory, hop and message size equal to their lower bounds. The
operation and message counts are at most twice the value of the corresponding lower bound. Depending
on the relative cost of the increased message and operation counts versus the smaller hop count, this
algorithm may or may not outperform intersect for the given interval and offset.

?This example is based on the computation arising in modeling ecosystem on the MasPar (Maniatty et al., 1993).

Ozturan et al. 18

For an arbitrary interval size we have designed two algorithms that require asymptotically small
operation and message counts: both counts are logon + 2 if the reduction’s binary operator has an
inverse and logan 4 2(logan)© + o((logan)©), where ¢ = logy26 ~ 0.721057 .. ., otherwise.

4.4.3 Wavefront Determination

One of the most common forms of parallelism available in a scientific computation is data parallelism,
in which the same operation is performed on many elements in an n-dimensional data array. In compu-
tation over such an array, a wavefront of computation can be defined as an (n—1)-dimensional subarray
whose elements are all evaluated simultaneously. Different wavefronts result in different performance,
so the question arises how to determine the wavefront that results in the minimum computation time.
Wavefront determination should also define which wavefront elements are to be computed by each
processor at every execution step. This type of scheduling is appropriate for Single Program Multiple
Data (SPMD) (Darema-Rogers et al., 1985; Jordan, 1985) implementation on distributed-memory ar-
chitecture or for data parallelism on SIMD architectures. SPMD implementation, in general, requires
larger parallel granules than SIMD implementation; therefore, it is more efficient provided that the
computations at each index point are fairly complex (i.e., involve computationally intensive function
evaluation).

Figure 10: Different wavefronts to evaluate array I

Figure 10 illustrates how the choice of a particular wavefront can affect the performance of an
algorithm. A two-dimensional array E is to be evaluated on a one-dimensional (logically) processor
array. The elements are defined by the following equation (elements that are beyond the array boundary
are considered to be zero):

E[$1,$2] If(E[$1—2,$2—|—2],E[$1—4,$2—2]) (2)

A data dependence vector of an equation is any vector that connects two index points. The end
point of this vector is an index point at which the equation is executed and the starting point of the
vector is an index point at which some value used in the definition is evaluated. For Regular Iterative
Algorithms (Rao, 1985) expressed in EPL, the dependence vectors are defined by the difference between
the corresponding subscript expressions used in the left and right side of the equation. In the above
computation, there are just two dependence vectors: OA ([4,2]) and OB([2,-2]).

In general, let D = {dy,da,...,dy} be the set of dependence vectors in a program (i.e., a set
dependence vector for all equations in the EPL program). Variables can be evaluated simultaneously

Ozturan et al. 19

at all index points on a wavefront h, if and only if A - d; > 0 for all dependence vectors d;. Intuitively,
this condition requires that all index points reachable from a wavefront h are known at the time of
execution of this wavefront or, in other words, all array elements in an appropriate side of the wavefront
have already been evaluated. In Figure 10 all dependence vectors are on one side of the lines FH,
E'H" and E"H", so all of them are wavefronts. Evidently, any line between OB and OA (traversed
clockwise) in Figure 10 may be a wavefront, since for these and only these lines are the dependence
vectors on one side of the line. However, such a wavefront does not always exist. For example, when
data dependences are different at different regions of the index domain, there may be no single wavefront
with the required property in the entire index domain.

Two parallel wavefronts form a strip of computation that can be divided among a number of pro-
cessors for execution. The separation between the wavefronts can be made such that once all packets
(containing array elements evaluated by other processors) reach their destination, no more communi-
cation is needed to complete the evaluation of all the array elements between the two wavefronts. In
Figure 10, EFGH, F'F'G'H’ and E"F"G"H" are three such strips. Since FFGH covers a bigger
area than E"F"G"H", computation along this wavefront results in less frequent communication and
synchronization. Wavefront £ H can be preferred to E”H" for another reason; namely, the smaller
distance that data must travel (compare projection of OA on E”H" with the projection of OA on
EH). Wavefront EH can be partitioned into more sections than E”H"” with the similar computation-
to-communication ratio, leading to a higher degree of parallelism.

Even if there are no restrictions on the number of available processors, it is not straightforward
to determine how the wavefronts should be optimally partitioned and mapped to the processors. A
small partition increases communication time, because most of the input array elements needed to
evaluate a particular index point may reside outside the evaluating processor’s local memory. For
certain dependence vectors and the sizes of the partitions, input array elements may be quite a few
processors away. On the other hand, the processors may be underutilized, if a large partition of the
wavefront is assigned to a single processor.

The wavefront approach to finding the set of index points at which evaluation can proceed simul-
taneously was originally proposed in (Lamport, 1974). However, to find the wavefront minimizing the
total execution time, an NP-hard integer programming problem has to be solved. This original result
has been extended by many researchers over the years (Moldovan, 1986; Sheu and Tai, 1991; Lee and
Kedem, 1988; Lee and Kedem, 1990); however, the proposed solutions still are NP-hard because they
can be reduced to an instance of the integer-programming problem.

Assuming that the spacetime representation of an algorithm is a continuous domain, we can deter-
mine the wavefront h with the minimum execution time with polynomial complexity. This result holds
for two-dimensional arrays processed on a linear, arbitrary large array of processors. It is valid for two
different models of communication: (i) individual element transfer, and (ii) packet transfer. In the first
case, we have proven, under the above simplifying assumptions, that the only wavefronts which can
be optimal are those that are either perpendicular to one of the dependence vectors or parallel to the
y-axis. This property leads to a simple but eflicient procedure for finding an optimal wavefront by just
inspecting all potentially optimal wavefronts (complexity of this procedure is linear in the size of the
input).

For the example in Figure 10, there are only three angles of a wavefront to consider: vy = 7/2,72 =
arctan(—2),vs = m/4. The wavefronts with 41 and v, are shown in Figure 11. In a single execution step
with the wavefront defined by 71, each processor evaluates four index points and needs to receive eight
values from the neighboring processors. However, for 75 wavefront, the number of evaluated points and
received messages is at most three. The number of steps needed is also different for these two wavefronts
because they move in different directions. If we assume that the computation is defined over a rectangle
with corners at the points (0,0),(0,Y),(X,0),(X,Y); X =100,Y = 10, then the number of steps made
by the first wavefront is 50 and by the second one is 105. The corresponding total computation times

Ozturan et al. 20

O]

@]
— o— @ 0 ¢— o— o— o—
@]

Figure 11: Optimal wavefronts for array V

for all three discussed wavefronts will be 77 = 315e + 315¢,T5 = 200e 4+ 400¢,T5 = 630e + 630¢, where
e is the cost of execution at each index point, and ¢ is the cost of communicating one datum between
neighboring processors. Depending on the value of ¢/e, the first or the second angle should be selected
(see Figure 11).

Usually, array elements are not passed individually, but several of them are grouped together and
sent in a single packet. This method is commonly used in the communication model known as block
SIMD. In this model, off-processor values required to compute a designated block of parallel code are
obtained immediately before the beginning of the block, and all off-processor values generated within
the block are communicated immediately after the end of the block (Rosing et al., 1992). Typically,
packets of values are formed for communication and transferred between non-neighboring processors
by means of hopping.

The wavefront strip is partitioned among the processors and the width of each partition impacts the
total computation time. With too small a width, processors spend less time computing and more time
communicating, because less relevant information is available in the local memory. On the other hand,
a large width enables processors to spend more time computing between data transfers, resulting in a
smaller communication cost. Beyond a certain width, the communication cost does not decrease any
further with an increase in the partition width. If the partitions are too large, the available parallelism
may not be exploited fully.

As in the previous case, we have proved that the optimal wavefront can only be at certain angles
to the dependence vectors (the number of possible angles is limited by the square of the number of
dependence vectors). Once again the proof leads to an efficient enumeration procedure.

In our analysis we have assumed a continuum of data elements in an array. In reality, arrays are
discrete, so the analysis is approximate. For example, in mapping a computation onto a linear array
of processors, the algorithm provides a good wavefront when the longest projections (on each side) of
the data dependence vectors on the selected wavefront are much larger than the length of packets sent
along the wavefront.

The methods described here can be applied to any set of uncoupled recurrence equations. To
decrease the communication cost, a good alignment of all arrays in the program should be determined
first (Sinharoy and Szymanski, 1994a; Li and Chen, 1991). Many methods described in the literature
(Sheu and Tai, 1991; Lee and Kedem, 1988; Lee and Kedem, 1990; Moldovan, 1986) determine the
actual mapping of the computation onto the processors, once the wavefront is determined by solving an
integer programming optimization problem. These algorithms can be used for the wavefronts obtained

Ozturan et al. 21

by our method.

There are many open problems in this area. One major issue concerns finding an efficient algorithm
to determine a good wavefront when a set of recurrence equations involving m-dimensional arrays are
to be computed on an n-dimensional array of processors (m > n). Another important question is how
to generate the packets of convenient sizes and shapes efficiently, once their size and orientation are
known.

5 Run-Time Support

As discussed earlier, the main problem of efficient parallelization is to properly map addresses of values
being computed onto the computer processors. Pure compiler techniques have been successful in cases
when the data addresses are input-independent and can be established at compile time. However,
many important applications involve sparse matrix computations, adaptive numerical algorithms or
computations over irregular meshes and therefore do not belong to this category.

Traditionally supported compiler optimizations for parallel computation involves subscript analysis
or directives for regular problem decompositions and distribution. Language and software tools for
dealing with irregularity in parallel computation rely either on user-provided partitioning algorithms,
e.g., dynamic distributions in Vienna FORTRAN (Benkner et al., 1992) or the tracing of sample
executions, e.g., Kali compiler (Mehrotra and Van Rosendale, 1991; Koelbel and Mehrotra, 1991) and
the PARTI library (Hiranandani et al., 1991b; Wu et al., 1991)). Communication patterns of many
advanced parallel computations are rarely known at compile time. However, transferring individual data
is expensive because of the usually large latency of MIMD architecture communication. Fortunately,
often communication patterns change with each input data but remain constant inside the loop at
run-time. Therefore, both the Kali compiler and the PARTI library attempt to group messages. Entire
blocks of data that must be sent to the single processor are assembled into a single message in loop
preprocessing done at run-time (Koelbel and Mehrotra, 1991; Hiranandani et al., 1991b).

In adaptive computation, the run-time support is needed because the workload distribution among
the subregions of the computational domain changes during run-time. Therefore, there is a need
for run-time task reallocation of adaptive computation executed on massively parallel distributed-
memory machines. Such task reallocation requires different methods than the large-grain, few-processor
approaches discussed in the literature (Berger and Bokhari, 1987). We have proposed a new type of
so-called density workload problems appropriate for such environments (OZturan et al., 1992).

5.1 Run-Time Task Distribution

One of the most challenging problems encountered while implementing adaptive scientific computations
on distributed-memory machines is run-time mapping of a dynamically changing computational load
onto the parallel processors. In (Nicol, 1991), the following Rectilinear Partitioning Problem (RPP)
has been proposed and solved:

Partition the given n x m workload matrix into (N + 1) x (M + 1) rectangles with N + M
rectilinear cuts in such a way that the maximum workload among rectangles is minimized.

Such optimization is appropriate for adaptive finite element computations on architectures with local
communication that is faster than the global one. Since balanced partitions tend to increase the volume
of local versus global communication, the overall communication cost can be decreased by using the
optimum rectilinear partition.

In (ézturan et al., 1992), we investigated the balancing of an adaptive scientific computation on
SIMD machines: this is the problem with similar motivation and applications as the RPP problem. In
RPP, the sum of the weights is taken as the cost of a rectangle, whereas in our problem the cost is

Ozturan et al. 22

expressed as the workload density, i.e., the ratio of the workload to the area with which this workload
is associated. The area is proportional to the number of processors active in it. Such cost definition
is motivated by the mesh refinement techniques used in adaptive numerical methods. Each entry in
the workload matrix represents the solution error obtained by an error estimation procedure (Flaherty
et al., 1989). The high-error regions need recomputing and the needed work is proportional to the
magnitude of the error. Hence, the number of processors reassigned to each solution region should be
proportional to the refinement factor.

error distribution in the solution

processor array

Figure 12: Example of one-dimensional partitioning

Consider a load-balancing problem as illustrated in Figure 12 for a one-dimensional problem. The
uniform mesh yields the solution with a high error in the interval b < 2 < ¢ and within the required
accuracy in intervals ¢ < 2z < b and ¢ < 2 < d. Taking the magnitude of an error as an estimate of the
work w; for each element ¢ = 1,...,n, we assign a small weight ¢ << maz;{w;} to work the estimate
in regions @ < z < b and ¢ < z < d. To balance the workload, the majority of the processors should
be assigned the interval b < 2 <.

In adaptive solutions of partial differential equations, parallel tasks perform basically the same
computation over different spatial subdomains (intervals for one-dimensional problems) and with a
different discretization parameter Az. Let K denote the number of such tasks. It is important to
keep this number small for the following reasons. The subdomain interactions are proportional to the
number of existing subdomains and in higher dimensions such interactions require expensive global
communications. In each time step of the subdomain computation, a fraction of executed code is
subdomain-specific (e.g., in hyperbolic equations the time step has to be set differently in each sub-
domain). For purely SIMD machines, execution of this code fraction has to be done in K consecutive
stages. In each stage, processors in one subdomain are executing while processors belonging to the
remaining K — 1 subdomains remain idle.* Therefore, each subdomain associated with a parallel task
should represent a localized structure in the solution domain.

Figure 13(a) shows an example of the more difficult two-dimensional case in which a coarse mesh
is trivially mapped to the processor mesh. In regions A and B, the mesh must be refined due to the
presence of high errors. Hence, we have to spread sub-domains A and B over bigger rectangular subsets
of processors to improve load balancing as in Figures 13(b) and (c).

If mesh-movement or static rezone techniques are used, the mesh elements are moved into high-
error regions. A global solution strategy will refine the high-error regions and repeat the entire step of
the iteration. Consequently, a reassignment of processors is needed. A local solution strategy, on the
other hand, repeats the iteration only where it is needed. Hence, local refinement results in less direct
computation and enables more processors to be assigned to regions A and B. However, local refinement
requires more interactions between the local and global solutions. Such interactions involve global

*For more general MIMD architectures that support coordinated parallelism (i.e., CM-5), all K subdomains can execute
this fraction of code in parallel.

Ozturan et al. 23

communication that can outweigh the benefits of an adaptive procedure. Global solutions and mesh-
movement techniques require less interactions of this kind. Careful buffering of the high-error regions
can increase the number of iterations executed before re-gridding or mesh movement is needed. This
will, in turn, decrease the frequency of the needed load balancing. It is these global mesh-refinement and
mesh-movement techniques executed on a mesh-connected architecture that motivated us to develop
density-type partitioning.

c] c
= e B
A
A
D D
@ (b)
A B E

(© (d)

Figure 13: (a) Coarse mesh with high error regions A and B, (b) repartitioning with global refinement,
(c) repartitioning with local refinement, (d) Nicol’s partitioning

It should be noted that applying RPP partitioning to the example shown in Figure 13(d) results in
assigning unnecessary processors to regions C and D. To avoid such a waste, partitioning methodology
cannot be restricted to rectilinear cuts extending across the whole domain in both dimensions. Hence, in
our problem definition and solution (OZturan et al., 1992), we require that K selected rectangles cover
the whole domain. The heuristics for the two-dimensional case projects the weights to one dimension
and results in rectilinear cuts extending across the whole dimension in one direction. Figure 13(b)

shows an example of this kind of partition.

To give a brief formal treatment of a one-dimensional case, let Pk be the set of all K-partitions of
a one-dimensional workload array w;, ¢ = 1,...,n into K subintervals (25_1,), where 1 < 251 <
zr <n, k=1,..., K. The one-dimensional workload partitioning problem can then be stated as:

S, e
@ L AB)

(20,1 %n—1,2n)EPK | kKE[L,K

As shown in Table 1, selecting a different meaning for operations @ and &) yields different opti-
mization problems. For @ = min, @ = maz and f(z1,,22,) = 1, an instance of RPP is obtained
which can be solved in O(Kn) or O(n + (Klogn)?) steps (Nicol, 1991).

The problem of load balancing for adaptive PDE solvers on machines where the number of processors
exceeds the number of tasks can be obtained by putting @ = min, Q = mazx and f(k) = (z—ap_1+1),
i.e., when the sum of the workloads in each partition is divided by the interval length (i.e., the number

Ozturan et al. 24

[Problem (D | ® | f(k) |
One-dimensional partitioning (Nicol, 1991) | min | max 1
Density type for PDEs min | maz | (¢x —cr_1 +1)
Shortest path with k& arcs min | + 1
Partitioning for heterogeneous processors min | max Sk

Table 1: Instances of problem represented by Eq.(1)

of processors). If there are K heterogeneous processors, each with a different speed s, k = 1,..., K,
then f(k), @ and @ can be instantiated according to the fourth row of Table 1. The RPP algorithm

can handle only the case with the monotonically increasing cost function > 3%

2, wi- In contrast, our

algorithm can solve more complicated problems with an arbitrary cost function Zﬁxk_l wi/f(k) in
O(Kn?) steps.

There is a similarity between the weighted independent set for interval graphs and our problem
(Golumbic, 1980). The interval graph for our problem can be created as follows. Each possible
subinterval (21, 21) is represented by a node of the interval graph. The weight of the node representing
(zk—1,2k) is set to Zﬁxk_l wi/f(k). In such a graph, the independent set of size K which covers
the whole interval, 1,...,n, gives the solution to the original problem. The interval graph can be
converted to a directed acyclic graph (DAG). The shortest path algorithm applied to this DAG will
find the minimum weight dominating set (Bertossi and Gori, 1988). This approach results in the
optimal algorithm for the one-dimensional case and also leads to an heuristic algorithm that can be
easily generalized to two dimensions (by projecting the workloads to one dimension).

5.2 Run-Time Array Distribution in EPL

To illustrate the run-time support provided in the EPL compiler, consider the sparse matrix-vector
multiplication. This operation lies at the heart of many numerical algorithms, such as the conjugate
gradient algorithm for the solution of linear systems of equations. The corresponding computation is:

r = Ax

Let S be the row-major representation of the sparse n x n matrix A, colend[i] be the number of non-zero
entries in each row (¢ < n) and colmapli, j] be the column number for each non-zero entry. The variable-
sized rows of § must be mapped onto P processors where P < n. The total execution time of such
a computation is defined by the execution time on the processor with the largest number of non-zero
elements (because processors synchronize after each multiplication step in an iterative solver). Hence,
it is important that rows of 5 are distributed in such a way that processors are load-balanced-i.e.,
each has about the same number of non-zero elements to evaluate. The corresponding EPL program
is shown in Figure 14.

The load-balancing scheme can be implemented solely on the basis of the ranges of rows in 5. The
scheduler implemented in the EPL compiler (Szymanski, 1991) detects that the ranges of the rows in .
must be available before the matrix-vector multiplication loop starts. Hence, the last two statements
in the above EPL program which explicitly implement a simple load-balancing algorithm will always
be scheduled before the loop body. The rows of 5 are then distributed accordingly to the run-time
defined sizes. If these load-balancing statements are not given explicitly, then the block distribution
will result, with each processor having the same (or nearly the same) number of rows, independently
of the number of nonzero elements in those rows.

The program for distributing arrays was run on several benchmarks including meshes originally used
by Hammond (Hammond, 1991) and test cases from the Harwell-Boeing Sparse Matrix Collection (Duff

Ozturan et al. 25

process:sparse_multiply; out: outpfile; in : infile;

file: infile,
int n, np, colend[*], colmap[*,*], /*number of rows, processors, column ends, non-zeroes in each row*/
double x[*],S[*,*] /* vector and sparse matrix in major-column format */

file: outfile, double r[*] ; /* output vector */

subs: 1,j;

range.S = n; range.colend = n; range.b = n;
range.S[i] = colend[i]; range.colmap[i] = colend[i];

Plp]: r[i] = reduce(+,S[i,j]*x[colmap[i,j]] , j);

JFHE k|

optional user statements and declarations for run-time load balancing
int tload, load[*]; /* total load, cumulative load */
subs: p is sublinear i: load[i] ! = load[i-1];

tload = reduce(+,colendl[i], i);
load[i] = (scan(+,colend[i], i)*np+tload-1)/tload);

Figure 14: Sparse matrix-vector multiplication with dynamic load balancing

et al., 1992). The characteristics of the tests are given in Table 2. The first test case is an unstructured
triangular mesh around a three-component airfoil, while the second test is a portion of a larger mesh
representing an unstructured tetrahedral mesh about a Lockheed S-3A Viking aircraft. The third
test case arises from a mixed kinetics diffusion problem (specifically, the study of ionization in the
stratosphere with 38 chemical species). The fourth mesh is derived from a model of a gas cooled
nuclear reactor core, and the fifth test was generated using a package for reservoir modeling.

The most straightforward implementation of the sparse matrix vector multiplication used in IT-
PACK library (Kincaid et al.,) is shown in Figure 15(a). It multiplies each nonzero element by the
corresponding vector element that is fetched through communication, if necessary. The results of sev-
eral runs of the sparse vector multiplication are given in Table 2. The rows labeled “block” and “load
balance” give times for runs of the multiplication with a standard block distribution and with the block
distribution adjusted by the load-balancing step, respectively. Results from executions presented in
Table 2 showed up to a 21 percent cost reduction for the MP-1.

6 Conclusion and Comparison with Other Approaches

In this section we characterize EPL in terms of criteria that identify important properties of parallel
languages (Skillicorn, 1994).

Architecture Independence. The same source code is used by the EPL compiler to produce
different parallel executables for different architectures. Currently, EPL compiler includes code gen-
erators for MPL and C* languages for SIMD architectures (MasPar and CM-200), Dynix C for the
shared-memory Sequent Balance, and message-passing C for the Stardent computer. There is on-going
work on C code generators for the CM-5 and SP1 architectures. Nethertheless, the user may still prefer
to use different annotations or even different EPL programs for different architectures to achieve the
optimal performance.

10
20
30

Figure 15:

SUBROUTI NE PMULT (...)

Ozturan et al.

TTX TxT X T I~ X7

DO30 | = 1,N < x o x "

IBGN = 1 A(I) ol x o ox 5 X || X

IEND = I A(l+1)-1 X X X X %]

SUM = 0.0D0 X X X X X

I'F (I BGN. GT. |END) GO TO 20 X XXXX XXX §

DO 10 J = I BGN, | END x X X X X X

JAJI = JA(J) X X X

SUM = SUMFA(J) *X(JAIJ) N X _X XL _ | X]

CONTI NUE X X X

X X X X

WI1) = SuM S A E I

CONTI NUE A «

RETURN

@ (b)

26

partition 1

partition K

(a) ITPACK matrix-vector multiplication code and (b) ordered array partitioning

Method/constant ‘ 3elt ‘ viking6 ‘ fs_760_1 ‘ nncl374 ‘ pores_2
Mesh Characteristics

number of rows 4720 6000 760 1374 1224

number of nonzeroes | 27444 73734 5976 8606 9613

Multiplication timings.

t(s) | t() t (s) t(s)] t()

block distribution 33.6 92.8 63.8 59.6 64.5
load balance 28.5 79.8 50.5 52.8 55.3
100%*balanced /block | 85% 86% 9% 88% 86%

Table 2: Mesh characteristics and execution times for test runs on the MasPar for 1000 iterations

Parallelism specification. A high-level language should shield the user from having to specify
each and every detail of parallel execution. Below we discuss the level of user involvement in defining
parallel execution of EPL programs.

o specifying data and program decomposition

Only partial specification is expected from the user. An EPL computation consists of cooperating
functional processes that define an initial decomposition of the program. Parallel tasks are created
by the EPL system through merging and splitting EPL processes based on the communication-
to-communication ratio on the target architecture. The programmer can use explicit annotations
to define the part of an EPL process that is to be assigned to a single virtual processor. The

annotations define the lower limit on the granularity of decomposed tasks to improve the efficiency
of generating program decomposition. If, during the process decomposition, a task is created that
includes all computation designated to some virtual process, this task will not be further divided
by the EPL system.

¢ specifying mapping

Ozturan et al. 27

Mapping of the parallel task (created from processes by the EPL system) to the physical processors
is done entirely by the EPL system. However, the quality of the mapping is decided by the quality
of the decomposition which, in turn (see point above), is partially defined by the user who defines
the EPL processes.

defining communication

At each process description there is no difference between communication and regular input/output;
both are seen as externally provided input to the process. The necessary communication code is
generated by the EPL compiler.

defining synchronization

Again, the user is shielded from this aspect of parallel programming. The synchronization gener-

ated by the EPL compiler is derived from the data dependency imposed by the EPL processes.

Software Development Methodology. EPL relies on functional decomposition of the com-

putation into processes. Processes are described in an equational language and their cooperation is
described as a configuration. Programs describing processes are compiled by the EPL compiler and a
configuration is processed by the configurator, i.e., the compiler for the configuration language. Hence,
there is a separation of programming-in-the-large from programming-in-the-small. The process written
as a functional program may be refined by user-supplied annotations. The parallel code is generated
through a series of transformations. First, the flow of control is established and minimum synchroniza-
tion necessary for preserving correctness is found (in EPL terms, a schedule of a process is created),
which is still architecture-independent. Then, the decomposition and mapping takes place (creating
another, equivalent form, of the source program). Finally, input/output and communication statements
specific to the target architecture are generated and the final parallel code is produced.

e structure of the development process

In EPL, the equational program for a process is written very independently from the programs of
other processes. Only clearly defined interfaces (data structures exchange with the environment)
are of concern for the process program writer.

exposition of the decision points

Preparing a configuration for the overall computation forces the user to decide on the method of
writing the program at the global level without considering low-level details.

record of constructs

Thanks to their conciseness and lack of implementation details (i.e., input/output, communica-
tion, flow of control), computation configuration and equational programs for its processes form
a good basis for program documentation.

preservation of correctness

The parallel code is produced in three major transformations that were designed to be correctness-
preserving.

limit of proofs to derivation system

Proof of the correctness-preserving properties of the EPL transformation has not been made
formally yet, however these properties strongly influence their design and implementation.

Ozturan et al. 28

Cost Measures. There is a part of the system, called the Timer, that provides the user with
the execution time estimates for equational programs. As in (Fahringer and Zima, 1993), the Timer
relies on a set of architecture measurements that can be established by running initiation programs
of the Timer on the given architectures. However, we do not have a mechanism for determining the
overall computation execution cost (i.e., execution cost at the level of a configuration) at this time. For
SPMD models, Timer is sufflicient; however, in a more general setting there’s a need for a better tool.
Timer drives transformations of equational programs into schedules and the stage of decomposition
and mapping.

No Preferred Scale of Granularity. There is no upper or lower limit on the grain size in EPL
with the exception of the statement instance; i.e., EPL does not explore parallelism on the level of
expressions and below.

Efficiently Implementable. Our experience with the current EPL implementation indicates
that the EPL generated code is no more than 20%-50% slower than the equivalent hand-written code.
However, we have not yet measured the efficiency of larger applications (or even a large number of
smaller ones).

Program decomposition through annotations and computation synthesis through configurations
can support efficient parallel code generation for domain-specific computation. Annotations support
rapid prototyping and performance tuning of a parallel program. Adaptivity, with its associated error
estimates and the shrewd use of computation resources only in regions where accuracy requirements
are not satisfied, can provide the needed numerical reliability and efficiency to parallel computation.
In the EPL system, adaptivity is supported through run-time task distribution.

There are several premises underpinning our approach, among the most important ones are:

¢ Annotations provide an easy and efficient way to parallelize existing codes.

o Large parallel programs consist of interconnected processes which represent logical partitions of
the program.

o Absence of control statements simplifies program analysis and increases compiler’s ability to
produce an efficient parallel code.

e Most parallel code optimization problems are NP-hard; hence, development of proper heuristics
is important.

o A hierarchical view of parallel computation is helpful in extracting functional parallelism.

Our research on scalable program synthesis has left many interesting issues unexplored. Future work
on program synthesis that we intend to undertake includes parallelization of dynamic task distribution
and run-time support for irregular computation. Efficiency of our methods will be measured for large
applications, such as finite difference and finite element formulations for various scientific computations.

Acknowledgement

The authors wish to thank the anonymous reviewers and Prof. Hans Zima, Associate Editor, for their
valuable comments on the earlier versions of this paper. Special thanks are also due to Louis Ziantz
for assistance with running the EPL tests on the MasPar and to Joyce Brock for help in preparing the
manuscript. This work was partially supported by the Office of Naval Research under grant N00014-
93-1-0076, by the National Science Foundation under grants CCR-9216053 and ASC-9318184 and by
the IBM Corp. Development Grant. The content of this entry does not necessarily reflect the position
or policy of the U.S. Government—no official endorsements should be inferred or implied.

Ozturan et al. 29

References

Andrews, G. (1991). Concurrent Programming: Principles and Practice. Benjamin/Cummings Publishing Com-
pany Inc., Redwood City, CA.

Benkner, S.; Chapman, B., and Zima, H. (1992). Vienna Fortran 90. In Proc. Scalable High Performance
Computing Conference 1992, Williamsburg, pages 51-59. IEEE Computer Science Press; Washington, DC.

Berger, M. and Bokhari, S. (1987). A partitioning strategy for nonuniform problems on multiprocessors. IEEE
Transactions on Computers, C-36:570-580.

Bertossi, A. and Gori, A. (1988). Total domination and irredundance in weighted interval graphs. STAM J. Disc.
Mathematics, 1(3):317-327.

Bokhari, S. (1981). A shortest tree algorithm for optimal assignments across space and time in a distributed
processor system. IEEE Trans. Soft. Eng., SE-7(6).

Bruno, J. and Szymanski, B. (1988). Analyzing conditional data dependencies in an Equational Language
Compiler. In Proc. Third Supercomputing Conference, Boston, pages 358-365. Supercomputing Institute,
Tampa.

Chapman, B. and Zima, H. (1992). Programming in Vienna Fortran. Scientific Programming, 1:31-50.

Chapman, B. M., Mehrotra, P., and Zima, H. P. (1992). Vienna Fortran - a Fortran language extension for
distributed memory multiprocessors. In Saltz, J. and Mehrotra, P., editors, Languages Compilers and
Run-Time Environments for Distributed Memory Machines, pages 39-62. Elsevier, Amsterdam.

Darema-Rogers, F., Norton, V.A.| and Pfister, G.F. (1985). A VM parallel environment. IBM Research Report
RC 11225, IBM Corp., Yorktown Heights.

Duff, 1., Grimes, R., and Lewis, J. (1992). User’s Guide for the Harwell-Boeing Sparse Matriz Collection.
CERFACS, Toulouse Cedex, France, first edition.

Fahringer, T. and Zima, H. (1993). A static parameter based performance prediction tool for parallel programs.
In The Seventh ACM International Conference on Supercomputing, Tokyo, Japan. ACM Press, New York.

Flaherty, J. E., Paslow, P. J., Shephard, M., and Vasilakis, J. D., editors (1989). Adaptive Methods for Partial
Differential Equations. STAM, Philadelphia.

Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C., and Wu, W. (1991). Fortran D
language specification. Technical Report COMP 90079, Department of Computer Science, Rice University,
Houston.

Ge, X. and Prywes, N. (1990). Reverse software engineering of concurrent programs. In Proc. Fifth Jerusalem
Conference on Information Technology, Jerusalem, pages 731-742, IEEE Computer Science Press, Wash-
ington, DC.

Gerndt, M. and Zima, H. P. (1992). SUPERB: Experience and future research. In Saltz, J. and Mehrotra, P.,
editors, Languages Compilers and Run-Time Environments for Distributed Memory Machines, pages 1-15.
Elsevier, Amsterdam.

Gibbons, A. and Ziani, R. (1991). The balanced binary tree technique on mesh-connected computers. Information
Processing Letters, 37(2):101-109.

Gilbert, J. and Schreiber, R. (1991). Optimal expression evaluation for data parallel architectures. Journal of
Parallel and Distributed Computing, 13:58-64.

Golumbic, M. (1980). Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.
Gomory, R. and Hu, T. (1961). Multi-terminal network flows. STAM J. of Appl. Math., 9:551-570.

Govindaraju, R. and Szymanski, B. (1992). Synthesizing scalable computations from sequential programs. In
Proc. Scalable High Performance Computing Conference, Williamsburg, pages 228-231. IEEE Computer
Science Press, Washington, DC.

Ozturan et al. 30

Hammond, S. W. (1991). Mapping Unstructured Grid Computations to Massively Parallel Computers. PhD
thesis, Computer Science Department, Rensselaer Polytechnic Institute, Troy.

Hiranandani, S., Kennedy, K. Koelbel, C.; Kremer, U., and Tseng, C. (1991a). An overview of the Fortran
D programming system. In Fourth Workshop on Languages and Compilers for Parallel Computing, Santa
Clara.

Hiranandani, S., Kennedy, K., and Tseng, C. (1992). Compiler support for machine-independent parallel pro-
gramming in Fortan D. In Saltz, J. and Mehrotra, P., editors, Languages, Compilers and Run-Time
Environments for Distributed Memory Machines, pages 139-176. Elsevier, Amsterdam.

Hiranandani, S., Saltz, J., Piyush, M., and Berryman, H. (1991b). Performance of hashed cache data migration
schemes on multicomputers. Journal of Parallel and Distributed Computing, 12(3):315-422.

Hudak, P. (1991). Para-Functional programming in Haskell. In Szymanski, B., editor, Parallel Functional
Languages and Environments, pages 159-196. ACM Press, New York.

Jordan, H.F. (1985). Parallel computation with the Force. Technical Report 84-45, ITCASE, Hampton, VA.

Kaufl, T. (1988). Reasoning about systems of linear inequalities. In Ninth International Conference on Automated
Deduction, Aragon. IL, pages 563-72, Springer-Verlag, Heidelberg-Berlin.

Kincaid, D. R., Respess, J., Young, D., and Grimes, R. ITPACK 2C: A Fortran package for solving large sparse
linear systems by adaptive accelerated iterative methods. Technical Report, University of Texas at Austin.

Knobe, K., Lukas, J., and Steele Jr., G. (1990). Data optimization: Allocation of arrays to reduce communication
on SIMD machines. Journal of Parallel and Distributed Computing, 8:112-118.

Koelbel, C. and Mehrotra, P. (1991). Compiling global name-space parallel loops for distributed execution. IEEE
Trans. on Parallel and Distributed Systems, 2:440-451.

Lamport, L. (1974). The parallel execution of do loops. Communications of the ACM, 17:83-93.

Lee, P.-Z. and Kedem, Z. M. (1988). Synthesizing linear array algorithms from nested for loop algorithms. IEEE
Trans. on Computers, 37(12):1578-1598.

Lee, P-Z. and Kedem, Z. M. (1990). Mapping nested loop algorithms into multidimensional systolic arrays.
IEEE Transactions on Parallel and Distributed Processing, 1(1):64-76.

Li, J. and Chen, M. (1991). The data alignment phase in compiling programs for distributed-memory machines.
Journal of Parallel and Distributed Computing, 13:213-221.

Maniatty, B., Szymanski, B., and Sinharoy, B. (1993). Efficiency of data alignment on MasPar. SIGPLAN
Notices, 28(1):48-51.

McKenney, B. and Szymanski, B. (1992). Generating parallel code for SIMD machines. ACM Let. Programming
Languages and Systems, 1:37-46.

Mehrotra, P. and Van Rosendale, J. (1991). Programming distributed memory architectures using Kali. In
Nicolau, A., Gelernter, D., Gross, T., and Padua, D., editors, Advances in Languages and Compilers for
Parallel Processing, pages 364-384. MIT Press, Cambridge, MA.

Miguet, S. and Robert, Y. (1992). Reduction operators on a distributed memory machine with a reconfigurable
interconnection. IEEE Trans. Parallel and Distributed Systems, 3(4):501-512.

Moldovan, D. I. (1986). Partitioning and mapping algorithms into fixed size systolic arrays. IEEE Transactions
on Computers, C-35(1):1-12.

Nicol, D. M. (1991). Rectilinear partitioning of irregular data parallel computations. Technical Report 91-55,
ICASE, Hampton, VA.

O’Boyle, M. and Hedayat, G. (1992). Data alignment: Transformation to reduce communication on distributed
memory architectures. In Proc. Scalable High Performance Computing Conference 1992, Williamsbury,
pages 366-371. IEEE Computer Science Press, Washington. DC.

Ozturan et al. 31

Ozturan, C., Szymanski, B., and Flaherty, J. E. (1992). Adaptive methods and rectangular partitioning prob-
lem. In Proc. Scalable High Performance Computing Conference 1992, Williamsburg, pages 409-415. IEEE
Computer Science Press, Washington. DC.

Pnueli, A., Prywes, N., and Zahri, R. (1984). Scheduling equational specifications and nonprocedural programs.
In Biermann, Guiho, and Kondratoff, editors, Automatic program construction techniques, pages 273-287.
McMillan, New York.

Rao, S. K. (1985). Regular Iterative Algorithms and their Implementations on Processor Arrays. PhD thesis,
Department of Electrical Engineering, Stanford University, Stanford.

Rosing, M., Schnabel, R. B.,; and Weaver, R. P. (1992). Scientific programming languages for distributed memory
multiprocessors: Paradigms and research issues. In Saltz, J. and Mehrotra, P.| editors, Languages, Compilers
and Run-Time Environments for Distributed Memory Machines. Elsevier, Amsterdam.

Sanz, J. L. C. and Cypher, R. (1992). Data reduction and fast routing: A strategy for efficient algorithms for
message-passing parallel computers. Algorithmica, 7(1):77-89.

Sarkar, V. (1991). PTRAN - the IBM parallel translation system. In Szymanski, B., editor, Parallel Functional
Languages and Compilers, pages 309-391. ACM Press, New York.

Sheu, J.-P. and Tai, T.-H. (1991). Partitioning and mapping nested loops on multiprocessor systems. IEEE
Trans. on Parallel and Distributed Systems, 2(4):430-439.

Sinharoy, B. and Szymanski, B. (1993). Memory optimization for parallel functional programs. In Abstracts of
International Meeting on Vector and Parallel Processing, CICA, Porto, Portugal, full paper submitted to
Computing Structures in Engineering.

Sinharoy, B. and Szymanski, B. (1994a). Data and task alignment in distributed memory architectures. Journal
of Parallel and Distributed Computing, 21(1).

Sinharoy, B. and Szymanski, B. (1994b). Finding optimal wavefront for parallel computation. Journal of Parallel
Algorithms and Applications, 2(1):1-22.

Skillicorn, D. (1994). A Model for Practical Parallelism. Cambridge University Press, Cambridge, UK., to
appear.

Spier, K. and Szymanski, B. (1990). Interprocess analysis and optimization in the Equational Language Compiler.
In CONPAR-90. Lecture Notes in Computer Science. Springer, Berlin-Heidelberg-New York.

Szymanski, B. (1991). EPL - parallel programming with recurrent equations. In Szymanski, B., editor, Parallel
Functional Languages and Environments, pages 51-104. ACM Press, New York.

Szymanski, B. (1994). Scalable software tools for parallel computations. In Kowlik, J. and Grandinetti, L.,
editors, Software for Parallel Computation, volume 106, NATO ASI Series F| pages 76-90. Springer Verlag,
Berlin.

Szymanski, B. and Caraco, T. (1994). Spatial analysis of vector-borne disease: A four species model. Evolutionary
FEcology, 8, in press.

Szymanski, B., Maniatty, B., and Sinharoy, B. (1992). Simultaneous parallel reduction. Technical Report CS 92-
31, Computer Science Department, Rensselaer Polytechnic Institute, Troy, submitted to Parallel Processing
Letters.

Szymanski, B. and Prywes, N. (1988). Efficient handling of data structures in definitional languages. Science of
Computer Programming, 10:221-245.

Szymanski, B. and Sinharoy, B. (1992). Complexity of the closest vector problem in a lattice generated by
(0,1)-matrix. Information Processing Letters, 42:141-146.

Wu, J., Saltz, J., Berryman, H., and Hiranandani, S. (1991). Distributed memory compiler design for sparse
problems. Technical Report 91-13, ICASE, Hampton, VA.

Zima, H., Brezany, P., Chapman, B., Mehrotra, P., and Schwald, A. (1992). Vienna Fortran - a language
specification version 1.1. Technical Report Interim 21, ICASE, Hampton, VA.

